
How to Record Quantum Queries, and
Applications to Quantum Indifferentiability

Abstract. The quantum random oracle model (QROM) has become
the standard model in which to prove the post-quantum security of
random-oracle-based constructions. Unfortunately, none of the known
proof techniques allow the reduction to record information about the ad-
versary’s queries, a crucial feature of many classical ROM proofs, including
all proofs of indifferentiability for hash function domain extension.
In this work, we give a new QROM proof technique that overcomes
this “recording barrier”. We do so by giving a new “compressed oracle”
which allows for efficient on-the-fly simulation of random oracles, roughly
analogous to the usual classical simulation. We then use this new technique
to give the first proof of quantum indifferentiability for the Merkle-
Damgård domain extender for hash functions. We also give a proof
of security for the Fujisaki-Okamoto transformation; previous proofs
required modifying the scheme to include an additional hash term. Given
the threat posed by quantum computers and the push toward quantum-
resistant cryptosystems, our work represents an important tool for efficient
post-quantum cryptosystems.

1 Introduction

The random oracle model [BR93] has proven to be a powerful tool for heuristically
proving the security of schemes that otherwise lacked a security proof. In the
random oracle model (ROM), a hash function H is modeled as a truly random
function that can only be evaluated by querying an oracle for H. A scheme is
secure in the ROM if it can be proven secure in this setting. Of course, random
oracles cannot be efficiently realized; in practice, the random oracle is replaced
with a concrete efficient hash function. The hope is that the ROM proof will
indicate security in the real world, provided there are no structural weaknesses
in the concrete hash function.

Meanwhile, given the looming threat of quantum computers [IBM17], there
has been considerable interest in analyzing schemes for so called “post-quantum”
security [NIS17, Son14, ATTU16, CBH+17, YAJ+17, CDG+17, CDG+15]. Many
of the proposed schemes are random oracle schemes; Boneh et al. [BDF+11] argue
that the right way of modeling the random oracle in the quantum setting is to use
the quantum random oracle model, or QROM. Such a model allows a quantum
attacker to query the random oracle on a quantum superposition of inputs. The
idea is that a real-world quantum attacker, who knows the code for the concrete
hash function, can evaluate the hash function in superposition in order to perform
tasks such as Grover search [Gro96] or collision finding [BHT98]. In order to



accurately capture such real-world attacks, it is crucial to model the random
oracle to allow for such superposition queries. The quantum random oracle model
has been used in a variety of subsequent works to prove the post-quantum security
of cryptosystems [BDF+11, Zha12b, Zha15, TU16, Eat17].

The Recording Barrier. Unfortunately, proving security in the quantum random
oracle model can be extremely difficult. Indeed, in the classical random oracle
model, one can copy down the adversary’s queries as a means to learning what
points the adversary is interested in. Many classical security proofs crucially
use this information in order to construct a new adversary which solves some
hard underlying problem, reaching a contradiction. In the quantum setting, such
copying is impossible by no-cloning. One can try to record some information
about the query, but this amounts to a measurement of the adversary’s query
state which can be detected by the adversary. A mischievous adversary may
refuse to continue if it detects such a measurement, rendering the adversary
useless for solving the underlying problem. Because of the difficulty in reading
an adversary’s query, it also becomes hard to adaptively program the random
oracle, another common classical proof technique.

This difficulty has led authors to develop new quantum-sound proof tech-
niques to replace classical techniques, such as Zhandry’s small-range distribu-
tions [Zha12a] or Targhi and Unruh’s extraction technique [TU16]. These proof
techniques choose the oracle from a careful distribution that allows for proofs to
go through. However, every such proof technique always chooses a classical oracle
at the beginning of the experiment, and leave the oracle essentially unchanged
through the entire execution. The inability to change the oracle seems inherent,
since if the proof gives the adversary different oracles during different queries,
this is potentially easily detectable (even by classical adversaries)1

Constraining the oracles to be fixed functions seems to limit what can be
proved using such non-recording techniques. For example, Dagdelen, Fischlin, and
Gagliardoni [DFG13] show that such natural proof techniques are likely incapable
of proving the security of Fiat-Shamir2. This leads to a natural question:

Is it possible to record information about an
adversary’s quantum query without the adversary detecting

Enter Indifferentiability. The random oracle model (quantum or otherwise)
assumes the adversary treats the hash function as a monolithic object. Unfortu-
nately, hash functions in practice are usually built from smaller building blocks,
called compression functions. If one is not careful, hash functions built in this way
are vulnerable to attacks such as length-extension attacks. Coron et al. [CDMP05]
1 The one exception we are aware of is Unruh’s adaptive programming [Unr15]. This
proof does change the oracle adaptively, but only inputs for which adversary’s queries
have only negligible “weight”. Thus, the change is not detectable. The following
discussion also applies to Unruh’s technique.

2 We note that if the underlying building blocks are strengthened, Fiat-Shamir was
proven secure by Unruh [Unr16]
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show that a hash function built from a compression function can be as good as
a monolithic oracle in many settings if it satisfies a notion of indifferentiability,
due to Maurer, Renner, and Holenstein [MRH04]. Roughly, in indifferentiability,
an adversary A has oracle access to both h and H, and the adversary is trying
to distinguish two possible worlds. In the “real world”, h is a random function,
and H is built from h according to the hash function construction. In the “ideal
world”, H is a random function, and h is simulated so as to be consistent with H.
A hash function is indifferentiable from a random oracle if no efficient adversary
can distinguish the two worlds.

Coron et al.’s proof of indifferentiability for Merkle-Damgard requires the
simulator to remember the queries that the adversary has made. This is actually
inherent for any domain extender, by a simple counting argument discussed below.
In the quantum setting, such recording presents a serious issue, as recording a
query is equivalent (from the adversary’s point of view) to measuring the query.
As any measurement will disturb the quantum system, such measurement may
be detectable to the adversary. Note that in the case where A is interacting
with a truly random h, there is no measurement happening. Therefore, if such
a measurement can be detected, the adversary can distinguish the two cases,
breaking indifferentiability.

Example. To illustrate what might go wrong, we will use the simple example from
Coron et al. [CDMP05]. Here, we will actually assume access to two independent
compression functions h0, h1 : {0, 1}2n → {0, 1}n. We will define H : {0, 1}3n →
{0, 1}n as H(x, y) = h1(h0(x), y), where x ∈ {0, 1}2n, y ∈ {0, 1}n.

To argue that H is indifferentiable from a random oracle, Coron et al. use the
following simulator S, which has access to H, and tries to implement the oracles
h0, h1. S works as follows:

– S keeps databases D0, D1, which will contain tuples (x, y). Db containing
(x, y) means that S has set the hb(x) = y.

– h0 is implemented on the fly: every query on x looks up (x, y) ∈ D0, and
returns y if it is found; if no such pair is found, a random y is chosen and
returned, and (x, y) is added to D0.

– By default, h1 is answered randomly on the fly as in h0. However, it needs
to make sure that h1(h0(x), y) always evaluates to H(x, y), else it is trivial
to distinguish the two worlds. Therefore, on a query (z, y), h1 will check if
there is a pair (x, z) in D0 for some x. If so, it will reasonably guess that the
adversary is trying to evaluate H(x, y), and respond by making a query to
H(x, y). Otherwise it will resort to the default simulation.

Note that by defining the simulator in this way, if the adversary ever tries to
evaluate H on (x, z) by first making a query x to h0 to get y, and then making a
query (y, z) to h1, the simulator will correctly set the output of h1 to H(x, z), so
that the adversary will get a result that is consistent with H. However, note that
it is crucial that S wrote down the queries made to h0, or else it will not know
which point to query H when simulating h1.
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Now consider a quantum adversary. A quantum query to, say, h0 will be the
following operation:∑

x∈{0,1}2n,u∈{0,1}n

αx,u|x, u〉 7→
∑

x∈{0,1}2n,u∈{0,1}n

αx,u|x, u⊕ h0(x)〉

Now, imagine our simulator trying to answer queries to h0 in superposition.
For simplicity, suppose this is the first query to h0, so D0 is empty. The natural
approach is to just have S store its database D0 in superposition, performing a
map that may look like |x, u〉 7→ |x, u⊕ y〉 ⊗ |x, y〉, where y is chosen randomly,
and everything to the right of the ⊗ is the simulators state.

But now consider the following query by an adversary. It sets up the uniform
superposition

∑
x,u |x, u〉 and queries. In the case where h0 is a classical function,

then this state becomes ∑
x,u

|x, u⊕ h0(x)〉 =
∑
x,u

|x, u〉

Namely, the state is unaffected by making the query. In contrast, the simulated
query would result in ∑

x,u

|x, u⊕ y〉 ⊗ |x, y〉

Here, the adversary’s state is now entangled with the simulator’s. It is straight-
forward to detect this entanglement by applying the Quantum Fourier Transform
(QFT) to the adversary’s x registers, and then measuring the result. In the case
where the adversary is interacting with a random h0, the QFT will result in a 0.
In the simulated case, the QFT will result in a random string. These two cases
are therefore easily distinguishable.

To remedy this issue, prior works in the quantum regime have abandoned
on-the-fly simulation, instead opting for stateless simulation. Here, the simulator
commits to a function to implement the oracle in the very beginning, and then
sticks with this implementation throughout the entire experiment. Moreover, the
simulator never records any information about the adversary’s query, lest the
adversary detect the entanglement with the simulator. This will certainly fix the
issue above, and by carefully choosing the right implementations prior works
have shown how to translate many classical results into the quantum setting.

However, for indifferentiability, choosing a single fixed function for h0 intro-
duces new problems. Now when the adversary makes a query to h1, the simulator
needs to decide if the query represents an attempt at evaluating H, and if so,
it must program the output of h1 accordingly. However, without knowing what
inputs the adversary has queried to h0, it seems impossible for the simulator
to determine which point the adversary is interested in. For example, if the
adversary queries h1 on (y, z), there will be roughly 2n possible x that gave rise
to this y (since h0 is compressing). Therefore, the simulator must choose from
one of 2n inputs of the form (x, z) on which to query H.

4



To make matters even more complicated, an adversary can submit the uniform
superposition

∑
x |x, 0〉, resulting in the state

∑
x |x, h0(x)〉, which causes it to

“learn” y = h0(x). At this point, the simulator should be ready to respond to an h1
query on (y, z) by using x, meaning the simulator must be entangled with x. Then,
at some later time, the adversary can query again on the state

∑
x |x, h0(x)〉,

resulting in the original state
∑
x |x, 0〉 again. The adversary can test that it

received the correct state using the quantum Fourier transform. Therefore, after
this later query, the simulator must be un-entangled with x. Even more complex
strategies are possible, where the adversary can compute and un-compute h0 in
stages, so as to try to hide what it is doing from any potential simulator.

These issues are much more general than just the simple domain extender
above. Indeed, even classically domain extension with a stateless simulator is
impossible, by the following simple argument. Suppose there is a hash function
H : {0, 1}M → {0, 1}N built from a compression function h : {0, 1}m → {0, 1}n.
Let L = M + log2 N, ` = m+ log2 n. Then L, ` represent the logarithm of the size
of the truth tables for H,h. Since we are domain extending, we are interested in
the case where L� `. Suppose even L ≥ `+ 0.001.

Suppose toward contradiction that h can be simulated statelessly, which we
will represent as SimH (since the function can make H queries). Then h has a
truth table of size 2`. In the real world, H agrees with Ch on all inputs; therefore
in order for indifferentiability to hold, in the simulated world a uniformly random
H must agree with Ch = CSimH on an overwhelming fraction of inputs. But
this is clearly impossible, as it would allow us to compress the random truth
table of H: simply output the truth table for SimH , along with the ε fraction
of of input/output pairs where H and CSimH disagree. The total length of this
compressed truth table is 2` + (ε2M )(MN) = 2` + εN2L. As ε is negligible (and
therefore much smaller than 1/N) the compressed truth table will be smaller
than 2L, the size of the truth table for H. But since H is a random function its
truth table cannot be compressed, reaching a contradiction.

Therefore, any simulator for indifferentiability, regardless of the scheme,
must inherently store information about the adversary. But the existing QROM
techniques are utterly incapable of such recording. We therefore ask:

Is indifferentiable domain extension even possible?

1.1 This Work

In this work, perhaps surprisingly, we answer the question above in the affirmative.
Namely, we give a new compressed oracle technique, which allows for recording the
adversary’s queries in a way that the adversary can never detect. The intuition is
surprisingly simple: an adversary interacting with a random oracle can be thought
of as being entangled with a uniform superposition of oracles. As entanglement
is symmetric, if the adversary ever has any information about the oracle, the
oracle must also have information about the adversary. Therefore a simulator can
always record some information about the adversary, if done carefully.
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We then use the technique to prove the indifferentiability of the Merkle-
Damgård construction. We believe our new technique will be of independent
interest; for example our technique can be used to prove the security of the
Fujisaki-Okamoto transformation [FO99], and also gives very short proofs of
several quantum query lower bounds.

The Compressed Oracle Technique. In order to prove indifferentiability, we devise
a new way of analyzing quantum query algorithms

Consider an adversary interacting with an oracle h : {0, 1}m → {0, 1}n. It is
well established that the usual quantum oracle mapping |x, y〉 7→ |x, y ⊕ h(x)〉
is equivalent to the “phase” oracle, which maps |x, u〉 7→ (−1)u·h(x)|x, u〉 (we
discuss this equivalence in Section 3). For simplicity, in this introduction we will
focus on the phase oracle, which is without loss of generality.

Next, we note that the oracle h being chosen at random is equivalent (from
the adversary’s point of view) to h being in uniform superposition

∑
h |h〉. Indeed,

the superposition can be reduced to a random h by measuring, and measuring
the h registers (which is outside of A’s view) is undetectable to A. To put another
way, the superposition over h is a purification of the adversary’s mixed state.

Therefore, we will imagine the h oracle as containing
∑
h |h〉. When A makes

a query on
∑
x,u αx,u|x, u〉, the joint system of the adversary and oracle are∑

x,u

αx,u|x, u〉 ⊗
∑
h

|h〉

The query introduces a phase term (−1)u·h(x), so the joint system becomes∑
x,u

αx,u|x, u〉 ⊗
∑
h

|h〉(−1)u·h(x)

We normally think of the phase as being returned to the adversary, but the
phase really affects the entire system, so it is equivalent to think of the phase as
being added to the oracle’s state.

Now, we will think of h as a vector of length 2m × n by simply writing down
h’s truth table. We will think of each x, u pair as a point function Px,u which
outputs u on x and 0 elsewhere. Using our encoding of functions as vectors, we
can write u · h(x) as Px,u · h. We can therefore write the post-query state as∑

x,u

αx,u|x, u〉 ⊗
∑
h

|h〉(−1)h·Px,u

In general, the state after making q queries can be written as∑
x1,...,xq,u1,...,uq

αx1,...,xq,u1,...,uq |ψx1,...,xq,u1,...,uq 〉 ⊗
∑
h

|h〉(−1)h·(Px1,u1 +···+Pxq,uq )

Next, notice that by applying the Quantum Fourier transform to h, the h
registers will now contain (Px1,u1 + · · ·+ Pxq,uq

) mod 2. Working in the Fourier
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domain, we see that each query simply adds Px,u (modulo 2) to the result. In
the Fourier domain, the initial state is 0.

Therefore, from A’s point of view, it is indistinguishable whether the oracle
for h is a random oracle, or it is implemented as follows:

– The oracle keeps as state a vector D ∈ {0, 1}n×2m , initially set to 0.
– On any oracle query, the oracle performs the map |x, u〉 ⊗ |D〉 7→ |x, u〉 ⊗
|D ⊕ P (x, u)〉

Thus, with this remarkably simple change in perspective, the oracle can
actually be implemented by recording and updating phase information about the
queries being in made.

We can now take this a couple steps further. Notice that after q queries, D is
non-zero on at most q inputs (since it is the sum of q point functions). Therefore,
we can store the database in an extremely compact form, namely the list of (x, y)
pairs where y = D(x) and y 6= 0. Notice that this allows us to efficiently simulate
a random oracle, without an a priori bound on the number of queries. Previously,
simulating an unbounded number of queries efficiently required computational
assumptions, and simulation was only computationally secure. In contrast, simu-
lating random oracles exactly required 2q-wise independent functions [Zha12b]
and hence required knowing q up front. We therefore believe this simulation will
have independent applications for the efficient simulation of quantum oracles.
We will call this the compressed Fourier oracle.

We can then take our compressed Fourier oracle, and convert it back into a
primal-domain oracle. Namely, for each (x, y) pair, we perform the QFT on the
y registers. The result is a superposition of databases of (x,w) pairs, where w
approximately represents h(x). For any pair not in the database, h(x) is implicitly
a uniform superposition of inputs independent of the adversary’s view. We call
this the compressed standard oracle. It intuitively represents what the adversary
knows about the function h: if (x, y) is in the database then the adversary “knows”
h(x) = y, and otherwise, the adversary “knows” nothing about h(x). In Section 3,
we show how to directly obtain the compressed standard oracle.

Applying Compressed Oracles to Indifferentiability. The compressed standard
oracle offers a simple way to keep track of the queries the adversary has made.
In particular, it tracks exactly the kind of information needed in the classical
indifferentiability proof above, namely whether or not a particular value has
been queried by the adversary, and what the value of the oracle at that point
is. We use this to give a quantum indifferentiability proof for Merkle-Damgård
construction using prefix-free encodings [CDMP05].

To illustrate our ideas, consider our simple example above with h0, h1 and
H. Our simulator will simulate h0 as in the compressed standard oracle, keeping
a (superposition over) list D0 of (x, y) pairs. Next, our simulator must handle
h1 queries. When given a phase query |y, z〉, the simulator does the following.
If first looks for a pair (x, y′) in D0 with y′ = y. If one is found, it reasonably
guesses that the adversary is interested in computing H(x, z), and so it makes a
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query on (x, z) to H. Otherwise, it is reasonable to guess that the adversary is
not trying to compute H on any input, since the adversary does not “know” any
inputs to h0 that would result in a query to h1 on (y, z).

While the above appears to work, we need to make sure the simulator does
not disturb the compressed oracle. Unfortunately, some disturbance is necessary.
Indeed, determining the value of h0(x) is a measurement in the primal domain.
On the other hand, the update procedure for the compressed oracles needs to
decide whether or not x belongs in the database, and this corresponds to a
measurement in the Fourier domain (since in the Fourier domain, h0(x) must
be non-zero). These two measurements do not commute, so by the uncertainty
principle it is impossible to perform both measurements perfectly.

Nonetheless, we show that the errors are small. Intuitively, we observe that
the simulator does not actually need to know the entire value of h0(x), just
whether or not it is equal to y. We call such information a “test”. Similarly, the
compressed oracle implementation just needs to know whether or not h0(x) is
equal to 0, but in the Fourier domain.

Now, these primal and Fourier tests still do not commute. Fortunately, they
“almost” commute, which we formalize in Appendix E. The intuition is that, if a
primal test of the form “is h0(x) = y” has a non-negligible chance of succeeding,
h0(x) must be very “far” from the uniform superposition. This is because a
uniform superposition puts an exponentially small weight on every outcome.
Recall that the uniform superposition maps to h0(x) = 0 in the Fourier domain.
Thus by being “far” from uniform, the Fourier domain test has a negligibly-
small chance of succeeding. Therefore, one of the two tests is always “almost”
determined, meaning the measurement negligibly affects the state. This means
that, no matter what initial state is, the two tests “almost” commute.

Thus, the simulator can perform these tests without perturbing the state
significantly. This shows that h0 queries are correctly simulated; we also need to
show that h1 queries are correctly simulated and consistent with H. The intuition
above suggests that h1 should be consistent with H, and indeed in Section 5 we
show this using a careful sequence of hybrids. Then in Section D, we use the
same ideas to prove the indifferentiability of Merkle-Damgård.

The Power of Forgetting. Surprisingly, our simulator ends up strongly resembling
the classical simulator. It is natural to ask, therefore, how the simulator gets
around the difficulties outlined above.

First, notice that if we translate the query
∑
x,u |x, u〉 in our example to a

phase query, it becomes
∑
x |x, 0〉. This query has no effect on the oracle’s state.

This means the oracle remains un-entangled with the adversary, as desired.
Second, a query

∑
x |x, 0〉 becomes

∑
x,u |x, u〉 for a phase query. Consider

applying the query to the compressed Fourier oracle. The joint quantum system
of the adversary and simulator becomes∑

x,u 6=0
|x, u〉|{(x, u)}〉+

∑
x

|x, 0〉|{}〉
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A similar expression holds for the compressed standard oracle. Note that the
simulator can clearly tell (whp) that the adversary has queried on x. Later, when
the adversary queries on the same state a second time, (x, u) will get mapped
to (x, 0), and will hence be removed from the database. Thus, after this later
query, the database contains no information about x. Hence, the adversary is
un-entangled with x, and so it’s tests will output the correct value.

Ultimately then, the key difference between our simulator and the natural
quantum analog of the classical simulator is that our simulator must be ready to
forget some of the oracle points it simulated previously. By implementing h0 as a
compressed oracle, it will forget exactly when it needs to so that the adversary
can never detect that it is interacting with a simulated oracle.

Other results We expect our compressed oracle technique will have applications
beyond indifferentiability. Here, we list two additional sets of results we are able
to obtain using our technique:

Post-quantum security of Fujisaki-Okamoto. The Fujisaki-Okamoto transform [FO99]
transforms a weak public key encryption scheme into a public key encryption
scheme that is secure against chosen ciphertext attacks, in the random oracle
model. Unfortunately, the classical proof does not work in quantum random
oracle model, owing to similar issues with indifferentiability proofs. Namely, in
one step of the proof, the reduction looks at the queries made by the adversary in
order to decrypt chosen ciphertext queries. This is crucial to allow the reduction
to simulate the view of the adversary without requiring the secret decryption
key. But in the quantum setting, it is no longer straightforward to read the
adversary’s queries without disrupting its state.

Targhi and Unruh [TU16] previously modified the transformation by including
an additional random oracle hash in the ciphertext. In the proof, the hash function
is set to be injective, and the reduction can invert the hash in order to decrypt.

In Section F, we show how to adapt our compressed oracle technique to prove
the security of the original transform without the extra hash. In addition, we show
security against even quantum chosen ciphertext queries, thus proving security in
the stronger model of Boneh and Zhandry [BZ13]. We note that recently, Jiang
et al. [JZC+18] proved the security of the FO transformation when used as a
key encapsulation mechanism. Their proof is tight, whereas ours is somewhat
loose. On the other hand, we note that their proof does not apply if FO is used
directly as an encryption scheme, and does not apply in the case of quantum
chosen ciphertext queries.

Simple Quantum Query Complexity Lower Bounds. We also show that our
compressed oracles can be used to give very simple and optimal quantum query
complexity lower bounds for problems for random functions, such as pre-image
search, collision finding, and more generally k-SUM.

Our proof strategy is roughly as follows. First, since intuitively the adversary
has no knowledge of values of h outside of D, except with very small probability
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any successful algorithm will output points in D. Therefore it suffices to bound
the number of queries required to get D to contain a pre-image/collision/k-sum.

For pre-image search, we re-prove the optimal lower bound of Ω(2n/2) queries
of [BBBV97], but for random functions; note that pre-image search for random
functions and worst-case functions is equivalent using simple reductions. The
proof appears superficially similar to [BBBV97]: we show that each query can
increase the “amplitude” on “good” databases by a small O(2−n/2) amount. After
q queries, this amplitude becomes O(q/2n/2), which we then square to get the
probability of a “good” database. The proof is only slightly over a page once the
compressed oracle formalism has been given.

We then re-prove the optimal collision lower bound of Ω(2n/3) queries for
random functions, matching the worst case bound [AS04] and the more recent
average case bound [Zha15]. Remarkably, our proof involves only a few lines
of modification to the pre-image lower bound. We show that the amplitude on
“good” databases increases by O(√q × 2n/2) for each query, where the extra √q
intuitively comes from the fact that the database has size at most q, giving q
opportunities for a collision every time a new entry is added to the database3.

In contrast to our very simple extension, the prior collision bounds involved
very different techniques and were much more complicated. Also note that prior
works could not prove directly that finding collisions were hard. Instead, they show
that distinguishing a function with many collisions from an injective function
was hard. This then only works directly for expanding functions, which are of
little interest to cryptographers. Zhandry [Zha15] shows for random functions a
reduction from expanding functions to compressing functions, giving the desired
lower bound for compressing functions. Our proof, in contrast, works directly
with functions of arbitrary domain and range. These features suggests that our
proof technique is fundamentally different than those of prior works.

By generalizing our collision bound slightly, we can obtain an Ω(2n/(k+1))
lower bound for finding a set of distinct points x1, . . . , xk such that

∑
iH(xi) = 0.

This bound is tight as long as n ≤ km by adapting the collision-finding algorithm
of [BHT98] to this problem. Again, our proof is obtained by modifying just a
few lines of the pre-image search proof.

1.2 Related Works

Ristenpart, Shacham, and Shrimpton [RSS11] shows that indifferentiability is
insufficient for replacing a concrete hash function with a random oracle in
the setting of multi-stage games. Nonetheless, Mittelbach [Mit14] shows that
indifferentiability can still be useful in these settings. Exploring the quantum
analogs of these results is an interesting direction for future research.

3 and the square root comes from the fact that the norm of the sum of q unit vectors
of disjoint support is √

q
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2 Preliminaries

Distinguishing quantum states. The density matrix captures all statistical infor-
mation about a mixed state. That is, if two states have the same density matrix,
then they are perfectly indistinguishable.

For density matrices ρ, ρ′ that are not identical, we define the trace distance as
T (ρ, ρ′) = 1

2
∑
i |λi|, where λi are the eigenvalues of ρ−ρ′. The trace distance cap-

tures the maximum distinguishing advantage amongst all possible measurements
of the state.

We will need the following Theorem of Bennett et al. (which we have slightly
improved, see Appendix B.1 for the improved proof):
Lemma 1 ([BBBV97]). Let |φ〉 and |ψ〉 be quantum states with Euclidean
distance ε. Then T (|φ〉〈φ|, |ψ〉〈ψ|) = ε

√
1− ε2/4 ≤ ε.

We will also need the following relaxation of commuting operations:
Definition 1. Let U0, U1 be unitaries over the same quantum system. We say
that U0, U1 ε-almost commute if, for any initial state ρ, the images of ρ under
U0U1 and U1U0 are at most ε-far in trace distance.

3 Oracle Variations

Here, we describe several oracle variations. The oracles will all be equivalent; the
only difference is that the oracle registers and/or the query registers are encoded
in different ways between queries. We start with the usual quantum random
oracle, which comes in two flavors that we call the standard oracle and phase
oracle. Then we will give our compressed standard and phase oracles.

Standard Oracle. Here, the oracle H : {0, 1}m → {0, 1}n is represented as its
truth table: a vector of size 2m where each component is an n-bit string.

The oracle takes as input a state consisting of three sets of registers: m-
qubit x registers representing inputs to the function, n-qubit y registers for
writing the response, and n2m-qubit H registers containing the truth table
of the actual function. The x, y registers come from the adversary, and the
H registers are the oracle’s state, which is hidden from the adversary accept
by making queries. On basis states |x, y〉 ⊗ |H〉, the oracle performs the map
|x, y〉 ⊗ |H〉 7→ |x, y ⊕H(x)〉 ⊗ |H〉

For initialization, the oracle H will be initialized to the uniform superposition
over all H: 1√

2m×2n

∑
H |H〉. We will call this oracle StO.

The only difference between StO and the usual quantum random oracle model
is that, in the usual model, H starts out as a uniformly chosen random function
rather than a superposition (that is, the H registers are the completely mixed
state). We will call the oracle with this different initialization StO′.

Lemma 2. StO and StO′ are perfectly indistinguishable. That is, for any adver-
sary A making oracle queries, let AStO() and AStO′() denote the algorithm inter-
facing with StO and StO′, respectively. Then Pr[AStO() = 1] = Pr[AStO′() = 1]
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Proof. This can be seen by tracing out the oracle registers. The mixed state of
the adversary in both cases will be identical. ut

Thus, our initialization is equivalent to H being a uniformly random oracle.

Phase Oracle. We will also consider the well-known phase model of oracle queries.
This model technically offers a different interface to the adversary, but can be
mapped to the original oracle by simple Hadamard operations.

The oracle takes as input a state consisting of three sets of registers: x registers
representing inputs to the function, z phase registers, and H registers containing
the truth table of the actual function. On basis states |x, y〉 ⊗ |H〉, it performs
the map |x, z〉 ⊗ |H〉 7→ (−1)y·H(x)|x, z〉 ⊗ |H〉.

For initialization, H is the uniform superposition as before. We will call this
oracle PhO. Analogous to the above, this is equivalent to the case where H is
uniformly random. The following Lemma is implicit in much of the literature on
quantum-accessible oracles:

Lemma 3. For any adversary A making queries to StO, let B be the adversary
that is identical to A, except it performs the Hadamard transformation H⊗n
to the response registers before and after each query. Then Pr[AStO() = 1] =
Pr[BPhO() = 1]

Compressed Standard Oracles. We now define our compressed standard oracles.
The intuition for our compressed standard oracle is the following. Let |τ〉 be the
uniform superposition. In the standard (uncompressed) oracle, suppose for each
of the 2m output registers, we perform the computation mapping |τ〉 7→ |τ〉|1〉
and |φ〉 7→ |φ〉|0〉 for any |φ〉 orthogonal to |τ〉. In other words, this computation
tests whether or not the state of the output registers is 0 in the Fourier basis. We
will write the output of the computation in some auxiliary space. Now the state
of the oracle is a superposition over truth tables, and a superposition over vectors
in {0, 1}2m containing the output of the tests. A straightforward exercise (and
a consequence of our analysis below) shows that if we perform these tests after
q queries, all vectors in the test vector superposition have at most q positions
containing a 0. The reason is, roughly, if we do the tests before any queries the
vector will be identically 1 since we had a uniform superposition (which is 0 in
the Fourier basis). Then, each query affects only one position of the superposition,
increasing the number of 0’s by at most 1.

Also notice that anywhere the vector contains a 1, the corresponding truth
table component contains exactly the uniform superposition |τ〉. Anywhere the
vector contains a 0, the corresponding truth table component contains a state
that is guaranteed to be orthogonal to |τ〉.

What we can do then is compress this overall state. We will simply write
down all the positions where the test vector contained a 0, and keep track of the
truth table component for that position. Everywhere else we can simply ignore
since we know what the truth table contains. The result is a (superposition over)
database consisting of at most q input/output pairs.
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In more detail, a database D will be a collection of (x, y) pairs, where
(x, y) ∈ D means the function has been specified to have value y on input x. We
will write D(x) = y in this case. If, for an input x there is no pair (x, y) ∈ D,
then we will write D(x) = ⊥, indicating that the function has not been specified.
We will maintain that a database D only contains at most one pair for a given x.

Concretely, if we have an upper bound t on the number of specified points, a
database D will be represented an element of the set St, where S = ({0, 1}m ∪
{⊥})×{0, 1}n. Each value in S is an (x, y) pair; if x 6= ⊥ the pair means D(x) = y,
and x = ⊥ means the pair is unused. For x1 < x2 < · · · < x` and y1, . . . , y`, the
database representing that input xi has been set to yi for i ∈ [`], with all other
points unspecified, will be represented as:

((x1, y1), (x2, y2), . . . , (x`, y`), (⊥, 0n), . . . , (⊥, 0n))

where the number of (⊥, 0n) pairs is equal to t− `.
After query q, the state of the oracle will be a superposition of databases in

this form, using the upper bound t = q. So initially the state is empty. We will
maintain several invariants:

– For any database in the support of the superposition, for any (x, y) pair
where x = ⊥, we have that y = 0n. All (⊥, 0n) pairs are at the end of the list.

– For any database in the support of the superposition, if (x, y) occurs before
(x′, y′), it must be that x < x′.

– For any of the ` positions that have been specified, the y registers are in a
state that is orthogonal to the uniform superposition |τ〉 (indicating that in
the Fourier domain, the registers do not contain 0).

We also need to describe several procedures on databases. Let |D| be the
number of pairs (x, y) ∈ D for x 6= ⊥. For a database D with |D| < t and
D(x) = ⊥, write D ∪ (x, y) to be the new database obtained by adding the pair
(x, y) to D, inserting in the appropriate spot to maintain the ordering of the x
values. Since |D| was originally less than t, there will be at least one (⊥, 0n) pair,
which is deleted. Therefore, the overall number of pairs (including ⊥s) in D and
D ∪ {(x, y)} are the same.

Before describing how to process a query, we need to describe a local de-
compression procedure StdDecompx which acts on databases. This is a unitary
operation. It suffices to describe its action on a set of orthonormal states. Let t
be the current upper bound on the number of set points.

– For D such that D(x) = ⊥ and |D| < t,

StdDecompx|D〉 = 1√
2n
∑
y

|D ∪ (x, y)〉

That is, StdDecompx inserts into D the pair (x, |τ〉). This corresponds to
decompressing the value of the database at position x
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– For D such that D(x) = ⊥ and |D| = t, StdDecompx|D〉 = |D〉. This means,
if there is no room to expand for decompression, StdDecompx does nothing.
Note that these states are illegal and StdDecompx will never by applied to
such states.

– For a D′ such that D′(x) = ⊥ and |D′| < t,

StdDecompx

(
1√
2n
∑
y

(−1)z·y|D′ ∪ (x, y)〉〉
)

= 1√
2n
∑
y

(−1)z·y|D′ ∪ (x, y)〉〉 for z 6= 0

StdDecompx

(
1√
2n
∑
y

|D′ ∪ (x, y)〉〉
)

= |D′〉

In other words, if D already is specified on x, and moreover if the corre-
sponding y registers are in a state orthogonal to |τ〉 (meaning they do not
contain 0 in the Fourier domain), then there is no need to decompress and
StdDecompx is the identity. On the other hand, if D is specified at x and the
corresponding y registers are in the state |τ〉, StdDecompx will remove x and
the y register superposition from D.
Note that the left-hand sides of last two cases form an orthonormal basis for

the span of |D〉 such that D(x) 6= ⊥. The left-hand sides of the first two cases
form an orthonormal basis for the remaining D. Thus, StdDecompx is defined on
an orthonormal basis, which by linearity defines it on all states. The right-hand
sides are the same basis states just in a different order. As such, this operation
maps orthogonal states to orthogonal states, and is therefore unitary. Note that
StdDecompx is actually an involution, as applying it twice results in the identity.
Let StdDecomp be the related unitary operating on a quantum system over
x, y,D states, defined by it’s action on the computational basis states as:

|x, y〉 ⊗ |D〉 = |x, y〉 ⊗ StdDecompx|D〉

In other words, in superposition it applies StdDecompx to |D〉, where x is
taken from the x registers.

For some additional notation, we will take y ⊕ ⊥ = y and y · ⊥ = 0. Let
Increase be theprocedure which initializes a new register |(⊥, 0n)〉 and appends
it to the end. In other words, Increase|x, y〉 ⊗ |D〉 = |x, y〉 ⊗ |D〉|(⊥, 0n)〉, where
|D〉|(⊥, 0n)〉 is interpreted as a database computing the same partial function as
D, but with the upper bound on number of points increased by 1.

Let CStO′,CPhsO′ be unitaries defined on the computational basis states as

CStO′|x, y〉 ⊗ |D〉 = |x, y ⊕D(x)〉 ⊗ |D〉
CPhsO′|x, y〉 ⊗ |D〉 = (−1)y·D(x)|x, y〉 ⊗ |D〉

Finally, we describe the CStO and CPhsO oracles:

CStO = StdDecomp ◦ CStO′ ◦ StdDecomp ◦ Increase
CPhsO = StdDecomp ◦ CPhsO′ ◦ StdDecomp ◦ Increase
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In other words, increase the bound on the number of specified points, then
uncompress at x (which is ensured to have enough space since we increased the
bound), apply the query (which is ensured to be specified since we decompressed),
and then re-compress.
Lemma 4. CStO and StO are perfectly indistinguishable. CPhsO and PhO are
perfectly indistinguishable. That is, for any adversary A, we have Pr[ACStO() =
1] = Pr[AStO() = 1], and for any adversary B, we have Pr[BCPhsO() = 1] =
Pr[APhO() = 1].
Proof. We prove the case for CStO and StO, the other case being almost identical.
We prove security through a sequence of hybrids.

Hybrid 0. In this case, the adversary interacts with StO. That is, the oracle’s
database is initialized to the uniform superposition over all H, and each query
performs the unitary mapping |x, y〉 ⊗ |H〉 7→ |x, y ⊕H(x)〉 ⊗ |H〉.

Hybrid 1. In this hybrid, we use a slightly different way of representing the
function H. Instead of writing H as a truth table, we represent it as a complete
database D = ((0, H(0)), (1, H(1)), . . . , (2m − 1, H(2m − 1))). Here, the upper
bound on the number of determined points is exactly 2m. The oracle’s state
starts out as

1√
2n2m

∑
H

|((0, H(0)), (1, H(1)), . . . , (2m − 1, H(2m − 1)))〉

The update procedure for each query is simply CStO′, meaning that each query
maps |x, y〉 ⊗ |((0, H(0)), (1, H(1)), . . . , (2m − 1, H(2m − 1)))〉 to |x, y ⊕H(x)〉 ⊗
|((0, H(0)), (1, H(1)), . . . , (2m − 1, H(2m − 1)))〉.

Hybrid 1 is identical to Hybrid 0, except that we have inserted the input
points 1, . . . , 2m − 1 into the oracle’s state, which has no effect on the adversary.

Hybrid 2. Next, introduce a global decompression procedure StdDecomp′, which
applies StdDecompx for all x in the domain, one at a time from 0 up to 2m − 1.

We observe that when the upper bound on determined points is 2m, then
StdDecompx commutes with StdDecompx′ for any x, x′. This readily follows from
the fact that when the upper bound is t = 2m, D(x) = ⊥ implies |D| < t.

In Hybrid 2, the oracle starts out as the empty database with upper bound
2m. Then, each query is implemented as StdDecomp′ ◦ CStO′ ◦ StdDecomp′.

Notice that StdDecomp′ only affects the oracle’s registers and therefore com-
mutes with the any computation on the adversary’s side. Also notice that between
each two queries, StdDecomp′ is applied twice and that it is an involution. There-
fore the two applications cancel out. At the beginning, StdDecomp′ is applied to
an empty database, which maps it to the uniform superposition

1√
2n2m

∑
H

|((0, H(0)), (1, H(1)), . . . , (2m − 1, H(2m − 1)))〉

before the first application of CStO′. Therefore, this hybrid is perfectly indistin-
guishable from Hybrid 1.
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Hybrid 3. This hybrid applies StdDecomp ◦ CStO′ ◦ StdDecomp for each query.
To prove indistinguishability from Hybrid 2, consider a database D with

upper bound 2m but where |D| = ` for some ` ≤ 2m. Notice that for any D′ in
the support of StdDecompx′ |D〉, D′(x) = D(x) for all x 6= x′. This means

CStO′ ◦ StdDecompx′ (|x, y〉 ⊗ |D〉) = StdDecompx′ (|x, y ⊕D(x)〉 ⊗ |D〉)
= StdDecompx′ ◦ CStO′(|x, y〉 ⊗ |D〉)

In other words, when the query register contains x 6= x′, StdDecompx′ and
CStO′ commute. Therefore,

StdDecomp′ ◦ CStO′ ◦ StdDecomp′(|x, y〉 ⊗ |D〉) = StdDecompx ◦ CStO′ ◦ StdDecompx(|x, y〉 ⊗ |D〉)
= StdDecomp ◦ CStO′ ◦ StdDecomp(|x, y〉 ⊗ |D〉)

This shows that Hybrid 2 and Hybrid 3 are identical.

Hybrid 4. Finally, this hybrid is the compressed standard oracle: the oracle’s
state starts out empty, and CStO is applied for each query.

To prove equivalence, first notice that for any x, y,D, StdDecomp ◦ CStO′ ◦
StdDecomp(|x, y〉 ⊗ |D〉) has support on databases D′ such that |D′| ≤ |D|+ 1.
Indeed, all D′ are defined on the same inputs except for possibly the input x.

This means that after q queries in Hybrid 3, the oracle’s registers only have
support on D containing at most q defined points; the remaining ≥ 2m− q points
are all (⊥, 0n). Therefore, we can discard all but the first q pairs in D, without
affecting the adversary’s state. The result is identical to Hybrid 4. ut

In Appendix C, we give several more oracle variations; while not used in
this work, they may be useful in other settings. These variations also provide an
alternative way to arrive at the compressed standard oracles.

3.1 A Useful Lemma

Here, we provide a lemma which relates the adversary’s knowledge of an oracle
output to the probability that point appears in the compressed oracle database.
This lemma is proved in Appendix B.3, and follows from a straightforward (albeit
delicate) analysis off the action of CStO.

Lemma 5. Consider a quantum algorithm A making queries to a random oracle
H and outputting tuples (x1, . . . , xk, y1, . . . , yk, z). Let R be a collection of such
tuples. Suppose with probability p, A outputs a tuple such that (1) the tuple is in
R and (2) H(xi) = yi for all i. Now consider running A with the oracle CStO,
and suppose the database D is measured after A produces its output. Let p′ be
the probability that (1) the tuple is in R, and (2) D(xi) = yi for all i (and in
particular D(xi) 6= ⊥). Then

√
p ≤
√
p′ +

√
k/2n
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4 Quantum Query Bounds Using Compressed Oracles

In this section, we re-prove several known query complexity lower bounds, as well
as provide some new bounds. All these bounds follow from simple applications of
our compressed oracles.

4.1 Optimality of Grover Search

Here, we re-prove that the quadratic speed-up of Grover search is optimal.
Specifically, we prove that for a random function H : {0, 1}m → {0, 1}n, any
q query algorithm has a success probability of at most O(q2/2n) for finding a
pre-image of 0n (or any fixed value).

Theorem 1. For any adversary making q queries to CStO or CPhsO and an
arbitrary number of database read queries, if the database D is measured after
the q queries, the probability it contains a pair of the form (x, 0n) is at most
O(q2/2n).

Proof. Let 0n ∈ D mean that D contains a pair of the form (x, 0n). The com-
pressed oracle’s database starts out empty, so the probability 0n ∈ D is zero.
We will show that the probability cannot rise too much with each query. We
consider compressed phase queries, CPhsO. Compressed standard queries are
handled analogously. Consider the joint state of the adversary and oracle just
before the qth CPhsO query:

|ψ〉 =
∑

x,y,z,D

αx,y,z,D|x, y, z〉 ⊗ |D〉

Where D represents the compressed phase oracle, x, y as the query registers,
and z as the adversary’s private storage. Define P as the projection onto the span
of basis states |x, y, z〉 ⊗ |D〉 such that 0n ∈ D. Our goal will be to relate the
norms of P |ψ〉 (the magnitude before the query) to P ·CPhsO|ψ〉 (the magnitude
after the query).

Define projections Q onto states such that (1) 0n /∈ D (meaning the database
does not yet contain 0n), (2) y 6= 0 (meaning CPhsO will affect D), and (3)
D(x) = ⊥ (meaning D has not yet been specified at x). Define projection R onto
states such that 0n /∈ D, y 6= 0 and D(x) 6= ⊥; projection S onto states such that
0n /∈ D, y = 0. Then P +Q+R+ S = I.

Consider Q|ψ〉. CPhsO maps basis states |x, y, z〉⊗ |D〉 in the support of Q|ψ〉
to |x, y, z〉 ⊗ 1√

2n

∑
w(−1)y·w|D ∪ (x,w)〉. Since 0n /∈ D, applying P to this state

will yield |x, y, z〉⊗ 1√
2n
|D∪ (x, 0n)〉. Notice that the images of the different basis

states are orthogonal. Therefore, ‖P · CPhsO ·Q|ψ〉‖ = 1√
2n
‖Q|ψ〉‖.

For basis vectors in the support of R, we must have D(x) /∈ {⊥, 0n}. Let D′
be the database with x removed, and write D = D′ ∪ (x,w) for w = D(x). Then
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some algebraic manipulations show that CPhsO|x, y, z〉 ⊗ |D′ ∪ (x,w)〉 is:

|x, y, z〉 ⊗

(
(−1)y·w

(
|D′ ∪ (x,w)〉+ 1√

2n
|D′〉

)

+ 1
2n
∑
y′

(1− (−1)y·w − (−1)y·y
′
)|D′ ∪ (x, y′)〉

)

Then P · CPhsO|x, y, z〉 ⊗ |D′ ∪ (x,w)〉 = −(−1)y·w

2n |x, y, z〉 ⊗ |D′ ∪ (x, 0n)〉. Write
R|ψ〉 =

∑
x,y,z,D′,w αx,y,z,D′,w|x, y, z〉 ⊗ |D′ ∪ (x,w)〉. Then ‖P · CPhsO ·R|ψ〉‖2

is equal to:
1
4n

∑
x,y,z,D′

‖
∑
w

αx,y,z,D′,w(−1)y·w‖2 ≤ 1
2n

∑
x,y,z,D′

∑
w

‖αx,y,z,D′,w‖2 = 1
2n ‖R|ψ〉‖

2

Finally, ‖P · CPhsO · P |ψ〉‖ ≤ ‖P |ψ〉‖ and CPhsO · S|ψ〉 = S|ψ〉. Putting it
all together, we have that ‖P · CPhsO|ψ〉‖ ≤ ‖P |ψ〉‖+ 1√

2n
(‖Q|ψ〉‖+ ‖R|ψ〉‖) ≤

‖P |ψ〉‖+ 1√
2n

.
Therefore, after q queries, we have that the projection onto D containing a

zero has norm at most q/
√

2n. Now, the probability the database in |ψ〉 contains
a 0n is just the square of this norm, which is at most q2

2n . ut

The following is obtained by combining Theorem 1 with Lemma 5:
Corollary 1. After making q quantum queries to a random oracle, the probability
of finding a pre-image of 0n is at most O(q2/2n).
Proof. We will assume the adversary always makes a final query on it’s output
x, and outputs (x,H(x)). This comes at the cost of at most 1 query, so it does
not affect the asymptotic result. Then we can use the relation R(x, y) which
accepts if and only if y = 0n. In the second experiment of Lemma 5, the only way
for the adversary to win is to have the database contain a pre-image of 0n. As
such, Theorem 1 shows p′ = O(q2/2n). Then Lemma 5 shows that p = O(q2/2n),
which is exactly the probability the adversary outputs a pre-image of 0n when
interacting with the real random oracle.

4.2 Collision Lower Bound

Theorem 2. For any adversary making q queries to CStO or CPhsO and an
arbitrary number of database read queries, if the database D is measured after
the q queries, the resulting database will contain a collision with probability at
most O(q3/2n)
Proof. The proof involves changing just a few lines of the proof of Theorem 1.
We define P to project onto databases D containing a collision, and re-define
Q,R, S accordingly. Write Q|ψ〉 =

∑
x,y,z,D αx,y,z,D|x, y, z〉 ⊗ |D〉. Then

P · CPhsO ·Q|ψ〉 =
∑

x,y,z,D

αx,y,z,D|x, y, z〉 ⊗
1√
2n
∑
w∈D
|D ∪ (x,w)〉

18



We can write this as the 1√
2n

∑
i |φi〉, where |φi〉 is the partial sum which sets

w to be the ith element in D (provided it exists). The |φi〉 are orthogonal, and
satisfy ‖|φi〉‖ ≤ ‖Q|ψ〉‖. Moreover, after q queries D has size at most q, and so
there are at most q of the |φi〉. Therefore, ‖P · CPhsO ·Q|ψ〉‖ ≤

√
q/2n‖Q|ψ〉‖.

By a similar argument, ‖P ·CPhsO·R|ψ〉‖ ≤
√
q/2n‖R|ψ〉‖. Putting everything

together, this shows that the norm of P |ψ〉 increases by at most
√
q/2n with

each query. Therefore, after q queries, the total norm is at most
√
q3/2n, giving

a probability of q3/2n. ut

Corollary 2. After making q quantum queries to a random oracle, the probability
of finding a collision is at most O(q3/2n).

4.3 More General Settings

We can easily generalize even further. Let R be a relation on `-tuples over {0, 1}n.
Say that R is satisfied on a database D if D contains ` distinct pairs (xi, yi) such
that R(y1, . . . , y`) = 1. Let k(q) be the maximum number of y that can be added
to an unsatisfied database of size at most q − 1 to make it satisfied.

Theorem 3. For any adversary making q queries to CStO or CPhsO and an
arbitrary number of database read queries, if the database D is measured after
the q queries, the resulting database will be satisfied with probability at most
O(q2k(q)/2n).

For the k-sum problem, there are at most
(
q

k−1
)
incomplete tuples that can

be completed by adding a new point. As such, k(q) ≤
(
q

k−1
)
≤ qk−1. This gives:

Corollary 3. After making q quantum queries to a random oracle, the probability
of finding k distinct inputs xi such that

∑
iH(xi) = 0n is at most O(qk+1/2n).

5 Indifferentiability of A Simple Domain Extender

5.1 Definitions

Let h : {0, 1}m → {0, 1}n be a random oracle, and let Ch : {0, 1}M → {0, 1}N
be a polynomial-sized stateless classical circuit that makes oracle queries to h.

Definition 2. Let H : {0, 1}M → {0, 1}N be a random function. A stateful
quantum polynomial-time simulator SimH : {0, 1}m → {0, 1}n is indifferentiable
for C if, for any polynomial-time distinguisher D making queries to h,H,

|Pr[Dh,C
h

() = 1]− Pr[DSimH ,H() = 1]| < negl

Definition 3. Ch is quantum indifferentiable from a random oracle if there
exists an indifferentiable simulator Sim for C.
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Intuitively, in the “real” world, h is a random function and H is set to be
Ch. Ch is indifferentiable if this real world is indistinguishable from an “ideal”
world, where H is a random function, and h is set to be Simh for some efficient
simulator Sim.

In order to help us prove indifferentiability of a simulator Sim, we introduce
two weaker requirements. The first is indistinguishability, a weakened version of
indifferentiability where the distinguisher is not allowed any queries to H:

Definition 4. A simulator Sim is indistinguishable if, for any polynomial-time
distinguisher D making queries to h,

|Pr[Dh() = 1]− Pr[DSimH

() = 1]| < negl

Next, we introduce the notion of consistency. Here, we set h to be simulated
by SimH , and we ask the adversary to distinguish honest evaluations of H from
evaluations of Ch (where again h is still simulated by SimH).

Definition 5. A simulator Sim is consistent if, for any polynomial-time distin-
guisher D making queries to h,H, if H is simulated by SimH , then

|Pr[DSimH ,H() = 1]− Pr[DSimH ,CSimH

() = 1]| < negl

Lemma 6. Any consistent and indistinguishable simulator is indifferentiable.

The proof of Lemma 6 is straightforward, and proved in Appendix B.2.
Finally, it is straightforward to adapt the definitions and Lemma 6 to handle

the case of many random compression functions h1, . . . , h`. In this case, C makes
queries to h1, . . . , h`, D has quantum oracle access to h1, . . . , h` and H, while S
makes quantum queries to H and simulates h1, . . . , h`.

5.2 A Simple Domain Extender

We now consider a simple domain extender. Let h1 : {0, 1}m → {0, 1}n, h2 :
{0, 1}n × {0, 1}` → {0, 1}n be two functions. Let Ch1,h2(x1, x2) = h2(h1(x1), x2)

Theorem 4. If h1, h2 are random oracles, the simple domain extender C is
indifferentiable from a random oracle.

Coron et al. [CDMP05] show that the indifferentiability of C is sufficient to
prove the indifferentiability of Merkle-Damgård for a particular choice of prefix-
free encoding (see paper for details). That part of the paper translates immediately
to the quantum setting, so Theorem 4 then shows quantum indifferentiability
for the same prefix free encoding. In Section D, we show more generally that
Merkle-Damgård is indifferentiable for any choice of prefix-free encoding. All the
main ideas for the full proof are already contained in the proof of Theorem 4
below, just the details get a bit more complicated in the more general setting.
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5.3 Our Simulator

Before describing our simulator, we need some terminology. For a database D of
input/output pairs, a collision is two pairs (x1, y1), (x2, y2) ∈ D,x1 6= x2 such
that y1 = y2. For an input (y, x2) ∈ {0, 1}n × {0, 1}`, a completion in D is a pair
(x1, y) ∈ D. For such a completion, we will call w = (x1, x2) the associated input.

We define a classical procedure FindInput. FindInput takes as input x ∈
{0, 1}n × {0, 1}`, and a database D. It parses x as (y, x2) ∈ {0, 1}n × {0, 1}`.
Then, it looks for a completion (x1, y) ∈ D. If found, it will take, say, the
completion with the smallest x1 value, and output (b = 1, w = (x1, x2)). If no
completion is found, it will output (b = 0, w = 0m+`). Note that for the output
values in D, FindInput only needs to apply an equality check on those values,
testing if they contain y. By applying such an equality check to each output
register, it can compute b and w. Looking forward, when we implement FindInput
in superposition, this means FindInput only touches the output registers of D by
making a computational basis test.

We are now ready to describe our simulator. Sim will keep a (superposition
over) database Da, which represents the simulation of the random oracle ha
that it will update according to the CStO update procedure. Da is originally
empty. It will also have a private random oracle hb. For concreteness, hb will
be implemented using another instance of CStO, but it will be notationally
convenient to treat hb as being a uniformly random function.

On h1 queries, Sim makes a query to ha, performing the appropriate CStO
update procedure to Da. On h2 queries, Sim performs a unitary operation with
the following action on basis states:

|x, y〉 ⊗ |Da〉 7→

{
|x, y ⊕ hb(x)〉 ⊗ |Da〉 if FindInput(x,Da) = (0, 0m+`)
|x, y ⊕H(w)〉 ⊗ |Da〉 if FindInput(x,Da) = (1, w)

This unitary is straightforward to implement with a single query to each of
hb and H, and is detailed in Appendix B.4.

In the next three subsections, we prove that our simulator is indifferentiable.
In Section 5.4, we prove a useful commutativity lemma. Then in Sections 5.5
and 5.6, we prove the indistinguishability and consistency, respectively, of Sim.
By Lemma 6, this proves that Sim is indifferentiable, proving Theorem 4.

5.4 The Almost Commutativity of StdDecomp and FindInput

Lemma 7. Consider a quantum system over x,D, x′, z. The following two uni-
taries O(1/

√
2n)-almost commute:

– StdDecomp, acting on the x,D registers.
– FindInput, taking as input the D,x′ registers and XORing the output into z.

The intuition is that, for StdDecomp to have any effect, either (1) D(x) = ⊥ or
(2) D(x) is in uniform superposition; StdDecomp will simply toggle between the
two cases. Now, a uniform superposition puts a weight of 1/

√
2n on each possible
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y value. Since there is only a single possible y value for D(x) that matches x′,
it is exponentially unlikely that FindInput will find a match at input x in Case
(2). On the other hand, it will never find a match at input x in Case (1). Hence,
there is an exponentially small error between the action of FindInput on these
two cases. We prove the lemma formally in Appendix B.5.

5.5 Indistinguishability

Lemma 8. Sim is indistinguishable. In particular, for any distinguisher D mak-
ing at most q queries to h1, h2,

|Pr[Dh1,h2() = 1]− Pr[DSimH

() = 1]| < O(q2/
√

2n)

Proof. Recall that in the ideal world where h1, h2 are simulated by SimH , h1
is implemented by a CStO oracle on database Da. By applying Lemma 4, we
can think of the simulator’s other oracle hb as another instance of CStO for a
database Db. Additionally, H can be simulated with yet another instance of
CStO for a database E. Similarly, in the real world, h1, h2 will be implemented
by independent instances of CStO with databases Da, Db. Note that, in either
case, h1 is implemented by a CStO oracle on database Da. Therefore, the only
difference between the two cases is how h2 is implemented.

We define a classical encoding procedure Encode for pairs Da, Db of databases.
Intuitively, Encode will scan the values ((z, x2), y) in Db, seeing if any of the
(z, x2) values correspond to a completion in Da. If so, such a completion will
have an associated input w. Encode will reasonably guess that such a completion
corresponds to an evaluation of H(w) = Ch1,h2(w). Therefore, Encode will remove
the value ((z, x2), y) inDb, and add the pair (w, y) to a new database E, intuitively
representing the oracle H. In more detail, Encode does the following:

– For each pair ((z, x2), y) ∈ Db, run FindInput((z, x2), Da) = (b, w). If b = 1,
re-label the pair to (w, y)

– Remove all re-labeled pairs Db (which are easily identifiable since the input
will be larger) and place them in a new database E.

We define the following Decode procedure, which operates on triples Da, Db, E:

– Merge the databases Db, E
– For each pair (w, y) that was previously in E, where w = (x1, x2), evaluate
z = Da(x1). Re-label (w, y) to ((z, x2), y). If z = ⊥ or if the input (z, x2) was
already in the database, output ⊥ and abort.

Note that Encode,Decode are independent of the order elements are processed.
It also follows immediately from the descriptions above that Decode(Encode(Da, Db)) =
(Da, Db). Therefore, Encode can be implemented in superposition, giving the
unitary that maps |Da, Db〉 to |Encode(Da, Db)〉. Also note that Encode(∅, ∅) =
(∅, ∅, ∅).
With this notation in hand, we are now ready to prove security: consider a
potential distinguisher D. We prove security through a sequence of hybrids.
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Hybrid 0. This is the real world, where h1, h2 are random oracles. Let p0 be the
probability D outputs 1 in this case.

Hybrid 1. This is still the real world, but we add an abort condition. Namely,
after any query to h1, we measure if the database ha contains a collision; if so, we
immediately abort and stop the simulation. Let p1 be the probability D outputs
1 in Hybrid 1.

Lemma 9. |p1 − p0| ≤ O(
√
q3/2n)

Proof. First, suppose that before the ith query to h1, the superposition over
ha has support only on databases containing no collisions. Let |ψ〉 be the joint
state of the adversary and simulator just after the query to h1. Then write
|ψ〉 = |ψ0〉 + |ψ1〉 where |ψ0〉 is the projection onto states where ha has no
collisions, and |ψ1〉 is the projection onto states where ha contains at least one
collision. Following the proof of Theorem 2, we know that ‖|ψ1〉‖ ≤

√
i/2n.

Therefore, if we let |ψq〉 be the joint state after the qth query in Hybrid
0 and |φq〉 the joint state in Hybrid 2, we would have that ‖|ψq〉 − |φq〉‖ ≤∑q
i=0
√
i/2n ≤ O(

√
q3/2n). By Lemma 1, this means that |p1−p0| ≤ O(

√
q3/2n)

as desired. ut

Hybrid 2. In this hybrid, there are three databases Da, Db, E, initialized to
|∅, ∅, ∅〉. Each query is answered in the following way:

– Apply Decode to the Da, Db, E registers. Measure if Decode gives ⊥, in which
case abort. Otherwise, there are now just two database registers Da, Db.

– Answer an h1 (resp. h2) query by applying the CStO update procedure to
Da (resp. Db).

– Apply Encode to Da, Db.
– Apply the collision check to the database Da.

Let p2 be the probability D outputs 1 in Hybrid 2.

Lemma 10. p1 = p0

Proof. We start with Hybrid 1. First, by Lemma 4, we can implement Da, Db

in Hybrid 1 as independent instances of CStO. Now, between all the queries
insert Encode followed by Decode. Also insert the two procedures before the first
query. Now each query is preceded by a Decode and followed by a collision check
and an Encode. Note that Encode,Decode do not affect the database Da, and
so commute with the collision check. Therefore, we can swap the order of the
collision check and Encode that follow each query.

By merging the Decode, query, Encode and collision check operations together,
we get exactly the update procedure of Hybrid 2. All that’s left is an initial
Encode procedure at the very beginning, which produces |∅, ∅, ∅〉 as the database
state, just as in Hybrid 2. ut
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Hybrid 3. This hybrid is the ideal world, where h1, h2 queries are answered by
Sim, except that we will have the abort condition if a collision in ha is ever found.
In other words, instead of decoding, applying the query, and then encoding, in
Hybrid 3 we act directly on the encoded state using the algorithms specified
by Sim. For h1 queries, the difference from Hybrid 2 is just that the queries
are made directly to ha, instead of Decode, then ha query, then Encode. For h2
queries, the differences appear more substantial. h2 queries, on superpositions
over x, y,Da, Db, E, can be summarized as follows:

1. Compute the unitary mapping |x, y,Da, Db, E〉 7→ |x, y,Da, Db, E, (b, w) =
FindInput(x,Da)〉

2. In superposition, apply the following conditional procedures:
3. Conditioned on b = 0,

(a) Apply StdDecomp to uncompress Db at x.
(b) Apply in superposition the map |x, y,Da, Db, E, b, w〉 7→ |x, y⊕Db(x), Da, Db, E, b, w〉.
(c) Apply StdDecomp to re-compress Db at x.

4. Conditioned on b = 1,
(a) Apply StdDecomp to uncompress E at w.
(b) Apply in superposition the map |x, y,Da, Db, E, b, w〉 7→ |x, y⊕E(w), Da, Db, E, b, w〉.
(c) Apply StdDecomp to re-compress E at w.

5. Uncompute (b, w) by running FindInput(x,Da) in superposition again.

Let p3 be the probability D outputs 1 in this hybrid.

Lemma 11. |p3 − p2| ≤ O(q2/
√

2n).

Proof. We start with the very last query, and gradually change the queries
one-by-one from how they were answered in Hybrid 2 to Hybrid 3.

For h1 queries, we observe that it suffices to swap the order of Encode and CStO.
Indeed, suppose we move the final Encode to come before CStO. The previous
query ended with an Encode, and now the current query begins with Decode
then Encode. Since Decode ◦ Encode is the identity, all thee of these operations
collapse into a single Encode, which we keep at the end of the previous query. The
result is that the current query is just a direct call to CStO, as in Hybrid 3. Then
it remains to show that we can swap the order of Encode and CStO. For this,
notice that Encode only interacts with Da through FindInput. As such, all steps
in Encode,CStO commute except for the two StdDecomp operations in CStO and
the FindInput operation in Encode for each entry in Db (plus another FindInput
operation when un-computing the scratch-space of Encode in order to implement
in superposition). By Lemma 7, these ≤ 4q operations each O(1/

√
2n)-almost

commute, meaning Encode and CStO O(q/
√

2n)-almost commute.
For h2 queries, fix an x,Da and suppose Da contains no collisions as guaran-

teed. There are two cases:

– FindInput(x,Da) = (0, 0m+`). Then in Hybrid 2, decoding/encoding does not
affect the labeling for an (x, z) pair in Db. As such, Hybrid 2 will uncompress
Db at x, apply the map |x, y,Da, Db, E〉 7→ |x, y ⊕ Db(x), Da, Db, E〉 and
then re-compress Db at x, for these x,Da.
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– FindInput(x,Da) = (1, w). Then in Hybrid 2, by the collision-freeness of
Da, decoding will re-label a (w, z) ∈ E (if present) to (x, z) ∈ Db. The
effect of Hybrid 2 in this case will be to uncompress E at w, apply the map
|x, y,Da, Db, E〉 7→ |x, y ⊕ E(x), Da, Db, E〉, and then re-compress E at w.

In either case, answering h2 queries in Hybrid 2 and 3 act identically. Therefore,
this change introduces no error.
After q h1 or h2 queries, the total error between Hybrid 1 and Hybrid 2 is at
most O(q2/

√
2n). ut

Hybrid 4. This is the ideal world, where we remove the abort condition from
Hybrid 3. Let p4 be the probability D outputs 1 in Hybrid 4. By an almost
identical proof to that of Lemma 9, we have:
Lemma 12. |p4 − p3| ≤ O(

√
q3/2n)

Summing up, we have that |p0 − p4| < O(q2/
√

2n), proving Lemma 8. ut

5.6 Consistency
Lemma 13. Sim is consistent. In particular, for any distinguisher D making at
most q quantum queries to h1, h2, H,

|Pr[DSimH ,H() = 1]− Pr[DSimH ,CSimH

() = 1]| < O(
√
q3/2n)

In other words, h1, h2 are simulated as SimH , and the adversary cannot
distinguish between H and Ch1,h2 .
Proof. We first work out how H queries are answered using Ch1,h2 , when we
simulate h1, h2 using SimH . The input registers will be labeled with x = (x1, x2),
and the output registers labeled with y.
1. First, make an h1 query on the x1 registers, writing the output to some new

registers initialized to z = 0n. Since we are implementing h1 using CStO, this
is accomplished using the following steps:
(a) Apply StdDecomp to un-compress Da at x1
(b) Evaluate the map |x1, z, x2, y〉 ⊗ |Da〉 7→ |x1, z ⊕Da(x1), x2, y〉 ⊗ |Da〉,

where z is the new register that was initialized to 0.
(c) Re-compress Da at x1 by applying StdDecomp again.

2. Next, make an h2 query on input (z, x2) (where z where the registers created
previously) with output registers y. This has the effect of mapping to:

|x1, z, x2, y ⊕ hb(x)〉 ⊗ |Da〉 if FindInput((z, x2), Da) = (0, 0m+`)
|x1, z, x2, y ⊕H(w)〉 ⊗ |Da〉 if FindInput(z, x2), Da) = (1, w)

3. Finally, make another h1 query to un-compute the value of z. This is accom-
plished in the following steps:
(a) Apply StdDecomp to un-compress Da at x1
(b) Evaluate the map |x1, z, x2, y〉 ⊗ |Da〉 7→ |x1, z ⊕Da(x1), x2, y〉 ⊗ |Da〉.
(c) Re-compress Da at x1 by applying StdDecomp again.
(d) Then discard the z registers.

Let D be a potential distinguisher. We consider the following hybrids:
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Hybrid 0. In this hybrid, H queries are answered using Ch1,h2 , as worked out
above. Let p0 be the probability D outputs 1.
Hybrid 1. This hybrid is identical to Hybrid 0, except that Steps 1c and 3a are
removed. Let p1 be the probability D outputs 1 in this hybrid.

Lemma 14. |p1 − p0| < O(q/
√

2n).

Proof. Since Steps 1c and 3a are inverses of each other, Hybrid 1 is equivalent to
moving Step 3a up to occur just after Step 1c. Note that Step 2 only interacts
with Da through two applications of FindInput (one for computing, one for
un-computing), which in turn O(1/

√
2n)-almost commutes with Step 1c. By

Lemma 7, each query to H therefore creates an error O(1/
√

2n), yielding a total
error of O(q/

√
2n). ut

Hybrid 2. This hybrid is identical to Hybrid 2, except that after each query we
measure if the database Da contains a collision. If so, we abort and stop the
simulation. Let p2 be the probability D outputs 1 in this hybrid. By an almost
identical proof to that of Lemma 9, we have:

Lemma 15. |p2 − p1| < O(
√
q3/2n)

Hybrid 3. This hybrid is identical to Hybrid 2 as outlined above, except that:

– Steps 1c and 3a are removed (as in Hybrid 1 and 2)
– The operation in Step 2 is replaced with

|x1, z, x2, y〉 ⊗ |Da〉 7→ |x1, z, x2, y ⊕H(x1, x2)〉 ⊗ |Da〉

In other words Hybrid 3 is identical to Hybrid 2, except that we change Step 2.
Let p3 be the probability D outputs 1 in this hybrid.

Lemma 16. p3 = p2.

Proof. In either hybrid, since we do not apply the Steps 1c and 3a, Da is
guaranteed to contain the pair (x1, z), where z is the same as in Step 2. Therefore,
in Hybrid 2, FindInput((z, x2), Da) is guaranteed to find a completion. Moreover,
for Da that contain no collisions, FindInput((z, x2), Da) will find exactly the
completion (x1, z). In this case, w = (x1, x2), and Hybrid 2 will make a query to
H on (x1, x2). The end result is that for Da containing no collisions, Step 2 is
identical in both Hybrids. Since the collision check guarantees no collisions in
Da, this shows that the two hybrids are identical. ut

Hybrid 4. In this hybrid, H queries are made directly to H, but we still have the
abort condition. Let p4 be the probability D outputs 1 in this hybrid.

Lemma 17. p4 = p3

Proof. In Hybrid 3, what remains of Steps 1 and 3 are exact inverses of each
other and moreover commute with the new Step 2 from Hybrid 3. Therefore, we
can remove Steps 1 and 3 altogether without affecting how oracle queries are
answered. The result is identical to Hybrid 4. ut
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Hybrid 5. This hybrid has H queries made directly to H, but without the abort
condition. Let p5 be the probability D outputs 1 in this hybrid. By an almost
identical proof to that of Lemma 9, we have:

Lemma 18. |p5 − p4| < O(
√
q3/2n)

Overall then |p0 − p5| < O(
√
q3/2n), finishing the proof of Lemma 13. ut

6 Fujisaki Okamoto CCA-Secure Encryption

Here, we summarize our results on the Fujisaki-Okamoto transformation [FO99].
The transformation starts with a symmetric key encryption scheme (EncS ,DecS)
and a public key encryption scheme (GenP ,EncP ,DecP ). Assuming only mild secu-
rity properties of these two schemes (which are much easier to obtain than strong
CCA security), the conversion produces a new public key scheme (Gen,Enc,Dec)
which is secure against chosen ciphertext attacks. Let G,H are two random
oracles, where G outputs keys for EncS and H outputs the random coins used by
EncP . The scheme is as follows:

– Gen = GenP .
– Enc(pk,m) chooses a random δ ∈ {0, 1}n, and computes d← EncS(H(δ),m).

Then it computes c← EncP (pk, δ;G(δ, d)), and outputs (c, d)
– Dec(sk, (c, d)) first computes δ′ ← DecP (sk, c). Then it checks that EncP (pk, δ′;G(δ′, d)) =
c; if not, output ⊥. Finally it computes and outputs m′ ← DecS(H(δ′), d)

The main difficulty in the classical proof of security is allowing the reduction
to answer decryption queries. The key idea is that, in order for the adversary to
generate a valid ciphertext, it must have queried the oracles on δ. The reduction
will simulate G,H on the fly by keeping track of tables of input/output pairs.
When a chosen ciphertext query comes in, it will scan the tables looking for a δ
that “explains” the ciphertext.

In the quantum setting, we run into a similar recording barrier as in the
indifferentiability setting. Our key observation is that the output values of the
G,H tables are only used for set membership tests. Just like equality tests
used in our indifferentiability simulator, set membership tests in the primal and
Fourier domain very nearly commute. As such, we can use our compressed oracles
to mimic the classical proof following our techniques. Our reduction can even
handle chosen ciphertext queries on quantum superpositions of ciphertexts. In
Appendix F, we prove the following theorem:

Theorem 5. If (EncS ,DecS) is one-time secure and (Gen,EncP ,DecP ) is well-
spread and one-way secure, then (Gen,Enc,Dec) is quantum CCA secure in the
quantum random oracle model.
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A Quantum Background

A quantum system Q is defined over a finite set B of classical states. We will
generally consider B = {0, 1}n. A pure state over Q is an L2-normalized vector
in C|B|, which assigns a (complex) weight to each element in B. Thus the set
of pure states forms a complex Hilbert space. A qubit is a quantum system
defined over B = {0, 1}. Given a quantum system Q0 over B0 and a quantum
system Q1 over B1, we can define the product system Q = Q0 × Q1 over
B = B0 ×B1 = {(b0, b1) : b0 ∈ B0, b1 ∈ B1}. Given a state v0 ∈ Q0 and v1 ∈ Q1,
we define the product state v0⊗ v1 in the natural way. An n-qubit system is then
Q = Q⊕n0 where Q0 is a single qubit.
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Bra-ket notation. We will think of pure states as column vectors. The pure state
that assigns weight 1 to x and weight 0 to each y 6= x is denoted |x〉. The set
{|x〉} therefore gives an orthonormal basis for the Hilbert space of pure states. We
will call this basis the “computational basis.” If a state |φ〉 is a linear combination
of several |x〉, we say that |φ〉 is in “superposition.” For a pure state |φ〉, we will
denote the conjugate transpose as the row vector 〈φ|.

Entanglement. In general, a pure state |φ〉 over Q0 × Q1 cannot be expressed
as a product state |φ0〉 ⊗ |φ1〉 where |φb〉 ∈ Qb. If |φ〉 is not a product state, we
say that the systems Q0, Q1 are entangled. If |φ〉 is a product state, we say the
systems are un-entangled.

Evolution of quantum systems. A pure state |φ〉 can be manipulated by performing
a unitary transformation U to the state |φ〉. We will denote the resulting state
as |φ′〉 = U |φ〉.

Basic Measurements. A pure state |φ〉 can be measured; the measurement outputs
the value x with probability |〈x|φ〉|2. The normalization of |φ〉 ensures that the
distribution over x is indeed a probability distribution. After measurement, the
state “collapses” to the state |x〉. Notice that subsequent measurements will
always output x, and the state will always stay |x〉.

If Q = Q0 × Q1, we can perform a partial measurement in the sys-
tem Q0 or Q1. If |φ〉 =

∑
x∈B0,y∈B1

αx,y|x, y〉, partially measuring in Q0 will
give x with probability px =

∑
y∈B1

|αx,y|2. |φ〉 will then collapse to the state∑
y∈B1

αx,y√
px
|x, y〉. In other words, the new state has support only on pairs of the

form (x, y) where x was the output of the measurement, and the weight on each
pair is proportional to the original weight in |φ〉. Notice that subsequent partial
measurements over Q0 will always output x, and will leave the state unchanged.

The above corresponds to measurement in the computational basis. Measure-
ments in other bases are possible to, and defined analogously. We will generally
only consider measurements in the computational basis; measurements in other
bases can be implemented by composing unitary operations with measurements
in the computational basis.

Efficient Computation. A quantum computer will be able to perform a fixed,
finite set G of unitary transformations, which we will call gates. For concreteness,
we will use so-called Hadamard, phase, CNOT and π/8 gates, but the precise
choice is not important for this work, so long as the gate set is “universal” for
quantum computing.

LetQ be a quantum system on n qubits. Each gate costs unit time to apply, and
each partial measurement also costs unit time. Therefore, an efficient quantum
algorithm will be able to make a polynomial-length sequence of operations,
where each operation is either a gate from G or a partial measurement in the
computational basis. Here, “polynomial” will generally mean polynomial in n.
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Examples of Quantum Computations.

– Quantum Fourier Transform. Let Q0 be a quantum system over B = Zq
for some integer q. Let Q = Q⊗n0 . The Quantum Fourier Transform (QFT)
performs the following operation efficiently:

QFT|x〉 = 1√
qn
ωx·yq

∑
y∈{0,1}n

|y〉

where ωq = e2πi/q.
In this paper, we will always consider q = 2, so that ωq = (−1).

– Efficient Classical Computations. Any function that can be computed
efficiently classically can be computed efficiently on a quantum computer.
More specifically, if f is computable by a polynomial-sized circuit, then
there is a efficiently computable unitary Uf on the quantum system Q =
Qin ⊗Qout ⊗Qwork with the property that: Uf |x, y, 0〉 = |x, y + f(x), 0〉.
Here, Qin is a quantum system over the set of possible inputs, Qout is a
quantum system over the set of possible outputs, and Qwork is another
quantum system that is just used for workspace, and is reset after use.

Mixed states. A quantum system may, for example, be in a pure state |φ〉 with
probability 1/2, and a different pure state |ψ〉 with probability 1/2. This can
occur, for example, if a partial measurement is performed on a product system.

This probability distribution on pure states cannot be described by a pure
state alone. Instead, we say that the system is in a mixed state. The statistical
behavior of a mixed state can be captured by density matrix. If the system is
in pure state |φi〉 with probability pi, then the density matrix for the system is
defined as ρ =

∑
i pi|φi〉〈φi|.

The density matrix is therefore a positive semi-definite complex Hermitian
matrix with rows and columns indexed by the elements of B. The density
matrix for a pure state |φ〉 is given by the rank-1 matrix |φ〉〈φ|. Any probability
distribution over classical states can also be represented as a density matrix,
namely the diagonal matrix where the diagonal entries are the probability values.

B Some Missing Details and Proofs

B.1 Proof of Lemma 1

Here, we prove Lemma 1, which we have reproduced below:

Lemma 1. Let |φ〉 and |ψ〉 be quantum states with Euclidean distance ε. Then
the trace distance between |φ〉〈φ| and |ψ〉〈ψ| is ε

√
1− ε2/4 ≤ ε.

Proof. Let |τ〉 = (|φ〉+ |ψ〉)/2 and |γ〉 = (|φ〉 − |ψ〉)/2. Then ‖|γ〉‖ = ε/2 and by
simple geometry ‖|τ〉‖ =

√
1− ε2/4. Moreover, |τ〉 and |γ〉 are orthogonal. Now,

we can write

|φ〉〈φ| − |ψ〉〈ψ| = (|τ〉+ |γ〉)(〈τ |+ 〈γ|)− (|τ〉− |γ〉)(〈τ | − 〈γ|) = 2(|τ〉〈γ|+ |γ〉〈τ |)
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This matrix is rank 2 and in the span of |τ〉 and |γ〉. Writing the matrix in
the orthonormal basis {(1/

√
1− ε2/4)|τ〉, (2/ε)|γ〉}, we see that the matrix is

equal to
(

0 ε
√

1− ε2/4
ε
√

1− ε2/4 0

)
. This matrix has eigenvalues ±ε

√
1− ε2/4.

Therefore, the trace norm is ε
√

1− ε2/4.

B.2 Proof of Lemma 6

Here, we prove Lemma 6, which we have reproduced below:

Lemma 5. Any consistent and indistinguishable simulator is indifferentiable.

Proof. Consider a distinguisher D. Consider the following hybrid sequence:

Hybrid 0. This hybrid is the “real” world where h is a random oracle, and
H = Ch. Let p0 be the probability D outputs 1 in this hybrid.

Hybrid 1. In this hybrid, h is simulated by SimH for a random oracle H. However,
instead of answering H queries using H, we instead answer H queries by running
Ch, where h are again simulated by SimH . Let p1 be the probability D outputs 1
in this hybrid. Let Eh = Dh,Ch . Then E is an indistinguishability adversary with
distinguishing advantage is exactly |p0 − p1|. Therefore |p0 − p1| < negl.

Hybrid 2. Finally, this hybrid is the “simulated” world where H is a random
oracle and h is simulated by SimH . Let p2 be the probability D outputs 1 in this
hybrid. By the consistency of Sim, |p1 − p2| < negl.
Overall, then |p0 − p2| < negl, as desired. ut

B.3 Proof of Lemma 5

Here, we prove Lemma 5, which we have reproduced below:

Lemma 5. Consider a quantum algorithm A making queries to a random oracle
H and outputting tuples (x1, . . . , xk, y1, . . . , yk, z). Let R be a collection of such
tuples. Suppose with probability p, A outputs a tuple such that (1) the tuple is in
R and (2) H(xi) = yi for all i. Now consider running A with the oracle CStO,
and suppose the database D is measured after A produces its output. Let p′ be
the probability that (1) the tuple is in R, and (2) D(xi) = yi for all i (and in
particular D(xi) 6= ⊥). Then

√
p ≤

√
p′ +

√
k/2n

Proof. We first prove the case k = 1. Consider A interacting with CStO. We will
write the final state of the adversary and oracle as:∑
x,y,z,D

αx,y,z,D,0|x, y, z,D〉+
∑

r 6=0n,x,y,z,D

αx,y,z,D,r
1√
2n
∑
y′

(−1)y
′·r|x, y, z,D∪(x, y′)〉
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Here, the sum is over D such that D(x) = ⊥ and z is some auxiliary work
space of the adversary. Notice that the guarantee of CStO that the oracle’s
outputs do not contain 0n in the Fourier domain mean that the sum on the right
is only over r 6= 0n. By normalization, we have that

∑
x,y,z,D,r ‖αx,y,z,D,r‖2 = 1

(here, we include the r = 0n case). The assumptions of the lemma statement
imply that

p′ = 1
2n

∑
(x,y,z)∈R,D

‖
∑
r 6=0n

(−1)y·rαx,y,z,D,r‖2

We will think of p′ as the norm squared of the vector u whose entries are∑
r 6=0n(−1)y·rαx,y,z,D,r/

√
2n as (x, y, z) ∈ R,D vary. On the other hand, imagine

performing an additional query to determine if H(x) = y. The query first applies
StdDecomp, arriving at the state∑

r,(x,y,z)∈R,D

αx,y,z,D,r
1√
2n
∑
y′

(−1)y
′·r|x, y, z,D ∪ (x, y′)〉

Then, it applies the query CStO′, writing the output into a new register:∑
r,(x,y,z)∈R,D

αx,y,z,D,r
1√
2n
∑
y′

(−1)y
′·r|x, y, y′, z,D ∪ (x, y′)〉

Next, StdDecomp is applied again, and then y, y′ are measured. Since StdDecomp
does not affect the y, y′ registers, it can be ignored. Therefore, the probability p
that y = y′ is:

p = 1
2n

∑
(x,y,z)∈R,D

‖
∑
r

(−1)y·rαx,y,z,D,r‖2

We will think of p as the norm squared of the vector v whose entries are∑
r(−1)y·rαx,y,z,D,r/

√
2n. Let w = v − u, which is just the vector of entries

αx,y,z,D,0/
√

2n. Therefore, by normalization, we know that w has norm at most
1/
√

2n. By the triangle inequality, √p = |v| ≤ |u| + |w| ≤
√
p′ +

√
1/2n, as

desired.
To generalize for k ≥ 1, we modify the above proof as follows. x, y, r will be

lists of k elements. We obtain the following identities:

1 =
∑

x,y,z,D,r

‖αx,y,z,D,r‖2

p′ = 1
2kn

∑
(x,y,z)∈R,D

‖
∑
r∈Z

(−1)y·rαx,y,z,D,r‖2

p = 1
2kn

∑
(x,y,z)∈R,D

‖
∑

r
(−1)y·rαx,y,z,D,r‖2

Where Z is the set of r that are non-zero in every position. We will think of p′ as the
norm squared of the vector u whose entries are

∑
r∈Z(−1)y·rαx,y,z,D,r/

√
2kn, and

p as the norm squared of the vector v whose entries are
∑

r(−1)y·rαx,y,z,D,r/
√

2kn.
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Let Z be the set of r that are zero in at least 1 position. Let Zi be the set of
r such that ri = 0, but rj 6= 0 for j < i. Then Zi partition the space Z. Also note
that Zi contains at most 2(k−1)n values; as such Z contains at most k2(k−1)n

terms.
Next, note that w = v−u is the vector with entries 1√

2kn

∑
r∈Zi

(−1)y·rαx,y,z,D,r.
We now claim that w has norm at most

√
k/2n. Toward that end, let βx,y,z,D,r =

(−1)y·rαx,y,z,D,r. Then
∑

x,y,z,D,r ‖βx,y,z,D,r‖2 = 1. On the other hand,

|w| = 1
2kn

∑
x,y,z,D

∥∥∥∥∥∥
∑
r∈Z

βx,y,z,D,r

∥∥∥∥∥∥
2

≤ 1
2kn

∑
x,y,z,D

|Z|
∑
r∈Z

‖βx,y,z,D,r‖2

≤ k

2n
∑

x,y,z,D,r∈Z

‖βx,y,z,D,r‖2 ≤ 1

By the triangle inequality, √p = |v| ≤ |u|+ |w| ≤
√
p′ +

√
k/2n. ut

B.4 Complete Description of our Simulator

Here, we complete the description of our simulator for the simple domain extender
from Section 5.

Sim will keep a (superposition over) database Da, which represents the
simulation of the random oracle ha that it will update according to the CStO
update procedure. Da is originally just the empty database. It will also have a
private random oracle hb. For concreteness, hb will be implemented using another
instance of CStO, but we will often think of hb as being a uniformly random
function.

On h1 queries, Sim makes a query to ha, performing the appropriate CStO
update procedure to Da.

On h2 queries, Sim performs a unitary operation which maps the basis states
|x, y〉 ⊗ |Da〉 to:

|x, y ⊕ hb(x)〉 ⊗ |Da〉 if FindInput(x,Da) = (0, 03n)
|x, y ⊕H(w)〉 ⊗ |Da〉 if FindInput(x,Da) = (1, w)

This unitary is implemented by the following procedure:

– Initialize a new 3n+ 1 qubit register to 0. Call these registers b, w.
– Evaluate FindInput in superposition, XORing the output into the newly

created b, w registers.
– Initialize a new n qubit register to 0, and apply Hadamard so that the new

register has the state 1√
2n

∑
z |z〉.
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– Apply the following conditional swap operation. The controlling bit is b, and
the two sets of registers to swap if b = 1 are the adversary’s query response
registers y and the newly created z registers.

– Make an H query on the w, z registers (here z is either the newly created
register if b = 0, or the adversary’s y register if b = 1).

– Make an hb query on the x, y registers (where y is the adversary’s y register
if b = 0 or the newly created z register if b = 1).

– Apply the conditional swap operation a second time.
– Apply Hadamard to the z registers, which are guaranteed to be in uniform

superposition, so the result is |0〉. Discard these registers.
– Uncompute FindInput by evaluating a second time and XORing into the b, w

registers. At this point the registers are guaranteed to contain 03n+1, so they
can be discarded.

B.5 Proof of Lemma 7

Lemma 5. Consider a quantum system over x,D, x′, z. The following two uni-
taries O(1/

√
2n)-almost commute:

– StdDecomp, acting on the x,D registers.
– FindInput, taking as input the D,x′ registers and XORing the output into z.

Proof. Let ∆ = StdDecomp ◦ FindInput − FindInput ◦ StdDecomp. Notice that
since StdDecomp is an involution, StdDecomp ◦ ∆ = −∆ ◦ StdDecomp. Write
x′ = (y, x2). We now examine several cases.

1. LetD be such that FindInput(D, (y, x2)) = (1, (x1, x2)), meaning thatD(x1) =
y, and x1 is the lowest such input. Suppose x > x1 and D(x) = ⊥.
Consider the action of ∆ on |x,D, x′, z〉 or |x,D ∪ (x, y′), x′, z〉. Notice that
after applying StdDecomp, in either case the database superposition will still
have support on databases where D(x1) = y and x1 is the lowest such input.
Therefore, StdDecomp does not effect the output of FindInput. Therefore, for
these inputs ∆|x,D, x′, z〉 = 0.
Let P1 be the projection onto x,D, x′, z such that FindInput finds a completion
(x1, x2) such that x1 < x. Then for any state |ψ〉, ∆P1|ψ〉 = 0.

2. Let D be such that FindInput(D, (y, x2)) = (1, (x1, x2)) and D(x) = ⊥, but
now consider x < x1 (note that since D(x) = ⊥ 6= y = D(x1), x must be
different from x1).
Now we have that StdDecomp◦FindInput|x,D, x′, z〉 = StdDecomp|x,D, x′, z⊕
(1, x1, x2)〉 = 1√

2n

∑
y′ |x,D ∪ (x, y′), x′, z ⊕ (1, x1, x2)〉. On the other hand,

FindInput◦StdDecomp|x,D, x′, z〉 = FindInput 1√
2n

∑
y′ |x,D∪ (x, y′), x′, z〉 =

1√
2n

(
|x,D ∪ (x, y′), x′, z ⊕ (1, x, x2) +

∑
y′ 6=y |x,D ∪ (x, y′), x′, z ⊕ (1, x1, x2)〉

)
.

Therefore,∆|x,D, x′, z〉 = 1√
2n
|x,D∪(x, y), x′〉(|z⊕(1, x1, x2)〉−|z⊕(1, x, x2)〉.

Let P2 be the projection onto x,D, x′, z such that D(x) = ⊥ and FindInput
finds a completion (x1, x2) such that x1 > x. Let M1 be the unitary mapping
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|x,D, (y, x2), z〉 7→ |x,D∪ (x, y), (y, x2), z⊕FindInput(D, (y, x2))〉. LetM2 be
the unitary mapping |x,D, (y, x2), z〉 7→ |x,D ∪ (x, y), (y, x2), z ⊕ (1, x, x2)〉.
Then for any state |ψ〉,∆P2|ψ〉 = 1√

2n
(M1−M2)P2|ψ〉. Therefore, ‖∆P2|ψ〉‖ ≤

2√
2n

.
3. Let D,x, x1 be as in Case 2 above. Now we use the fact that StdDecomp◦∆ =
−∆◦StdDecomp with the previous derivation to conclude that∆ 1√

2n

∑
y′ |x,D∪

(x, y′), x′, z〉 = −StdDecomp 1√
2n
|x,D∪(x, y), x′〉(|z⊕(1, x1, x2)〉−|z⊕(1, x, x2)〉

Let P3 be the projection onto states of the form
∑
x,D,x′,z,y′ αx,D,x′,z|x,D ∪

(x, y′), x′, z〉 where the support is overD such thatD(x) = ⊥, and FindInput(D,x′)
finds a completion (x1, x2) such that x1 > x. Then by a similar argument to
Case 2, ‖∆P3|ψ〉‖ ≤ 2√

2n
.

4. Let D,x, x1 be as in Case 2 above. Let r 6= 0

StdDecomp ◦ FindInput 1√
2n
∑
y′

(−1)y
′·r|x,D ∪ (x, y′), x′, z〉

= StdDecomp 1√
2n

(
(−1)y·r|x,D ∪ (x, y), x′, z ⊕ (1, x, x2)〉

+
∑
y′ 6=y

(−1)y
′·r|x,D ∪ (x, y′), x′, z ⊕ (1, x1, x2)〉


= StdDecomp 1√

2n

∑
y′

(−1)y
′·r|x,D ∪ (x, y′), x′, z ⊕ (1, x1, x2)〉

+ (−1)y·r|x,D ∪ (x, y), x′, z ⊕ (1, x, x2)〉 − (−1)y·r|x,D ∪ (x, y), x′, z ⊕ (1, x1, x2)〉
)

= 1√
2n
∑
y′

(−1)y
′·r|x,D ∪ (x, y′), x′, z ⊕ (1, x1, x2)〉

+ StdDecomp (−1)y·r√
2n
|x,D ∪ (x, y), x′〉 (|z ⊕ (1, x, x2)〉 − |z ⊕ (1, x1, x2)〉)

Meanwhile

FindInput ◦ StdDecomp 1√
2n
∑
y′

(−1)y
′·r|x,D ∪ (x, y′), x′, z〉

= FindInput 1√
2n
∑
y′

(−1)y
′·r|x,D ∪ (x, y′), x′, z〉

= 1√
2n
∑
y′

(−1)y
′·r|x,D ∪ (x, y′), x′, z ⊕ (1, x1, x2)〉

+ (−1)y·r√
2n
|x,D ∪ (x, y), x′〉 (|z ⊕ (1, x, x2)〉 − |z ⊕ (1, x1, x2)〉)
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In other words,∆ 1√
2n

∑
y′(−1)y′·r|x,D∪(x, y′), x′, z〉 = (I−StdDecomp) (−1)y·r

√
2n
|x,D∪

(x, y), x′〉 (|z ⊕ (1, x, x2)〉 − |z ⊕ (1, x1, x2)〉).
Next, we observe that

StdDecompx|D ∪ (x, y′)〉 = StdDecompx
1
2n
∑
s

(−1)s·y
′∑
y′′

(−1)s·y
′′
|D ∪ (x, y′′)〉

= 1
2n
∑
s6=0

(−1)s·y
′∑
y′′

(−1)s·y
′′
|D ∪ (x, y′′)〉+ 1√

2n
|D〉

= |D ∪ (x, y′)〉+ 1√
2n

|D〉 − 1√
2n
∑
y′′

|D ∪ (x, y′′)〉


Therefore,

∆
1√
2n
∑
y′

(−1)y
′·r|x,D ∪ (x, y′), x′, z〉

= (−1)y·r
2n

|x,D, x′〉 − 1√
2n
∑
y′′

|x,D ∪ (x, y′′), x′〉

 (|z ⊕ (1, x, x2)〉 − |z ⊕ (1, x1, x2)〉)

Let P4,r be the projection onto states of the form
∑
x,D,x′,z,y′ αx,D,x′,z(−1)y′·r|x,D∪

(x, y′), x′, z〉 where the support is overD such thatD(x) = ⊥, and FindInput(D,x′)
finds a completion (x1, x2) such that x1 > x. Let P4 =

∑
r 6=0 P4,r. Notice

that the P4,r’s have orthogonal support.
We can define 4 unitaries:
– M3,r

1√
2n

∑
y′(−1)y′·r|x,D ∪ (x, y′), x′, z〉 = |x,D, x′, z ⊕ (1, x, x2)〉

– M4,r
1√
2n

∑
y′(−1)y′·r|x,D ∪ (x, y′), x′, z〉 = |x,D, x′, z ⊕ (1, x1, x2)〉

– M5,r
1√
2n

∑
y′(−1)y′·r|x,D∪(x, y′), x′, z〉 = 1√

2n

∑
y′′ |x,D∪(x, y′′), x′, z⊕

(1, x, x2)〉
– M6,r

1√
2n

∑
y′(−1)y′·r|x,D∪(x, y′), x′, z〉 = 1√

2n

∑
y′′ |x,D∪(x, y′′), x′, z⊕

(1, x1, x2)〉
Then we have that ∆◦P4,r|ψ〉 = 1

2n (M3,r−M4,r−M5,r +M6,r)P4,r|ψ〉. This
means that ‖∆ ◦ P4,r|ψ〉‖ ≤ 4

2n ‖P4,r|ψ〉‖.
Now, this means that

‖∆ ◦ P4|ψ〉‖ ≤
4
2n
∑
r 6=0
‖P4,r|ψ〉‖

≤ 4√
2n
‖
∑
r 6=0

P4,r|ψ〉‖ = 4√
2n
‖P4|ψ〉‖ ≤

4√
2n

5. Let D be such that FindInput(D,x′) = (0, 0, 0). Then by a similar calcula-
tion to Case 4, we have that ∆ 1√

2n

∑
y′(−1)y′·r|x,D ∪ (x, y′), x′, z〉 = (I −

StdDecomp) 1√
2n

(|x,D ∪ (x, y), x′, z ⊕ (1, x, x2)〉 − |x,D ∪ (x, y), x′, z ⊕ (0, 0, 0)〉)
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Let P5,r be the projection onto states of the form
∑
x,D,x′,z,y′ αx,D,x′,z(−1)y′·r|x,D∪

(x, y′), x′, z〉 where the support is overD such thatD(x) = ⊥, and FindInput(D,x′) =
(0, 0, 0). Let P5 =

∑
r 6=0 P5,r. Notice that the P5,r’s have orthogonal support.

By an analogous calculation to Case 4, we have that ‖∆◦P4|ψ〉‖ ≤ 4√
2n
‖P5|ψ〉‖

Now, we observe that P1 +P2 +P3 +P4 +P5 = I. Therefore, ‖∆|ψ〉‖ ≤
∑5
i=1 ‖∆◦

Pi|ψ〉‖ ≤ 12√
2n
. By Lemma 1, this means that for any pure state, the results of

applying FindInput ◦ StdDecomp and StdDecomp ◦ FindInput are at most 24√
2n

in
trace distance. Then the same holds true for any mixed state since any mixed state
is in the convex hull of pure states. This means that FindInput and StdDecomp

24√
2n

-almost commute. This completes the proof. ut

C Other Oracle Variations

Here, we describe some more oracle variations. While we do not use them in this
work, they give a different perspective on our compressed oracles.

Fourier Oracle. This oracle operates on x, z,D registers, where x is m qubits,
z is n qubits, and D is n2m qubits where D is interpreted as the truth table
of a function from m bits to n bits. On basis states |x, z〉 ⊗ |D〉, it performs
the map: |x, z〉 ⊗ |D〉 7→ |x, z〉 ⊗ |D ⊕ Px,z〉. Here, Px,z is the point function
that outputs z on input x, and 0 everywhere else. D ⊕ Px,z is the function
(D ⊕ Px,z)(x′) = D(x′)⊕ Px,z(x′).

For initialization, we will have that the |D〉 registers are initialized to the all-
zeros function |0〉. We will call this oracle the Fourier Phase Oracle, FourierPhsO.

Lemma 23. PhO and FourierPhsO are perfectly indistinguishable. That is, for
any adversary B making oracle queries, Pr[BPhO() = 1] = Pr[BFourierPhsO() = 1]

Proof. Basically, FourierPhsO is identical to PhO, except that between queries
we encode the oracle registers by applying Hadamard to the oracle’s state. More
precisely, consider running BPhO, but before the first query and between each
query, we will perform Hadamard twice on the oracle’s registers. Since Hadamard
is an involution, the two applications cancel out.

Now, consider the states between each pair of Hadamards, which we will
label |x, z〉 ⊗ |D〉. The first such state (that is, after the very first Hadamard),
the oracle will have been mapped to the all-zeros function |0〉. For subsequent
“between” states, we map from one to the next by applying Hadamard, then PhO,
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then Hadamard again. On a basis state |x, z〉 ⊗ |D〉, the result is:

|x, z〉 ⊗ |D〉 7→ 1√
2n2m

∑
E

(−1)D·E |x, z〉 ⊗ |E〉 (First Hadamard)

7→ 1√
2n2m

∑
E

(−1)D·E+z·E(x)|x, z〉 ⊗ |E〉 (Apply Phase Oracle)

= 1√
2n2m

∑
E

(−1)(D⊕Px,z)·E |x, z〉 ⊗ |E〉

7→ |x, z〉 ⊗ |D ⊕ Px,z〉 (Second Hadamard)

Hence, by considering these intermediate states, we obtain FourierPhsO. ut

Whether the oracle is implemented in the computational of Fourier domains
is orthogonal to whether the interface provided is the computational or phase
domains. More precisely, we can consider a Fourier standard oracle FourierStO,
which is obtained from FourierPhsO by applying H⊗n to the response registers
before and after each query. The following Lemma follows immediately:

Lemma 24. StO and FourierStO are perfectly indistinguishable. That is, for any
adversary A making oracle queries, Pr[AStO() = 1] = Pr[AFourierStO() = 1]

Compressed Fourier Oracle. Consider the Fourier Phase oracle FourierPhsO above.
D starts off as the all-zeros function O. On each query, D will be XORed with a
point function. Therefore, after q queries, D will only have support on functions
that are the sum of q point functions — in particular, it will be zero in all but q
locations. Therefore, we can actually compress D into a list of at most q pairs
(x, z) with distinct x such that z 6= 0. For concreteness, we will represent D
as a list (x1, z1), (x2, z2), . . . , where x1 < x2 < . . . and zi 6= 0 for all i. For a
compressed D, a pair (x, z) ∈ D corresponds to D(x) = z, and if there is no pair
whose first term is x, this corresponds to D(x) = 0 in the uncompressed D.

Let ∅ denote the empty list. We will say that D(x) = y if there is a pair (x, y)
in the list D. We will say that D(x) = ⊥ if there is no such pair. Since all pairs
have unique x, D(x) is a function. For a pair (x, y) where D(x) = ⊥, we will
define D∪ (x, y) to be the list obtained by inserting (x, y) into D. For (x, y) ∈ D,
we will define D \ (x, y) to be the list obtained by removing (x, y) from D.

Finally, we will define D ⊕ (x, z), which corresponds to XORing the function
Px,z to the un-compressed function. It is straightforward to see that the following
definition carries out the desired operation:

D ⊕ (x, z) =


D if z = 0
D ∪ (x, z) if z 6= 0 and D(x) = ⊥
D \ (x, z) if z 6= 0 and D(x) = z

(D \ (x, z′)) ∪ (x, z ⊕ z′) if z 6= 0 and D(x) = z′ /∈ {z,⊥}

Notice that the map (x, z), D 7→ (x, z), D ⊕ (x, z) is an involution which can
be computed by the following reversible procedure:
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1. First, if D(x) = y /∈ {⊥, 0}, then do nothing. If D(x) = ⊥, then perform the
map D 7→ D ∪ (x, 0). Note that this map is not reversible in general, but
since D was guaranteed to not contain any pairs whose second coordinate is
zero, D represents a reversible operation on valid initial D. More precisely,
we can define the map on illegal lists to be D ∪ (x, 0) 7→ D for D such that
D(x) = ⊥. Then the overall map is an involution.
This map can be seen as a sort of local decompression for D. If D(x) = ⊥,
it decompresses to D′ such that D′(x) = 0 and vice versa. If D(x) /∈ {0,⊥},
the D is incompressible at that point so it is left unchanged. We will call this
procedure FourDecomp, for decompressing our Fourier oracle. We will use
FourDecomp to be the two-input reversible function acting on (x,D), and
FourDecompx to be the one-input conditional function acting on D based on
the value x.

2. Now, we are guaranteed that D contains a pair (x, z′) for some z′ (which
may be 0). Perform the map which replaces this pair with (x, z ⊕ z′).

3. Finally, we reverse the first step. Notice that D(x) = z ⊕ z′, which may be 0,
but is never ⊥. Therefore, if D(x) = 0, we delete the pair (x, 0) from D. In
general, this map is not reversible, but it is guaranteed to be reversible on
the set of possible D that are the results of step (2). Namely, by specifying
the map on illegal D (namely those for which D(x) = ⊥) as D 7→ D ∪ (x, 0),
we make the map an involution. This step is actually identical to step (1),
but has the opposite effect on legal states: it intuitively locally re-compressed
the portion of D corresponding to input x.

Instead of decompressing, applying the Fourier oracle, and decompressing, we
can instead describe how the map behaves directly on the compressed encoding.
This gives us the compressed Fourier phase oracle CFourierPhsO. It starts with an
empty database D = ∅, the result of compressing the all-zeros function. Moreover,
on each query it performs the map: |x, z〉 ⊗ |D〉 7→ |x, z〉 ⊗ |D ⊕ (x, z)〉.

We can imagine implementing the operation above in the three steps corre-
sponding to the three steps to compute D ⊕ (x, z) above. Notice that the first
and last step involve a computational basis test on the registers containing D(x)
to test if they contain 0.

Note that as described above, the compressed Fourier oracle implements a
phase query to the adversary. We can also imagine it implementing a standard
query, obtaining the compressed Fourier Standard oracle CFourierStO by applying
Hadamard to the adversary’s response registers before and after each query. The
following lemma follows immediately form the above discussion.

Lemma 25. CFourierPhsO and FourierPhsO are perfectly indistinguishable. CFourierStO
and FourierStO are perfectly indistinguishable. That is, for any adversary A, we
have Pr[ACFourierStO() = 1] = Pr[AFourierStO() = 1], and for any adversary B, we
have Pr[BCFourierPhsO() = 1] = Pr[BFourierPhsO() = 1].

Another derivation of our compressed standard and phase oracles is the follow-
ing: start with a compressed Fourier oracle (standard or phase), and then encode
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the oracle’s state between queries by applying the Hadamard transformation
to all the y registers in the database. The result is exactly the same as the
compressed oracle given in Section 3.

D Quatum Indifferentiability of Merkle-Damgård

In this section, we use our compressed oracle technique to prove the indiffer-
entiability of the full Merkle-Damgård construction when using a pre-fix free
encoding.

D.1 Background

Pre-fix free encoding. A prefix-free code over {0, 1}∗ is a set S such that, for all
x ∈ S, x 6= y, x is not a prefix of y.

Merkle-Damgård. We briefly recall the Merkle-Damgård construction. Let h :
{0, 1}2n → {0, 1}n be a compression function. Let IV be an initial value. We
can consider IV to be 0. Let S be a prefix-free code over ({0, 1}n)∗. Given an
input x ∈ S, define MDh(w) as follows. First, write w as (w1, . . . , w`), where each
wi ∈ {0, 1}n. Then:

– Let z0 = IV .
– For each i = 1, . . . , `, let zi = h(zi−1, wi).
– Output z`.

D.2 Our Simulator

We now prove the quantum indifferentiability of Merkle-Damgård:
In order to describe our simulator, we will need to modify some of the

definitions/algorithms from Section 5.

Definition 6. Let D be a database of (x, y) pairs. Fix an IV ∈ {0, 1}n. A
“completion” for an input x ∈ {0, 1}2n is a list of tuples (xi, zi) ∈ D for i =
1, . . . , ` − 1 such that, if we write xi = (z′i−1, wi) ∈ {0, 1}n × {0, 1}n−m and
x = (z′`−1, w`),

– z′i = zi for i > 0 and z′0 = IV
– (w1, . . . , w`) is in the prefix-free code S.

We will say that D is good if (1) it contains no collision, and (2) yi 6= IV for
all i. The following lemma is implicit in the work of [CDMP05]:

Lemma 26. Let D be a good database. Then for any input x ∈ {0, 1}n, D
contains at most a single completion. Moreover, if x’s completion is {(xi, zi)}i
for i = 1, . . . , `− 1, then none of the xi have a completion in D.
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Also implicit in [CDMP05] is an algorithm FindCompletion which, on input
x,D, will return a bit b ∈ {0, 1} indicating if it found a completion, and a string
w = (w1, . . . , w`) representing the completion. If no completion is found, w = ∅.

Our simulator is defined as follows. The simulator Sim implements h as the
compressed standard oracle CStO, but will make occasional exceptions in order
to make sure the oracle is “consistent with” H. Sim maintains a superposition
over databases D of (x, y) pairs. D is initially empty. On each query, Sim does
the following:

– Run FindCompletion in superposition on the adversary’s query registers and
the stored database D, writing the output to new registers initialized to 0.
That is, append |0〉 to the state, and apply the unitary

|x, y〉 ⊗ |D〉 ⊗ |r〉 7→ |x, y〉 ⊗ |D〉 ⊗ |r ⊕ FindCompletion(x,D)〉

– Interpret the r registers as a pair (b, w) where b represents whether or not a
completion was found, and w represents the completion if found. Perform
the unitary which does the following:
• Apply CStO, conditioned on b = 0, to the x, y,D registers. In other words,
|x, y〉 ⊗ |D〉 ⊗ |0, 0〉 7→ (CStO|x, y〉 ⊗ |D〉)⊗ |0, 0〉.

• Make an H query on w conditioned on b = 1, using y as the response
register. In other words, |x, y〉⊗|D〉⊗|1, w〉 7→ |x, y⊕H(w)〉⊗|D〉⊗|1, w〉.

The conditional queries can be implemented in a straightforward fashion
analogous to the implementation in Section B.4.

The proof of indifferentiability for our simulator follows the exact same proof
structure as the proof in Section 5, adapted for the setting here. In particular,
we first prove that FindCompletion almost commutes with StdDecompx (Sec-
tion D.3). Then we use this near-commutativity to prove the indistinguishability
(Section D.4) and consistency (Section D.5) of Sim. Together, this implies that
Sim is indifferentiable.

D.3 The Almost Commutativity of StdDecompx and FindCompletion

Lemma 27. Consider a quantum system over x,D, x′, z where |D| ≤ q. The
following two unitaries O(q/

√
2n)-almost commute:

– StdDecomp applied to the x,D registers.
– FindCompletion, applied to D,x′, with the output XORed into z.

Proof. FindCompletion can be implemented using q applications of FindInput,
one for each potential member of the completion. Since each of the FindInput’s
O(1/

√
2n)-almost commute with StdDecomp, the q applications will O(q/

√
2n)-

almost commute. ut
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D.4 Indistinguishability

Lemma 28. Sim is indistinguishable. In particular, for any distinguisher D
making at most q queries to h,

|Pr[Dh() = 1]− Pr[DSimH

() = 1]| < O(q2/
√

2n)

Proof. The proof is analagous to the proof of Lemma 8, adapted for the current
simulator. We consider a distinguisher D, and prove security through a sequence
of hybrids.

Hybrid 0. This is the real world, where h is a random oracle. Let p0 be the
probability D outputs 1 in this case.

Hybrid 1. This is still the real world, but we add an abort condition. Namely,
after any query to h, we measure if the database h is good; if not, we immediately
abort and stop the simulation. Let p1 be the probability D outputs 1 in Hybrid 1.
The proof of the following lemma is essentially identical to the proof of Lemma 9:

Lemma 29. |p1 − p0| ≤ O(
√
q3/2n)

Next, we define a classical encoding procedure Encode for databases D. In-
tuitively, Encode will scan the values (x, y) in D, seeing if any of the x values
correspond to a completion in D. If so, such a completion will have an associated
input w. Encode will reasonably guess that such a completion corresponds to an
evaluation of H(w) = MDh(w). Therefore, Encode will remove the value (x, y)
in D, and add the pair (w, z) to a new database E, intuitively representing the
oracle H. In more detail, Encode does the following:

– For each pair P = (x, y) ∈ D, run FindCompletion(x,D \P ) = (b, w). If b = 1,
re-label the pair to (w, y)

– Remove all re-labeled pairs D (which are easily identifiable since the input
will be larger) and place them in a new database E.

We define the following Decode procedure, which operates on pairs D,E:

– Merge the databases D,E
– For each pair (w, y) that was previously in E, write w = (w1, . . . , w`).
• Let z0 = IV and evaluate zi = D(zi−1, wi) for i = 1, . . . , `− 1.
• Re-label (w, y) to ((z`−1, w`), y).
• If zi = ⊥ for any i ≤ ` − 1, output ⊥ and abort. If D(z`−1, w`) 6= ⊥,
output ⊥ and abort.

Note that, for good databases, Encode,Decode are independent of the order
elements are processed. It follows immediately from the descriptions above
that on good databases D, Decode(Encode(D)) = D. Therefore, Encode can be
implemented in superposition, giving the unitary that maps |D〉 to |Encode(D)〉.
Also note that Encode(∅) = (∅, ∅).
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Hybrid 2. In this hybrid, there are two databases D,E, initialized to |∅, ∅〉. Each
query is answered in the following way:

– Apply Decode to the D,E registers. Measure if Decode gives ⊥, in which
case abort. Otherwise, there are now just one database register D.

– Answer an h query by applying the CStO update procedure to D
– Apply Encode to D.
– Apply the check for the goodness of D.

Let p1 be the probability D outputs 1 in Hybrid 1. The proof of the following
lemma is identical to that of Lemma 10:

Lemma 30. p1 = p0

Hybrid 3. This hybrid is the ideal world, where h queries are answered by Sim, but
we still have the abort condition. In other words, instead of decoding, applying
the query, and then encoding, in Hybrid 3 we act directly on the encoded state
using the algorithms specified by Sim. h queries, on superpositions over x, y,D,E,
can be summarized as follows:

1. Compute (b, w) = FindCompletion(x,D) in superposition, writing the output
to new registers.

2. In superposition, apply the following conditional procedures:
3. Conditioned on b = 0,

(a) Uncompress D at x.
(b) Apply in superposition the map |x, y,D,E, b, w〉 7→ |x, y⊕D(x), D,E, b, w〉.
(c) Re-compress D at x.

4. Conditioned on b = 1,
(a) Uncompress E at w.
(b) Apply in superposition the map |x, y,D,E, b, w〉 7→ |x, y⊕E(w), D,E, b, w〉.
(c) Re-compress E at w.

5. Uncompute (b, w) by running FindCompletion(x,D) in superposition again.

Let p3 be the probability D outputs 1 in this hybrid.

Lemma 31. |p3 − p2| ≤ O(q3/
√

2n).

Proof. We start with the very last query, and gradually change the queries one-
by-one from how they were answered in Hybrid 2 to Hybrid 3. Consider the
action of the query on the registers |x, y,D,E〉.

First, recall that Encode/Decode are independent of the order in which inputs
are processed, since the database is guaranteed to be good. Therefore, we will
assume the Encode operation at the end of the query in Hybrid 2 processes x
last, if it exists in the database. All other inputs are processed before x. One
by one, we will move the processing of these 6= x inputs to occur just after the
initial decode but before the CStO update. We observe the following:
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– The processing of an input x′ 6= x commutes with the CStO′ map within
CStO. Recall that CStO′|x, y,D,E〉 = |x, y ⊕D(x), D,E〉. Since processing
x′ 6= x does not change the value of D(x), we can process before or after
without any affect.

– The processing of an input x′ commutes with StdDecomp, except for the
application of FindCompletion. But recall that by Lemma 27 these O(q/

√
2n)-

almost commute.
The result is that, for each x′ 6= x, that processing O(q/

√
2n)-almost commutes

with the application of CStO. As such, we can move them to occur just before
CStO and incur only a O(q2/

√
2n) error in trace distance. Then, each processing

step during Encode will exactly cancel out a processing step during Decode.
Unfortunately, the above does not apply to the processing of x itself, since

processing x may affect the value of D(x) and hence does not in general commute
with CStO′. Instead, at this point, our Decode,Encode only process at most
a single element corresponding to the input x. Thus, our modified Hybrid 2
procedure looks like:
1. Compute (b, w) = FindCompletion(x,D) in superposition, writing the output

to new registers.
2. In superposition, apply the following conditional procedure, conditioned on
b = 1: re-label any pair (w, y) ∈ E to (x, y) and move it to D. Because the
previous query finished with an Encode, we are guaranteed that (x, y) is not
present in D.

3. Apply CStO:
(a) Uncompress D at x.
(b) Apply in superposition the map |x, y,D,E, b, w〉 7→ |x, y⊕D(x), D,E, b, w〉.
(c) Re-compress D at x.

4. In superposition, apply the following conditional procedure, conditioned on
b = 1: re-label any pair (x, y) ∈ D to (w, y) and move it to E.

5. Uncompute (b, w) by running FindCompletion(x,D) in superposition again.
We now show that our modified Hybrid 2 is identical to Hybrid 3.
Fix an x,D and suppose D is good (recall that this means it has no collisions

and no pairs whose y value is IV ). There are two cases:
– FindCompletion(x,D) = (0, 0). Then in our modified Hybrid 2, decoding/encoding

does not affect the labeling for any (x, z) pair in D. As such, Hybrid 2 will
uncompress D at x, apply the map |x, y,D,E〉 7→ |x, y ⊕ D(x), D,E〉 and
then re-compress D at x, for these x,D.

– FindCompletion(x,D) = (1, w). Then in our modified Hybrid 2, decoding
will re-label a (w, z) ∈ E (if present) to (x, z) ∈ D. The effect of Hybrid
1 in this case will be to uncompress E at w, apply the map |x, y,D,E〉 7→
|x, y ⊕ E(x), D,E〉, and then re-compress E at w.

In either case, the effects are identical in both modified Hybrid 2 and in Hybrid
3.
After q queries to h, the total error between Hybrid 1 and Hybrid 2 is at most
O(q3/

√
2n). ut
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Hybrid 4. This is the ideal world, where we remove the abort condition from
Hybrid 3. Let p4 be the probability D outputs 1 in Hybrid 4. By an almost
identical proof to that of Lemma 9, we have:

Lemma 32. |p4 − p3| ≤ O(
√
q3/2n)

Summing up, we have that |p4 − p0| < O(q3/
√

2n), proving Lemma 28. ut

D.5 Consistency

Lemma 33. Sim is consistent. In particular, for any distinguisher D making at
most q quantum queries to h,H where the queries to H have block length at most
`,

|Pr[DSimH ,H() = 1]− Pr[DSimH ,CSimH

() = 1]| < O(q2`/
√

2n)

In other words, h are simulated as SimH , and the adversary has to distinguish
between H and Ch.

Proof. Again, the proof is analogous to the proof of Lemma 13. We first work
out how H queries are answered using Ch, when we simulate h using SimH . We
work out the case for a query on a two-block input x = (x1, x2), the other cases
being handled analogously. The input registers will be labeled with x = (x1, x2),
and the output registers labeled with y.

1. First, make an h query on (IV, x1), writing the output to some new registers
initialized to z = 0n. Since we are implementing h using CStO, this is
accomplished using the following steps:
(a) Un-compress D at (IV, x1) by applying StdDecompIV,x1 to D.
(b) Evaluate the map |x1, z, x2, y〉 ⊗ |D〉 7→ |x1, z ⊕D(IV, x1), x2, y〉 ⊗ |D〉,

where z is the new register that was initialized to 0.
(c) Re-compress D at (IV, x1) by applying StdDecompIV,x1 again.

2. Next, make an h query on input (z, x2) (where z where the registers created
previously) with output registers y. This has the effect of mapping to:

|x1, z, x2, y ⊕ hb(x)〉 ⊗ |D〉 if FindInput((z, x2), D) = (0, 0)
|x1, z, x2, y ⊕H(w)〉 ⊗ |D〉 if FindInput(z, x2), D) = (1, w)

3. Finally, make another h query to un-compute the value of z. This is accom-
plished in the following steps:
(a) Un-compress D at (IV, x1) by applying StdDecompIV,x1 to D.
(b) Evaluate the map |x1, z, x2, y〉 ⊗ |D〉 7→ |x1, z ⊕D(IV, x1), x2, y〉 ⊗ |D〉.
(c) Re-compress D at (IV, x1) by applying StdDecompIV,x1 again.
(d) Then discard the z registers.

Let D be a potential distinguisher. We prove indistinguishability by introducing
some hybrids:

Hybrid 0. In this hybrid, H queries are answered using Ch, as worked out above.
Let p0 be the probability D outputs 1.
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Hybrid 1. This hybrid is identical to Hybrid 0 as outlined above, except that
Steps 1c and 3a are removed, with analogous changes for inputs consisting of
more blocks. Let p1 be the probability D outputs 1 in this hybrid.

Lemma 34. |p1 − p0| < O(q2`/
√

2n).

Proof. Since Steps 1c and 3a are inverses of each other, Hybrid 1 is equivalent
to moving Step 3a up to occur just after Step 1c. By Lemma 27, for each query
to H this creates an error O(q/

√
2n). In general, for an `-block message, there

will be ` such errors, totaling O(q`/
√

2n) for each query, yielding a total error of
O(q2`/

√
2n). ut

Hybrid 2. This hybrid is identical to Hybrid 2, except that after each query we
measure if the database D is good. If not, we abort and stop the simulation. Let
p2 be the probability D outputs 1 in this hybrid. By an almost identical proof to
that of Lemma 9, we have:

Lemma 35. |p2 − p1| < O(
√
q3/2n)

Hybrid 3. This hybrid is identical to Hybrid 2 as outlined above, except that:

– Steps 1c and 3a are removed (as in Hybrid 1)
– The operation in Step 2 is replaced with

|x1, z, x2, y〉 ⊗ |D〉 7→ |x1, z, x2, y ⊕H(x1, x2)〉 ⊗ |D〉

In other words Hybrid 3 is identical to Hybrid 2, except that we change Step 2.
Let p3 be the probability D outputs 1 in this hybrid.

Lemma 36. p3 = p2.

Proof. In either hybrid, since we do not apply the Steps 1c and 3a,D is guaranteed
to contain the pair ((IV, x1), z), where z is the same as in Step 2. Therefore, in
Hybrid 1, FindCompletion((z, x2), D) is guaranteed to find a completion. Moreover,
for good D (containing no collisions of y values equal to IV ), FindInput((z, x2), D)
will find exactly the completion ((IV, x1), z). In this case, w = (x1, x2), and
Hybrid 1 will make a query to H on (x1, x2). The end result is that for good D,
Step 2 is identical in both Hybrids. Since D is always guaranteed to be good, the
lemma follows. ut

Hybrid 4. In this hybrid, H queries are made directly to H. Let p4 be the
probability D outputs 1 in this hybrid.

Lemma 37. p4 = p3

Proof. In Hybrid 2, what remains of Steps 1 and 3 are exact inverses of each
other and moreover commute with the new Step 2 from Hybrid 2. Therefore, we
can remove Steps 1 and 3 altogether without affecting how oracle queries are
answered. The result is identical to Hybrid 3. ut
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Hybrid 5. This hybrid has H queries made directly to H, but without the abort
condition. Let p5 be the probability D outputs 1 in this hybrid. By an almost
identical proof to that of Lemma 9, we have:

Lemma 38. |p5 − p4| < O(
√
q3/2n)

Overall then |p0 − p5| < O(q2`/
√

2n), finishing the proof of Lemma 33. ut

E Quantum Tests

Here, we formalize the notion of a quantum test. Such tests will determine if a
particular register contains a given value or values (in an appropriate basis).

In more detail, for a set S and value x, let 1(x ∈ S) be the function that
outputs 1 if x ∈ S and 0 otherwise. Let C be a 0/1 function on values z from some
set. A computational basis test, denoted CBTC , performs the unitary defined on
the computational basis states as |x, S, b, z〉 7→ |x, S, b⊕ (C(z) · 1(x ∈ S)), z〉. In
other words, conditioned on C(z) = 1, it will test if x ∈ S, XOring the result
into the b registers. We will call x the test registers, S the set registers, b the
output registers, and z the auxiliary registers.

We will also define a Fourier basis test, denoted FBTC , which is identical to
a computational test, except that it performs the Hadamard on the x registers
before and after the test. The result is that it will test if x ∈ S in the Fourier
domain.

The two types of tests above, if they share the same test registers, do not
commute. In particular, if we test if x is equal to y in the computational basis
and equal to z in the Fourier basis, or perform the tests in the reverse order, the
resulting states will not be the same. However, we will see that they very nearly
commute, meaning interleaving the tests, while guaranteed to modify the state
x, only does negligibly.

Definition 7. Let U0, U1 be unitaries over the same quantum system. We say
that U0, U1 ε-almost commute if, for any initial state ρ, the images of ρ under
U0U1 and U1U0 are at most ε-far in trace distance.

Lemma 39. Consider a quantum system over n-bit strings x, subsets S ⊆ {0, 1}n
of size at most s, subsets T ⊆ {0, 1}n of size at most t, output registers b, c ∈ {0, 1},
and auxiliary information z (of arbitrary size). The following two unitaries
8
√
st/2n-almost commute:

– CBTC , where x is the test register, S the set register, b the output register,
(c, z) the auxiliary register, and conditional function C.

– FBTD, where x is the test register, T the set register, c the output register,
(b, z) the auxiliary register, and conditional function D.

Proof. Define |φy〉 = 1√
2n

∑
x(−1)y·x|x〉. Let H0 be the unitary that applies

the Hadamard operation on the b registers, and H1 the unitary that applies
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Hadamard on the c registers. Let

P =
∑

S,T,b,b′,c,z,x:
x∈S,C(c,z)=1

(−1)b+b
′
|x, S, T, b′, c, z〉〈x, S, T, b, c, z|

Q =
∑

S,T,b,c,c′,z,x:
y∈T,D(b,z)=1

(−1)c+c
′
|φy〉〈φy| ⊗ |S, T, b, c, z〉〈S, T, b, c′, z|

A straightforward calculation shows that I−P is the computational basis test
and I−Q is the Fourier basis test. We will first consider the case of pure state
|ψ〉. Then the two resulting states are (I−Q)(I− P )|ψ〉 and (I− P )(I−Q)|ψ〉.
The difference between these states is (PQ−QP )|ψ〉. Working out the product
PQ, we see that

PQ = 1√
2n
∑
S,T

LS,T ⊗Mz ⊗Nz ⊗ |S, T, z〉〈S, T, z| where

LS,T =
∑

x∈S,y∈T
(−1)x·y|x〉〈φy|

Mz =
∑

b′,b:D(b,z)=1

(−1)b+b
′
|b′〉〈b|

Nz =
∑

c,c′:C(c,z)=1

(−1)c+c
′
|c〉〈c′|

Therefore, PQ is a block-diagonal matrix consisting of matrices 1√
2n
LS,T ⊗

Mz ⊗Nz on the diagonal. Now, the Mz (resp. Nz) matrices have spectral norm
either 0,1, or 2, corresponding to the the number of solutions to D(b, z) = 1 for
b ∈ {0, 1} (resp. C(c, z) = 1 for c ∈ {0, 1}).

Next, notice that applying the QFT to the right side of LS,T and then deleting
the all-zero columns and rows yields an |S| × |T | matrix with entries of absolute
value 1. The spectral norm of such a matrix, and hence the spectral norm of
LS,T , is at most

√
|S| × |T |.

Putting it all together, the spectral norm of PQ is at most the spectral norm
of one of the matrices on the diagonal, which is at most 4

√
st/2n. This means

that the norm of (PQ−QP )|ψ〉 is at most 8
√
st/2n. Applying Lemma 1, we see

that the states τ, τ ′ have trace distance at most 8
√
st/2n.

This proves the lemma for the case of pure states. For the case of general
mixed states ρ, write ρ as a convex combination of pure states, apply the lemma
to each pure state, and then use to triangle inequality to bound the overall trace
distance between τ, τ ′ as 8

√
st/2n.
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F Quantum Security of Fujisaki-Okamoto

In this section, we use our compressed oracle technique to prove the security
of the Fujisaki-Okamoto [FO99] transformation in the quantum random oracle
model of Boneh et al. [BDF+11].

F.1 Background

For a random variable X, let H∞(X) = maxx(− log Pr[X = x]) be the min-
entropy of X.

The building blocks for the Fujisaki-Okamoto (FO) transformation are:

Symmetric key encryption. A symmetric key encryption scheme is a pair of PPT
algorithms (Enc,Dec) such that:

– Enc(k,m) takes as input a key k ∈ {0, 1}λ and a message m, and produces a
ciphertext c

– Dec(k, c) takes as input a key k and ciphertext c, and produces either a
message m or a special symbol ⊥ indicating rejection.

– Correctness: For any key k and message m,

Pr[Dec(k,Enc(k,m)) = m] = 1

– One-time security: For any quantum polynomial time adversary A, there
exists a negligible function negl(λ) such that

|Pr[OT-Exp0(λ,A) = 1]− Pr[OT-Exp1(λ,A) = 1]| < negl(λ)

where OT-Expb(λ,A) is the following experiment:
• The challenger chooses a random key k ∈ {0, 1}λ
• The adversary A, on input λ, produces two messages m∗0,m∗1 such that
|m∗0| = |m∗1| and sends them to the challenger.

• The challenger computes c∗ ← Enc(k,m∗b) and returns it to the adversary.
• The adversary outputs a guess b′ for b.

Public key encryption. A public key encryption scheme is a triple of PPT
algorithms (Gen,Enc,Dec) such that:

– Gen(λ) takes as input the security parameter and produces a secret key/public
key pair (sk, pk)

– Enc(pk,m) takes as input a public key pk and a message m, and produces a
ciphertext c

– Dec(sk, c) takes as input a secret key sk and ciphertext c, and produces either
a message m or a special symbol ⊥ indicating rejection.

– Correctness: For any message m,

Pr[Dec(k,Enc(k,m)) = m] = 1
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– Well-spread: There exists a super-logarithmic function p such that, for any
pk produced by Gen(λ) and any message m,

H∞(Enc(pk, x)) ≥ p(λ)

In other words, the probability of any particular ciphertext is negligibly small.
– One-way security: Fix a message length n = n(λ) that is polynomial in
λ. For any quantum polynomial time adversary A, there exists a negligible
function negl(λ) such that

Pr[OW-Exp(λ,A) = 1]| < negl(λ)

where OW-Exp(λ,A) is the following experiment:
• The challenger chooses a random key pair (sk, pk)← Gen(λ), and sends

pk to A.
• The challenger then chooses a uniformly random message m of length n,
and sends c← Enc(pk,m) to A

• The adversary responds with a guess m′ for m.
• The challenger outputs 1 if m = m′ and 0 otherwise.

CCA-secure public key encryption in the quantum random oracle model. The
result of of the FO transformation is a public key encryption scheme, but with
the following modifications:
– Random oracle model. The algorithms Gen,Enc,Dec all make (classical)

queries to a function H : {0, 1}a → {0, 1}b.
– Security under a quantum chosen ciphertext attack in the quantum
random oracle model. This is an adaptation of the quantum CCA security
definition of Boneh and Zhandry [BZ13] to the random oracle model.
For any quantum polynomial time adversary A, there exists a negligible
function negl(λ) such that

|Pr[CCA-RO-Exp0(λ,A) = 1]− Pr[CCA-RO-Exp1(λ,A) = 1]| < negl(λ)

where CCA-RO-Expb(λ,A) is the following experiment:
• The challenger chooses a random function H : {0, 1}a → {0, 1}b. The
challenger chooses a random key pair (sk, pk)← GenH(λ), and sends pk
to A.

• The adversary is allowed to make the following queries:
∗ Quantum Random Oracle: The adversary makes a quantum oracle
query to H. For concreteness, we will assume H is implemented as
the standard oracle, though it is equivalent to consider the phase
oracle. A can make as many queries to H as it would like.

∗ Challenge query: The adversary chooses two messages m∗0,m∗1 such
that |m∗0| = |m∗1| and sends them to the challenger. The challenger
computes c∗ = Enc(pk,m∗b), and returns it to the adversary. For
simplicity, we will restrict A to making only a single challenge query,
though a straightforward hybrid argument will show that this is
equivalent to allowing arbitrarily many challenge queries.
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∗ CCA queries: The adversary makes a quantum query to the function
CCA, defined as

CCA(c) =
{
⊥ if c was the result of a previous challenge query
Dec(sk, c) otherwise

The adversary can make as many CCA queries as it would like.
• Finally, the adversary produces a guess b′ for b.

The FO Transformation. Given a symmetric key encryption scheme (EncS ,DecS)
and a public key encryption scheme (Gen,EncP ,DecP ), the Fujisaki-Okamoto
transformation is the tuple (Gen,EncG,HFO ,DecG,HFO ) where:

– G,H are two functions, where G outputs keys for EncS and H outputs the
random coins used by EncP .

– EncG,HFO (pk,m):
• Choose a random input δ ∈ {0, 1}n.
• Compute d← EncS(H(δ),m).
• Compute c← EncP (pk, δ;G(δ, d))
• Output (c, d)

– DecG,HFO (sk, (c, d)):
• Compute δ′ ← DecP (sk, c)
• Check that EncP (pk, δ′;G(δ′, d)) = c. If not, output ⊥ and abort.
• Compute and output m′ ← DecS(H(δ′), d)

F.2 The Quantum CCA security of FO

We now prove the following theorem regarding the CCA security of the FO
transformation:
Theorem 6. If (EncS ,DecS) is one-time secure and (Gen,EncP ,DecP ) is well-
spread and one-way secure, then (Gen,EncG,HFO ,DecG,HFO ) is quantum CCA secure
in the quantum random oracle model.

Proof. We will prove security through a sequence of hybrid experiments. The
proof is similar to the classical proof of security for the FO transformation, except
that we will use compressed oracles in order to answer questions of the form “has
the adversary queried on a particular input”.

Let A be a quantum polynomial time adversary for the CCA security of the
scheme. Consider the following hybrids.

Hybrid 0. This is the experiment CCA-RO-Exp0, where m∗0 is encrypted during the
challenge query. Let the challenge ciphertext be (c∗, d∗). Let the randomness for
encryption be δ∗. Then, note that the function CCA can be written as:

CCA0(c, d) =
{
⊥ if the challenge query has happend, and (c, d) = (c∗, d∗)
Dec(sk, (c, d)) otherwise
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Hybrid 1. This is identical to Hybrid 0, except that we now change the function
CCA(c, d) to be:

CCA1(c, d) =
{
⊥ if the challenge query has happend, and c = c∗

DecG,H(sk, (c, d)) otherwise

Lemma 40. A cannot distinguish Hybrid 0 from Hybrid 1, except with neg-
ligible probability.

Proof. Notice that the only difference between Hybrid 0 and Hybrid 1 is the
definition of CCA, and that the function only differs on inputs of the form
(c∗, d), d 6= d∗ where Dec(sk, (c∗, d)) 6= ⊥. In particular, since decryption succeeds,
it must be the case that

EncP (pk, δ;G(δ, d)) = c∗ = EncP (pk, δ∗;G(δ∗, d∗))

for some string δ. But the correctness of EncP implies that δ = δ∗.
Now, let G′(δ, d) = EncP (pk, δ∗;G(δ, d)). Notice that any differing input to

CCA must collide with (δ∗, d∗). We invoke the following lemma:

Lemma 41 (Adapted from [BBBV97]). Consider an adversary making q
quantum queries to an oracle G. Suppose G is changed to G′, and the adversary
distinguishes this change with advantage ε. Then, if we measure a randomly
chosen query of the adversary, with probability at least ε2/q2 the result will be a
point x where G(x) 6= G(x′).

Therefore, any distinguisher gives us a collision finder for G′. Moreover,
once we fix δ∗, pk, we see that G′ is a random function, except that the output
distribution is non-uniform. By the well-spread property of EncP , we have that
the output distribution of G′ has super-logarithmic min-entropy. We can then
invoke Balogh, Eaton, and Song [BES17], who show that for any polynomial
number of queries to such a function, the probability of finding a collision is
negligible. ut

From this point forward, we will consider G as being implemented in the
compressed standard oracle. Since this is equivalent to the uncompressed standard
oracle, this does not affect the adversary’s success probability.

We will now also make one additional change that does not affect the adversary:
at the beginning of a CCA query, perform a test (in superposition) to see if (δ′, d)
is in the database for G, where δ′ ← DecP (sk, c). Record the output of this test
in an ancillary qubit. Then, immediately un-compute the test.

Hybrid 2. This is identical to Hybrid 1 (with the modifications above), except
we now move the un-computation of the test above until after we apply CCA1.

Lemma 42. A cannot distinguish Hybrid 1 from Hybrid 2, except with neg-
ligible probability.
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Proof. Notice that evaluating CCA1 only interfaces with G by performing a
test of whether EncP (pk, δ′;G(δ′, d)) = c. This can be equivalently rephrased as
testing if G(δ′, d) lies within the set Sδ′,c of random coins to make EncP (pk, δ′) go
to c. By the well-spread property of EncP , these random coins make a negligible
fraction of all random coins. So we can apply Lemma 39 with S = Sδ′,c′ to
conclude that flipping the order of tests is undetectable

Hybrid 3. This is identical to Hybrid 2, except that we now change CCA again.
It will additionally take as input a bit b, which is the output of the test above;
b = 1 if (δ′, d) is in the database for G, and b = 0 otherwise. We define CCA3 as:

CCA3(b, c, d) =


⊥ if the challenge query has happend, and c = c∗

⊥ if b = 0
DecG,H(sk, (c, d)) otherwise

Lemma 43. A cannot distinguish Hybrid 2 from Hybrid 3, except with neg-
ligible probability.

Proof. We will change one query at a time from CCA1 to CCA3. Notice that
if the adversary can distinguish the change with non-negligible probability, it’s
query must have non-negligible weight on c, d such that (1) c 6= c∗, (2) b = 0,
and (3) EncP (pk, δ′;G(δ′, d)) = c. But if b = 0, then G(δ′, d) is actually in
uniform superposition, so the probability of it satisfying (3) is negligible, by the
well-spread property of EncP .

Hybrid 4. Notice that in Hybrid 3 we perform δ′ ← DecP (sk, c) three times:
once to compute the test, once inside CCA3, and once to un-compute the test.
Hybrid 4 will be identical to Hybrid 3, except that instead of computing δ′ in
this way, we will simply search for it in the database for G.

In particular, we first check if c = c∗; if so we set the output of CCA to ⊥.
Otherwise, we will scan over the inputs in the database for G, looking for inputs
of the form (δ′′, d). For each one, we will check if EncP (pk, δ′′;G(δ′′, d)) = c. If
the check passes, we will set δ′ = δ′′ and stop the scan. Then we proceed to
decrypt by computing m′ ← DecS(H(δ′), d), and set the output of CCA to be
m′. If we do not find such a δ′′, we will not set δ′, and instead set the output of
CCA to be ⊥.
Lemma 44. A cannot distinguish Hybrid 3 from Hybrid 4

Proof. First, if we ever set a δ′ in Hybrid 4, then it must be the case by
correctness of (Gen,EncP ,DecP ) that δ′ = DecP (sk, c). Therefore, in Hybrid 3,
we would have computed the correct δ′, and then our test would have found
(δ′, d) in the database, so it would set b = 1. In this case, Hybrid 3 would have
set the output of CCA to be m′.

Similarly, if Hybrid 3 would successfully decrypt, it must have been the case
that (δ′, d) was in the database. In this case, it would be found in Hybrid 4.
Therefore, these two hybrids are identical.

Notice that in Hybrid 4, the decryption key sk is no longer needed.
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Hybrid 5. This is identical to Hybrid 4, except that:
– We choose δ∗ at the very beginning of the experiment
– On a query on superposition (δ, d) to G, we measure if δ = δ∗. If so, the

experiment outputs a random bit and aborts. Otherwise, it continues as
before.

– On a query on superposition δ to H, we measure if δ = δ∗. If so, the
experiment outputs a random bit and aborts. Otherwise, it continues as
before.

Lemma 45. A cannot distinguish Hybrid 4 from Hybrid 5, except with neg-
ligible probability.

Proof. If the adversary could distinguish the two hybrids, it must have a non-
negligible query weight on inputs containing δ∗. Then we can measure a random
query by the adversary, and obtain δ∗ with non-negligible probability. This means
that we can construct an efficient adversary which, given pk and the encryption
of a random δ∗, can successfully decrypt c∗ with non-negligible probability. This
is a contradiction to the assumed security of EncP .

Hybrid 6. We further modifyHybrid 5 and now compute the challenge ciphertext
(c∗, d∗) as follows:
– Choose a random input δ∗ ∈ {0, 1}n, k∗ in the key space of EncS , r∗ in the

space of random coins for EncP .
– Compute d∗ ← EncS(k∗,m∗0).
– Compute c∗ ← EncP (pk, δ; r∗)
– Output (c∗, d∗)
Note that this effectively sets G(δ∗, d∗) = r∗ and H(δ∗) = k∗. Since the

adversary never queries G,H on these points these points, the values were
uniformly random anyway. Therefore, this change is undetectable to the adversary.

Lemma 46. A cannot distinguish Hybrid 5 from Hybrid 6

Hybrid 7. Finally, we change the challenge ciphertext from encrypting m∗0 to
encrypting m∗1.
Lemma 47. A cannot distinguish Hybrid 6 from Hybrid 7, except with neg-
ligible probability.

Proof. This follows from the security of EncS and the fact that k∗ is independent
of the adversary’s view.

Hybrid 8-14. We now undo all the previous changes, one by one, keeping the
challenge ciphertext as m∗1. The proofs of indistinguishability are essentially
identical.

By the time we get to Hybrid 14, we are in CCA-RO-Exp1. Putting every-
thing together, we have that CCA-RO-Exp0 (Hybrid 0) is indistinguishable from
CCA-RO-Exp1 (Hybrid 14), thus proving the CCA security of the FO scheme.

56


	How to Record Quantum Queries, and Applications to Quantum Indifferentiability

