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Abstract. AEGIS is an authenticated cipher introduced at SAC 2013, which takes advantage
of AES-NI instructions to reach outstanding speed in software. Like LEX, Fides, as well as many
sponge-based designs, AEGIS leaks part of its inner state each round to form a keystream. In
this paper, we investigate the existence of linear biases in this keystream. Our main result is
a linear mask with bias 278% on the AEGIS-256 keystream. The resulting distinguisher can be
exploited to recover bits of a partially known message encrypted 2'®® times, regardless of the
keys used. We also consider AEGIS-128, and find a surprising correlation between ciphertexts
at rounds ¢ and 4 + 2, although the biases would require 2'4° data to be detected. Due to their
data requirements, neither attack threatens the practical security of the cipher.
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1 Introduction

Traditional block cipher-based encryption ensures the confidentiality of encrypted data: it is infeasible
for anyone to decipher a message without knowledge of the secret encryption key. However there is
a compelling need for ciphers achieving at once confidentiality and authenticity; that is, ciphers in-
tegrating a form of integrity check guaranteeing that the encrypted message does originate from its
purported sender. Any tampering of the data will result in its rejection by the deciphering algorithm.
The CAESAR |[cael3] authenticated cipher competition, sponsored by the National Institute of Stan-
dards and Technology, crystallizes the community’s growing interest in this type of cipher. In March
2014, first round submissions were finalized and all entries were published online, awaiting analysis.

AEGIS [WP14] is a particularly notable candidate in this competition. Indeed, it takes full advan-
tage of the new AES-NI instruction set in recent Intel and AMD processors to achieve unprecedented
encryption speed in software, at around half a cycle per byte. Although AEGIS was first introduced only
a year ago at SAC 2013, it has already inspired other encryption designs, including PAES [YWH™14]
and Tiaoxin [Nik14]. The state update function at the core of AEGIS is simply the parallel applica-
tion of a single AES round to a large state, followed by a shift and XOR. This exploits the pipeline
implementation of AES-NI, which allows for the parallel computation of several AES rounds.

AEGIS, like many entries in the CAESAR competition, follows a model where a large inner state
leaks essentially a portion of itself every round, which is then X0R-ed with the plaintext to form the
ciphertext. Moreover, like most ciphers in this family, including all duplex-like constructions [BDPA12],
it delays the insertion of a plaintext block into the inner state until after the corresponding ciphertext
block has been output, in order for decryption to proceed in the same direction as encryption. As
such, these ciphers are not proper stream ciphers, but form an interesting hybrid, where a single round
behaves like a stream cipher.

In particular, assume we have a linear distinguisher on the ciphertext with known plaintext, which
we call a keystream bias by analogy with stream ciphers. That is, we know that the sum of some
specific bits of the ciphertext is biased towards 0 or 1, provided the corresponding plaintext has a
known value. Then, because of the stream cipher-like behavior pointed out above, if only the last block
of plaintext involved varies, and the rest remains fixed as before, the sum of ciphertext bits is biased
towards O or 1 depending on the same sum on the plaintext.

Thus, a linear distinguisher on the keystream yields an attack on the scheme, where plaintext bits of
a partially known message can be recovered, provided the message is encrypted enough times. Observe



that this does not require the same key be used. Indeed, this plaintext could be encrypted in entirely
different sessions with different keys, as long as it is encrypted a sufficient number of times in total.
This is very reminiscent of classic stream cipher attacks such as linear masking [CHJ02], as well as
recent attacks on RC4 [ABP*13]. However, in the security analysis of AEGIS by its authors, as well as
many CAESAR submissions displaying similar stream cipher-like behavior, this type of attacks does
not seem to be taken into account. This leaves open the question of how effective they might be, which
we investigate for AEGIS.

Our contribution.

In this paper, we describe linear biases in the keystream of AEGIS-128 and AEGIS-256. As far as
we know, this is the first cryptanalysis of AEGIS. These biases result from the surprising property
that, although the inner state of AEGIS-128 (resp. AEGIS-256) is 5 (resp. 6) times the size of its
output per round, the outputs of only 3 consecutive rounds are related. This is particularly striking in
the case of AEGIS-128, where we show that the outputs of rounds i and i + 2 are correlated.

However, the biases we find are quite small. In the case of AEGIS-256, we exhibit biases of 2737
for a few linear masks, which would require 2'88 data to be detected with good probability. This bias
only requires a known plaintext to be encrypted repeatedly, with no assumption about the keys or
nonces: in fact, the inner state before encryption is considered uniformly random. This distinguisher
can also be exploited to recover information on a partially known plaintext encrypted 2'8% times. Due
to the data requirements involved, our attack does not threaten the practical security of the cipher.
For instance, restricting the attacker to not use more than 2'2® data in total even for AEGIS-256,
independently of the keys involved, would most likely prevent this type of attack entirely.

We also investigate linear biases of AEGIS-128, and find a bias of 2777 between outputs of the
cipher at rounds i and i 4+ 2. While this would require more than 2'2® data, it is still worth noting,
as this bias is vastly superior to any generic attack, considering the inner state is 640-bit long. In
Appendix B, we investigate to what extent linear hull effects as well as multilinear techniques can be
expected to reduce the data requirements. We find that around 2'4° data would likely still be required,
showing that AEGIS-128 should be safe from our attack.

The first section provides a brief description of AEGIS-128 and AEGIS-256 encryption. In the
second sction, we define linear biases, and study some linear biases linking substates of AEGIS. From
there, we deduce biases in the keystream of AEGIS-128 and AEGIS-256. Finally, we show how these
biases can be exploited to mount an attack.

1.1 Notations
For: n  an integer
X a n-bit vector
Y  a n-bit vector
a  a n-bit vector
Define: X @Y the bitwise X0R of X and Y
X&Y  the bitwise AND of X and Y
a-X  the scalar product of o and X
|a]  the Hamming weight of «

2 Description of AEGIS-128 and AEGIS-256

When AEGIS was first introduced at SAC 2013, it came in two variants, AEGIS-128 and AEGIS-256,
providing a security level of 128 and 256 bits respectively. In the CAESAR proposal, a new variant
is introduced, AEGIS-128L, which fully leverages the 8-stage AES pipeline provided by Intel Sandy
Bridge processors. In this paper, we focus on AEGIS-128 and AEGIS-256 in their most recent version,
namely the CAESAR submission [cael3].



2.1 AEGIS-128

AEGIS-128 takes as parameters a 128-bit key, a 128-bit nonce, and a tag length less than or equal to
128. It proceeds in several stages: initialization, where the 640-bit inner state is initialized using the
key and nonce; processing of the authenticated data, where optional associated data is integrated into
the state; encryption proper, where a variable-length plaintext is encrypted into a ciphertext of the
same length; and finalization, which produces an authentication tag from the inner state. Hereafter we
are only interested in the encryption step. A complete description of AEGIS can be found in [WP14].
The inner state of AEGIS-128 consists of five 128-bit substates S, . .., Ss. The plaintext is divided
into 128-bit blocks m,, ¢ > 0, and processed in successive rounds. Let us denote by S;0,...,S;4 the
values of the substates at round ¢. For simplicity, we set ¢ = 0 when encryption begins, setting aside
the initialization step as well as the processing of authenticated data.
Then we have:
Sl+10 - 1O@R(Sz4) b m;
Sit1,1 =51 ®R(Si0)
Siy12 = Si2 ®R(Si1)
Sit1,3 =953 ®R(Si2)
Sit1,4 =54 ®R(Si3)
where R denotes a single round of AES-128 [DR99], with no key addition. The state update function
is depicted in Figure 1.

m; —p | R R R R R
* - > \H@ \—>@ \—@ \%@ L,,*
Si+1,0 Si+1,1 Si+1,2 Si+1,3 5¢+1,4

Fig. 1. State update function of AEGIS-128.

Each round, the ciphertext is output as:

Ci=58i1D84®(Si2&8i3)dm;

2.2 AEGIS-256

AEGIS-256 takes as parameters a 256-bit key, a 256-bit nonce, and a tag length less than or equal to
128. The encryption step is very much the same as that of AEGIS-128, except the inner state consists
of six rather than five 128-bit substates S;,...,S5; 5. The state update function may be written as:

Sit1,0 = Si0 ® R(Si5) ©my
Siv1,1 = 5,1 ®R(Si0

)

Sit1,2 =52 ®R(Si1

(Si0)
(Si1)
Sit1,3 = Si3 ® R(Siz2)
Sit14=2954D®R(S;3)

(Si,4)

)

Sit1,5 = Sis DR(Si4

)



Each round, the ciphertext is output as:

Ci=8i1®Sia®Sis®(Si2&8;3)®my

2.3 Security Claims

AEGIS-128 and AEGIS-256 claim a security level of respectively 128 and 256 bits for plaintext confi-
dentiality (provided the attacker did not first break the integrity of the scheme, for which a security
level of 128 bits is claimed in both cases—cf. [WP14], Section 3). There is no explicit bound on data
requirements.

3 Preliminaries

3.1 Linear Biases and Weights

Since we will typically deal with probabilities very close to 1/2, it is convenient to define the bias of
an event (as a shorcut for the bias of its probability):

Definition 1 (Bias). The bias of a an event E is defined as:
Bias(E) = 2 - Prob(E) — 1

Definition 2 (Linear Bias). Consider a function F : {0,1}" — {0,1}" from n bits to n bits. Given
an input mask a € {0,1}" and output mask 8 € {0,1}", the linear bias of F with masks «, 5, is
defined as:

Bias(a- X @ - F(X) =0)

with X wuniformly random in {0,1}™.
Matsui’s classic piling-up lemma [Mat94] is commonly used to combine linear biases together.
Lemma 1 (Piling-up Lemma). Let X1,..., X, be independent random binary variables. Then:
Bias(X; @ --- ® X,, = 0) = Bias(X; = 0) x --- x Bias(X,, =0)

In the rest of this article, biases will often be of the form +27%, with i an integer. This leads to the
following definitions:

Definition 3 (Weight of an Event). Let E be an event. The weight of E is the positive real:
weight(E) = —log, (|Bias(E)|)
If the bias is zero, we define the weight as oo.

Definition 4 (Weight of a Linear Bias). The weight of a linear bias is the weight of its bias. That
18, with the previous notations:

weight(F, o, ) = —log, (|Bias(a- X @ - F(X) = 0)])

While the notion of weight is more prevalent in differential than in linear cryptanalysis, we have
defined it so that it behaves exactly in the same way: due to Lemma 1, when combining linear charace-
teristics, we simply add their weights together, making computations more readable. Since we will
combine linear characteristics repeatedly, the benefits are substantial. Note that finding strong biases
means we always want to minimize weights.



3.2 Linear Approximations of Bitwise AND

For z, y two independent uniformly random binary variables, it can be easily checked that their product
x&y can be linearly approximated in four different ways: 0, x, y and x @ y @ 1, each with probability
3/4. In particular, this implies the following lemma, which will be quite useful:

Lemma 2. Let X, Y be two independent uniformly random variables in {0,1}", and o be a linear
mask in {0,1}™. Then:

weight (o - (X&Y) = 0)
= weight (a - (X&Y & X) = 0)
= weight (o - (X&Y @ Y) = 0)
= weight (a - (X&Y ©@ X @Y @& 1) =0)
= |al

where || denotes the Hamming weight of . The biases are all positive.

4 Linear Biases for AEGIS-128 and AEGIS-256

4.1 Linear Biases between Substates

The output of AEGIS-128 at round ¢ is C; = S;19.5; 4B (S 2 & S; 3) ®m;. Using linear approximations
of & in the previous section, this can naturally be approximated as a sum of some substates .S; ;’s. As
a preliminary step towards exhibiting biases in the AEGIS-128 keystream, we point out some useful
linear relations between substates S; ;’s over three rounds.

Assume that at some round i, three consecutive plaintext blocks my;, m;y1, m;1o are all-zeros.
Denote Sy = Si0,...,5 = S; 4. Then we can compute the value of substate 0 over the three rounds
i,t1+ 1,142 as:

Si0 =950
Sit1,0 = So ® R(Sy)
Sit2,0 = S0 ® R(S4) © R(S4 ®R(S3))

We are interested in the two differences S; o @ S;11,0 and S; 0 @ Sit2,0- Let us begin with the first:
So @ Siy1,0 = R(S4)
If we choose any linear mask «, 8 with w = weight(R, a, 8), then by definition we have:
B (So® Sit1,0) =a- Sy with weight w (1)
Now consider the second difference:
Sit2,0® Sio =R(S1) ® R(S1® R(S3))

This is the derivative of R at point Sy with difference R(S3). Choose two linear masks g, v with
w’ = weight(R, 3,7). By the piling-up lemma, we get:

v (Si+270 S5 Sl',()) =p-54 ® G- (S4 ©® R(Sg)) with weight 2w’ (2)
= - R(S5)

Thus, the contribution of S4 cancels itself out.
Finally, we can combine the previous linear approximation of R along «, 8 with (2) to get:

v (Sit2,0® Sio) = - Ss with weight w + 2w’ (3)



Note that the above approximations also hold for S; 1,...,.5;4 by shifting all S; ;’s involved along
j modulo 5. Furthermore the same equalities hold for AEGIS-256 as well, except S3 and Sy in all
three equations (1), (2), (3) become S4 and Ss. The main takeaway in all cases is that S;y1; @ .S;; is
correlated to S; j—1, while Sjy2 ; @ S; ; is correlated to S; j_o.
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Fig. 2. Linear masks over two rounds of AES. Grey boxes denote active bytes.

In the end, we will want to choose «, v so as to minimize w + 2w’ in (3). This involves considering
linear propagation over two rounds of AES. Due to the branching number of 5 of the AES construction
[DRO1], we will have at least 5 active S-boxes over these two rounds. Moreover, since we want to
minimize w+2w’, the second round incurs twice the cost, so the optimal configuration would be to have
4 active S-boxes in the first round, and only one in the second round. This is easily achieved: choosing
any linear masks at the input and output of a single S-box in the second round, then propagating the
masks linearly will have the desired effect (cf. Figure 2). In fact, there are enough degrees of freedom
to pass all S-boxes with the optimal linear weight of 3. As a result, we get w =4-3 =12 and v’ = 3,
so w + 2w’ = 18. Appendix A gives specific values for «, 3, 7.

4.2 Biases for AEGIS-128

In this section, we will exhibit a linear bias between the output of AEGIS-128 at rounds ¢ and i + 2,
assuming that the messages m;, m;41, mi42 are all-zeros. Let us define S = S;0,...,5 = S; 4.

Choose «a, 3, v as in the previous section. Recall that C; = 51 & Sy @ S & S3. Using §3.2, we can
approximate C; and Cj;9 as:

v-Ci=7v-(5 ® Sy © S3) with weight ||
v Ciya =7 (Sit21 ® Sit2.4 & Sit23) with weight ||

It follows from Equation (3) in the previous section that we have:
v (Ci®Ciy2) =a-(S4 & S2 & S1) with weight 3w + 6w’ + 2|v|
Now, observe that C; may also be approximated as:
a-Ci=a- (S & Sy & S9) with weight |a]

We are now approximating C; bitwise in two different ways. However, as long as a and « have disjoint
support, the two events are independent. In the remainder, we assume this is the case.



If we combine the last two equations together, we get:
(a®v) - Cidy-Ciza=0 with weight 3w + 6w’ + |a| + 2|v]

This is an absolute bias on the AEGIS-128 keystream. Note that in order to simplify the presentation,
we did not keep track of whether the bias is positive or negative; however, this is fixed and known.

The question now becomes how to choose «, v so as to minimize the weight above. Details of
this computation are provided in Appendix A. In the end, we obtain || = 5, |y| = 9, with all
S-boxes having optimal linear bias, hence w = 12, w’ = 3 as in the previous section. This yields
3w+ 6w’ + || + 2|y = 77.

4.3 Biases for AEGIS-256

Biases on the AEGIS-256 keystream are built essentially in the same way as for AEGIS-128, except the
outputs of all three rounds i, i + 1 and 7 + 2 are necessary. Again, we assume m; = m;+1 = M;42 = 0.
Recall that C; = S; ® S4 ® S5 @ Sz & S3.

We use the following approximations:

a-Ci=a-(S1 & Sy & Ss) with weight |a]
B-Ci=0-(51 ® Sy & S5 & S2 @ Ss3) with weight |3]
v Ci=7-(51 & Sy & S5 B So) with weight ||
B-Cit1=8-(Sit1,1 ® Sit14 ® Sig15 ® Sit1,2 ® Sit1,3) with weight |3
v Citz2 =7 (Siy2,1 @ Siyos ® Siyos © Sip2,2) with weight |v]

Using Equation (2) from §4.1, we have:

7 (Ci ® Cita) = B+ (R(S5) ® R(S2) © R(S3) & R(S0))
with weight 8w’ + 2|7

On the other hand:

B-(Ci®Cip1) =B+ (R(So) © R(S3) © R(S1) @ R(S1) @ R(S2))
with weight 2|3|

Summing the last two equalities yields:

B-(Ci®Cit1) Dy (Ci®Ciy2) =F-(R(S1) ® R(S4) @ R(Ss))
with weight 8w’ + 2|3| + 2|7|

Now it remains to use Equation (1) to pass through R and get:

B-(Ci®Cit1) By (Ci®Cita) =a-(S1 & Sy & Ss)
with weight 3w + 8w’ + 2|3| + 2|7

Finally:

a-Cidf - (CidCit1)Dy - (Ci®Ciya) =0
with weight 3w + 8w’ + |a| + 2|8] + 2||
Now the question is to find «, 5, v minimizing this weight. In fact, we can choose precisely the

same «, v as for AEGIS-128. Indeed, these masks were chosen so as to 1) pass all S-boxes with
optimal probability; 2) minimize w as compared to w’; 3) minimize || + 2|y| within the previous



constraints. The same criterions are very fitting once again; the only difference is the new [ term, but
with the previous choices || = 3, so it is nearly optimal as well. As a result, we have a weight of
3-1248-34+5+2-3+2-9=89.

Intuition. How the previous linear approximations were chosen so as to cancel each other out,
and perhaps more importantly what made such a choice possible, may not be immediately apparent
from the description of the linear characteristic itself. As a result, it may be useful to provide some
intuition.

We know that Sj © SH—Lj = R(Sj_l). From Eq. (2), Sj D SH_QJ' = R(Sj_l) D R(Sj_l D R(Sj_Q))
is linearly correlated to R(S;_2), with the contribution of S;_; cancelling itself out; so we may write
S;®Sit2,; = D(R(Sj—2)), where D is a purely formal notation to indicate an expression that is linearly
correlated to the input of D.

On the other hand, if we approximate the & operation in C; and C;4+1 linearly along the same
mask, and add them together, we can ensure that every S;; ; is matched with the corresponding S;,
so as a result we can roughly write:

where the brackets denote a term that comes from a & operation and thus may be omitted at will by
§3.2.
The same reasoning holds for C;42; and in the end we have:

C; ~ S1 @ [S2] ® [S5] @ S4 @ S
Cip1®Ci = R(S0) @ [R(S1)] @© [R(S2)] ® R(S3) @ R(S4)
Cit2a®Ci = [D(R(Sp))] @ [DR(S1))] @ DR(S2))® D(R(S3)) @ D(R(S5))

Now take the characteristic a 15} LN ~ from the previous section, which is also a character-

istic a 2 I} D, v as can be seen in §4.1, Eq. (2). If the characteristics hold, this tells us that
a-Sy = B-R(Sk) = v D(R(Sk)). Hence, if we approximate the first line along «, the second
along B, and the third along ~y, if the linear characteristics hold and we add up everything, any
two terms in the same column will cancel each other out. So the question becomes simply how to
make an appropriate choice for each bracket in the equations above so that there is 0 or 2 terms
in each column. This is exactly what we do in order to construct our linear characteristic, namely:

Ci = S1 @ S4 @ S5
Cip10C; ~ R(So) @ R(S1) @ R(S;) @ R(S3) ®  R(S4)
Ciza®C;~ D(R(S))) @ D(R(S2)) & D(R(S;)) @ D(R(S5))

If we look at AEGIS-128 from the same perspective, we can write:

Ci~ S1 @ [S2] @ [S3] ® Sy
Ciy1©C; = R(S0) ® [R(51)] & [R(S2)] & R(Ss)
Cipz®Ci=  [DR(S))]®  [DR(S))] & D(R(52)) & D(R(S4))
After removing the second line entirely, the approximation we made is:

C; = S1 @ S @ S
Cipz®Cim D(R(51)) & D(R(S2)) & D(R(54))

4.4 Exploiting the Keystream Biases

In the previous two sections, we have assumed that at some round i, three consecutive plaintexts m;,
Mmjiy1, Miyo are all-zeros. From there, we have shown the existence of an absolute bias of the form:

Bias(a -Cy ®p- Ci+1 @Dy CH_Q ®b= 0) =27V



In other words, we have built a distinguisher on the AEGIS keystream. However, if we no longer assume
m;yo = 0, then at round ¢ + 2, the only difference in the output of the cipher is that m; o is X0OR-ed
into the ciphertext C;1o. As a result, we have:

Bias(a-C’i@B~C’i+1 @701_;,_2@’}/771“_2@[):0):27’“)

Thus, the observable value o - C; @ - Ciy1 @ v - Cy42 directly leaks information about v - m;o.

This leads to the following attack scenario. Assume the same three consecutive plaintext blocks 0,
0, m are encrypted 22* times in total, independently of the keys and nonces used. Then an attacker
having access to that data would deduce the value of v -m with good probability, just by counting the
occurences of the event a-C; @ 8- Ciy1 @7 - Ci12 = 0 on the fly. However, the data requirements make
this attack impractical, since 2154 and 2'88 encryptions would be required respectively for AEGIS-128
and AEGIS-256 in order to exploit a single bias (as opposed to a multilinear approach). In Appendix
B, we try to capture linear propagation in AEGIS-128 more accurately, in order to evaluate to what
extent data requirements could be lowered; we conclude that AEGIS-128 seems to resist straightforward
improvements of our attack, as 240 data is still required.

5 Conclusion

In this article, we have constructed linear biases in the keystream of AEGIS-128 and AEGIS-256.
These biases stem from dependencies between surprisingly few consecutive rounds: for AEGIS-128,
linear biases exist between the outputs of rounds ¢ and i + 2; while for AEGIS-256, three consecutive
rounds are enough. Our main result is the construction of a linear mask with bias 2789 on the keystream
of AEGIS-256. This bias can be exploited to recover bits of information on a partially known plaintext
encrypted 2'%8 times, regardless of the keys involved. While the biases remain too low to be a threat
in practice, they are vastly superior to any generic attack, and point out an unexpected property in
the keystream of AEGIS.
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Appendix A: Values of o, 3, v

Consider the situation depicted on Figure 3, where the linear characteristic « — 8 — < spans two
rounds of AES (without key addition). We are trying to minimize |a|+ 2|v|, while passing all S-boxes
with optimal linear probability.
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Fig. 3. Linear masks over two rounds of AES. Grey boxes denote active bytes.

First, we look for 3’ minimizing |y|. With little-endian hexadecimal notations, it turns out only
one value 3’ = Oe reaches the minimum with |y| = 9 (y equals £, 8, ¢, 5 along one column). For
this value, five choices of £ allow us to pass the S-box with weight 3: 5 = 09, 31, 38, c8, or £9. For
each of these values, we compute o', then look for the minimal size of « such that all four S-boxes are
passed with optimal probability. We find |a| = 5, for 5 = 38 (e equals 4, 3, 2, 2 along the diagonal).
Observe that || is at least 4 since it has to span 4 S-boxes. Since we followed the only way to have
|v| = 9, which is optimal; |« is within 1 of being optimal; and we are trying to minimize || + 2|7],
we have found the unique optimal choice.

More accurately, it is the unique optimal choice once we have fixed our choice for the active S-box
in the second round. In fact, we could choose any one of the other 15 S-boxes, and use the exact same
values of linear masks 3, 5 at the entrance of that S-box (namely, 38 and Oe). Indeed, the circulant
nature of the AES MixColums matrix means that a given mask at the input (resp. output) of one S-box
will propagate to a permutation of the same masks at the output (resp. input) of the previous (resp.
next) layer of S-boxes, and hence in our case will yield the same sizes for @ and . Thus there are 16
choices for «, v with identical properties for our purpose; one per choice of active S-box in the middle
round.

Appendix B: Refined Linear Model of AEGIS-128

In §4.2, we have found a linear mask with bias 2777 on the AEGIS-128 keystream. Detecting this
bias would require 2'* data, which is significantly more than is sensible with a security parameter
of 128 bits. However, the bias on an actual AEGIS-128 keystream may be slightly different, due to
the independence assumptions required by our analysis. Additionaly, there may be linear hull effects
strengthening or weakening the bias. In any case, other biases of comparable strength undoubtedly
exist, and could be exploited in a multilinear attack. With all this in mind, it may be worth wondering
whether the 2154 data requirement has some chance of being brought down below 2128,



It so happens that for AEGIS-128, there is a fairly elegant way of simultaneously taking into
account many of the effects listed above. In our previous analysis, we used standard linear cryptanalysis
techniques to follow the propagation of a bias along a few AES-based transformations. This amounts
to modelling the transformations in a certain way, materialized by independence assumptions. However
in the case of AEGIS-128, large parts of the transformations can be computed with complete accuracy
by looking at byte distributions, without the need to model anything.

If we recap the previous analysis in §4.2, we approximate C; and C; @ C;42 linearly, and from there
we obtain the following two sums:

S1 @ Se @ Sy
and : R(S5) @ R(S2 @ R(S1)) @ R(S3) © R(S3 @ R(S2)) © R(So) @ R(So @ R(S4))
=D(R(S1)) @ D(R(S2)) © D(R(S4))

where D is a purely formal notation denoting the fact that its input and output are linearly correlated
(cf. §4.1); then we use the fact that X and D(R(X)) are correlated. More precisely, we first relate X
to R(X), then R(X) to D(R(X)). Thus the propagation is decomposed in two steps, which we can
picture as:

S19 8 ®S5 — R(S1)@R(S2) @R(S1) —  D(R(S51)) ® D(R(S2)) @ D(R(54))

So our propagation “factors” through the value R(S1) @ R(S2) @ R(S4): that is to say, all information
we had on S; & Sy @ Sy is first translated as information on R(S7) @ R(S2) @ R(S4); after which only
information on R(S7)®R(S2)PR(S4) is used to deduce information on D(R(S7))BD(R(S2))BD(R(S4)).
Moreover, with our linear masks, only a single S-box is active in R(S1) & R(S2) ® R(S4), so actually
the whole propagation factors through the value of R(S1) @ R(S2) @ R(S4) on a single byte.

The idea for our new model is that we are going to compute the actual distribution of R(S7) @
R(S2) ®R(S4) on one byte from the knowledge of C; = S1® S & S3® S4. Then we are going to use this
full distribution, rather than a single linear mask, to compute a distribution of S;123®S3 @ Sit2.4®
Sy @ Siy21®S1, which is our linear approximation of C; @ C; 12 along a linear mask «. Thus we hope
to compute the bias of v - (C; ® C;12) more accurately. A good motivation for this model is that the
two steps above: linking knowledge of C; to the distribution of R(S1) @ R(S2) @ R(S4) on one byte;
and then the distribution of R(S1) ®R(S2) @ R(S4) on one byte to the bias of the linear approximation
of v+ (C; ® Ci12), can be computed with perfect precision within complexity at most 232, as we show
below. Hence the only loss of precision results from “factoring” through R(S7) ® R(S2) @ R(Sy); but as
we saw in the previous paragraph, we were already making this approximation when we used standard
linear characteristic techniques.

Thus, assume we know some specific value for C; = S; @ S5 & S35 @& S4. Then we can actually
compute the distribution of a single byte of R(S1) @ R(S2) @ R(S4) with full precision. Indeed, if we
denote by SB the SubBytes layer of AES, from S; @ S2 & S35 @& Sy we can compute the distribution of
SB(S1) @ SB(S2) @ SB(.S4) in an exact manner, since each byte depends only on the value Sy, So, S3, Sy
on the same byte; so we need only guess 4 bytes simultaneously.

From there, we can also compute the distribution of R(S1) @R(S2) ®R(S4) on a single byte exactly,
since it is simply the independent sum of the previous byte distributions through the MixColumns
matrix. Moreover, in the end, this distribution depends on only 16 bytes in total, which is 128 bits,
so we can simply count how many choices lead to a specific value using a 128-bit integer, and the
resulting distribution is prefectly precise. Thus, from knowledge of C; = S; @ Sy & S5 @ Sy, it is
possible to compute the distribution of R(S1) @ R(S2) @ R(S4) on one byte with full precision.

Now for the second step of the propagation, we want to compute the distribution of the following
value (i.e. the linear approximation of C; @ C;;2 along the mask ~):

Sit23®S3 © Siyo4a® Sy ® Sit21 D51
=R(S2) ® R(S2 ®R(S1)) ® R(S3) ®R(S3®R(S2)) & R(So) ® (Sp @ R(S4))



from the known distribution of:
R(S1) @ R(S2) ® R(S4)

More precisely, we are interested in the distribution of the first value before MixColumns (which is the
last operation applied to each component), on a single byte, so R reduces to one S-box layer (and a
permutation of the bytes).

At first sight, it suffices to guess the values of all R(S;)’s on this one byte. This only involves
guessing 5 bytes, requiring 24° operations, which is reasonable. However a better algorithm is possible
by observing that the contribution of Sy and Sy is independent from the rest on both sides. As a result,
it suffices to compute these two distributions separately, then add them together:

R(S1) @ R(S2) — R(S2) ® R(S2 @ R(S1)) © R(S3) ® R(S3 @ R(S2))

R(S4) = R(So) @ (So @ R(S4))
Thus the complexity drops down to 232 operations.

The end result is that for a fixed value of C; = S; ® S5 & S3 @ Sy, we can compute the distribution
of R(S1) ®R(S2) @ R(S4) on one byte without any approximation. Then from this distribution, we can
compute the distribution of one byte of the linear approximation of C; & C; 2 before MixColumns, which
is what we measure from C; @& C; 2 using our linear masks, modulo the cost of the linear approximation
along ~y, which is 2|7/

We implemented this model, and results correlate fairly well with our previous anaysis. In particular,
we recover the fact that the values of 3’ we chose yields the strongest bias, although one other value
seems as strong (namely 12), which is not too surprising since it is one of the two second-best candidates
as far as minimizing |y|. The main difference is that we find a bias close to 2772 when we fix C; to some
random value and measure 7 - (C; @ C;42) according to our model, rather than 2= when we used
pure linear masking. We surmise this is mostly due to more information being taken into account at
the input, resulting overall in more information at the output; although both steps of the new model
behave slightly better than expected.

On the other hand, few output masks yield biases in this vicinity. If we exploit the best bias at
2772 across all 16 possible second-round S-boxes (cf. Appendix A), 2144~% = 2140 data would still be
required to mount an attack. With additional improvements, one could hope to further reduce data
requirements, but at this point it seems very unlikely that data requirements could fall below 2'28. Thus,
the main conclusion of our model seems to be that AEGIS-128 remains resistant to straightforward
improvements of our attack.
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