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Abstract. The goal of white-box cryptography is to implement cryp-
tographic algorithms securely in software in the presence of an adver-
sary that has complete access to the software’s program code and ex-
ecution environment. In particular, white-box cryptography needs to
protect the embedded secret key from being extracted. As for today,
all publicly available white-box implementations turned out susceptible
to key extraction attacks. In the meanwhile, white-box cryptography is
widely deployed in commercial implementations that claim to be secure.
Bos, Hubain, Michiels and Teuwen (CHES 2016) introduced differential
computational analysis (DCA), the first automated attack on white-box
cryptography. The DCA attack performs a statistical analysis on ex-
ecution traces. These traces contain information about the execution,
such as memory addresses or register values, that is collected via binary
instrumentation tooling during the encryption process. The white-box
implementations that were attacked by Bos et al., as well as white-box
implementations that have been described in the literature, protect the
embedded key by using internal encodings techniques that have been
introduced by Chow, Eisen, Johnson and van Oorschot (SAC 2002). In
this paper, we prove rigorously that such internal encodings are too weak
to protect against the DCA attack and thereby explain the experimental
success of the DCA attack of Bos et al.
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1 Introduction

When an application for mobile payments runs in software on Android phones
or other open platforms, it needs to protect itself as it cannot rely on platform
security. In particular, the cryptographic algorithms used within an application
need to be secured against adversaries that have a high degree of control over
the environment. Cryptography that remains secure even when the adversary



has full control over the execution environment is known as white-box cryptog-
raphy. The white-box attack model was introduced in 2002 by Chow, Eisen,
Johnson and van Oorschot [9,8], originally in the context of Digital Rights Man-
agement (DRM). However, the white-box attack model may be a serious threat
for many modern applications such as, for instance, mobile payment applica-
tions. Originally, mobile payment applications would rely on secure hardware to
implement near field communication (NFC) protocols, but since the addition of
host-card emulation (HCE) in Android 4.4, NFC protocols can be implemented
in software-only. White-box cryptography has thus become an attractive tool to
help increase the security of such applications [20].

A necessary requirement for secure white-box cryptography is that an adver-
sary cannot extract the embedded secret key from the implementation. Chow,
Eisen, Johnson and van Oorschot [9,8] suggest to implement a symmetric cipher
with a fixed key as a network of look-up tables (LUT). The key is compiled into a
table instead of being stored in plain in the implementation. In order to protect
a network of lookup tables against reverse-engineering, Chow et al. propose to
obfuscate the lookup tables and the intermediate results via a combination of
linear and non-linear encodings. The idea of implementing symmetric ciphers as
such an obfuscated network of LUTs has caught on in the white-box commu-
nity since then, see, e.g., [7,23,10]. However, although the LUT-based white-box
designs hide the key in obfuscated lookup tables, it turns out that all aforemen-
tioned LUT-based designs are succeptible to key extraction attacks performed
via differential and algebraic cryptanalysis (see [4,17,16,13]). Specifically, these
attacks invert the obfuscation process by deriving the applied encoding functions
after which the key can easily be recovered.

In real-life applications, mounting cryptanalysis and reverse engineering at-
tacks requires abundant skills and time from an adversary. A larger practical
approach for an adversary are automated key extraction attacks which were
introduced by Bos, Hubain, Michiels and Teuwen [6] and Sanfelix, de Haas
and Mune [18]. Their method, known as the differential computational analysis
(DCA), is described by the authors as the software counterpart of the differential
power analysis (DPA) applied for attacking cryptographic hardware implemen-
tations [12]. Bos et al. [6] monitor the memory addresses accessed by a program
during the encryption process and display them in the form of software execution
traces. These software execution traces can also include other information that
can be monitored using binary instrumentation, such as stack reads or register
values. These traces serve the following three goals. (1) They can help to deter-
mine which cryptographic algorithms was implemented. (2) The traces provide
hints to determine where roughly the cryptographic algorithm is located in the
software implementation. (3) Finally and importantly, the traces can be statis-
tically analyzed to extract the secret key. The automated DCA attack turned
out to be successful against a large number of publicly available white-box im-
plementations. It has since then become a popular method for the evaluation
of newly proposed white-box implementations [5] and software countermeasures
for white-box cryptography [1].



While Bos et al. [6] explain (1) and (2) in detail, their exposition of (3) is
rather laconic. In addition, we need a further study to understand why step (3)
of the attack actually works for the type of white-box techniques that are cur-
rently in use in order to improve upon them. The work of Sasdrich, Moradi and
Güneysu [19] takes a first step towards this understanding. They use the Walsh
transform to show that the encodings used by their white-box AES design are
not balanced correlation immune and thus are susceptible to the DCA attack.
In this paper, we aim at giving a structured exposition to improve our under-
standing of the power of the DCA attack which can then guide the search for
new and more effective countermeasures.

Our contribution In this paper we provide an annotated step-by-step graphical
presentation of the key-extraction step of the DCA attack, which relies on a
difference of means distinguisher, and explain how to interpret the results. Our
presentation follows the style that Kocher [11] and Messerges [14] used for the
(analogous) differential power analysis on hardware implementations.

Further, we analyse how the presence of internal encodings on white-box
implementations affects the effectiveness of the DCA attack. Thereby, we focus
on the encodings suggested by Chow et. al. [9,8], which are a combination of
linear and non-linear transformations. We start by studying the effects of a
single linear transformation. We derive a sufficient and necessary condition for
the DCA attack to successfully extract the key from a linearly encoded look-
up table. Namely, if the outputs of a key-dependent look-up table are encoded
via an invertible matrix that contains at least one row with Hamming weight
(HW) = 1, then the DCA will be successful. In this same line, we show that an
invertible matrix whose rows all have HW > 1, provides an effective masking
for the look-up table outputs, such that a standard DCA attack is not effective
any more. However, we explain later in the paper how the DCA attack can be
modified in such way that it is successful on any linearly encoded key-dependent
look-up table. Next, we consider the effect that non-linear nibble encodings have
on the outputs of key-dependent look-up tables and prove that the use of nibble
encodings firstly provides conditions so that the DCA attack succeeds. Namely,
when we attack a key dependent look-up table encoded via non-linear nibble
encodings, we always obtain a difference of means curve with values equal to
either 0, 0.25, 0.5, 0.75 or 1 for the correct key guess. The results obtained
from these analyses help us determine why the DCA attack also works in the
presence of both linear and non-linear nibble encodings. Hereby we focus first
on the invertible matrix performing the linear transformation. We prove that, if
one half of the matrix has at least one column whose value is not contained in
the space spanned by the other columns, then we always obtain a difference of
means curve with values equal to either 0, 0.25, 0.5, 0.75 or 1 for the correct key
guess. These values on the difference of means curves are caused by the effect of
the nibble encodings applied after the linear transformations.

Throughout the paper, we also present experimental results of the DCA
attack when performed on single key-dependent look-up tables and on complete



white-box implementations. In all cases, we see that the results match completely
to the observations pointed out in our analyses.

2 White-Box Cryptography Implementations

White-box cryptography can be seen as special-purpose obfuscation, but is usu-
ally not discussed in this way. In particular, general -purpose obfuscation with
perfect security is known to be impossible [2] and the hope is that achieving
weaker-than-perfect security for a specific algorithm is still feasible. The most
popular approach in academic literature (and perhaps also beyond) for white-box
implementations of symmetric encryption is to encode the underlying symmet-
ric cipher with a fixed key as a networks of look-up tables (LUT). In particular,
the LUTs depend on the secret key used in the cipher. An additional protection
technique is to apply linear and non-liner internal encodings which are used to
encode the intermediate state between LUTs. Another popular technique are
external encodings which are applied on the outside of the cipher and help to
bind the white-box to an application. In this paper, we focus solely on internal
encodings, because, as Bos et al. point out in [6], applying external input and
output encodings yields an implementation of a function that is not function-
ally equivalent to AES anymore and thus, some of its security can be shifted
to other programs. Moreover, this paper focusses on using internal encodings
for LUT-based white-box constructions of AES. We will focus on the encodings
and refer to the LUT-based construction as an abstract design. The interested
reader might find the work by Muir [15] a useful read for a more detailed de-
scription on how to construct an LUT-based white-box AES implementation. In
this section, we first provide a short description of AES, recalling the operations
performed during its execution rounds. We later introduce the concepts of linear
and non-linear encodings.

2.1 Advanced Encryption Standard

The Advanced Encryption Standard (AES) is a symmetric-key block cipher in-
troduced by Vincent Rijmen and Joan Daemen [22]. It is the most widely de-
ployed cipher since it replaced its successor Data Encryption Standard (DES) [21].
In the following, we focus on AES-128 which is an AES variant that uses 128 bit
keys and, for any fixed key, implements a bijective function on 128 bit blocks. In
the description that follows, we will briefly recall the iterative structure of AES.
AES takes a 128 bit long plaintext p as input and sets it as its input state z. It
is convenient to think of the state as a 4 × 4 matrix of bytes which we display
as a 2-dimensional array. Each round of the algorithm provides a new state. It
is also useful to think of the AES operations as being performed over the fi-
nite field GF (28). AES-128 consists of a KeyExpansion operation and 10 rounds
of operations which we describe in the following. The first 9 rounds consist of
the SubBytes, ShiftRows, MixColumns and AddRoundKey operations. The 10th
round consists only of the SubBytes, ShiftRows and AddRoundKey operations,
without performing MixColumns.



KeyExpansion takes the secret key k as input and computes round keys ki,
with i = 0, . . . , 10 and where the 0th round key k0 is equal to k. k0 is directly
added to the input state before the first round of AES-128.

AddRoundKey adds a round key ki bytewise to the current state by using an
exclusive-or operation.

SubBytes is an invertible, non-linear transformation that substitutes each state
byte by another byte chosen from a substitution table, called S-Box.

ShiftRows performs a cyclical shift of the state rows. Each row is shifted
differently depending on its row number. The first row is not shifted, the second
row is shifted by one position to the left, the third row is shifted by two positions
to the left and the last row is shifted by three positions to the left.

MixColumns treats each column of the state as a polynomial bi(x) = s3,ix
3 +

s2,ix
2+s1,ix+s0,i for columns i = 0, . . . , 3. Then, bi(x) is multiplied by a(x) =

03x3 +01x2 +01x+02 mod x4 + 1 over GF (28). Commonly, this is represented
as a vector-matrix multiplication, where each state column is multiplied by a
matrix in GF (28). The operation returns a new state consisting of the resulting
columns of each multiplication.

2.2 Internal encodings

Consider an LUT-based white-box implementation of AES, where the LUTs
depend on the secret key. Internal encodings can now help to re-randomize those
LUTs to make it harder to recover secret-key information based on the LUTs.
Such internal encodings were first suggested by Chow et. al [9,8]. We now discuss
two types of encodings. Random bijections a.k.a. non-linear encodings are used to
achieve confusion on the tables, i.e. hiding the relation between the content of the
table and the secret key. In turn, linear transformations a.k.a. mixing bijections
can be applied at the input and output of each table to achieve diffusion such that
if one bit is changed in the input of a table, then several bits of its corresponding
output are changed too.

Non-linear encodings Recall that the secret key is hard-coded in the LUTs.
When non-linear encodings are applied, each LUT in the construction becomes
statistically independent from the key and thus, attacks need to exploit key
dependency across several LUTs. A table T can be transformed into a table T ′

by using the input bijections I and output bijections O as follows:

T ′ = O ◦ T ◦ I−1.

As a result, we obtain a new table T ′ which maps encoded inputs to encoded
outputs. Note that no information is lost as the encodings are bijective. If table T ′

is followed by another table R′, their corresponding output and input encodings



can be chosen such that they cancel out each other. Say, that for two tables T
and R we have the following input and output encodings

T ′ = OT ′ ◦ T ◦ I−1T ′ and R′ = OR′ ◦R ◦ I−1R′ .

We can choose them such that I−1T ′ ◦OR′ is the identity function and thus,

R′ ◦ T ′ = (OR′ ◦R ◦ I−1R′ ) ◦ (OT ′ ◦ T ◦ I−1T ′ ) = OR′ ◦ (R ◦ T ) ◦ I−1T ′ .

Considering a complex network of LUTs of an AES implementation, we have
input- and output encodings on almost all look-up tables. The only exceptions
are the very first and the very last tables of the AES implementation, which take
the input of the algorithm and correspondingly return the output data. The first
tables omit the input encodings and the last tables omit the output encodings.
As the internal encodings cancel each other out, the encodings do not affect the
input-output behaviour of the AES implementation.

Size requirements Descriptions of uniformly random bijections (which are non-
linear with overwhelming probability) are exponential in the input size of the
bijection. Therefore, a uniformly random encoding of the 8-bit S-box takes space
28 · 28. If we were to encode a 16-bit function, the required space would already
be 232. Therefore, one usually splits longer values in nibbles of 4 bits and then
only needs two tables of size 216 rather than one table of size 232. However, by
moving to a split non-linear encoding we introduce a vulnerability since a bit
in one nibble does no longer influence the encoded value of another nibble in
the same encoded word. To (partly) compensate for this, Chow et al. propose
to apply linear encodings whose size is merely quadradic in the input size and
thus, they can be implemented on larger words. We explain next when linear
encodings on large words can be used.

Linear encodings A convenient feature of linear encodings is that, by definition
of linearity, they commute with the XOR-operation. Therefore, Chow suggests
to apply linear encodings to words that are input or output of an XOR-network.
These linear encodings have as width the complete word and are applied before
the non-linear encodings discussed above. While the non-linear encodings need
to be removed before performing an XOR, one can perform the XOR on linearly
encoded values (due to commutativity). Therefore, one usually refers to linear
encodings as mixing bijections.

The linear encodings are invertible and selected uniformly at random. For
example, we can select L and A as a mixing bijections for inputs and outputs of
table T respectively:

A ◦ T ◦ L−1.



As stated above, it is not necessary to cancel the effect of the linear encodings
before an XOR-operation. However, after the XOR-operation we obtain an out-
put which is still dependent on the linear function A and the effect of A needs to
be eventually removed, e.g. at the end of an AES round. In this case, dedicated
tables in the form of

Ln ◦A−1

are introduced, where Ln is the corresponding linear encoding needed for the
next LUT. In the white-box designs of Chow et al. we have 8-bit and 32-bit
mixing bijections. The former encode the 8-bit S-box inputs, while the latter
obfuscate the MixColumns outputs.

3 Differential Computational Analysis

We now revisit the DCA attack by Bos et al. [6]. As the white-box attacker
has full control over the platform, the adversary can execute the binary and
simultaneously use a Dynamic Binary Instrumentation framework such as Pin
and Valgrind to record the addresses that are accessed (for more details on the
acquisition of the software traces, see the original DCA paper by Bos et al. [6]).
Note that unlike in side-channel analysis, software-based memory-tracking is
noise-free. To display the tracked memory-information in a so-called software
execution trace, one proceeds as follows: One fixes one bit of information of the
bit string that describes the memory address and displays whether the bit was
0 or 1 at each memory access performed during the execution. In this section
we provide a detailed description of one statistical method to analyse such soft-
ware execution traces, namely the difference of means method. The two attack
capabilities required to perform the DCA attack are as follows:

– execute the white-box program under attack several times in a controlled
environment with different input messages.

– knowledge of the plaintext5 values given to the program as input.

The goal of the attack is to determine the first-round key of AES as it allows to
recover the entire key. The first-round key of AES is 128 bits long and the attack
aims to recover it byte-by-byte. For the remainder of this section, we focus on
recovering the first byte of the first-round key, as the recovery attack for the
other bytes of the first round key proceeds analogously. For the first key byte,
the attacker tries out all possible 256 key byte hypotheses kh, with 1 ≤ h ≤ 256,
uses the traces to test how good a key byte hypothesis is, and eventually returns
the key hypothesis that performs best according to a metric that we specify
shortly. For sake of exposition, we focus on one particular key-byte hypothesis
kh.

5 The attack works analogously when having access to the ciphertexts. The attacker
needs access to either plaintexts or ciphertexts.



The adversary starts by collecting memory access traces se which are associ-
ated with some plaintext pe. To test the key byte hypothesis kh, the adversary
first specifies a selection function (detailed in Step 2 below) Sel that calculates
one state-byte depending on the plaintext pe and the the key byte hypothe-
sis kh. Sel returns only the j-th bit of the state-byte, which we denote as b.
For each pair (se, pe), the adversary groups the trace se in a set Ab, where
b = Sel(pe, k

h, j) ∈ {0, 1}. The adversary then performs the difference of means
test (explained from Step 4 on) which, essentially, measures correlations between
a bit of the memory address and the bit b = Sel(pe, k

h, j). If those correlations
are strong, then the attack algorithm considers the key byte hypothesis kh good.
We now explain the analysis steps performed in the DCA attack.

1. Collecting Traces We first execute the white-box program n times, each
time using a different plaintext pe, 1 ≤ e ≤ n as input. For each execution, one
software trace se is recorded during the first round of AES. Fig. 1 shows a single
software trace consisting of 300 samples. Each sample corresponds to one bit of
the memory addresses accessed during execution.
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Fig. 1: Single software trace consisting of 300 samples

2. Selection Function We define a selection function for calculating an
intermediate state-byte of the calculation process of AES. More precisely, we
calculate a state-byte which depends on the key-byte we are analysing in the
actual iteration of the attack. For the sake of simplicity, we refer to this state-
byte as z. The selection function returns only one bit of z, which we refer to as
our target bit. The value of our target bit will be used as a distinguisher in the
following Steps.

In this work, our selection function Sel(pe, k
h, j) calculates the state z after

the SBox substitution in the first round. The index j indicates which bit of z is
returned, with 1 ≤ j ≤ 8.

Sel(pe, k
h, j) := SBox(pe ⊕ kh)[j] = b ∈ {0, 1}. (1)

Depending on the white-box implementation being analysed, it may be the
case that strong correlations between b and the software traces are only observ-
able for some bits of z, i.e. depending on which j we choose to focus on. Thereby,



we perform the following Steps 3, 4 and 5 for each bit j of z.

3. Sorting of Traces We sort each trace se into one of the two sets A0 or
A1 according to the value of Sel(pe, k

h, j) = b:

For b ∈ {0, 1} Ab := {se|1 ≤ e ≤ n, Sel(pe, k
h, j) = b}. (2)

4. Mean Trace We now take the two sets of traces obtained in the previous
step and calculate a mean trace for each set. We add all traces of one set sample
wise and divide them by the total number of traces in the set. For b ∈ {0, 1}, we
define

Āb :=

∑
s∈Ab

s

|Ab|
, (3)

For each of the two sets, we obtain a mean trace such as the one shown in Fig. 2.
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Fig. 2: Mean trace for the set A0

5. Difference of Means We now calculate the difference between the two
previously obtained mean traces sample wise. Fig. 3 shows the resulting differ-
ence of means trace:

∆ = |Ā0 − Ā1|. (4)
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Fig. 3: Difference of means trace for correct key guess

6. Best target bit We now compare the difference of means traces obtained
for all target bits j for a given key hypothesis kh. Let ∆j be the difference of



means trace obtained for target bit j, and let H(∆j) be the highest peak in
the trace ∆j . Then, we select ∆j as the best difference of means trace for kh,
such that H(∆j) is maximal amongst the highest peaks of all other difference of
means traces, i.e.

∀ 1 ≤ j′ ≤ 8, H(∆j′) ≤ H(∆j).

In other words, we look for the highest peak obtained from any difference
of means trace. The difference of means trace with the highest peak H(∆j) is
assigned as the difference of means obtained for the key hypothesis kh analysed
in the actual iteration of the attack, such that ∆h := ∆j . We explain this rea-
soning in the analysis provided after Step 7.

7. Best Key Byte Hypothesis Let ∆h be the difference of means trace
for key hypothesis h, and let H(∆h) be the highest peak in the trace ∆h. Then,
we select kh such that H(∆h) is maximal amongst all other difference of means
traces ∆h, i.e.

∀ 1 ≤ h′ ≤ 256, H(∆h′
) ≤ H(∆h).

Analysis The higher H(∆h), the more likely it is that this key-hypothesis is the
correct one, which can be explained as follows. The attack partitions the traces
in sets A0 and A1 based on whether a bit in z is set to 0 or 1. First, suppose that
the key hypothesis is correct and consider a region R in the traces where (an
encoded version of) z is processed. Then, we expect that the memory accesses
in R for A0 are slightly different than for A1. After all, if they would be the
same, the computations would be the same too. We know that the computations
are different because the value of the target bit is different. Hence, it may be
expected that this difference is reflected in the mean traces for A0 and A1, which
results in a peak in the difference of means trace. Next, suppose that the key
hypothesis was not correct. Then, the sets A0 and A1 can rather be seen as
a random partition of the traces, which implies that z can take any arbitrary
value in both A0 and A1. Hence, we do not expect big differences between the
executions traces from A0 and A1 in region R, which results in a rather flat
difference of means trace.

To illustrate this, consider the difference of means trace depicted in Fig. 3.
This difference of means trace corresponds to the analysis performed on a white-
box implementation obtained from the hack.lu challenge [3]. This is a public
table-based implementation of AES-128, which does not make any use of internal
encodings. For analysing it, a total of 100 traces were recorded. The trace in Fig. 3
shows four spikes which reach the maximum value of 1 (note that the sample
points have a value of either 0 or 1). Let ` be one of the four sample points in
which we have a spike. Then, having a maximum value of 1 means that for all
traces in A0, the bit of the memory address considered in ` is 0 and that this
bit is 1 for all traces in A1 (or vice versa). In other words, the target bit z[j]
is either directly or in its negated form present in the memory address accessed
in the implementation. This can happen if z is used in non-encoded form as
input to a lookup table or if it is only XORed with a constant mask. For sake of



completeness, Fig. 4 shows a difference of means trace obtained for an incorrect
key-hypothesis. No sample has a value higher than 0.3.
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Fig. 4: Difference of means trace for incorrect key guess

The results of the DCA attack shown in this section correspond to the attack
performed using software traces which consist of the memory addresses accessed
during the encryption process. The attack can also be performed using software
traces which consist of other type of information, e.g., the stack writes and/or
reads performed during encryption. In all cases, the analysis is performed in an
analogous way as explained in this section.

3.1 Successful Attack

Throughout this paper, considering the implementation of a cipher, we refer to
the DCA attack as being successful for a given key k, if this key is ranked number
1 among all possible keys for a large enough number of traces. It may be the
case that multiple keys have this same rank. If DCA is not successful for k, then
it is called unsuccessful for key k. Remark that in practice, an attack is usually
considered successful as long as the correct key guess is ranked as one of the best
key candidates. We use a stronger definition as we require the correct key guess
to be ranked as the best key candidate.

Alternatively when attacking one precise n-bit to n-bit key dependent look-
up table, we consider the DCA attack as being successful for a given key k, if this
key is ranked number 1 among all possible keys for exactly 2n traces. Thereby,
each trace is generated by giving exactly 2n different inputs to the look-up table,
i.e. all possible inputs that the look-up table can obtain. To get the correlation
between a look-up table output and our selection function, the correlation we
obtain by evaluating all 2n possible inputs is exactly equal to the correlation we
obtain by generating a large enough number of traces for inputs chosen uniformly
at random. We use this property for the experiments we perform in the following
section.

4 Effect of the Encodings

In this section we analyse the use of internal encodings on white-box implemen-
tations as suggested by Chow et. al. [8]. Moreover, we analyse how the presence



of such encodings affects the vulnerability of a white-box implementation to the
DCA attack. If intermediate values in an implementation are encoded, it be-
comes more difficult to re-calculate such values using our selection function as
defined in Step 2 of the DCA (see Sec. 3). Namely, Sel does not consider the
transformations used to encode these intermediate values, but only calculates a
value before it is encoded. Thus, what we calculate with Sel in Step 2 does not
necessarily match with the actual encoded value computed by the white-box,
even if the correct key hypothesis is used.

In this section we discuss linear encodings, non-linear encodings and a combi-
nation of both as means to protect key dependent look-up tables in a white-box
implementation. These types of encodings are the methods usually applied in
the literature and in several open white-box implementations. For our analyses
in this section, we first build single look-up tables which map an 8-bit long in-
put to an 8-bit long output. More precisely, these look-up tables correspond to
the key addition operation merged with the S-box substitution step performed
on AES (see Sec. 2.1). As common in the literature, we refer to such look-up
tables as T-boxes. We apply the different encoding methods to the outputs of
the look-up tables and obtain encoded T-boxes. Following our definition for a
successful DCA attack on an n-to-n look-up table given in Sec. 3.1, we generate
exactly 256 different software traces for attacking a T-box. Our selection func-
tion is defined the same way as in Step 2 of Sec. 3 and calculates the output of
the T-boxes before it is encoded. The output of the T-box is a typical vulnerable
spot for performing the DCA on white-box implementations as this output can
be calculated based on the known plaintext and a key guess. As we will see in
this section, internal encodings as suggested by Chow et. al. cannot effectively
add a masking countermeasure to the outputs of the S-box.

4.1 Linear Encodings

The outputs of a T-box can be linearly encoded by applying linear transforma-
tions. To do this, we randomly generate an 8-to-8 invertible matrix such as, for
instance,

A =



1 1 1 0 1 0 0 0

0 0 1 1 0 1 0 1

1 0 1 0 0 0 1 0

0 1 1 1 0 1 0 1

0 1 1 1 0 1 1 1

1 1 0 0 0 0 1 1

0 0 1 0 0 0 1 0

1 0 0 0 0 1 1 0


. (5)

For each output y of the T-box T , we perform a matrix multiplication A · y and
obtain an encoded output m. We obtain a new look-up table lT , which maps
each input x to a linearly encoded output m. Fig. 5 displays this behaviour.

We now compute the DCA on the outputs of lT . The difference of means
analysis is performed in the same way as described in Sec. 3. Fig. 6 shows the



T-Box A
x m

Fig. 5: An lT-box maps each input x to a linearly encoded output m.

results of the analysis when using the correct key guess. Since we are attacking
only an 8 × 8 look-up table, the generated software traces consist only of 8
samples which correspond to the 8 output bits of the lT-box. As it can be seen,
all samples in the difference of means curve have a value of zero or almost zero.
No correlations can be identified and thus, the analysis is not successful if the
output of the original T-box is encoded using the matrix A.
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Fig. 6: Difference of means trace for the lT-box

The results shown in Fig. 6 correspond to the DCA performed on a look-up
table constructed using one particular linear transformation to encode the output
of one look-up table. We observe that the DCA as described in Sec. 3 is not
effective in the presence of this particular transformation. However in practice,
linear transformations are randomly chosen and some may not effectively hide
information about a target bit, such that the DCA attack is successful. The
theorem below gives a necessary and sufficient condition under which the DCA
attack is successful in the presence of linear transformations.

Theorem 1. Given a T-box encoded via an invertible matrix A. The DCA at-
tack returns a difference of means value equal to 1 for the correct key guess if
and only if the matrix A has at least one row i with Hamming weight (HW ) = 1.
Otherwise, the DCA attack returns a difference of means value equal to 0 for the
correct key guess.

Proof. For all 1 ≤ j ≤ 8 let y[j] be the jth bit of the output y of a T-box. Let
aij ∈ GF (2) be the entries of an 8× 8 matrix A, where i denotes the row and j



denotes the column of the entry. We obtain each encoded bit m[i] of the lT-box
via

m[i] =
∑
j

aij · y[j] =
∑

j:aij=1

y[j]. (6)

Suppose that row i of A has HW (i) = 1. Let j be such that aij = 1. It
follows from Equation (6) that m[i] = y[j]. Let kh be the correct key hypothesis
and let bit y[j] be our target bit. With our selection function Sel(pe, k

h, j) we
calculate the value for y[j] and sort the corresponding trace in the set A0 or A1.
We refer to these sets as sets consisting of encoded values m, since a software
trace is a representation of the encoded values. Recall now that y[j] = m[i]. It
follows that m[i] = 0 for all m ∈ A0 and m[i] = 1 for all m ∈ A1. Thus, when
calculating the averages of both sets, for Ā[i], we obtain Ā0[i] = 0 and Ā1[i] = 1.
Subsequently, we obtain a difference of means curve with ∆[i] = 1, which leads
us to a successful DCA attack.

What’s left to prove is that if row i has HW (i) > 1, then the value of bit
y[j] is masked via the linear transformation such that the difference of means
curve obtained for ∆[i] has a value converging to zero. Suppose that row i of
A has HW (i) = l > 1. Let j be such that aij = 1 and let y[j′] denote one bit
of y, such that aij′ = 1. It follows from Equation (6) that the value of m[i] is
equal to the sum of at least two bits y[j] and y[j′]. Let kh be the correct key
hypothesis and let y[j′] be our target bit. Let ⇀v be a vector consisting of the
bits of y, for which aij = 1, excluding bit y[j′]. Since row i has HW (i) = l,
vector ⇀v consists of l − 1 bits. This means that ⇀v can have up to 2l−1 possible
values. Recall that each non-encoded T-box output value y occurs with an equal
probability of 1/256 over the inputs of the T-box. Thus, all 2l−1 possible values
of ⇀v occur with the same probability over the inputs of the T-box. The sum of
the l− 1 bits in ⇀v is equal to 0 or 1 with a probability of 50%, independently of
the value of y[j′]. Therefore, our target bit y[j′] is masked via

∑
j:aij=1,j 6=j′ y[j]

and our calculations obtained with Sel(pe, k
h, j′) only match 50% of the time

with the value of m[i]. Each set Ab consists thus of an equal number of values
m[i] = 0 and m[i] = 1. The difference between the averages of both sets is thus
equal to zero and the DCA is unsuccessful for kh. �

One could be tempted to believe that using a matrix which does not have any
identity row serves as a good countermeasure against the DCA attack. However,
we could easily adapt the DCA attack such that it is also successful in the
presence of a matrix without any identity row. In Step 2, we just need to define
our selection function such that, after calculating an 8-bit long output state z,
we calculate all possible linear combinations LC of the bits in z. Thereby, in
Step 3 we sort according to the result obtained for an LC. This means that we
perform Steps 3 to 5 for each possible LC (28 = 256 times per key guess). For
at least one of those cases, we will obtain a difference of means curve with peak
values equal to 1 for the correct key guess as our LC will be equal to the LC
defined by row i of matrix A. Our selection function calculates thus a value equal
to the encoded value m[i] and we obtain perfect correlations.



Note that Theorem 1 also applies in the presence of affine encodings. In case
we add a 0 to a target bit, traces Ā0 and Ā1 do not change and in case we add a
1 the entries in Ā0 and Ā1 that relate to the target bit change to 1 minus their
value. In both cases, the difference of means value does not change.

To illustrate how the effect of linear encodings is shown on complete white-
box implementations, we now perform the DCA attack on our white-box im-
plementation of AES which only makes use of linear encodings. This is a table
based implementation which follows the design strategy proposed by Chow et.
al., but only uses linear encodings. We collect 200 software traces, which consist
of the memory addresses accessed during the encryption process. We use our se-
lection function Sel(pe, k

h, j) = z[j]. Fig. 7 shows the difference of means trace
obtained for the correct key guess.
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Fig. 7: DCA results for our white-box implementation with linear encodings

Fig. 7 shows one peak reaching a value of 1 (see sample 3001). Since the peak
reaches the value of 1, we can again say that our selection function is perfectly
correlated with the targeted bit z[j], even though the output z was encoded
using a linear transformation. Since our partition was done with our selection
function calculating the output of the T-box, our results tell us that the 8 × 8
matrix used to encode the T-box outputs contains at least one identity row.

4.2 Non-Linear Encodings

Next, we consider the effect that non-linear encodings have on the outputs of
a T-box. For this purpose, we randomly generate bijections, which map each
output value y of the T-box to a different value f and thus obtain a non-linearly
encoded T-box, which we call OT-box. Recall that a T-box is a bijective func-
tion. If we encode each possible output of a T-box T with a randomly generated
byte function O and obtain the OT-box OT , then OT does not leak any infor-
mation about T . Namely, given OT , any other T-box T ′ could be a candidate
for constructing the same OT-box OT , since there always exists a corresponding
function O′ which could give us OT ′ such that OT ′ = OT . Chow et. al. refer
to this property as local security [9]. Based on this property, we could expect



resistance against the DCA attack for a non-linearly encoded T-box. For prac-
tical implementations, unfortunately, using an 8-to-8 bit encoding for each key
dependent look-up table is not realistic in terms of code size (see Sec. 4.1 of [15]
for more details). Therefore, non-linear nibble encodings are typically used to
encode the outputs of a T-box. The output of a T-box is 8-bits long and each
half of the output is encoded by a different 4-to-4 bit transformation and both
results are concatenated. Fig. 8 displays the behaviour of an OT-box constructed
using two nibble encodings.

T-Box

O1

O2

x

f [1...4]

f [5...8]

Fig. 8: Non-linear encodings of the T-Box outputs

Encoding the outputs of a T-box via non-linear nibble encodings does not
hide correlations between the secret key of the T-box and its output bits as
proved in the theorem below. When collecting the traces of an OT-box to perform
a DCA using the correct key hypothesis, each (encoded) nibble value is returned
a total of 16 times. Thereby, all encoded nibbles that have the same value are
always grouped under the same set Ab in Step 3. Therefore, we always obtain a
difference of means curve which consists of only 5 possible correlation values.

Theorem 2. Given an OT-box which makes use of nibble encodings, the differ-
ence of means curve obtained for the correct key hypothesis kh consists only of
values equal to 0, 0.25, 0.5, 0.75 or 1.

Proof. We first prove that the mean value of the set A0 is always a fraction of 8
when we sort the sets according to the correct key hypothesis. The same applies
for the set A1 and the proof is analogous. For all 1 ≤ j ≤ 8 let yd[j] be the jth
bit of the output y of a T-box, where d ∈ {1, 2} refers to the nibble of y where bit
j is located. Let kh be the correct key hypothesis. With our selection function
Sel(pe, k

h, j) we calculate a total of 128 nibble values yd, for which yd[j] = 0. As
there exist only 8 possible nibble values yd for which yd[j] = 0 holds, we obtain
each value yd a total of 16 times. Each time we obtain a value yd, we group its
corresponding encoded value fd under the set A0. Recall that an OT-box uses
one bijective function to encode each nibble yd. Thus, when we calculate the
mean trace Ā0 and focus on its region corresponding to fd, we do the following:



Ā0[fd] =
16fd
128

+ · · ·+ 16f ′d
128

=
fd
8

+ · · ·+ f ′d
8
,

with fd 6= f ′d. We now prove that the difference between the means of sets A0

and A1 is always equal to the values 0, 0.25, 0.5, 0.75 or 1. Let fd[j] be one bit
of an encoded nibble fd.

– If fd[j] = 0 is true for all nibbles in set A0, then this implies that fd[j] = 1 is
true for all nibbles in set A1, that is Ā0[j] = 8

8 and Ā1[j] = 0
8 . The difference

between the means of both sets is thus ∆[j] = | 08 −
8
8 | = |0− 1| = 1.

– If fd[j] = 1 is true for 1 nibble in set A0, then fd[j] = 1 is true for 7 nibbles
in set A1, that is, the difference between both means is ∆[j] = | 18 −

7
8 | =

| 68 | = 0.75.
– If fd[j] = 1 is true for 2 nibbles in set A0, then fd[j] = 1 is true for 6 nibbles

in set A1, that is, the difference between both means is ∆[j] = | 28 −
6
8 | =

| 48 | = 0.5.
– If fd[j] = 1 is true for 3 nibbles in set A0, then fd[j] = 1 is true for 5 nibbles

in set A1, that is, the difference between both means is ∆[j] = | 38 −
5
8 | =

| 28 | = 0.25.
– If fd[j] = 1 is true for 4 nibbles in set A0, then fd[j] = 1 is true for 4 nibbles in

set A1, that is, the difference between both means is ∆[j] = | 48−
4
8 | = |

0
8 | = 0.

The remaining 4 cases follow analogously and thus, all difference of means traces
consist of only the values 0, 0.25, 0.5, 0.75 or 1. �

Seeing these values in a difference of means trace can help us recognise if our
key hypothesis is correct. Moreover, a peak value of 0.5, 0.75 or 1 is significantly
high, such that its corresponding key candidate will very likely be ranked as the
correct key.

We now argue that, when we use an incorrect key candidate, nibbles with
the same value may be grouped in different sets. Therefore, we cannot say as
for the correct key hypothesis, that each encoded nibble value fd is repeated
exactly 16 times in a set. If we partition according to an incorrect key hypothesis
kh, the value we calculate for yd[j] does not always match with what is really
calculated by the T-box and afterwards encoded by the non-linear function. It
is not the case that for each nibble value yd for which yd[j] = 0, we group its
corresponding encoded value fd in the same set. Therefore, our sets Ab consist
of up to 16 different encoded nibbles, whereby each nibble value is repeated a
different number of times. This applies for both sets A0 and A1 and therefore,
both sets have similar mean values, such that the difference between both means
is a value closer to zero.

To get practical results corresponding to Theorem 2, we now construct 10 000
different OT-boxes following the idea displayed in Fig. 8. Thereby, each OT-box



is based on a different T-box, i.e. each one depends on a different key, and is
encoded with a different pair of functions O1 and O2. We now perform the DCA
attack on each OT-box. The DCA attack is successful on almost all of the 10
000 OT-boxes with the exception of three. In all cases, the difference of means
curves obtained when using the correct key hypotheses return a highest peak
value of 0.25, 0.5, 0.75 or 1. The table below summarizes how many OT-boxes
return each peak value for the correct key hypotheses.

Peak value for correct key Nr. of OT-boxes
1 55
0.75 2804
0.5 7107
0.25 34

Fig. 9 compares the results obtained for all key candidates when analysing
one particular OT-box. In this case, the correct key is key candidate 119, for
which we obtain a peak value of 0.5. The peak values returned for all other key
candidates are notably lower.
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Fig. 9: Difference of means results for all key candidates when attacking one
particular OT-box. Key guess 119 is the correct one.

Fig. 10 summarizes the results obtained when analysing one of the three
OT-boxes which could not be successfully attacked. In this case, the correct
key is key candidate 191. The peak corresponding to this candidate has a value
of 0.25 and is not the highest peak obtained. For instance, the peak for key
candidate 89 has a value of 0.28. Therefore, our DCA ranks key candidate 89 as
the correct one. Similarly, when analysing the other OT-boxes which could not
be successfully attacked, the peaks obtained for the correct key hypotheses have
a value of 0.25 and there exists at least one other key candidate with a peak
value slightly higher or with the same value of 0.25.

To illustrate how this effect is shown on complete white-box implementations,
we now perform the DCA attack on our table-based white-box implementation
of AES which only makes use of non-linear nibble encodings. We collect 2000
software traces, which consist of the memory addresses accessed during the en-
cryption process. Fig. 11 shows the difference of means trace obtained when
using the correct key byte with our selection function.
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Fig. 10: Difference of means results for all key candidates when attacking one
particular OT-box. Key guess 191 is the correct one.
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Fig. 11: DCA results for our white-box implementation with non-linear encodings

Fig. 11 is flat with one peak with a value very close to 0.75 (see sample 1640),
another peak with a value very close to 0.5 (see sample 1750). Additionally, the
value of two peaks is very close to 0.25. This result corresponds to the difference
of means results obtained with our OT-box examples and to Theorem 2. Based on
the results shown in this section we can conclude that randomly generated nibble
encodings do not effectively work as a countermeasure for hiding correlations
between a target bit and a selection function when performing the difference
of means test. When using the correct key hypothesis, we do not always have
perfect correlations such as those shown in Fig. 3, but the correlations are still
high enough in order to allow a key extraction. Moreover, we learn one way
to increase our success probabilities when performing the DCA attack. Namely,
when ranking the key hypotheses, we could start by considering only the keys
for which we obtain a difference of means curve with values very close to those
described in Theorem 2. After that, we could rank our key hypotheses according
to the height of these values.

4.3 Combination of Linear and Non-Linear Encodings

We now discuss the effectiveness of the DCA when performed on white-box im-
plementations that make use of both linear and non-linear encodings to protect
their key-dependent look-up tables. The combination of both encodings is the
approach proposed by Chow et. al. in order to protect the content of the look-
up tables from reverse engineering attempts. The output of each key-dependent
look-up table, such as a T-box, is first encoded by a linear transformation and



afterwards by the combination of two non-linear functions as shown in Fig. 12.
In the following, we refer to lOT-boxes as T-boxes that are encoded using both
types of encodings.

T-Box A

O1

O2

x

f ′[1...4]

f ′[5...8]

Fig. 12: Linear and non-linear encodings of the T-Box outputs

We now explain why the DCA attack can be successful even in the presence
of both types of encodings. In this case, the success of the DCA attack depends
on the matrix performing the linear transformation, which returns linearly en-
coded values m. The values m are split into two nibbles m1 = m[1, ..., 4] and
m2 = m[5, ...8], to afterwards be encoded by the non-linear functions O1 and
O2 respectively. The values of m1 are obtained from the linear combinations
of the first 4 bits of the columns of A. Analogously, the values of m2 are ob-
tained from the linear combinations of the last 4 bits of the columns of A. In
the following, we refer to Subd as the upper (or lower) part of the columns of A,
with d ∈ {1, 2}. For instance, when considering the matrix A described in 5 in
Sec. 4.1, its corresponding Sub1 looks as follows

Sub1 =


1 1 1 0 1 0 0 0

0 0 1 1 0 1 0 1

1 0 1 0 0 0 1 0

0 1 1 1 0 1 0 1

 . (7)

In the following theorem, we derive a condition of a Subd matrix, such that our
DCA returns values equal to those mentioned in Theorem 2 when we use the
correct key hypothesis. As for the OT-boxes, the reason for this lies on how the
encoded nibble values fd are grouped in the sets Ab.

Theorem 3. Given an lOT-box which makes use of a matrix A and nibble en-
codings. The difference of means curve obtained for the correct key hypothesis
kh consist only of values equal to 0, 0.25, 0.5, 0.75 or 1, if A has at least one
Subd with one column ⇀aj, such that rank[Subd \ ⇀aj ] = 3.

Proof. Let ⇀aj ∈ GF (24) be the columns of Subd, where j denotes the column
number. We obtain each encoded nibble md via



md =
∑
j

⇀aj · y[j] =
∑

j:y[j]=1

⇀aj . (8)

Suppose that the value of ⇀aj is not contained in the space spanned by the
other columns of Subd. If bit y[j] = 0, then it follows from Equation 8 that
the value mi is obtained as a linear combination of at most 7 vectors with rank
3. These combinations do not span GF (24), but only a 3-dimensional subspace
S ⊆ GF (24), which consists of exactly 8 different 4-bit values. If y[j] = 1, the
value of mi is obtained as a linear combination that includes the value of ⇀aj .
These combinations thus span an affine subspace S′ := {⇀aj + ⇀s|⇀s ∈ S}, i.e.
S ∪ S′ = GF (24) and S ∩ S′ = ∅.

We now prove that when we use the correct key hypothesis, our sets Ab con-
sist each of eaxtly 8 different encoded nibbles, whereby each nibble is repeated
a total of 16 times. Let kh be the correct key hypothesis and let bit yd[j] be our
target bit, with d ∈ {1, 2} referring to the nibble of y where bit j is located.
With our selection function Sel(pe, k

h, j) we calculate a total of 128 values for
which yd[j] = 0. We know that nibble mi is always one of the 8 possible values
in S. Analogously, we know that for each time yd[j] = 1, mi ∈ S′. Therefore, our
set A0 consists only of encoded nibble values from a set F := {Oi(mi)|mi ∈ S}.
Our set A1 consists only of encoded nibbles from a set F ′ := {Oi(mi)|mi ∈ S′}.
Since Oi is a bijective function, it follows that F ∩ F ′ = ∅, i.e. all elements in
A0 differ from the elements in A1. Moreover, each set Ab consists of 8 different
nibble values, whereby each nibble is repeated a total of 16 times. Analogous to
the proof of Theorem 2, it follows that the difference of means curve calculated
for Sel(pe, k

h, j) consists only of the values 0, 0.25, 0.5, 0.75 or 1. �

As for the case with the OT-boxes, a key candidate corresponding to cor-
relation values of 0.5, 0.75 and 1 is very likely to be ranked as the best key in
the DCA. We now discuss what happens in the DCA attack if the pre-condition
described in Theorem 3 is not satisfied. If for Sub1 and Sub2 of matrix A, the
value of any column vector ⇀aj is contained in the space spanned by the other
columns, we see from Equation 8 that even when y[j] = 0, the value of mi is
still obtained as a linear combination of 7 vectors with rank 4. Thereby, mi can
be any value in GF (24). The sets Ab can contain thus any 4-bit long value. As
explained in Sec. 4.2, the average of both sets are more or less equal and thus,
their difference converges to a value close to 0.

We now perform the DCA attack on the OpenWhiteBox challenge by Chow.6

This AES implementation was designed based on the work described in [8]
and [15]. To perform the attack, we collect 2000 software traces. These software
traces consist of values read and written to the stack during the first round. We
define our selection function the same way as in Sec. 3, Sel(pe, k

h, j) = z[j].
Note that based on Theorem 3, the correlations between our selection function
and a correct key hypothesis may be shown depending on which target bit z[j]

6 https://github.com/OpenWhiteBox/AES/tree/master/constructions/chow



we use. When we use the correct key byte 0x69 with our selection function we
obtain the difference of means traces shown in Fig. 13 for each target bit.
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Fig. 13: Difference of means results for the OpenWhiteBox Challenge for bits
z[1] to z[8]

Not all difference of means traces show significant peaks that reveal corre-
lations between our selection function sel(pe, 0x69, j) and the targeted bit z[j].
Fig. 13b nevertheless, shows a flat trace with 7 peaks reaching a value of almost
0.5 (see samples 327, 335, 607, 615, 1007, 1023, 1047). Due to this trace, the key
byte 0x69 is ranked as the best key candidate and the DCA attack is successful
on this implementation. The peak values shown in Fig. 13b correspond to those
described in Theorem 3. We can conclude that the matrix used for performing
the linear transformation of the state byte z, fulfils the condition described in
Theorem 3.

5 Generalized DCA

Traditionally, the DCA has been described as a software counterpart of the dif-
ferential power analysis (DPA). The key candidates are ranked according to the
results obtained from a difference of means test. Thereby, the difference of means
graph showing the highest peak corresponds to the highest ranked key. In this
paper we review how this approach also works for attacking many white-box



implementations. Nevertheless, the results shown in Sec. 4.2 show that we can
increase our success rate by modifying our method for ranking the key candi-
dates. Namely, if none of our key candidates returns a difference of means curve
with a peak value significantly high, we can rank the key candidates according
to the convergence of their peaks to the values 0.25 or 0. Thereby, we expect
that by increasing the number of traces used for the analysis, the peak values
for the correct key guess get closer to 0.25 or 0. In the following, we refer to the
steps performed in Sec. 3.

1. Collecting Traces We perform this step the same way as described in
Sec. 3. We remark that when attacking a complete white-box implementation,
we need to generate a large enough number of traces in order to increase our
success probability.

Steps 2 to 5. For each key candidate kh and for each target bit z[j], we
perform Steps 2 to 5 as described in Sec.3.

6. Best target bit ranking In this step we compare the difference of means
traces obtained for all target bits j for a given key hypothesis kh. If there is a
trace with a peak value high enough that it stands out among the other traces,
then we select that as the best one for the key candidate we are analysing.
Otherwise, we look for a trace with values converging to 0.25 (or 0) and select
that one for the key candidate we are analysing.

This means that we perform Step 6 as in Sec. 3 but make a revision of the
value H(∆j) before assigning ∆j to ∆h:

– If H(∆j) > 0.3, then we select ∆j such that, ∆h := ∆j .

– If 0.2 ≤ H(∆j) ≤ 0.3, then we look for a trace with values converging to
0.25. The trace ∆j′ with the peak values closest to 0.25 is thus selected such
that ∆h := ∆j′ .

– Otherwise if H(∆j) < 0.2, then we look for a trace with values converging
to 0. The trace ∆j′ with the peak values closest to 0 is thus selected such
that ∆h := ∆j′ .

7 Best Key Byte Hypothesis Analogous to the previous step, we perform
Step 7 the same way as in Sec. 3, but if no key candidate stands out, we look
for a candidate with the values closest to 0.25 or 0.

– If H(∆h) > 0.3, then we select the key hypothesis corresponding to ∆h as
our best key candidate.

– If 0.2 ≤ H(∆h) ≤ 0.3, then we look for a trace with values converging to
0.25. The key hypothesis corresponding to the trace ∆h′

with the peak values
closest to 0.25 is thus selected as our best key candidate.

– Otherwise if H(∆h) < 0.2, then we look for a trace with values converging to
0. The key hypothesis corresponding to the trace ∆h′

with the peak values
closest to 0 is thus selected as our best key candidate.



6 Conclusions

In this paper we observe how internal encodings as suggested by Chow et. al. do
not effectively hide information regarding the outputs of a key dependent look-up
table. Therefore, the use of such encodings makes a white-box implementation
very vulnerable against the DCA attack. Our experiments performed with T-
boxes encoded only via linear transformations show us that this method could
provide a good masking for the output bits of a look-up table as long as the
matrix used for performing the linear transformation does not have an identity
row (see Theorem 1). However as explained, the DCA can easily be modified
in order to be successful even in the presence of such matrices. Our selection
function only needs to calculate all possible linear combinations of the bits in
the calculated state z. Thereby, at least one linear combination will be equal to
the linear combination defind by one of the matrix rows. We will thus calculate
one bit of the encoded output state correctly when using the correct key guess
and this will lead us to a successful DCA attack.

We prove that the DCA attack performed on nibble encoded look-up tables
always returns a difference of means curve with values that converge to 0, 0.25,
0.5, 0.75 or 1 when using the correct key hypothesis (see Theorem 2). Therefore
nibble encodings alone are vulnerable against a DCA attack. These observations
help us understand why the DCA attack is successful even in the cases that
intermediate results are encoded using both linear and non-linear nibble encod-
ings. We prove that, if the upper or lower part of a matrix (denoted as Subd)
performing the linear transformation of a look-up table output has at least one
column ⇀a such that its column rank is rank[Subd \ ⇀aj ] = 3, the DCA returns a
difference of means curve with the values 0, 0.25, 0.5, 0.75 or 1 for the correct
key guess. This leads us to a successful DCA attack as peak values of 0.5, 0.75 or
1 are very likely to be ranked as the best key candidates. These results help us
improve our success rate when performing a DCA attack. Namely, when ranking
the key candidates, if no candidate has a difference of means curve with signifi-
cantly high peaks, we can rank the key candidates according to the convergence
of their difference of means peaks to the values 0.25 or 0 (see Sec. 5).

This paper helps understand the reasons why the DCA was successful on
many white-box implementations analysed in [6] and helps as a step towards
more secure white-box designs in the light of the DCA attack. Using non-linear
nibble encodings is not sufficient, but one could consider using linear and non-
linear byte encodings only on the look-up tables that are accessed during the
first and the last rounds of an implemented cipher. Namely, only the outputs
of these look-up leak information useful for performing a DCA and, if they are
encoded via non-linear byte encodings, we efficiently hide correlations between
the look-up table outputs and the secret key (see Sec. 4.2). The rest of the look-
up tables in the implementation could be protected as proposed by Chow et.
al., as far as the DCA attack is concerned, with a combination of linear and
non-linear nibble encodings. In this case, our implementation would still remain
with a considerable code size.
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