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Abstract. Hash-based signature schemes are the most promising cryp-
tosystem candidates in a post-quantum world, but offer little structure to
enable more sophisticated constructions such as group signatures. Group
signatures allow a group member to anonymously sign messages on be-
half of the whole group (as needed for anonymous remote attestation). In
this work, we introduce G-Merkle, the first (stateful) hash-based group
signature scheme. Our proposal relies on minimal assumptions, namely
the existence of one-way functions, and offers performance equivalent to
the Merkle single-signer setting. The public key size (as small as in the
single-signer setting) outperforms all other post-quantum group signa-
tures. Moreover, for N group members issuing at most B signatures each,
the size of a hash-based group signature is just as large as a Merkle sig-
nature with a tree composed by N - B leaf nodes. This directly translates
into fast signing and verification engines. Different from lattice-based
counterparts, our construction does not require any random oracle. Note
that due to the randomized structure of our Merkle tree, the signature
authentication paths are pre-stored or deduced from a public tree, which
seems a requirement hard to circumvent. To conclude, we present imple-
mentation results to demonstrate the practicality of our proposal.
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1 Introduction

Post-quantum cryptography is attracting increasing attention since the recent an-
nouncements by NIST [0SN16], NSA [NSA15] and the PQCRYPTO project [PQC16]
that endorse the migration from classical to post-quantum schemes. Hash-based signa-
tures (HBS) are considered good candidates as they offer good security and performance
guarantees. They are considered quantum resistant, while widely-deployed public key
cryptosystems are susceptible to polynomial-time quantum attacks [Sho94], and rely
only on minimal assumptions, namely certain well-studied security notions related to
hash functions. Note that any signature scheme (classical or post-quantum) with ap-
pended message also relies on the security of hashing (used to map arbitrary length
message into a fixed length digest), plus some other (likely less studied) assumptions.



Another strength of HBS refers to their practical performance. As opposed to con-
ventional schemes, where expensive computations are required, HBS only require hash
computations, an operation with performance akin to symmetric key cryptography
rather than public-key cryptosystems. Given their high efficiency and tight security,
HBS can be seen as one of the fewest post-quantum cryptographic alternatives that
can immediately replace conventional cryptosystems (although stateful schemes may
require extra caution related to state management [MKF*16]). However, the same sim-
plicity that leads to high efficiency and tight security also imposes limitations to build
more sophisticated constructions such as group signatures.

Group signatures allow any member of a group to anonymously sign messages on
behalf of a group. This is accomplished by a unique group public key that is the same for
all group members. A group manager can break the anonymity of any group signature
by means of a master key and thus determine the respective issuer (traceability). Note
that no other entity other than the group manager is able to gather information or
trace a signature back to any group member (anonymity). Group signature schemes
have great applicability in real-world, such as in remote attestation protocols, traffic
management, e-commerce, e-cash, e-voting and e-auction, just to name a few examples.

1.1 Related Work

The first group signature scheme has been introduced in [Cv91]. Subsequently, it has
been improved in [ACJT00]. The notion of full-anonymity and full-traceability can be
traced back to the security model proposed in [BMWO03], which allows for even stronger
security properties, once these notions are established in a scheme. Since then, a great
deal of practical constructions based on classical assumptions have been proposed.
Those schemes can be classified into random oracle based constructions [ACJT00,
CL02, CL04, DP06] and standard model variants [BMWO03, BSZ05, BW06, BW07,
Gro07]. All of these constructions are based on Groth-Sahai’s non-interactive proof
systems (NIZK) for a great deal of languages. In [BL09], Brickell et al. introduced EPID
with advanced properties such as signature-based and private-key based revocation.
There are only a few (secure) constructions based on computational problems that
are believed to be quantum resistant. Such schemes are mainly based on lattice-based
hardness assumptions [GKV10, LLLS13, LLNW14, NZZ15, LNW15] or on code-based
scheme [ELLT15] that relies on additional (non-usual) assumptions. However, all of
those constructions require expensive non-interactive zero-knowledge arguments for
specific languages such as [MV03].

Previously, it seemed hard to construct group signature schemes out of hash func-
tions as they offer little structure to exploit. In fact, there exists little literature on
special property signature schemes from hash functions. One example is the forward
secure signature scheme (also proxy- and key-insulated signature schemes) from one-
way functions by Buchmann et al. [BDH11]. Recently, it has also been shown that NIZK
proofs [GMO16] can be built out of hash functions and techniques from multi-party
computation. This opens new directions as NIZK proof systems serve as a common tool
to realize advanced cryptographic constructions. However, to the best of our knowl-
edge, no hash-based group signature scheme has ever been proposed in the literature.

1.2 Owur Contributions

In this work, we propose the first (stateful) hash-based group signature scheme. Our
proposal has many advantages over other group signature schemes such as:



— It is very simple as it is solely built from a regular Merkle tree based signature
scheme in combination with a secure block cipher or pseudo random function.
The latter can be built out of one-way functions by the construction of Luby and
Rackoff [LR86], hence allowing for a construction based on minimal assumptions
in the standard model. This answers the open question raised in [LNW15].

— We do not require expensive non-interactive zero knowledge proofs (e.g. via the
Fiat-Shamir Transform) as used in other group signature schemes in order to prove
possession of a secret. As a result, no random oracle instantiation is needed.

— It is post-quantum secure with small key and signature sizes, outperforming all
other post-quantum group signature alternatives. In fact, the public key size and
the underlying one-time signature size are as large as in the single-signer setting.
The authentication path increases by log N nodes as the associated Merkle tree
consists of N - B leaf nodes, resulting in the same number of signatures per group
member. This coincides with the number of signatures in the single-signer setting.

To realize this functionality we exploit the structure of Merkle trees [Mer90]. More
precisely, we let all group members share a very same Merkle tree, which has the leaf
nodes shuffled (by means of a block cipher or, more generally, a pseudorandom permu-
tation (PRP)) before the tree is built. Our construction assigns a bounded number B
of signatures to each group member. Each group member also has its own secret key. In
Section 6, we give several options to handle a limitation related to the authentication
paths, providing different trade-offs. We stress that none of these strategies seems to
be optimal for all situations, but we hope that this discussion will feed further works
in the community on how to optimally address this particular problem.

In terms of efficiency, for N group members, hash function digest size n, the size of
our group signature is [Jone-time signature| +n - (log N + log B)] bits, which is as large
as a Merkle tree signature with N - B leaf nodes. Lattice-based counterparts occupy
at least log N - O(n) bits (ring variant) or log N - O(n?) bits (matrix variant) and
the group public key size increases by a factor of log N. Additionally, the underlying
lattice problem weakens by a factor of log N (e.g. SIVP,, .5(,2), see [LNW15]). The
nature of our construction immediately carries over to the running times for signing
and verification. Note that other group signature constructions often rely on costly
zero-knowledge proofs (using Fiat-Shamir) to establish the different features of the
group signature scheme, whilst our construction inherits them from the Merkle tree
structure for free. Our scheme can be instantiated using any (stateful) Merkle-like
signature scheme, e.g. the XMSS Merkle tree scheme [BDH11, HBGM18].

In terms of security, we give a proof for full-traceability within the well-known
framework of Bellare, Micciancio, and Warinschi (BMW model) [BMWO03] and anony-
mity according to Camenisch and Groth [CGO05]. The latter is required for a private key
based revocation mechanism, which is a desirable feature and enables the verifier to
identify signatures issued by a revoked private key. We also discuss a Proof-of-Concept
implementation to show its efficiency and scalability for a publicly available tree.

1.3 Group Signature Scheme by Chaum and van Heyst

Our construction can be seen as an improvement of the very first discrete-log based
group signature scheme due to David Chaum and Eugeéne van Heyst [Cv91]. In their
first construction each group member is randomly assigned a number of public and
secret keys of a secure signature scheme, where each group member stores its assigned
set of secret keys. To open signatures, the group manager stores the group member’s



name for every issued key. The group public key is represented as the (random) con-
catenation of all public keys. It can be seen that the approach taken in [Cv91] can be
extended to any regular signature scheme. However, in our construction we only have
one single hash value as the group public key regardless of the number of signers and
signatures. Furthermore, each signer just stores one single secret seed, out of which all
one-time key pairs and leaf nodes are derived. To ensure anonymity and traceability at
reduced costs, the group manager applies a pseudorandom permutation to shuffle the
positions of the leaf nodes and to open signatures without storing a large list of names
and respective keys. All these modifications can directly be applied to [Cv91].

1.4 Open Problems

Full-anonymity in the BMW model would lead to a public-key encryption scheme
[CGO05, AW04] solely based on the existence of one-way functions, i.e. the group signa-
ture scheme would also serve as a basis to build other public key cryptographic primi-
tives. However, there is little hope to achieve such a result as the seminal work [IR89)]
by Impagliazzo und Rudich already showed that one cannot base secure key agreement
protocols on one-way functions. Thus, a challenging open problem consists of modify-
ing our scheme in order to satisfy stronger notions of full-anonymity. Obtaining and
storing the authentication path, a requirement of Merkle tree constructions, seems a
limitation of our work hard to circumvent. Finally, we note that multi-tree approaches
(e.g. [HRB13]) are not applicable, thus limiting the maximum attainable tree height.

1.5 Organization

Section 2 presents the preliminary concepts, Section 3 the background on group sig-
nature schemes and related security notions and Section 4 presents our construction.
Section 5 details its security assessment, Section 6 discusses the authentication path
computation, Section 7 its implementation aspects and Section 8 our conclusions.

2 Preliminaries

It is well known [Mer90, BDS08, BDH11] that it is possible to build secure digital
signature schemes using only a secure hash function. This is an advantage in comparison
to any other signing scheme, which require not only a secure hash function but also a
hard underlying computational problem. In this sense, hash-based signature schemes
achieve minimal security requirements. The concept of secure hash function is vague
and requires some refinement. Below we recap three computational problems related
to hash functions useful to assess the security of hash-based signature schemes.

A cryptographic hash function H : {0,1}* — {0,1}" is an efficiently computable
function # = (H, HKGen), where HKGen(1") outputs a hash function H and H maps
on input H and an element m € {0,1}" to H(m) € {0,1}". Depending on the given
application scenario it may be required to have a certain set of properties [Rog04].

One-wayness (OW) A hash function H is said to be one-way, if it is infeasible for
a PPT-adversary to find a preimage m of a random image.

Collision Resistance (CR) A hash function H is said to be collision resistant, if
it is infeasible for a PPT-adversary to find two distinct messages m # m’ that map to
the same hash value, i.e., H(m) = H(m').
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Second Preimage Resistance (SR) A hash function H is said to be second
preimage resistant, if it is infeasible for a PPT-adversary and a given pair (m, H(m))
to find another message m # m' that maps to the same hash value H(m) = H(m').
We note that CR implies SR.

To provide A bits of classical security against collision and pre-image attacks, a hash
function needs to have digest size of at least n = 2\ bits and n = A bits, respectively.
To maintain the same levels of security in a post-quantum world, the digest of the hash
function would need to be extended by a factor 3/2 (for collision) and by a factor 2
(for pre-image). This is due to speedups induced by Grover’s search algorithm [Gro96]
on a quantum computer. Note that this quantum speedup is marginal when compared
to the one obtained by Shor’s algorithm [Sho94] against RSA/ECC cryptosystems.

Most hash-based signature schemes are either one-time (OTS) or multi-time signa-
ture (MTS) schemes. OTS schemes (such as Winternitz [Mer90] and W-OTS+ [Hiil13])
have an important limitation: a private key must not be used to sign more than one
message (if so, it loses its security guarantees). Due to this limitation, Merkle proposed
a way to transform an OTS scheme into a MTS scheme solely based on hash functions.
This is known as the Merkle tree signature scheme [Mer90] and offers a way to tie
many one-time public keys into a single multi-time public key. In this sense, any of
the signatures generated by the one-time private keys can be validated with a single
(multi-time) public key.

The Merkle scheme uses a binary tree of height h that is built from 2" one-time
key pairs. The leaf nodes are computed as the hash of the one-time public keys. The
inner nodes are computed as the hash of concatenated children nodes. This rule is used
to build all inner nodes up to the root, which is the multi-time public key.

3 Foundations of Group Signature Schemes

In this section we introduce the different definitions and security notions associated
to group signature schemes following the work of Bellare, Micciancio, and Warin-
schi [BMWO03] for full-traceability and anonymity according to Camenisch and Groth
[CGO5], which describe a comprehensive set of properties.

The appropriate security model for anonymity in our setting is due to [CGO05],
since the adversary is only given access to the secret keys of corrupt users in con-
trast to [BMWO3], where the adversary has full access to the secret keys of all group
members. The former reflects circumstances where the adversary is either static or
he is adaptive and the parties cannot erase data (in these cases full-anonymity would
not enhance security). In our scheme, we do not achieve full-anonymity in the sense
of [BMWO03] for an adaptive adversary and parties with erasing capabilities, since re-
vealing the secret keys immediately allow to identify all the associated signatures. But
this seems plausible for constructions solely based on the existence of one-way functions.
‘We note that once our hash-based group signature scheme satisfies also full-anonymity
following [BMWO03] it is possible to build a public-key encryption scheme out of it.
This would be a great result in post-quantum cryptography in general as this would
imply public key cryptography (see Section 8) solely based on the security of one-way
functions (minimal assumptions). In Section 8, we briefly discuss how full-anonymity
allows to construct a public key encryption scheme following [CG05, AWO04]. Thus,
in the security game [CGO5] the adversary is given a random signature and he must
output the correct identity, under which it has been signed and which has not been
corrupted before. We account for the fact that stateful Merkle-like schemes output a
bounded number of signatures in the anonymity game.



In a group signature scheme there are essentially 3 parties involved:

e Group Manager He instantiates the scheme and generates the group public key. He
assigns each group member with a secret key. In case of misuse of group signatures
or misbehavior the group manager has the power to reveal the identity of a group
signature by means of its master key.

e Group Member A group member can sign any data using its secret key such that
his identity is concealed from any verifier other than the group manager.

e Verifier Any verifier can use the group public key in order to verify a group signa-
ture. He only knows that a group member signed the data, but he cannot specify
which group member.

The syntax of a group signature scheme and the involved algorithms is as follows.
Syntax: A group signature scheme is composed by the following polynomial-time al-
gorithms GS = (G.KGen, G.Sign, G.Verify, G.Open).

G.KGen(1%,1") : The group key generation algorithm is a randomized algorithm that
takes as input the security parameter k, the number of users N and generates and
outputs a group public key gpk, the group signing keys gsk, associated to the i-th
group member for ¢ € [N] and the group master key or tracing key gmsk required
to open signatures by the group manager.

G.Sign(gsk;, m) : The group signing algorithm takes as input a group signing key gsk;,
a message m € {0,1}" and outputs a group signature ¢ on the message.

G.Verify(o, m, gpk) : The deterministic group verification algorithm takes as input a
group signature, a message and the group public key, and outputs 1 in case the
signature is valid, else 0.

G.Open(gmsk, o, m) : The group opening algorithm is a deterministic algorithm that
on input the group master key, a signature, and the corresponding message outputs
an identity related to o.

There are two basic conditions to be satisfied in order for the scheme to work
appropriately. In particular, the correctness requirement of the verification and tracing
procedure has to be guaranteed for all honestly generated signatures. That is, for any
group member i € [N] the following two expressions have to hold except with negligible
probability

G.Verify(G.Sign(gsk,, m), m,gpk) = 1
G.Open(gmsk, G.Sign(gsk,, m),m) =i.

The first requirement mainly implies that all honestly generated group signatures
must be valid. And the second expression allows the group manager by means of the
master key to recover the identity of a correctly generated signature.

We now recap the security notions related to group signature schemes introduced
in [BMWO3] by Bellare et al. and subsequently relaxed in [BBS04] by Boneh et al.
In the relaxed version, the adversary is not permitted to have oracle access to the
opening procedure. For anonymity we refer to the security model of Camenisch and
Groth [CGO05], where the adversary is indeed given access to the secret keys of corrupted
group members. This model particularly also captures the possibility to realize private
key based revocation, which represents a useful feature in remote attestation protocols
as it may be a required feature to identify all signatures of an identity once its secret
key gets exposed (e.g. extracted from the TPM) such that a potential adversary is
prevented from signing under this identity. Following these models [BMWO03, CGO05],
a group signature scheme is required to ensure two main security features, which we
expound below.
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3.1 Anonymity

The adversary not in possession of the group master key is not able to unveil the
identity of a group member from its group signature. In the respective security game
following [CGO5] the adversary is given opening access in order to allow the adversary
to see the identity of opened signatures. However, these models need to be modified in
order take into account the constrained number B of signatures that a group member
is able to issue. Therefore, the adversary is allowed to make arbitrary many calls to the
opening and signing oracle for corrupted parties (at most B calls). For honest parties
the adversary is only allowed to open at most B — 1 signatures per signer.

We differentiate between SPRP-Anonymity, which strictly follows the anonymity
game of [CGO5], and PRP-Anonymity, where the adversary is not allowed to have
access to the opening oracle. Later, we will show that a pseudorandom permutation
such as a secure block cipher can be used to instantiate the scheme satisfying either
anonymity notions.

Experiment Expé?i{an*b(k, N, B)
(gpk, gsk, gmsk) <— G.KGen (1%, 1)
(St, 7:07 ilv m) P AG.Open(gmsk,~,~),G.Sign(gsk_,~),Corrupt(~)(choose7 gpk)
o +— G.Sign(gsk;, ,m)
j— AG.Open(gmsk,»,»),G.Sign(gsk,,»)(guess’ St,O‘)
if A queried the opening oracle on m, ¢ in the phase guess, return 0
if A queried 7o or i1 to Corrupt(-), return 0
if the maximal number of queries to G.Sign(gsk.,-) wrt i and i,
is bounded by B — 1, return j else L.

Fig. 1. Experiment for SPRP-anonymity

Definition 1 (SPRP-Anonymity [CGO05]). Formally, a group signature scheme
defined by the algorithms GS = (G.KGen, G.Sign, G.Verify, G.Open) is called anonymous,
if for all probabilistic polynomial adversaries A with access to the opening and signing
oracles and all polynomially bounded N the advantage of the adversary in the experi-

ment Expgf;i‘a"(k, N, B) is negligible

A (N, B) = [PLEREES (N, B) = 1) PExpf5 (6., B) = 1]

We also define a weaker form of anonymity taking into account the relaxation
considered in [BBS04]. In particular, the adversary is not granted access to the opening
oracle in the experiment. As we will see later, this will allow us to instantiate the scheme
with only a secure block cipher.

Definition 2 (PRP-Anonymity). A group signature scheme defined by the algo-
rithms GS = (G.KGen, G.Sign, G.Verify, G.Open) is called anonymous, if for all prob-
abilistic polynomial adversaries A with access to signing oracle and all polynomially
bounded N the advantage of the adversary in Expgg’?j”(k, N, B) is negligible

Advge 3" ~(k, N, B) = |PlExpgg 4" '(k, N, B) = 1] — P[Expgs 4" °(k,N,B) = 1]|.



Experiment Exp?}'}’ﬁ’“b(k, N, B)
(gpk, gsk, gmsk) <— G.KGen (1%, 1Y)
(st,io, i1, m) +— AC-SiEn(Esk),Comupt() (choose, gpk)
o +— G.Sign(gsk;, , m)
j — AGSien(esk.) (guess, st, o)
if A queried io or 41 to Corrupt(:), return 0
if the maximal number of queries to G.Sign(gsk_,-) wrt i and i1
is bounded by B — 1, return j else L.

Fig. 2. Experiment for PRP-anonymity

3.2  Full-Traceability

This feature allows the group manager or possessor of the master key to revoke the
anonymity of a signer and unveil its identity. Such a mechanism is important if mis-
behavior or misuse of the private key has been detected. In fact, this notion is even
stronger as it is required that any set of colluding parties should not be able to create
signatures that cannot be opened by the group manager or traced back to a group
member, even if the parties have access to the master key, for instance extracted dur-
ing key generation. We note that in this model we do not require to put a bound on
the number of exchanged signatures.

Definition 3 (Full-Traceability [BMWO3]). Formally, the group signature scheme
GS = (G.KGen, G.Sign, G.Verify, G.Open) is called fully traceable, if for all probabilistic
polynomial adversaries A with access to the opening oracle and all polynomially bounded
N the advantage of the adversary in the experiment Expégf;‘ace(k, N) is negligible

Advl 5" (k, N) = PlExpls"“(k, N) =1].

Experiment Expégf;‘“e (k,N)

(gpk, gsk, gmsk) <— G.KGen (1%, 1)

st «— (gpk, gmsk)

(m,a) «— AG.Sign(gsk,,»),Corrupt(-)(gue557 St)
if G.Verify(o, m,gpk) =0, return 0
if © was queried to Corrupt(-), return 0
if (¢,m) was queried to G.Sign(gsk_,-), return 0
if G.Open(gmsk,o,m) =1V 3¢ € [N] with G.Open(gmsk,o, m) =1

return 1

Fig. 3. Experiment for full-traceability

4 G-Merkle: A Hash-Based Group Signature Scheme

Our stateful group signature scheme is based on the usage of a Merkle tree, as used in
single-signer hash-based signature schemes. The core idea is to extend this approach to
a multi-user setting, where more than one signer share the same tree in order to sign



messages. A first attempt towards this direction consists in letting each user generate
its own Merkle tree (as in the single-signer scheme). Then, each of those sub-trees could
be appended to a super tree that will have as leaf nodes the root nodes of the sub-trees.

H (hs||hs)

T

Hash-based Merkle tree in a multi signer setting, where the nodes are mixed. The nodes
{pk;, pky} belong to Signer 1 and the nodes {pks, pks} belong to Signer 2.

hs = H(hal|h) | o = H (s |hn)
(ha=H(pk,)|  |ha=Hpk)|  [ha=H(pks)| k1= H(pk,)

Fig. 4. Hash-based Merkle tree in a multi signer setting after shuffling the nodes. The
nodes {pk;, pk,} belong to Signer 1 and the nodes {pks, pk,} belong to Signer 2.

This naive construction however does not meet the unlinkability property, a re-
quirement of group signature schemes, since the authentication paths of all signatures
issued by a certain signer would share at least one node (the root of its sub-tree). In
order to overcome this obstacle, we apply a mixing strategy to the leaf nodes prior to
the tree construction. That is, in the key generation phase, the group manager takes
the set of leaf nodes from all parties and subsequently applies a secure uniform random
permutation to the sets. That is, the permutation will mix the indices and hence the
positions associated to the leaf nodes in the combined set. Subsequently, the super-tree
is built as described before. In fact, this is a generic way of instantiating hash-based
group signature schemes, which can be considered as an extension of the single-signer
setting. Since our mixing strategy is based on the usage of pseudorandom permuta-
tions, we start with some required definitions. Let P, denote the set of permutations
and P € P, with P: {0,1}" — {0,1}".

Definition 4. A pair of functions (E, D) with E,D : {0,1}* x {0,1}" — {0,1}" s
called (t,€) pseudo random permutation, if E,. and D, are inverses of each other for
every r € {0, 1}’“ and for any probabilistic polynomial adversary the success probability
to distinguish a pseudorandom permutation from a truly random premutation is given
by

AdVE " (I, N) = [Pi[ AP () = 1] = Ppep, [APT () = 1] < e

4.1 Instantiating PRPs from One-Way Functions

We note that while it is possible to instantiate pseudorandom permutations by use of
block ciphers, pseudorandom permutations can particularly also be built from pseudo-



random functions. More precisely, Luby and Rackoff [LR86] propose PRPs using pseu-
dorandom functions combined with the Feistel construction. Goldreich, Goldwasser and
Micali [GGMS86] showed that pseudorandom generators imply pseudorandom functions,
which in turn can be derived from any one-way function [HILL93]. This shows, that
one-way functions indeed suffice to construct secure PRPs. Below we give a very simple
way to generate pseudorandom permutations from pseudorandom functions.

Theorem 1 (Theorem 3.1,[NR96]). Let f1, f2 be independent pseudo random func-
tions of length n and p1, p2 independent permutations of length 2n. Define the functions

PRP(pl,fl,fl) = Tfl on2 op1
SPRP(py,p2, f1, 1) = p; ' 0Ty, o Ty, 0 p1,

where Ty, (I,7) = (r,l ® fi(r)) for |l| = |r| = n and f1, f2,p1,p2 are chosen indepen-
dently. Then, PRP(p1, f1, f1) is a pseudorandom function and SPRP(p1,p2, f1, f1) is
a strong pseudo random permutation.

By use of a suitable pseudorandom function, we can instantiate the group signature
scheme with a secure SPRP with the aid of Theorem 1. In this case, the whole group
signature scheme is just based on the existence of one-way functions, the minimal
requirement for the existence of public key cryptography.

4.2 Instantiating PRPs from Block Ciphers

In general, one could apply a perfect uniform random permutation, where a permu-
tation is chosen uniformly at random from a set of n! elements. However, selecting
an element from such a huge set requires at least O(nlog(n)) bits. For n > 2% this
approach is impractical.

Thus, in practice, it is more efficient to instantiate pseudorandom permutations by
means of block ciphers such as AES, SIMON and many others that satisfy the condi-
tions from Definition 4. More specifically, the functions Ex (-) and Dg (-) correspond to
the encryption and decryption functions of the respective block ciphers. Block ciphers
represent a subset of all possible permutations.

Security of Block Cipher. When instantiating the scheme with a secure block
cipher it is essential for anonymity that an adversary seeing a number 7T of (leaf position,
group signer)-pairs (T" > 0 for SPRP-anonymity and 7' = 0 for PRP-anonymity)
cannot correctly map leaf positions to group members for the remaining leaves with
non-negligible advantage. For instance, if a permutation is sampled from the set of
all possible permutations, each group member may be associated to a remaining leaf
supposing he did not issue all its signatures. In practice, this means that either a
permutation is chosen uniformly at random from the set of all permutations (e.g. for
a tree with 4 nodes) or the bit security of the block cipher is larger than or equal to
the target security level of the scheme.

Block Ciphers with Larger Output Sizes. In practice, one does not find block
ciphers permuting 10-bit or 20-bit integers (as it would be needed for h = 10 or h = 20)
with security more than 100 bits. In this case, one can use larger block ciphers such as
AES-128 or AES-256. The tree is then built slightly different. Once the manager receives
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all leaf nodes, it generates the set of tuples S = {(leaf1, Ex(1)),..., (leafyn, Ex(2"))}
which contains leaves and the associated encrypted positions (128-bit or 256-bit inte-
gers, which are larger than the number of leaves 2"). For instance, (leafy,...,leafp)
belong to group member 1 and (leafpt1,...,leaf2p) to group member 2 and so on.
Subsequently, the manager sorts the elements of S in an increasing order with re-
spect to the second component. The new order represents the new positions of the
leaves in the shuffled tree. The first layer of nodes is then built by not only including
the leaves in the hashes but also the encrypted values of the respective leaves, e.g.
hi,; = H(leaf;, Ex (i)||leaf;, Ex(j)). All other tree layers up to the root are built as
usual without any further modification. Due to this change, the encrypted indices are
part of the authentication path and the group manager can thus open signatures in
case of misbehavior. For security, an adversary only sees 2" encrypted indices somehow
mapped to the initial positions (does not even know the index-ciphertext pairs). In the
worst-case, the security of the block cipher will not decrease by more than log 2" bits.

4.3 Our Construction: (Stateful) G-Merkle

In this section, we employ our group signature scheme on any Merkle tree based signa-
ture scheme. However, we keep our construction as general as possible by not restrict-
ing to any specific one-time signature scheme. In what follows, let S = (KeyGen, Sign,
Verify) denote the set of algorithms applied in a regular Merkle tree signature scheme.

G.KGen(1%, 1) : The group manager generates the master key gmsk € {0,1}* and
initializes a block cipher (Egmsk(+), Dgmsk(+)). Each user ¢ € [N] is assigned a random
secret key gsk; associated to a secure one-time signature scheme such as Winternitz for
B (e.g. B = 2') leaf nodes. That is, the group manager invokes N times G.KGen as in a
regular Merkle tree signature scheme, however outputting only the secret key gsk, and
the hashed public keys serving as leaf nodes. The group manager proceeds as follows:

1. The set of indices associated to the leaf nodes of all users is shuffled
Shuffle(l, . 7]\7 . B) = (jl, PN ,jN-B)

where js = Egms(s) for s € [N - B]. For instance, leaf node 1 is placed into postion
j1 in the tree (see Figure 4).

2. Subsequently, the group manager builds the G-Merkle tree on top of the shuffled
set of nodes and generates the group public key gpk, which is represented as the
root node of the G-Merkle tree.

3. Finally, the group manager transfers to user ¢ the set of permuted indices

Si = {ji-1)B+1,---,Ji-B}
associated to the user’s leaf nodes. As for the authentication path, the group man-

ager can choose from several options to compute the authentication path for a
signature. We refer to Section 6 for an overview.

G.Sign(gsk;, m) : User i maintains a counter ¢ and a list of tuples

state = {((i — 1)B + 1, Egms((i — )B +1),..., (i - B, Egms(i - B))}
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defining the possible states in the signing process. Whenever the user wishes to sign a
message, he takes the actual state

state[t] = [(i — 1)B + t, Egmsc((1 — 1) B + t)]

from the list and sets t := ¢ + 1, where the first component serves to internally iden-
tify the node with its associated secret key and the second component defines the
position of the leaf node within the G-Merkle tree in order to deduce the appropriate
authentication path. Supposing that the j-th leaf has been used to sign, following the
authentication path consists of the nodes (ao,...,an—1), where h is the tree height.
Define £ := |j/2"| and denote by v;[k] the k-th node at the j-th layer, then we have

~_ Jv[¢—1] for £=1mod 2
7] [+ 1] for £=0mod 2.

Finally, by use of the secret key gsk, the signing algorithm outputs a group signature
(o,m) on a message m that is composed by a one-time signature produced by the
underlying signing algorithm Sign and the authentication path (see Section 6).

G.Verify(o, m, gpk) : The deterministic group verification algorithm invokes Verify
of the underlying signature scheme on the G-Merkle tree taking as input a group
signature o, a message m and the root node of the G-Merkle tree.

G.Open(gmsk, o, m) : On input the signature containing the exact authentication
path, which can be represented by the position of the leaf node and the intermedi-
ate nodes, the manager extracts the position I and invokes the decryption algorithm
Dgmsk(l) = j for | € [N - B], otherwise he outputs L and aborts. Subsequently, he
identifies the set S; with |S;| = B s.th. j € S; and outputs 1.

Possible Modifications. We note that in practice one rarely finds PRPs with small
output sizes. In this case, one applies our simple modifications from Section 4.2 using
any secure blockcipher. We further note that one may adopt a dynamic approach in
the key generation phase, where the group members individually generate their secret
keys and associated leaf nodes. Subsequently, the leaf nodes are handed over to the
group manager who shuffles the leaves and builds the Merkle tree on top of this mixed
set. Such a strategy prevents the group manager from knowing the secrets and the risk
of attacking the secrets is minimized.

5 Security

In this section, we prove that the construction proposed in Section 4 provides anonymity
following [CGO5] and full-traceability according to [BMWO3]. Unforgeability of the
scheme follows directly from the underlying signature scheme.

5.1 Anonymity

For anonymity, we prove the variant of Definition 1 where the adversary is allowed to
have access to the secret keys of corrupt group members. The adversary must guess
under which honest identity the signature has been created. Depending on the circum-
stance that the adversary is given or refused access to the opening oracle in the choose
stage, we require the underlying block cipher to be an SPRP or PRP.

12



Theorem 2. Let N-B be the number of leaves in the G-Merkle tree and N the number
of users. Then, the construction described in Section 4.3 provides SPRP-anonymity fol-
lowing the experiment in Definition 1 under the assumption that a strong pseudorandom
permutation is employed to shuffle the leaf nodes.

Proof. The proof of this theorem is very simple as the adversary represents now an
SPRP adversary involved in an indistinguishability game, however not having access to
the encryption oracle. That is, assume there exists an adversary that breaks the anony-
mity of the scheme, then we can build an algorithm that distinguishes the encryption
of different plaintexts derived under a strong pseudorandom permutation. In particu-
lar, the adversary is initially given access to the signing oracle and the opening oracle,
which essentially represents the decryption algorithm, on group signatures of its choice
during the choose stage. Due to the constrained tree size, the adversary can query the
signing (and hence opening oracle on different signatures) at most B — 1 times for each
honest member such that each user still has the chance to generate one last signature.
He can also corrupt arbitrary group members. Eventually, the adversary outputs some
state information st, an arbitrary message m to be signed and two existing identities
10,11, that have not been corrupted. In the second stage, the adversary gets as input
the state information st and a signature ¢ on m under an identity, which is selected
uniformly at random from i¢ and i;. The adversary is now challenged to make a right
guess on the identity used to sign the message m. In this stage, the adversary still has
access to the signing and opening oracle on signatures other than o. The condition
that each user can still sign a message prevents the adversary to exhaust all leaf nodes
and make a trivial guess via exclusion based on the remaining signature not queried to
the opening oracle yet.

The only element of a group signature that depends on the identities is the posi-
tion of a leaf in the G-Merkle tree. All other elements can be replaced by the cor-
responding distributions that are independent from the identities. According to our
construction from Section 4.3, the index set of the leaf nodes owned by signer Sy is
{ko,...,kB-1} = Egmsc({(k—1)- B, ..., k- B—1}). We can safely assume that all but
1 plaintext-ciphertext pair per honest identity have been revealed (each signer can still
sign one last message) such that the remaining plaintexts po € [N - B] and p1 € [N - B]
of ip and i; are known to the adversary. The output of the challenger is a random ci-
phertext ¢ that either encrypts po or pi. Under the SPRP assumption of the cipher, we
can replace the ciphertext set, in particular ¢ as well, by random elements independent
from the plaintext or indices related to an identity. As a result, the claim follows. We
note that if a perfect permutation was used to encrypt the indices, then the probability
to have a particular plaintext is equal for any ciphertext given by the challenger. O

In case the adversary is not granted access to the opening oracle in the experiment
from Definition 2, we can even prove PRP-anonymity with only the requirement of
using a pseudorandom permutation (analogously to Theorem 2).

Theorem 3. Let N-B be the number of leaves in the G-Merkle tree and N the number
of users. Then, the construction described in Section 4.3 provides PRP-anonymity in
accordance to the experiment in Definition 2 assuming a pseudorandom permutation is
employed to shuffle the leaf nodes.

5.2 Traceability

Full-traceability subsumes a collection of other properties as described in [BMWO03].
Following the traceability experiment given in Figure 3, the proof relies on the unforge-
ability of the underlying signature scheme. In fact, our G-Merkle scheme inherits its
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existential unforgeability immediately from the basic scheme as described in Section 2.
In general, if the basic Merkle tree construction is secure against such an adversary,
then so is the G-Merkle tree construction. Thus, we call our group signature scheme
G-Merklex prss if it relies on XMSS.

Theorem 4. Let T be a hash-based one-time/few-time signature scheme and Merkler
the corresponding Merkle tree based multi-time signature scheme. If Merkler is existen-
tially unforgeable under chosen message attacks, then so is the group signature scheme
G-Merkler.

The proof of this statement is straightforward as the multisigner G-Merkler scheme
differs from a single-signer Merkler scheme in the shuffling procedure, where the order
of the nodes is changed, and the number of participants with their own secret keys.

Theorem 5. Let T be the number of leaves in G-Merkle as defined in Section 4. Sup-
pose that there exists a PPT traceability adversary, then there exists an algorithm B
that breaks the unforgeability of the underlying signature scheme.

Proof. The proof of this theorem is mainly based on Theorem 4 stating the existential
unforgeability of the underlying digital signature scheme. We show that such an ad-
versary does not exist unless the underlying signature scheme is insecure. We proceed
by means of the experiment defined in Figure 3 following [BMWO03].

Suppose, there exists an attacker that can successfully generate such a forgery.
Clearly, in the G-Merkle tree construction the height of the tree log, (N - B) and number
of leaves N - B is known in advance such that a group signature can only be valid if
the index of the leaf node used to sign the message is an element of {0,..., N - B}.
Therefore, the adversary must produce a forgery that opens to an identity of an honest
user ¢ ¢ C, which correctly verifies. However, this is only the case if the attacker breaks
the unforgeability of the underlying signature scheme (Merkle tree construction), since
he is not in possession of the secret key associated to the identity i¢. Due to Theorem 4
such an adversary does not exist. O

6 Authentication Path Computation

The G-Merkle tree is composed by leaf nodes originating from different users. Thus,
the conventional approach of generating the authentication path is not immediately
applicable as the authentication path inherently requires the knowledge of the other
nodes. As a result, we need a different strategy in order to derive the authentication
path. In what follows, we propose some possible solutions to tackle this target.

Public Leaf Nodes. The first approach works similar to the very first Merkle tree
constructions, where a user stores each leaf node of the associated tree. Translating
this strategy to the multi-user setting the group manager publishes all leaf nodes of all
users. This leads to a storage size of at most N - B nodes. Whenever a user invokes its
signing algorithm it combines the leaf nodes in order to generate the authentication
path associated to its one-time signature. Alternatively, the whole tree can be pub-
lished/stored and the memory requirement just double. In this case the running times
for signing decrease as group members are no longer required to compute the inner
nodes.
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User directed Authentication Path Computation. The group manager can
also send to each user the authentication paths together with the associated indices
during key generation. The user stores the nodes and can delete those nodes once they
are consumed.

Lemma 1. Let N denote the number of group members and B the number of potential
signatures per user. Then the memory size Mem of a user is bounded by

logN <Mem < B-log(N)+ B<N:-B

Proof. The best possible case occurs when all nodes of a user are neighbors such that
he can generate many of the entries in the authentication path by use of his key pair.
However, in this case, he can build a subtree of height 1 4 log, B and requires to store
log N nodes in order to build the authentication path. In the worst-case the user stores
the nodes of the log B-th layer, i.e. B nodes, which allow him to generate all other nodes
in the upper part of the G-Merkle tree. This is due to the fact that all B potential
signatures have to cross one of the B nodes in the log B-th layer. Furthermore, he has
to store at most B - log N nodes from the remaining log N layers of the tree, which
corresponds to the nodes in the authentication path. a

In practice each user can determine the exact number of nodes to be stored and
hence optimize the memory size. He can eliminate duplicated nodes that appear in
multiple authentication paths. For instance, all authentication paths have to use either
the left or right child of the root node. The user is doing best if he chooses to store
both right and left children (if req.) only once.

Improved Storage Size with Clustering. Based on the proof of Lemma 1 and
the observation that the memory sizes improve, if the leaf nodes of a group member
are close to each other, it is possible to split the group into several clusters. This is
accomplished secretly by the group manager. The leaf nodes of the G-Merkle tree are
then clustered accordingly. For instance, we partition the leaf nodes into k clusters,
where each cluster contains all nodes of N/k users. This enhances the probability for
each group member to use many of the nodes in the authentication path several times
such that the absolute storage requirement is reduced. Due to the fact that the verifiers
and group members themselves are not aware of how the leaf nodes are partitioned, how
many clusters do exist and who are the group members within a particular cluster, the
anonymity is still guaranteed in case the adversary is not given access to the opening
oracle within the anonymity game. Such a clustering strategy is advantageous if N is
very large. A further advantage of the clustering strategy is the usage of block ciphers
of small output sizes. In fact, the output size can be chosen equal to the cluster size.

In case the adversary is given access to the opening oracle, the adversary at most
learns which users belong to a cluster. This reduces anonymity in the whole set of group
members to anonymity of the smaller cluster. But the adversary is not able to map
a signature to a certain group member of a cluster in the challenge phase. Assuming
that N = 2% and the cluster size is k = 22, the authentication path of users from a
same cluster have always the same last log(IN - B) — log(N - B/k) = t2 nodes in the
authentication path. This is due to the fact that a certain cluster has the same parent
node at height log(N - B/k). From then on, the sibling nodes are identical.
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Interactive Authentication Path Computation. In case the group manager
maintains a list of the group signers secret keys, it is possible to ask the group manager
the required authentication path in an online fashion. Once a group member sends its
part of the signature (OTS) together with the leaf position to the verifier, the verifier
can invoke the group manager for the associated authentication path. Clearly, this has
no impact on the security as all leaf nodes can be made public.

7 Implementation

In this section, we discuss the implementation aspects of our proposal. This discussion is
based on our G-Merkle implementation in C, which is an extension of a XMSS/WOTS+
implementation as specified in [HBGM18], using SHA2-256 as the hash function.

Our implementation follows the approach described in Section 4.2 where block ci-
phers with larger outputs are used. More precisely, we use AES-256 to perform the
indices encryption (which acts as the shuffling process of the leaf nodes). Therefore,
the leaf nodes indices are initially represented as 256-bits long integer numbers (padded
with zeros on the left) and then encrypted using AES-256. The 256-bits ciphertexts
are considered as the new (shuffled) leaf node indices. Note that most of the encrypted
indices will likely be out of the range [0,2" — 1], but (as described in Section 4.2) G-
Merkle only cares about the ordering in which these encrypted indices appear. These
encrypted indices are also used to open signatures. Once the encrypted indices are com-
puted, they are sorted in increasing order. Our implementation uses a simple Quicksort
implementation for very large (256-bits long) numbers. We note that speedups in this
step might be achieved by using other sorting algorithms (e.g. Radix sort).

Table 1 shows the performance data of the G-Merkle inner processes. We fix N = 64
as the number of group members (also called users) to facilitate the comparison of dif-
ferent tree heights (but other values are possible, given the trade-off between group
members and number of signatures). The performance data are given in thousands
of cycles measured in an Intel(R) Core(TM) i5-63000 CPU @2.40GHz with 16 GB of
RAM. The code has been compiled with GCC 6.4.0 with -O3 compilation flag. Each
process has been repeated 100 times and the number of cycles averaged. The first
column represents the relevant processes in G-Merkle, namely the generation of the
leaf nodes (each user has to perform this step, i.e. generate all OTS key pairs and the
corresponding leaf nodes), the encryption and sorting of all indices, the Merkle tree
building process, XMSS signature generation, XMSS signature verification and signa-
ture opening (which consists of a call to AES-256 decryption). Between parentheses,
we denote whether the operation is performed by each user (U) or only by the group
manager (GM). The most expensive operation consists of building the tree, an oper-
ation handled by the group manager only, not impacting the users. The actual group
management operations, such as encryption and sorting of the leaf node indices, and
opening of signatures, do not represent any significant overhead, while the XMSS algo-
rithms (sign and verify) are efficient. Our implementation assumes that the Merkle tree
is publicly (and securely) available, as discussed in Section 6, thus the authentication
path computation (a somewhat expensive operation in XMSS) is not relevant here.

8 Conclusion and Discussion
We introduced the first (stateful) hash-based group signature scheme and showed that

it is based on standard assumptions and not on expensive non-interactive zero knowl-
edge proof systems, as seen in other group signature schemes. Our approach exploits
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Process (Owner) N=64
(h=14, B =256)|(h = 16, B = 1024)|(h = 18, B = 4096)
Generate leaf nodes (U) 2,319, 508 9,302,171 35,646, 646
Encrypt indices (GM) 56, 960 225,818 934,001
Sorting (GM) 16, 866 85,767 364, 334
XMSS tree building (GM) 24,347,871 114,011, 307 440, 567,352
XMSS sign (U) 7,052 7,153 7,059
XMSS verify (U) 9,007 9,092 9,398
Signature opening (GM) 100 99 102

Table 1. G-Merkle Performance (in kcycles). U = User, GM = Group Manager.

the structure of Merkle trees in general. Due to this fact, we can generate group sig-
natures more efficiently in terms of running times, signature and key sizes. It is worth
mentioning that the provisioning of the authentication paths is challenging. By merging
different trees from different users and randomizing the tree structure, the simplicity
to generate authentication paths as in XMSS is lost at the benefit of anonymity. We
presented several ways to obtain the authentication path (such as publishing the whole
Merkle tree), but stress that it is still an open problem how to address it optimally.
Furthermore, we strongly emphasize that full-anonymity would result in a secure public
key encryption scheme. To illustrate the transformation of a group signature scheme
into an encryption scheme, once full-anonymity is achieved, the group manager gener-
ates the master key and all secret keys of the different “identities”. The group manager
publishes the secret keys as the public key and keeps the master key secret. If a party
wishes to encrypt a message, he encodes this message in terms of an identity (or identi-
ties) and sends the signature to the group manager, who in turn decrypts the ciphertext
by opening the signature. He reveals the identity, which represents the encoded mes-
sage. Due to full-anonymity an adversary cannot unveil the identity given all secret
keys of the identities. Such a result would have a huge impact in cryptography in gen-
eral as it would allow to build public key cryptography solely based on the existence
of one-way functions. This however would somehow oppose the results of [IR89], which
states that one-way functions are not sufficient to build key agreement protocols.
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