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Abstract

A well known result by Kilian (ACM 1988) asserts that general secure two computation
(2PC) with statistical security, can be based on OT. Specifically, in the client-server model,
where only one party – the client – receives an output, Kilian’s result shows that given the
ability to call an ideal oracle that computes OT, two parties can securely compute an arbitrary
function of their inputs with unconditional security. Ishai et al. (EUROCRYPT 2011) further
showed that this can be done efficiently for every two-party functionality in NC1 in a single
round.

However, their results only achieve statistical security, namely, it is allowed to have some error
in security. This leaves open the natural question as to which client-server functionalities can be
computed with perfect security in the OT-hybrid model, and what is the round complexity of
such computation. So far, only a handful of functionalities were known to have such protocols.
In addition to the obvious theoretical appeal of the question towards better understanding secure
computation, perfect, as opposed to statistical reductions, may be useful for designing secure
multiparty protocols with high concrete efficiency, achieved by eliminating the dependence on a
security parameter.

In this work, we identify a large class of client-server functionalities f : X×Y 7→ {0, 1}, where
the server’s domain X is larger than the client’s domain Y, that have a perfect reduction to
OT. Furthermore, our reduction is 1-round using an oracle to secure evaluation of many parallel
invocations of 1-out-of-2 bit OT, as done by Ishai et al. (EUROCRYPT 2011). Interestingly, the
set of functions that we are able to compute was previously identified by Asharov (TCC 2014) in
the context of fairness in two-party computation, naming these functions full-dimensional. Our
result also extends to randomized non-Boolean functions f : X × Y 7→ {0, . . . , k − 1} satisfying
|X | > (k − 1) · |Y|.
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1 Introduction
In the setting of secure two-party computation (2PC), the goal is to allow two mutually distrustful
parties to compute some function of their private inputs. The computation should preserve some
security properties, even in the face of adversarial behavior by one of the parties. The two most
common types of adversaries are malicious adversaries (which may instruct the corrupted party
to deviate from the prescribed protocol in an arbitrary way), and semi-honest adversaries (which
must follow the instructions of the protocol, but may try to infer additional information based on
the view of the corrupted party).

Oblivious transfer (OT) is a two-party functionality, fundamental to 2PC and the more general
secure multiparty computation (MPC). It was first introduced by Rabin [29] and Even et al. [14].
In the setting of

(2
1
)
-bit-OT, there is a receiver holding a bit b ∈ {0, 1}, and a sender holding two

bit-messages a0, a1 ∈ {0, 1}. At the end of the interaction, the receiver learns ab and nothing else,
and the sender learns nothing. It turns out that OT can be used in the construction of protocols,
both in 2PC and MPC with various security guarantees [23, 34, 15, 7]. Moreover, giving to the
parties access to an ideal process that computes OT securely, is potentially useful.

Constructing protocols in this model, called the OT-hybrid model, could be used for optimizing
the complexity of real world, computationally secure protocols for several reasons. First, using
the OT-precomputation paradigm of Beaver [5], the heavy computation of OT can many times
be pushed back to an off-line phase. This off-line phase is performed before the actual inputs
for the computation (and possibly even the function to be computed) are known. Later, as the
actual computation takes place, the precomputed OTs are very cheaply converted into actual OT
interactions. Furthermore, the OT-extension paradigm of [6] offers a way to efficiently implement
many OTs using a relatively small number of base OTs. This can be done using only symmetric-key
primitives (e.g., one-way functions, pseudorandom generators). Furthermore, it can also be used
to implement

(2
1
)
-s-string-OT (i.e., the receiver chooses one out of two string of length s) using

a sub-linear (in the security parameter) number of calls to
(2
1
)
-bit-OT and some additional sub-

linear work, assuming a strong variant of PRG [18]. Additionally, there is a variety of computational
assumptions that are sufficient to realize OT [28], or even with unconditional security under physical
assumptions [11, 27, 12, 33, 22].

An interesting family of two-party functionalities are the client-server functionalities, where
only one party – the client – receives an output. In addition to the OT functionality mentioned
earlier, client-server functionalities include many other examples. Securely computing some of
theses functionalities could be useful for many interesting applications, both in theory and in
practice.

For client-server, a well known result due to Kilian [23], asserts that OT is complete. That is,
any two-party client-server functionality can be computed with unconditional security in the OT-
hybrid model. Ishai, Prabhakaran, and Sahai [19] further showed that the protocol can be made
efficient. Later, it was shown by Ishai et al. [20], that in the OT-hybrid model, every client-server
functionality can be computed using a single round. Furthermore, the protocol’s computational and
communication complexity are efficient for functions in NC1. However, all of the results achieve
only statistical security, namely, it is allowed to have some error in security.

For the case of perfect security in this setting much less is known. Given access to (many parallel)
ideal computations for

(2
1
)
-bit-OT, Brassard et al. [9] showed how to compute the functionality(n

1
)
-s-string-OT, and Wolf and Wullschleger [31] showed how to compute

(2
1
)
-bit-TO, which is the
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same as
(2
1
)
-bit-OT where the roles of the parties are reversed. Furthermore, the former protocol

has a single round, in which the parties invoke the OT, and with no additional bits to be sent over
the channel between the parties. The latter protocol requires an additional bit to be sent by the
server.

Observe that the result of [9] implies that any client-server functionality f can be computed
with perfect security against semi-honest corruptions. Indeed, let n be the number of inputs in
the client’s domain, and let s be the number of bits required to represent an output of f . The
server will send to the

(n
1
)
-s-string-OT functionality all of the possible outputs with respect to its

input, and the client will send its input. The client then outputs whatever it received from the OT.
Clearly, the protocol is secure against semi-honest adversaries, however, in the malicious case, this
is not true, in general. This is due to the fact that the server has complete control over the output
of the client. For instance, for the “greater-than” function, the server can force the output of the
client to be 1 if and only if y is even. Therefore, we are only interested in security against malicious
adversaries.

Ishai et al. [21] studied perfectly secure multiparty computation in the correlated randomness
model. They showed that any multiparty client-server functionality can be computed with perfect
security, when the parties have access to a correlated randomness whose correlation depends on the
function to be computed by the parties.

There are also various client-server functionalities that can be computed trivially (even in the
plain model). For example, the XOR functionality can be computed by having the server sending
its input to the client. These simple examples suggest that fairness is not a necessary condition for
being able to compute a function perfectly in the client-server model.

Thus, the state of affairs is that most two-party client-server functionalities remain unclassified
as to perfect security in the OT-hybrid model. In this work we address the following natural
questions.

Which client-server functionalities can be computed with perfect security against ma-
licious adversaries in the OT-hybrid model? What is the round complexity of such
protocols?

The questions have an obvious theoretical appeal to it, and understanding it could help us gain
a better understanding of general secure computation. In addition, perfect security may be use-
ful for designing multiparty protocols with high concrete efficiency, achieved by eliminating the
dependency on a security parameter.

We stress that, under the assumption that NP 6⊆ BPP, it is impossible to achieve completeness
theorems in our setting, similar to the completeness theorems of Kilian [23]. Indeed, suppose
the parties want to compute an NP relation with perfect zero-knowledge and perfect soundness.
Then it is impossible even when given access to any ideal functionality with no input (distributing
some kind of correlated randomness) [21]. This is due to the fact that if such a protocol does
exist, then one can use the simulator to decide the relation, putting it in BPP. Since OT can be
perfectly reduced to a suitable no-input functionality, this implies that no such protocol exist in
the OT-hybrid model.

1.1 Our Results

Our main result states that if the parties have access to many parallel ideal computations of(2
1
)
-bit-OT, most client-server functionalities, where the server’s domain is larger than the client’s

2



domain, can be computed with perfect full-security in a single round. Interestingly, the set of
functions that we are able to compute was previously identified by Asharov [3] in the context of
fairness in two-party computation, naming these functions as full-dimensional.

Let f : X × Y 7→ {0, 1} be a function, where the server’s domain size |X | is larger than the
client’s domain size |Y|. Write X = {x1, . . . , xn} and Y = {y1, . . . , ym}. We consider the geometric
representation of f as |X | points over R|Y|, where the jth coordinate of the ith point is f(xi, yj). We
then consider the convex polytope1 defined by these points. The function is called full-dimensional
if the dimension of the polytope is exactly the same as the dimension of the space, i.e., |Y|. For
example, if the points form a triangle in the plane then f is full-dimensional.2 We prove the
following theorem:

Theorem 1.1 (Informal). Let f : X × Y 7→ {0, 1} be a client-server functionality. If f is full-
dimensional, then it can be computed with perfect full-security in the OT-hybrid model in a single
round. Furthermore, the number of OT calls is O (poly (|Y|)).

In fact, we generalize the above theorem, and we give a similar criterion for randomized non-
Boolean functions. The class of functions that our protocol can compute can be further extended by
adding to Y inputs that fix the output. This class of functions includes many interesting examples,
such as Yao’s “millionaires’ problem” (i.e., the “greater-than” function). Here the parties have
inputs that ranges from 1 to some natural number n, and the output of the client is 1 if and only
if its input is greater than or equal to the server’s input.

Note that the communication complexity of our protocol is polynomial in the client’s domain
size, and not in its input’s size. For functions with small domain, however, this does improve upon
known construction that achieve statistical security (e.g., the single round protocol by Ishai et al.
[20], see Section 7 for more details).

Its was proven by [3], that the number of deterministic Boolean full-dimensional functions tends
to 1 exponentially fast as |X | and |Y| grow. Specifically, a uniformly random function with domains
sizes |X | = m + 1 and |Y| = m, will be full-dimensional with probability at least 1 − pm, where
pm denotes the probability that a uniformly random Boolean m×m matrix is singular. The value
pm is conjectured to be (1/2 + o(1))m. Currently, the best known upper bound is (1/

√
2 + o(1))m

proved by [32].
Theorem 1.1 identifies a set of client-server functionalities that are computable with perfect full-

security. It does not yield a full characterization of such functions. For example, the status of the
equality function 3EQ : {x1, x2, x3} × {y1, y2, y3} 7→ {0, 1}, defined as 3EQ(x, y) = 1 if and only if
x = y, is currently unknown. However, for the case of Boolean functions (even randomized), we are
able to show that the protocol suggested in the proof of Theorem 1.1 computes only full-dimensional
functions.

1.2 Our Techniques

Our construction is based on the protocol of Ishai et al. [20], which admits statistical security.
Roughly speaking, we identify two key issues with their construction that prevents the protocol

1A polytope is a generalization in any number of dimensions of the two-dimensional polygon and the three-
dimensional polyhedron.

2Observe that if f is full-dimensional then |X | > |Y|, since the polytope requires at least |Y| + 1 points to be of
dimension |Y|.
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from achieving perfect security. We then show how for full-dimensional functions, these issues can
be fixed.

The construction makes use of perfect randomized encoding (PRE)[2]. A PRE f̂ of a function
f , is a randomized function such that for every input x and a uniformly random choice of the
randomness r, it is possible to decode f̂(x; r) and compute f(x) without errors. In addition, the
output distribution of f̂ on input x reveals no information about x except from what follows from
f(x). As f is a PRE of itself, usually the PRE has an additional property. Here, we rely on a
property called decomposability. Roughly, a PRE is said to be decomposable if it can be written
as f̂ = (f̂1, . . . , f̂n), where each f̂i depends only on the randomness and the ith bit of the input x.
Observe that each f̂i can be written as one of two vectors, depending on the ith bit of x, i.e., we
can write f̂i as vi,xi , where (vi,0,vi,1) depends on the randomness r. This definition can be viewed
as the perfectly secure version of garbled circuits [34, 25].

The protocol of Ishai et al. [20]. Let us first give a brief overview of the protocol of Ishai
et al. [20], which will be dubbed the IKOPS protocol. Recall that it is a single round protocol in
the OT-hybrid model that achieves statistical security.

The main idea is to have the server run an “MPC in the head” [19]. That is, the (real) server
locally emulates the execution of a perfectly secure3 multiparty protocol Π, computing some related
functionality (described below), with many virtual servers performing the computation and have no
output, and many virtual clients, each receiving an output. Each virtual client is associated with
a value for each bit of the input y of the real client. Stated differently, if m is the number of bits
in y, then there will be 2m virtual clients, denoted C1,0,C1,1, . . . ,Cm,0,Cm,1, with Cj,b associated
with the predicate yj = b. For each input x of the server, the underlying protocol Π computes (and
distributes among the virtual clients) a decomposable PRE f̂x = (f̂1, . . . , f̂m) of the function fx,
defined as fx(y) = f(x, y). Specifically, the input of the virtual servers’ are secret sharing of the
real server’s input x and randomness r. The output of the virtual client Cj,b in an honest execution
of Π is f̂j(b; r), i.e., the part of the encoding that corresponds to the jth bit of y being equal to b.

The real client can now use the available OT functionality in order to recover the correct
output of the PRE and reconstruct the output f(x, y), namely, it will recover the view of Cj,yj for
all j ∈ [m]. As part of the “MPC in the head” paradigm, the client and server jointly set up a
watchlist (the views of some of the virtual servers) allowing the client to verify consistency between
the virtual servers’ views and the virtual clients’ views. If the client found an inconsistency, it
outputs f(x0, y) for some default value x0 ∈ X . However, it is unclear how to have the server send
only some of the views according to the request of the client. Ishai et al. [20] handled this by letting
the client get each view with some constant probability independently of the other views.

The security of the protocol as described so far can still be breached by a malicious server.
By tampering with the outputs of the virtual clients, a malicious server could force the output of
the real client to be f(x, y) for some inputs y and force the output to be f(x0, y) for other values
of y, where the choice is completely determined by the adversary. To overcome this problem, the
function f is replaced with a function f ′ where each bit yi is replaced with κ random bits whose
XOR equals to yi, where κ is the security parameter.4 This modification prevents the adversary
from having complete control over which inputs the client will output f(x0, y), and for which inputs
it will output f(x, y).

3Since the IKOPS protocol admits statistical security it suffices to use a statically secure multiparty protocol.
4This technique for eliminating selective failure attacks was previously used in [23, 24].

4



Towards achieving perfect security. Two problems arise when trying to use the IKOPS pro-
tocol to achieve perfect security. First, recall that the client will receive the view of each virtual
server with constant probability independently of the other virtual views. As a result, a malicious
client could potentially receive the views of all virtual servers and thus it could learn the server’s
input. Second, with some non-zero probability, a malicious server might still be able to have the
client output be f(x0, y) for some inputs y, but output f(x, y) for other inputs y. We next present
a solution for each of the two issues.

Perfect security against a corrupted client. We solve the former issue, by showing how
the server and the client can sample a watchlist of a fixed the size. Ideally, we would like to
have the client request exactly t views, where t bounds the number of corruptions allowed in
the multiparty protocol Π. This requires the server and the client to be able to compute the
functionality

(n
t

)
-s-string-OT with perfect security, where n denotes the number of virtual servers

in Π and s denotes the length of their views. However, it is not known if implementing it in the
OT-hybrid model with perfect security is even possible. Therefore, we slightly relax the security
requirement, so that a malicious client will not be able to receive more than twice the number of
views that an honest client receives. We then let the honest client ask for exactly t/2 of the views.
The idea in constructing such a watchlist is the following. For each view of a virtual server, the real
server sends (via the OT functionality) either a masking of the view, or a share of the concatenation
of the maskings. That is, the server’s input to the OT5 is (Vi ⊕ ri, r[i]), where Vi is the view of
the ith virtual server, where r = (r1, . . . , rn) is a vector of random strings, and where r[i] is the
ith share of r for some threshold secret sharing scheme with sufficiently large threshold value.6 As
a result, in each invocation of the OT, the client will be able to learn either a masked view or a
share, which bounds the number of views it can receive.

Perfect security against a corrupted server. To solve the second issue, it will be convenient to
present the server security requirement from a geometric point of view. To simplify the explanation
in this introduction, we only focus on deterministic Boolean functions. Recall that we can view the
function f as |X | points over R|Y|, where the jth coordinate of the ith point is f(xi, yj). Observe that
all a simulator for a malicious server can do is to send a random input according to some distribution
D. The goal of the simulator is to force the distribution of the client’s output to be equivalent to
the distribution in the real world. Thus, perfect simulation of a malicious server is possible if and
only if there exists such distribution D over the server’s inputs in the ideal world, such that for
every input y ∈ Y of the client, Prx←D[f(x, y) = 1] = qy, where qy is the probability the client
outputs 1 in the real world on input y. Observe that for every y ∈ Y, the value Prx←D[f(x, y) = 1]
can be written as a convex combination7 of the points {f(xi, y)}|X |i=1. Moreover, all of these convex
combinations have the same coefficients. Thus, the point (Prx←D[f(x, y) = 1])y∈Y lies inside the
convex hull of the points of f . This results in an equivalent definition to state perfect security:
simulation of an adversary is possible if and only if the vector of outputs (qy)y∈Y in the real world
is in the convex-hull of the points in R|Y| described by f .

Now, consider the IKOPS protocol. It could be the case that an adversary causes the vector of
outputs (qy)y∈Y to have different errors in each coordinate, hence the point is not necessarily inside

5Formally, they use the protocol of [9] to compute
(

n
1

)
-s-string-OT.

6There are additional technical subtleties, however, for this informal introduction we ignore them.
7A convex combination is a linear combination, with the coefficient being non-negative and sum to 1.
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the convex-hull of the points of f . To fix this issue, instead of having the client output according
to a default value in case of an inconsistency, the client will now sample x0 uniformly at random
and output f(x0, y). From a geometric perspective, it outputs 1 with probability cy, where c is
the center of the polytope.8 We claim that if f is full-dimensional, then this results in a perfectly
secure protocol. We next present a rough intuition. Let p denote the probability of detecting
an inconsistency (more precisely, for each y the probability py of detecting an inconsistency is
in [p − ε, p + ε], for some small ε). Further define the matrix Mf (x, y) = f(x, y) (i.e., each row
of Mf describes a point in R|Y|). Thus, the output vector of the client q is close to the point
p · c + (1 − p) ·Mf (x, ·), give or take ±ε in each coordinate, for some small ε. If p is close to 1,
this point q is close to c, and since c is an internal point, q is also internal for a sufficiently small
ε. Otherwise, the point q will be close to the boundary. As a result, it is unclear as to why perfect
security holds. Here, we utilize a special property of IKOPS protocol’s security. We manage to
prove that ε is bounded by p · ε′, for some small ε′. That is, ε depends on p, unlike the standard
security requirement. This property allows us to prove that perfect security holds.

1.3 Related Work

In the 2PC settings, Cleve [10] showed that the functionality of coin-tossing, where the parties
output the same random bit, is impossible to compute with full-security, even in the OT-hybrid
model. In spite of that, in the seminal work Gordon et al. [16], and later followed by [3, 26, 13, 4], it
was discovered that in the OT-hybrid model, most two-party functionalities can be evaluated with
full security by efficient protocols. In particular, [4] completes the characterization of symmetric
Boolean functions (where both parties receive the same output). However, all known general
protocols for such functionalities have round complexity that is super-logarithmic in the security
parameter. Moreover, this was proven to be necessary for functions with embedded XOR [16].

1.4 Organization

In Section 2 we provide some notations and definitions that we use in this work, alongside some
required mathematical background. Section 3 is dedicated to expressing security in geometrical
terms and the formal statement of our result. In Sections 4 and 5 we present the proof of the main
theorem. In Section 6 we show that the analysis of our protocol for Boolean functions is tight.
Finally, in Section 7 we briefly discuss the efficiency of our construction.

2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables and matrices, lowercase
for values, and we use bold characters to denote vectors and points. All logarithms are in base 2.
For n ∈ N, let [n] = {1, 2 . . . n}. For a set S we write s← S to indicate that s is selected uniformly
at random from S. Given a random variable (or a distribution) X, we write x← X to indicate that
x is selected according to X. We use poly to denote an unspecified polynomial, and we use polylog
to denote an unspecified polylogarithmic function. For a randomized function (or an algorithm) f

8We stress that the same construction works for any other choice of a point v that is strictly inside the convex-hull
of the points.
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we write f(x) to denote the random variable induced by the function on input x, and write f(x; r)
to denote the value when the randomness of f is fixed to r.

For a matrix M ∈ Rn×m, we let M (i, ·) be its ith row, we let M (·, j) be its jth column, and we
denote by MT the transpose of M . For a pair of matrices M1 ∈ Rn×m1 ,M2 ∈ Rn×m2 , we denote
by [M1||M2] the concatenation of M2 to the right of M1.

2.2 Cryptographic Tools

Definition 2.1. The statistical distance between two finite random variables X and Y is

SD (X,Y ) = 1
2
∑
a

|Pr [X = a]− Pr [Y = a]| .

Secret Sharing Schemes.

A (t + 1)-out-of-n secret-sharing scheme is a mechanism for sharing data among a set of parties
{P1, . . . ,Pn}, such that every set of size t + 1 can reconstruct the secret, while any smaller set
knows nothing about the secret. As a convention, for a secret s and i ∈ [n] we let s[i] be the ith
share, namely, the share received by Pi. In this work, we rely on Shamir’s secret sharing scheme
[30].

In a (t + 1)-out-of-n Shamir’s secret sharing scheme over a field F, where |F| > n, a secret
s ∈ F is shared as follows: A polynomial p(·) of degree at most t+ 1 over F is picked uniformly at
random, conditioned on p(0) = s. Each party Pi, for 1 ≤ i ≤ n, receives a share s[i] := p(i) (we
abuse notation and let i be the element in F associated with Pi).

Decomposable Randomized Encoding.

We recall the definition of randomized encoding [34, 2]. They are known to exists unconditionally
[17, 2].

Definition 2.2 (Randomized Encoding). Let f : {0, 1}n 7→ Z be some function. We say that a
function f̂ : {0, 1}n ×R 7→ W is a perfect randomized encoding (PRE) of f if the following holds.

Correctness: There exists a decoding algorithm Dec such that for every x ∈ {0, 1}n

Pr
r←R

[
Dec

(
f̂ (x; r)

)
= f(x)

]
= 1.

Privacy: There exists a randomized algorithm Sim such that for every x ∈ {0, 1}n it holds that

Sim (f(x)) ≡ f̂ (x; r) ,

where r ← R.

Definition 2.3 (Decomposable Randomized Encoding). For every x ∈ {0, 1}n, we write x =
x1, . . . , xn, where xi is the ith bit of x. A randomized encoding f̂ is said to be decomposable if it
can be written as

f̂ (x; r) =
(
f̂0 (r) , f̂1 (x1; r) , . . . , f̂n (xn; r)

)
,

where each f̂i, for i ∈ [n], can be written as one of two vectors that depends on xi, i.e., we can
write it as vi,xi, where (vi,0,vi,1) depends on the randomness r.

7



2.3 Mathematical Background

Definition 2.4 (Convex Combination and Convex Hull). Let V = {v1, . . . ,vm} ⊆ Rn be a set of
vectors. A convex combination is a linear combination

∑m
i=1 αi · vi where

∑m
i=1 αi = 1 and αi ≥ 0

for all 1 ≤ i ≤ m. The convex hull of V, denoted

conv (V) =
{

m∑
i=1

αi · vi |
m∑
i=1

αi = 1 and αi ≥ 0 for all i ∈ [m]
}
,

is the set of all vectors that can be represented as a convex combination of the vectors in V. For a
matrix M = [v1|| . . . ||vm] we let conv (M) = conv ({v1, . . . ,vm}).

Definition 2.5 (Affine Hull). For a set of vectors V = {v1, . . . ,vm} ⊆ Rn, we define their affine
hull to be the set

aff (V) =
{

m∑
i=1

αi · vi |
m∑
i=1

αi = 1
}
.

For a matrix M = [v1|| . . . ||vm] we let aff (M) = aff ({v1, . . . ,vm}).

Definition 2.6 (Affine Independence). A set of points v1, . . . ,vm ∈ Rn is said to be affinely
independent if whenever

∑m
i=1 αi ·vi = 0n and

∑m
i=1 αi = 0, then αi = 0 for every i ∈ [m]. Observe

that v1, . . . ,vm are affinely independent if and only if v2−v1, . . . ,vm−v1 are linearly independent.

For a square matrix M ∈ Rn×n, we denote by det (M) the determinant of M , and we denote
by Mi,j the (i, j)’th cofactor of M , which is the (n− 1)× (n− 1) matrix obtained by removing the
i’th row and j’th column of M . It is well known that:

Fact 2.7. Let M ∈ Rn×n be an invertible matrix. Then for every i, j ∈ [n] it holds that∣∣M−1 (i, j)
∣∣ = |det (Mj,i) / det (M)|.

2.4 The Model of Computation

We follow the standard ideal vs. real paradigm for defining security. Intuitively, the security notion
is defined by describing an ideal functionality, in which both the corrupted and non-corrupted
parties interact with a trusted entity. A real world protocol is deemed secure if an adversary in
the real world cannot cause more harm than an adversary in the ideal world. This is captured
by showing that an ideal world adversary (simulator) can simulate the full view of the real world
adversary.

We focus our attention on the client-server model. In this model a server S holds some input
x and a client C holds some input y. At the end of the interaction the client learns the output of
some function of x and y, while the server learns nothing. We further restrict ourselves to allow
only a single round of interaction between the two parties, however, as only trivial functionalities
are computable in this setting, the parties interact in the OT -hybrid model. We next formalize the
interaction is done in this model.

The OT Functionality.

We start by formally defining the (family) of the OT functionality. The
(2
1
)
-bit-OT functionality,

is a two-party client-server functionality in which the server inputs a pair of bit-messages a0 and
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a1, and the client inputs a single bit b. The server receives ⊥ and the client receives ab. For every
natural number ` ≥ 1, we define the functionality

(2
1
)
-bit-OT` as follows. Let a =

(
ai0, a

i
1
)`
i=1 and

let b = (bi)`i=1, where ai0, ai1, bi ∈ {0, 1} for every i. We let a[b] :=
(
aibi

)`
i=1

. The functionality is
then defined as (a,b) 7→ (⊥,a[b]). That is, it is the equivalent to computing

(2
1
)
-bit-OT ` times in

parallel. Finally, we let OT =
{(2

1
)
-bit-OT`

}
`≥1

.

A generalization of
(2
1
)
-bit-OT is the

(n
1
)
-bit-OT functionality, which lets the client pick one out

of n bits a1, a2, . . . , an supplied by the server, and on input i ∈ [n] the client learns ai. This can be
further generalized to

(n
1
)
-s-string-OT where the n bits are replaced by strings a1, . . . , an ∈ {0, 1}s,

and can be generalized even further to
(n
k

)
-s-string-OT where the input i of the client is replaced

with k inputs i1, . . . , ik ∈ [n], and it receives ai1 , . . . , aik .

The 1-Round OT -Hybrid Model.

We next describe the execution in the 1-round OT -hybrid model. In the following we fix a (possibly
randomized) client-server functionality f : X × Y 7→ {0, . . . , k − 1}. A protocol Π in the 1-round
OT -hybrid model with security parameter κ, is a triple of randomized functions (α, β, γ). The server
and client use the function α and β respectively to obtain their inputs to the OT functionality.
The client then computes the local function γ on its view to obtain an output. Formally, the
computation is done as follows.

Inputs: The server S holds input x ∈ X and the client C holds input y ∈ Y. In addition, both
parties hold the security parameter 1κ.

Parties send inputs to the OT: S samples 2` (κ) bits a = α (x, 1κ), and C samples ` (κ) bits
b = β (y, 1κ), for some `(·) determined by the protocol. S and C send a and b to the OT
functionality, respectively. C then receives a[b] from the OT.

Outputs: The server S outputs nothing, while the client C computes the local function
γ (y,b,a[b], 1κ) and outputs the result.

We refer to the ` (κ) used in the protocol as the communication complexity (CC) of Π.
We consider an adversary A that controls a single party. The adversary has access to the full

view of that party. We assume the adversary is malicious, that is, it may instruct the corrupted
party to deviate from the protocol in any way it chooses. The adversary is non-uniform, and is
given an auxiliary input aux. For simplicity we do not concern ourselves with the efficiency of the
protocols or the adversaries, namely, we assume that the parties and the adversary are unbounded.

Fix inputs x ∈ X , y ∈ Y, and κ ∈ N. For an adversary A corrupting the server, we let
OutHYBRID
A(x,aux),Π (x, y, 1κ) denote the output of the client in a random execution of Π. For an adversary

A corrupting the client, we let VIEWHYBRID
A(y,aux),Π (x, y, 1κ) denote the adversary’s view in a random

execution of Π. This includes its input, auxiliary input, randomness, and the output received from
the OT functionality.

The ideal Model.

We now describe the interaction in the ideal model, which specifies the requirements for fully secure
computation of the function f with security parameter κ. Let A be an adversary in the ideal world,
which is given an auxiliary input aux and corrupts one of the parties.

9



The ideal model – full-security.

Inputs: The server S holds input x ∈ X and the client C holds input y ∈ Y. The adversary is given
an auxiliary input aux ∈ {0, 1}∗ and the input of the corrupted party. The trusted party T
holds 1κ.

Parties send inputs: The honest party sends its input to T. The adversary sends a value w from
its domain as the input for corrupted party.

The trusted party performs computation: T selects a random string r and computes z =
f (x,w; r) if C is corrupted and computes z = f(w, y; r) if S is corrupted. T then sends z to
C (which is also given to A in case C is corrupted).

Outputs: An honest server outputs nothing, an honest client output z, and the malicious party
outputs nothing. The adversary outputs some function of its view.

Fix inputs x ∈ X , y ∈ Y, and κ ∈ N. For an adversary A corrupting the server we let
OutIDEAL
A(x,aux),f (x, y, 1κ) denote the output of the client in a random execution of of the above ideal

world process. For an adversary A corrupting the client we let VIEWIDEAL
A(y,aux),f (x, y, 1κ) be the view

description being the output of A in such a process.
We next present the definition for security against malicious adversaries. The definition we

present is tailored to the setting of the 1-round two-party client-server in the OT -hybrid model.

Definition 2.8 (malicious security). Let Π = (α, β, γ) be a protocol for computing f in the 1-round
OT -hybrid model. Let ε(·) be a positive function of the security parameter.

1. Correctness: We say that Π is correct if for all κ ∈ N, x ∈ X , and y ∈ Y

Pr [γ (y,b,a[b], 1κ) = f(x, y)] = 1.

Here, a = α (x, 1κ), b = β (y, 1κ) and the probability is taken over the random coins of α, β,
γ, and f .

2. Server security: We say that Π is ε-server secure, if for any non-uniform adversary A
corrupting the server in the OT -hybrid world, there exists a non-uniform adversary SimA
(called the simulator) corrupting the server in the ideal world, such that

SD
(

OutHYBRID
A(x,aux),Π (x, y, 1κ) , OutIDEAL

SimA(x,aux),f (x, y, 1κ)
)
≤ ε (κ) .

We say that Π has perfect server security if it is 0-server secure.

3. Client security: We say that Π is ε-client secure, if for any non-uniform adversary A
corrupting the client in the OT -hybrid world, there exists a non-uniform simulator SimA
corrupting the client in the ideal world, such that

SD
(

VIEWHYBRID
A(y,aux),Π (x, y, 1κ) , VIEWIDEAL

SimA(y,aux),f (x, y, 1κ)
)
≤ ε (κ) .

We say that Π has perfect client security if it is 0-client secure.
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We say that Π computes f with ε-statistical full-security, if Π is correct, is ε-server secure, and
is ε-client secure. Finally, we say that Π computes f with perfect full-security, if it computes f
with 0-statistical full-security.

To alleviate notation, from now on we will completely remove 1κ from the input to the functions
α, β, and γ, and remove κ from ` and ε. Statistical security will now be stated as a function of
ε and the CC of the protocol as a function of `. Observe that aborts in this model are irrelevant.
Indeed, an honest server outputs nothing, and if a malicious server aborts then the client can output
f(x0, y) for some default value x0 ∈ X , which can be perfectly simulated. Therefore, throughout
the paper we assume without loss of generality that the adversary does not abort the execution.

In our construction, we also use the notion of security with input-dependent abort [20]. Generally,
it is a relaxation of the standard full-security notion, which allows an adversary to learn at most 1
bit of information by causing the protocol to abort, depending on the other party’s input. We next
state the perfect security variant of the notion. Furthermore, the security notion is written with
respect to only a malicious server. Since we work in the client-server model, the trusted party does
not send to the server any output. Therefore, in this relaxation selective abort attacks [23, 24] are
simulatable.

Definition 2.9 (input-dependent server security). Fix f : X × Y 7→ {0, . . . , k − 1}. In the input-
dependent model, we modify the ideal world so that the malicious adversary corrupting the server,
in addition to sending an input x∗ ∈ X , also gives the trusted party T a predicate P : Y 7→ {0, 1}.
T then sends to the client f(x∗, y) if P (y) = 0, and ⊥ otherwise. We let OutID

A(x,aux),f (x, y) denote
the output of the client in a random execution of the above ideal world process, with A corrupting
the server.

Let Π be a protocol that computes f in the 1-round OT -hybrid model. We say that Π has perfect
input-dependent server security, if for every non-uniform adversary A corrupting the server in the
OT -hybrid world, there exists a non-uniform adversary SimA corrupting the server in the input-
dependent ideal world, such that for all x ∈ X , y ∈ Y, and aux ∈ {0, 1}∗ it holds that

OutHYBRID
A(x,aux),Π (x, y) ≡ OutID

SimA(x,aux),f (x, y) .

3 A Class of Perfectly Computable Client-Server Functions
In this section, we state the main result of this paper – presenting a large class of two-party client-
server functions that are computable with perfect security. We start with presenting a geometric
view of security in our model. We take a similar approach to that of [3] to representing the server-
security requirement geometrically.

3.1 A Geometrical Representation of the Security Requirements

Boolean functions. We start with giving the details for (randomized) Boolean functions. For
any function f : X × Y 7→ {0, 1} we associate an |X | × |Y| matrix Mf defined as Mf (x, y) =
Pr [f(x, y) = 1], where the probability is taken over f ’s random coins (if f is deterministic, then
this value is Boolean). Let X = {x1, . . . , xn}. Observe that in the ideal world, every strategy that
is employed by a simulator corrupting the server can be encoded with a probability vector p ∈ Rn,
where pi corresponds to the probability of sending xi to T. Therefore, if the input of the client
is y, then the probability that the output is 1, equals to pT ·Mf (·, y). On the other hand, in the
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1-round OT -hybrid model, a malicious server can only choose a string a∗ ∈ {0, 1}2`, where ` is the
CC of the protocol Π = (α, β, γ), and send it to the OT functionality. Then on input y ∈ Y, the
probability the client outputs 1 is exactly

qΠ
y (a∗) := Pr [γ (y,b,a∗[b]) = 1] ,

where b = β (y) and the probability is over the randomness of β and γ. This implies that an
ideal world simulator must send a random input x∗ ∈ X such that the client will output 1 with
probability qΠ

y (a∗). Thus, perfect security against a corrupted server holds if and only if for every
a∗ ∈ {0, 1}2` there exists a probability vector p ∈ Rn such that for every y ∈ Y

pT ·Mf (·, y) = qΠ
y (a∗) .

Equivalently, for every a∗ the vector qΠ (a∗) := (qΠ
y (a∗))y∈Y is inside the convex-hull of the rows of

Mf . Furthermore, observe that this holds true regardless of the auxiliary input held by a corrupt
server.

General functions. We now extend the above discussion to non-Boolean functions. For every
function f : X ×Y 7→ {0, . . . , k − 1}, and every possible output z ∈ {0, . . . , k − 1}, we associate an
|X | × |Y| matrix M z

f defined as M z
f (x, y) = Pr [f(x, y) = z]. Similarly to the Boolean case, in the

ideal world, every strategy that is employed by a corrupt server can be encoded with a probability
vector p ∈ Rn, hence the probability that the client will output z, on input y, is pT ·M z

f (·, y). In the
1-round OT -hybrid model, for a string a∗ ∈ {0, 1}2` chosen by a malicious server, the probability
to output z equals to

qΠ
y,z (a∗) := Pr [γ (y,b,a∗[b]) = z] ,

where b = β (y) and the probability is over the randomness of β and γ. Therefore, perfect security
against a corrupted server holds if and only if for every a∗ ∈ {0, 1}2` there exists a probability
vector p ∈ Rn such that for every y ∈ Y and for every z ∈ {0, . . . , k − 1}

pT ·M z
f (·, y) = qΠ

y,z (a∗) . (1)

Observe that since p is a probability vector and since
∑
zM

z
f is the all-one matrix, it is equivalent

to consider only k− 1 possible values for z instead of all k values considered in Equation (1). This
allows us to write the above formulation more succinctly.

LetMf =
[
M1
f || · · · ||M

k−1
f

]
be the concatenation of the matrices by columns, and let qΠ (a∗) :=

(qΠ
y,z (a∗))y∈Y,z∈[k−1]. Then Equation (1) is equivalent to saying that for every a∗ the vector qΠ (a∗)

belongs to the convex-hull of the rows of Mf . It will be convenient to index the columns of Mf

with (y, z), i.e., we let Mf (x, (y, z)) = M z
f (x, y).9 We now have an equivalent definition of perfect

server security.

Lemma 3.1. Let Π be a protocol for computing some function f : X × Y 7→ {0, . . . , k − 1} in the
1-round OT -hybrid model with CC of `. Then Π has perfect server security if and only if for every
a∗ ∈ {0, 1}2` it holds that

qΠ (a∗) ∈ conv
(
MT
f

)
.

9We may view the above presentation differently. We can apply the presentation discussed for Boolean functions,
to the function f ′ : X × (Y × [k − 1]) 7→ {0, 1}, defined as f ′(x, (y, z)) = Pr [f(x, y) = z].
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We next describe another security notion against a corrupt server. Intuitively, it states that for
a malicious server, the less it deviates from the prescribed protocol, the better it can be simulated.
Moreover, instead of using the traditional `1 distance (i.e., statistical distance) we phrase the
security in terms of the `∞ norm. This, somewhat non-standard definition will later act as a
sufficient condition for reducing perfect server-security to perfect client-security.

Definition 3.2. Let f : (X ∪ {⊥}) × Y 7→ {⊥, 0, . . . , k − 1}, satisfy f(x, y) = ⊥ if and only if
x = ⊥. Let Π = (α, β, γ) be a protocol for computing f in the 1-round OT -hybrid model. We say
that Π is strong ε-server secure10 if the following holds. For every message a∗ sent by a malicious
server in the OT -hybrid world, there exists a probability vector p = (px)x∈(X∪{⊥}) ∈ R|X |+1 such
that ∣∣∣∣∣∣qΠ (a∗)−MT

f · p
∣∣∣∣∣∣
∞
≤ ε · p⊥.

3.2 Stating The Main Result

With the above representation in mind, we are now ready to state our main result. We first recall
the definition of a full-dimensional function, as stated in [3].

Definition 3.3 (full-dimensional function). We say that a function f : X × Y 7→ {0, . . . , k − 1} is
full-dimensional if

dim
(
aff

(
MT
f

))
= (k − 1) · |Y|.

That is, the affine-hull defined by the rows of Mf spans the entire vector space.

Recall that a basis for an affine space of dimension n has cardinality n + 1. Therefore for
full-dimensional functions it must holds that |X | > (k − 1) · |Y|. We are now ready to state our
main result.

Theorem 3.4. Let f : X ×Y 7→ {0, . . . , k − 1} be a full-dimensional function. Then there exists a
protocol Π in the 1-round OT -hybrid model, that computes f with perfect full-security. Furthermore,
if f is deterministic the CC is the following. Let γi denote the size of the smallest formula for
evaluating the i’th bit of f(x, y), and let γ = maxi γi. Then Π has CC at most

ξ · γ2 · log k · log |Y| · poly (k · |Y|) ,

where ξ ∈ R+ is some global constant independent of the function f .

Although the communication complexity of our protocol is roughly poly (k · |Y|), for functions
with small client-domain, it does yield a concrete improvement upon known protocols such as the
protocol proposed by [20] (see Section 7 for more details).

A simple corollary of Theorem 3.4 is that for a full-dimensional functions, adding to client
inputs that fixes the output, results in a function that can still be computed with perfect security.

10Although this definition as stated is not actually stronger than the standard server security definition, we decide
to keep this name because of the intuition behind it. Furthermore, stating simulation error with respect to the `1
norm instead of the `∞ norm, is in fact stronger.
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Corollary 3.5. Let f : X × Y 7→ {0, . . . , k − 1} be some function. Assume that there exists a
subset Y ′ ⊆ Y that fixes the output distribution of f , i.e., for all y ∈ Y ′ there exists a distribution
Dy over {0, . . . , k − 1} such that f(x, y) ≡ Dy for every x ∈ X . If the function f ′ : X × (Y \Y ′) 7→
{0, . . . , k − 1}, defined as f ′ (x, y) = f(x, y), is full-dimensional, then f can be computed the 1-
round OT -hybrid model with perfect full-security and with the same communication complexity as
f ′.
Proof. Let Π be the protocol for f ′ guaranteed by Theorem 3.4. Then the parties computes f as
follows. S act the same as in Π. If the input of C is y ∈ Y ′, then C samples from Dy and outputs
the result, and if its input is y /∈ Y ′, then C acts the same as in Π. �

Many interesting examples of functionalities that satisfy the constraints in Theorem 3.4
and Corollary 3.5 exists. The following are two example for such functionalities.
Yao’s millionaires’ problem: The server and the client each hold a number from 1 to n. The

output is 1 if and only if the client’s input is larger than or equal to the server’s input. The
matrix for this function has a constant column of 1’s. After removing it, the last row of
the matrix will be the all 0 vector and the other rows are linearly independent, therefore
the resulting function is full-dimensional. Hence the function satisfies the constraints in
Corollary 3.5.

Set membership: The server holds a subset S of some finite universe Ω, and the client holds an
element ω ∈ Ω. The client wishes to know if ω ∈ S. The matrix for this function contains all
possible Boolean vectors of length |Ω|, hence the function is full-dimensional.

Theorem 3.4 clearly follows from the following two lemmata. The first lemma reduces the
problem of constructing a perfectly secure protocol, to the task of constructing a protocol with
perfect client security and strong statistical server security (as in Definition 3.2). The second
lemma states that such a protocol exists.
Lemma 3.6. Let f : X ×Y 7→ {0, . . . , k − 1} be some function. Define the function g : (X ∪{⊥})×
Y 7→ {⊥, 0, . . . , k − 1} as g(x, y) = f(x, y) if x 6= ⊥ and g(⊥, y) = ⊥, for every y ∈ Y. Assume
that for every ε > 0, there exists a protocol Πg(ε) in the 1-round OT -hybrid model that computes
g with correctness, is strong ε-server secure, and has CC at most ` (ε, |X |, |Y|, k). Then, if f is
full-dimensional, there exists a protocol Πf in the 1-round OT -hybrid model, that computes f with
perfect full-security. Moreover, if f is deterministic then Πf has CC at most

`

( 1
2n(n+ 1)! , |X |, |Y|, k

)
,

where n = (k − 1) · |Y|. Moreover, if Πg(ε) has perfect client security then so does Πf .
Lemma 3.7. Let g : (X ∪ {⊥}) × Y 7→ {⊥, 0, . . . , k − 1} be a function satisfying g(x, y) = ⊥ if
and only if x = ⊥. Then for every ε > 0, there exists a protocol Πg(ε) in the 1-round OT -hybrid
model that computes g with correctness, is strong ε-server secure, and has perfect client security.
Furthermore, its communication complexity is the following. Let γi denote the size of the smallest
formula for evaluating the ith bit of g(x, y), and let γ = maxi γi. Then Πg(ε) has CC at most

ξ · γ2 · log k · log |Y| · polylog
(
ε−1

)
,

where ξ ∈ R+ is some global constant independent of the function g and of ε.
We prove Lemma 3.6 in Section 4 and we prove Lemma 3.7 in Section 5.
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4 Reducing Perfect Server Security to Strong Server Security
In this section, we reduce the problem of constructing a perfectly secure protocol, to the problem
of constructing a protocol that has strong statistical server security. The idea is to wrap the given
protocol for computing g, so that whenever the output of Πg(ε) is ⊥ (for small enough ε), the client
will choose x0 ∈ X at random and output f(x0, y). Stated from a geometric point of view, the
client outputs according to a distribution that is consistent with the center of the convex-hull of the
rows of Mf (we stress that any point that is strictly inside the convex-hull would suffice). We then
show that, with a certain probability, the vector of outputs is distributed according a “correct”
output distribution, namely according to a distribution consistent with the rows of Mf , and with
the complement probability, it lies somewhere inside a small hypercube located around the center.
Therefore the final vector of outputs is inside some hypercube that is around some point inside the
convex-hull. The size of the hypercube is proportional to the security of Πg, hence by choosing a
sufficiently small ε, the entire hypercube is also inside the convex-hull, thus completing the proof.
We next formalize this intuition.

Proof of Lemma 3.6. It is easy to see that if the probability that the output of Πg(ε) equals ⊥ is
0 for every y ∈ Y for some ε > 0, then Πg(ε) computes f with perfect security.

Assume otherwise, and denote n = (k− 1) · |Y|. Since f is full-dimensional there exists a subset
S = {x0, . . . ,xn} ⊆ Rn of the rows ofMf , that are affinely independent. Let uS ∈ Rn be the vector
associated with uniform distribution over S (i.e., ui = 1/|S| if i ∈ S and ui = 0 otherwise), and let
c = (cy,z)y∈Y,z∈[k−1] := MT

f ·uS be the center of the simplex11 defined by the points in S. Observe
that for every y ∈ Y it holds that

∑k−1
z=1 cy,z ≤ 1. Indeed, recall that

∑k−1
z=0 M

z
f is the all-one matrix,

and c is defined as the convex combination of the rows of [M1
f || · · · ||M

k−1
f ]. The protocol Πf is

described as follows.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 4.1 (Πf ).

Input: Server S has input x ∈ X and client C has input y ∈ Y.

1. The parties execute protocol Πg (ε) with a sufficiently small ε > 0 to be determined by the
analysis. Let z be the output C receive.

2. If z 6= ⊥, then C output z. Otherwise, output z′ ∈ [k − 1] with probability cy,z′ (and output 0
with the complement probability).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Correctness follows from the fact that Πg is correct. It remains to show that perfect server-
security holds. Moreover, if Πg has perfect client security, then by the fact that no further interac-
tion is made, so does Πf .

We next show that Πf has perfect server security. Recall that for a protocol Π = (α, β, γ) with
CC `, for a∗ ∈ {0, 1}2`, for y ∈ Y, and for z ∈ [k − 1] we let

qΠ
y,z (a∗) = Pr [γ (y,b,a∗[b]) = z] ,

11A simplex is the convex-hull of an affinely independent set of points.
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where b = β (y) and the probability is over the randomness of β and γ. By Lemma 3.1, it suffices
to show that for every a∗ ∈ {0, 1}2` sent to the OT by a malicious server, it holds that

qΠf (a∗) ∈ conv
(
MT
f

)
, (2)

Fix a∗ ∈ {0, 1}2`. For brevity, we write qf and qg instead of qΠf (a∗) and qΠg(ε) (a∗) respectively.
Since Πg(ε) is strong ε-server secure, it follows that there exists a probability vector pg ∈ R|X |+1

such that

qg = MT
g · pg + err, (3)

where err ∈ Rk·|Y| satisfies ||err||∞ ≤ ε · pg⊥. Let pg = (pgx)x∈X be the vector p with p⊥ removed.
We first show that Equation (2) follows from the following two claims.

Claim 4.2. There exists a vector êrr ∈ R(k−1)·|Y| satisfying ||êrr||∞ ≤ 2ε, such that

qf = MT
f · pg + p⊥ · (c + êrr).

Claim 4.3. There exists a sufficiently small ε > 0 such that

c + êrr ∈ conv
(
MT
f

)
,

where êrr is the same as in Claim 4.2.

Indeed, by Claim 4.3 there exists a probability vector p̂ ∈ R|X | such that

c + êrr = MT
f · p̂.

Then by Claim 4.2 it follows that

qf = MT
f · pg + p⊥ · (c + êrr) = MT

f · (pg + p⊥ · p̂).

Recall that the entries of p sum up to 1− p⊥. Therefore pg + p⊥ · p̂ is a probability vector, hence
Equation (2) holds. �

We next prove Claim 4.2 and Claim 4.3.

Proof of Claim 4.2. Let err′ = 1
p⊥
· err. Observe that for every y ∈ Y and z ∈ [k− 1] it holds that

qfy,z = qgy,z + qgy,⊥ · cy,z

= MT
g ((y, z), ·) · pg + erry,z +

(
MT
g ((y,⊥), ·) · pg + erry,⊥

)
· cy,z

= MT
f ((y, z), ·) · pg + erry,z +(p⊥ + erry,⊥) · cy,z

= MT
f ((y, z), ·) · pg + p⊥ · (cy,z + err′y,z + err′y,⊥ ·cy,z),

where the first equality is by the description of Πf , the second is by Equation (3), and the third
follows from the definition of g. Define the vector êrr = (êrry,z)y∈Y,z∈[k−1] as follows. For every
y ∈ Y and z ∈ [k − 1] let êrry,z = err′y,z + err′y,⊥ ·cy,z. Then

qf = MT
f · pg + p⊥ · (c + êrr).
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To conclude the proof, we upper-bound ||êrr||∞. Observe that

||êrr||∞ ≤
∣∣∣∣err′

∣∣∣∣
∞ · (1 + ||c||∞) = 1

p⊥
· ||err||∞ · (1 + ||c||∞) ≤ 2ε.

�

Proof of Claim 4.3. One approach would be to use similar techniques as in [3], namely, take a “small
enough” Euclidean ball around c and take ε to be small enough so that c + êrr is contained inside
the ball. This approach, however, only proves the existence of such an ε. We take a slightly different
approach, which would also provide an explicit upper bound on ε for deterministic functions.

For every i ∈ [n] let xi = xi−x0, let S = {x1, . . . ,xn} be a basis for Rn, and let A = [x1|| . . . ||xn]
be the corresponding change of basis matrix. Then

c = MT
f · uS =

n∑
i=0

1
n+ 1 · xi = x0 +

n∑
i=1

1
n+ 1 · xi = x0 + 1

n+ 1 ·A · 1n. (4)

Observe that a point v is in the convex-hull of S if and only if it can be written as x0+
∑n
i=1 pi·xi,

where the pi’s are non-negative real numbers that sum up to at most 1. Indeed, we can write

x0 +
n∑
i=1

pi · xi =
(

1−
n∑
i=1

pi

)
· x0 +

n∑
i=1

pi · xi.

Next, as S forms a basis, there exists a vector ẽrr ∈ Rn such that êrr = A · ẽrr. Then, if
||ẽrr||∞ ≤

1
n(n+1) , by Equation (4) it follows that

c + êrr = x0 +A ·
( 1
n+ 1 · 1n + ẽrr

)
= x0 +

n∑
i=1

pi · xi,

where 0 ≤ pi ≤ 1/n for every i ∈ [n], implying that the point is inside conv (S). Thus, it suffices
to find ε for which ||ẽrr||∞ ≤

1
n(n+1) . It holds that

||ẽrr||∞ =
∣∣∣∣∣∣A−1 · êrr

∣∣∣∣∣∣
∞

= max
i∈[n]

{∣∣∣A−1(i, ·) · êrr
∣∣∣}

≤ max
i∈[n]


n∑
j=1

∣∣∣A−1(i, j) · êrrj
∣∣∣


= max
i∈[n]


n∑
j=1

∣∣∣∣det (Aj,i)
det (A)

∣∣∣∣ · |êrrj |


≤ n · (n− 1)!

|det (A) | · 2ε

= 2n!
|det (A)| · ε,

where the third equality is by Fact 2.7, and the second inequality is due to the fact that each
entry in A is a real number between -1 and 1. Therefore, by taking ε = |det(A)|

2n(n+1)! the claim follows.

17



Observe that if the function f is deterministic, then the entries of A are in {−1, 0, 1} implying that
|det (A) | ≥ 1, and hence taking ε = 1

2n(n+1)! suffices. Therefore the communication complexity will
be at most `

(
1

2n(n+1)! , |X |, |Y|, k
)
in this case.

�

5 A Statistically Secure Protocol With Strong Server Security
In this section we fix a function g : (X ∪ {⊥}) × Y 7→ {⊥, 0, . . . , k − 1} satisfying g(x, y) = ⊥ if
and only if x = ⊥. We show how to construct a protocol for computing the function g in the
1-round OT -hybrid model. The protocol we construct has perfect client security, and has strong
statistical server security. Our protocol is a modified version of the protocol by Ishai et al. [20],
which we shall next give an overview of. Their protocol is parametrized with ε, and we denote this
protocol by ΠIKOPS(ε). It is a single round protocol in the OT -hybrid model, that has ε-statistical
full-security. It is stated for functions computable by NC1 circuits, however, this is only done for
efficiency reasons, which is not a concern in our paper. We therefore restate it for general functions,
and bound its communication complexity as a function of |X |, |Y|, and k (which are assumed to
be finite in our work).

5.1 The IKOPS Protocol

We next give the rough idea of ΠIKOPS. First, we view the inputs x and y as a binary strings.12 The
main idea behind the ΠIKOPS is to have the server run an “MPC in the head” [19]. That is, the (real)
server locally emulates the execution of a perfectly secure multiparty protocol Π with many vir-
tual servers performing the computation, and 2m virtual clients, denoted C1,0,C1,1, . . . ,Cm,0,Cm,1,
receiving output, where m is the number of bits in the client’s input y. The underlying protocol Π
computes a decomposable PRE ĝ = (ĝ0, ĝ1, . . . , ĝm) of g. Specifically, the output of client Cj,b in
an execution of Π is the corresponds to the jth bit of y, when the bit equals to b.

The real client can then use the available OT in order to recover the correct output of the PRE
and reconstruct the output g(x, y). As part of the “MPC in the head” paradigm, the client further
ask the server to send a watchlist (the views of some of the virtual servers) and check consistency.
If there was an inconsistency, then the client outputs ⊥. To make sure that the client will not
receive too large of a watchlist and break the privacy requirement, it will get each view with some
(constant) probability independently of the other views.

Observe that although the client can use OT in order to receive the correct output from the
virtual clients, the two real parties need to use string-OT, while they only have access to bit-OT.
This technicality can be overcome using the perfect reduction from

(n
1
)
-s-string-OT to OT that

was put forward in the elegant work of Brassard et al. [9], which also constitutes one of the few
examples of perfect reductions to

(2
1
)
-bit-OT known so far. They proved the following theorem.

Theorem 5.1. There exists a protocol ΠBCS = (αBCS, βBCS, γBCS) in the 1-round OT -hybrid world
that computes

(n
1
)
-s-string-OT with perfect full-security. Furthermore, its communication complex-

ity is at most 5s(n− 1).
12We can assume without loss of generality that the size of X and Y are a power of 2. This is due to the fact that

we can add new elements to X such that the new rows in the corresponding matrix are duplicates of existing rows.
We then do the same to Y. It is easy to see that the new function is computable with statistical (perfect) full-security
if and only if the previous function is computable with statistical (perfect) full-security.
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The security of the protocol described so far can still be breached by a malicious server. By
tampering with the outputs of the virtual clients, a malicious server could force the output of the
real client to be g(x, y) for some inputs y and force the output to be ⊥ for other values of y, where
the choice is completely determined by the adversary. To overcome this problem, we replace g with
a function g′ where each bit yi is replaced with m′ random bit whose XOR equals to yi, for some
large m′.13 Here, the adversary does not have complete control over which inputs the client will
output ⊥, and for which inputs it will output g(x, y). We next describe the protocol formally. We
start with some notations.

Notations. Throughout the following section, client’s input are now binary strings y of length
m. Let m′ = m′(ε) =

⌈
log(ε−1)

⌉
+ 1 and let Enc : {0, 1}m 7→ ({0, 1}m′)m be a randomized function

that on input m bits y1, . . . , ym, outputs m · m′ random bits (yi,1, . . . , yi,m′)i∈[m] conditioned on
⊕m′j=1y

j
i = yi for every i ∈ [m]. We also let Dec : ({0, 1}m′)m 7→ {0, 1}m be the inverse of Enc,

namely,
Dec

((
yi,1, . . . , yi,m′

)
i∈[m]

)
=
(
yi,1 ⊕ . . .⊕ yi,m′

)
i∈[m] .

Finally, we let g′ : (X ∪ {⊥})× ({0, 1}m′)m 7→ {⊥, 0, . . . , k − 1} be defined as

g′
(
x,
(
yi,1, . . . , yi,m′

)
i∈[m]

)
= g

(
x,Dec

((
yi,1, . . . , yi,m′

)
i∈[m]

))
,

and let ĝ be a decomposable PRE of g′.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 5.2 (ΠIKOPS (ε)).

Input: Server has input x ∈ (X ∪ {⊥}) and client has input y ∈ {0, 1}m.

• α (x):
1. The server S runs “MPC in the head” for the following functionality. There are

n = Θ
(
log

(
ε−1)) virtual servers S1, . . . ,Sn with inputs and 2m · m′ virtual clients

C1,0,C1,1, . . . ,Cm·m′,0,Cm·m′,1 receiving outputs. Each virtual server holds a share of the
S’s input and randomness, where the shares are in an n-out-of-n secret sharing scheme.
Each virtual client Cj,b will receive ĝj,b(x), namely, it will receive the (j, b)th component
of the decomposable PRE where the first part of the input is fixed to x. In addition every
virtual client will hold ĝ0 (x) which is the value of ĝ that depends only on x and the
randomness.

2. The virtual parties execute a multiparty protocol in order to compute ĝ. The protocol used
has perfect full-security tolerating t = dn/3e−1 corrupted virtual servers and any number
of corrupted virtual clients. We also assume that the virtual clients receive messages at
the last round of the protocol. (e.g., the BGW protocol [8]).

3. Let Vj,b be the view of Cj,b, and let a1 = (αBCS (Vj,0, Vj,1))j∈[m·m′].
4. Let Vi denote the view of Si. For each i ∈ [n] the server prepares a collection of strings

ãi of length d2n/te, where Vi is located in a randomly chosen entry of ãi, while the
other entries are ⊥ (this allows the server to send each Vi with probability t/2n). Let
a2 = (αBCS (ãi))i∈[n].

13This method has the disadvantage of increasing the length of the client’s input and as a result increase the
communication complexity, so [20] suggested a different approach. We stick with the presented approach, as we
prefer simplicity over concrete efficiency.
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5. Output a = (a1,a2).

• β (y):
1. The client computes (yi,1, . . . , yi,m′)i∈[m] = Enc(y).
2. Let b1 = (βBCS(yj,j′))j∈[m],j′∈[m′].
3. Let b2 = (βBCS (1))i∈[d2n/te] (i.e., a constant vector of length d2n/te).
4. Output b = (b1,b2).

• γ (y,b, c′):
1. Let c = (γBCS (c′i))i14. Write c = (c1, c2), where c1 corresponds to the outputs of the

virtual clients and c2 corresponds to the watchlist being the views of a subset of the virtual
servers.

2. For every Vj,b in c1, we may write without loss of generality that Vj,b = (V i
j,b)i∈[n], where

V i
j,b is the (only) message that Si sent to Cj,b.

3. If there exists Vi1 , Vi2 ∈ c2, or Vi ∈ c2 and V i
j,b ∈ c1 that are inconsistent, output ⊥.

4. Otherwise, apply the PRE decoder on c1 to recover the output z.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We summarize the properties of the protocol below.

Theorem 5.3 ([20, Theorem 1]). For every ε > 0, ΠIKOPS (ε) computes g with ε-statistical full
security.15 Furthermore, using the PRE from [17, 2] and the BGW protocol, the CC will be the
following. Let γi denote the size of the smallest formula for evaluating the i’th bit of g(x, y), and
let γ = maxi γi. Then, ΠIKOPS has CC at most

`IKOPS = ξIKOPS · γ2 · log k · log |Y| · polylog
(
ε−1

)
,

where ξIKOPS ∈ R+ is some global constant independent of the function g and of ε.

Observe that ΠIKOPS has a (small) non-zero probability of the client seeing to many views of the
virtual servers (in the worst case all of them which gives him the knowledge of x). Thus, ΠIKOPS
is not perfectly client secure.

In the following section, we slightly tweak ΠIKOPS, making the watchlists of a fixed size in a
such a way that no malicious client will be able to receive n/3 of the virtual servers’ views, thereby
making it perfectly client secure. The new protocol will have the desired properties as stated in
Lemma 3.7.

5.2 Setting Up a Fixed-Size Watchlist

Recall the problem with client privacy was in the fact that the client may watch the internal
state of too many servers, breaching perfect security of the protocol ΠIKOPS, and thus of the

14The function γ is different when applying to recover a1[b1] from when applying to recover a2[b2]. To keep the
presentation simple we will abuse notation and write as if they are the same function.

15In fact, the protocol even admits strong ε-server security.
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entire construction. To solve this problem, we replace the current watchlist setup with a fixed-size
watchlist setup.

Ideally, in order to achieve the fixed-size watchlist, the parties could use a perfectly secure
protocol for computing

( n
t/2
)
-s-string-OT. Unfortunately, we do not know, if such a protocol even

exist in the OT -hybrid model. Instead, we slightly relax the security notion, so that we will
be able to construct the protocol, and its security guarantees still suffice for the main protocol.
Specifically, we show how in the OT -hybrid model, the parties can compute

( n
t/2
)
-s-string-OT in

a single round, so that a malicious client will only be able to learn at most t strings rather than
t/2. We stress that the construction we suggest does not achieve perfect server security. Instead,
it admits perfect input-dependent security. That is, the server may choose a subset of the client’s
inputs (to

( n
t/2
)
-s-string-OT), that will cause the protocol to abort. As we show in Section 5.3,

this will not affect the security properties of our final construction, since in this case the client will
know the server is corrupted.

Let t, n, s ∈ N where t < n, and s ≥ 1. For simplicity, we assume that t is even. Let f1 and f2 be
the

( n
t/2
)
-s-string-OT and

(n
t

)
-s-string-OT functionalities respectively. We next briefly explain the

ideas behind the construction. The parties will use protocol ΠBCS in order to simulate computation
of n instances of

(2
1
)
-sn-string-OT in parallel. On input (x1, . . . , xn), where each xi ∈ {0, 1}s, the

ith pair of strings the server will send (by first applying αBCS) will be masking of the ith string xi,
and a Shamir share of the concatenation of all of the maskings, that is, the pair will be (xi⊕ri, r[i]),
where r = (r1, . . . , rn) is a uniformly chosen random string of length {0, 1}sn. The client will then
recover the maskings of the correct outputs alongside the shares, which will help him to reconstruct
the outputs. Since for each i the client will learn either a share or a masked string, a malicious
client will not be able to learn to many masked strings. The protocol ΠROT = (αROT, βROT, γROT)
for computing f1 in the 1-round OT -hybrid model is formally described as follows.

Construction 5.4 (ΠROT).
Input: Server S holds x = (x1, . . . , xn) ∈ ({0, 1}s)n, and client C holds y = {y1, . . . , yt/2} ⊆ [n].

• αROT (x): Sample n random strings r1, . . . , rn ← {0, 1}s uniformly at random and indepen-
dently. For every i ∈ [n], let r[i] ∈ {0, 1}sn be the ith share of r = (r1, . . . , rn) in an (n−t)-out-
of-n Shamir’s secret sharing (we pad r[i] if needed). Output a =

(
αBCS ((xi ⊕ ri, r[i]))

)
i∈[n]

(the xi ⊕ ri’s are also padded accordingly).

• βROT (y): Output b = (βBCS (b1) , . . . , βBCS (bn)), where bi = 0 if i ∈ y and bi = 1 otherwise.

• γROT (y,b, c′): Let c = (γBCS (c′i))
n
i=1, let c1 = (ci)i∈y, and let c2 = (ci)i/∈y. If the elements

in c2 agree on a common secret r ∈ {0, 1}sn, then output c1 ⊕ (ri)i∈y. Otherwise output ⊥.

Lemma 5.5. ΠROT computes f1 with CC at most 5 · sn2 and with the following properties:

• ΠROT is correct.

• ΠROT has perfect input-dependent server security.

• For any non-uniform adversary A corrupting the client in the OT -hybrid world, there exists
a non-uniform simulator SimA corrupting the client in the ideal world of f2, such that for all
x ∈ ({0, 1}s)n, y ⊆ [n] of size t/2, and aux ∈ {0, 1}∗ it holds that

VIEWHYBRID
A(y,aux),ΠROT

(x,y) ≡ VIEWIDEAL
SimA(y,aux),f2

(x,y) .
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In other words, although the simulator receives t/2 indexes as input, it is allowed to ask the
trusted party for t strings from the server’s input.

Intuitively, a malicious server cannot force the client to reconstruct two different secrets r for
two different inputs. This is due to the fact that for every two different inputs the set of common
bi’s that are 1 (i.e., the number of common shares the client will receive for both inputs) is of size
at least n− t. This implies that up to a certain set of client-inputs that the adversary can choose,
the client will receive a correct output. As for a malicious client, observe that it can ask for at most
t masked values, as otherwise it will not have enough shares to recover the secret r.

We next incorporate ΠROT into ΠIKOPS to get a protocol that is perfectly client-secure. The
proof of Lemma 5.5 is deferred to Section 5.4.

5.3 Upgrading the IKOPS Protocol

We are finally ready to prove Lemma 3.7. As stated in Section 5.2, we replace the randomly chosen
watchlist with a fixed-size one using ΠROT. Formally, the protocol, denoted Π+

IKOPS, is described
as follows.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 5.6 (Π+

IKOPS (ε)).
Input: Server has input x ∈ (X ∪ {⊥}) and client has input y ∈ {0, 1}m.

• α+ (x): Output (a1,a2) as in ΠIKOPS, with the exception of a2 being equal to αROT (V1, . . . , Vn)
(recall that Vi is the view of the virtual server Si).

• β+ (y): Output (b1,b2) as in ΠIKOPS, with the exception of b2 being equal to βROT (W),
where W ⊆ [n] is of size dt/2e − 1 chosen uniformly at random (recall that t = dn/3e − 1
bounds the number of corrupted parties in the MPC protocol).

• γ+ (y,b, c′): Output same as γ (y,b, c′), with the exception that we apply γROT to recover the
outputs and watchlist.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Clearly, Lemma 3.7 follows from the following lemma, asserting the security of Π+
IKOPS.

Lemma 5.7. For every ε > 0, Π+
IKOPS (ε) computes g with correctness, it is strong ε-server secure,

and has perfect client security. Furthermore, using the PRE from [17, 2] and the BGW protocol,
the CC will be the following. Let γi denote the size of the smallest formula for evaluating the i’th
bit of g(x, y), and let γ = maxi γi. Then, Π+

IKOPS has CC at most

`+IKOPS = ξ+
IKOPS · γ

2 · log k · log |Y| · polylog
(
ε−1

)
,

where ξ+
IKOPS ∈ R+ is some global constant independent of the function and of ε. In comparison

to ΠIKOPS, the only difference in the CC is in the constant and the exponent of log
(
ε−1) taken.

Specifically, it holds that
`+IKOPS
`IKOPS

= ξ+
IKOPS
ξIKOPS

· log2
(
ε−1

)
.
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Proof. Correctness trivially holds. We next prove that the protocol is strong ε-server secure. Con-
sider a message a∗ sent by a malicious server holding x ∈ (X∪⊥) and an auxiliary input aux ∈ {0, 1}∗
in the OT -hybrid world. We need to show the existence of a certain probability vector p ∈ R|X |+1

satisfying the constraints given in Definition 3.2. It will be convenient to describe the vector p
using a simulator Sim that will describe the probability of sending x∗ to T as an input.

The idea is to have the simulator check the inconsistencies made by the adversary. This is
done via an inconsistency graph, where each vertex corresponds to a virtual party, and each edge
corresponds to an inconsistency between the corresponding pair of parties. There are three cases
in which the simulator will send ⊥ to T. The first case is when there is a large vertex cover among
the servers. Observe that in this case, in the OT -hybrid world the client will see an inconsistency
with high probability, and hence it will output ⊥. The second case is when there are two virtual
clients Cj,0 and Cj,1, corresponding to the same bit of Enc (y) that are both inconsistent with the
same server. Observe that the real client will always see an inconsistency, regardless of its input
or randomness. The final case remaining, is when for each j ∈ [m ·m′], the adversary tampered
with exactly one of Cj,0 or Cj,1. Here the real client will not notice the inconsistency only in the
case where it asked for the virtual clients the adversary did not tamper with, which happens with
low probability. For all other cases, the probability that the real client will see an inconsistency is
independent of its input. Therefore the simulator can compute it and send ⊥ with this probability.
When the simulator does not send ⊥ as its input, it uses the MPC simulator to reconstruct an
input for the server and sends it to the trusted party.

We next formalize the description of the simulator. The simulator holds a∗ and aux as input.

1. Write a∗ = (a∗1,a∗2), where a∗1 corresponds to the outputs of the virtual clients and a∗2 corre-
sponds to the watchlist being the views of the virtual servers.

2. Apply the simulator guaranteed by the security of ΠBCS to each pair of messages in a∗1 to
obtain V1,0, V1,1, . . . , Vm·m′,0, Vm·m′,1, and apply the simulator guaranteed by ΠROT for each
pair in a∗2 to obtain V1, . . . , Vn and a predicate P (if the output of the simulator is ⊥ instead
of views, then send ⊥ to T and halt).

3. Generate an inconsistency graph G′, with [n] as vertices, and where {i1, i2} is an edge if and
only if Vi1 and Vi2 are inconsistent. Let VC be a minimum vertex cover of G′.16 If |VC| > t
then send ⊥ to T.

4. Otherwise, pick a subset W ⊆ [n] of size t/2 uniformly at random. If there exist i1, i2 ∈ W
with an edge between them in G or P (W) = 1, then send ⊥ to T.

5. Otherwise, extend G′ into an inconsistency graph G, where there are new vertices (j, b) ∈
[m ·m′] × {0, 1}, and {i, (j, b)} is an edge if and only if V i

j,b is inconsistent with Vi (i.e., the
view Cj,b received from Si is inconsistent with the view of Si).

6. If there exists i ∈ W and j ∈ [m] such that either

• both {i, (m′(j − 1) + j′, 0)} and {i, (m′(j − 1) + j′, 1)} are edges in G for some j′, or
• for every j′ ∈ [m′], exactly on of {i, (m′(j − 1) + j′, 0)} and {i, (m′(j − 1) + j′, 1)} is an
edge

16Recall that we do not care about the efficiency of simulator. We stress that it is also suffices to use a 2-
approximation to compute the minimum vertex-cover, while slightly tweaking t.
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then send ⊥ to T.

7. Otherwise, send ⊥ with probability 1 − 2−e, where e is the number of edges of the form
{i, (m′, (j−1) + j′, b)}, where i ∈ W, j ∈ [m], j′ ∈ [m′], and b ∈ {0, 1}. With the complement
probability, apply the (malicious) MPC simulator on the virtual servers Si, where i ∈ VC, to
get an input for each of virtual servers in VC. The simulator Sim can then use the inputs of
the other virtual servers to get an input x∗ ∈ (X ∪ {⊥}), and send it to T.

The vector p is then defined as px∗ = Pr [Sim sends x∗ to T]. Recall that for every y ∈ Y and
z ∈ {⊥, 0, . . . , k − 1} we denote

q
Π+

IKOPS(ε)
y,z (a∗) = Pr

[
γ+ (y,b,a∗[b]) = z

]
,

where b = β (y) and the probability is over the randomness of β and γ. To alleviate notations, we
will write q = qΠ+

IKOPS(ε) (a∗). Fix y ∈ {0, 1}m and z ∈ {⊥, 0, . . . , k − 1}. We show that17

∣∣∣qy,z −MT
g (·, (y, z)) · p

∣∣∣ ≤ ε · p⊥. (5)

Observe that since both ΠBCS and ΠROT have perfect server-security, each Vm′(j−1)+j′,b and each
Vi in the OT -hybrid world is distributed exactly the same as its counterpart in the ideal world.
Therefore, we may condition on the event that they are the same. Furthermore, by the security of
ΠROT, we may also assume that the watchlist W is distributed the same, and that P (W) = 0, as
otherwise in both worlds the client will output ⊥. In the following we fix the views and W. We
next separate into three cases, stated in the following claims (proven below). These claims together
immediately imply Equation (5).

Claim 5.8. If |VC| > t then Equation (5) holds.

Claim 5.9. Assume that |VC| ≤ t and that for every i ∈ W and every j ∈ [m], there exists j′ ∈ [m′]
such that either both Vm′(j−1)+j′,0 and Vm′(j−1)+j′,1 are consistent with Vi, or both are inconsistent
with Vi. Then Equation (5) holds. Moreover, the simulation is perfect.

Claim 5.10. Assume that |VC| ≤ t and that there exists i ∈ W and j ∈ [m], such that for
every j′ ∈ [m′] exactly one of the views Vm′(j−1)+j′,0 and Vm′(j−1)+j′,1 is inconsistent with Vi, then
Equation (5) holds.

Proof of Claim 5.8. Intuitively, the vertex cover of the graph G gives us information on which
servers “misbehaved”. A large vertex cover means that a lot of servers have inconsistent views,
implying that there are many edges in the graph. Therefore, a random subset of the vertices would
contain at least one edge with high probability. We next formalize this intuition.

Since |VC| > t then the maximum matching in G′ is of size at least (t+ 1)/2. Therefore, in the
OT -hybrid world, the expected number of edges that the client will have in its watchlist is at least

t+ 1
2 ·

( n−2
t/2−2

)( n
t/2
) = Θ (n) .

17In fact we can show something stronger – that the `1 distance (i.e., statistical distance) is smaller than ε · p⊥,
implying that the protocol has standard ε-server security. However, this does not improve our result and the proof
is therefore omitted.
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By applying Hoeffding’s inequality,18 with probability at least 1 − 2−Θ(n) = 1 − ε the client will
output ⊥. As in the ideal world the simulator sends ⊥ to T with probability 1, Equation (5)
follows. �

Proof of Claim 5.9. We separate into two cases. For the first case, assume that there exist i ∈ W,
j ∈ [m], and j′ ∈ [m′] such that both Vm′(j−1)+j′,0 and Vm′(j−1)+j′,1 are inconsistent with Vi. Then
the simulator always sends ⊥ in this case. Furthermore, in the OT -hybrid world, for every input
y ∈ {0, 1}m the client will see an inconsistency between either Vm′(j−1)+j′,0 and Vi, or between
Vm′(j−1)+j′,1 and Vi. Thus, Equation (5) holds with no error.

By the assumptions of the claim, for the second case we may assume that for every i ∈ W and
every j ∈ [m], there exists j′ ∈ [m′] such that both Vm′(j−1)+j′,0 and Vm′(j−1)+j′,1 are consistent
with Vi. In this case, in the OT -hybrid world, the client will see an inconsistency with probability
1−2−e. With the complement probability, its output is determined by whatever the virtual servers
computed. On the other hand, the output of the client in the ideal world is either ⊥ with probability
1− 2−e or it is determined by the MPC simulator. Since it is assumed to be perfect and |VC| ≤ t
bound from above the number of corrupted servers, it follows that Equation (5) holds with no
error. �

Proof of Claim 5.10. By construction, the ideal world simulator always sends ⊥ in this case, i.e.,
p⊥ = 1. Additionally, in the OT -hybrid world, the client uses Enc on its input y to receive m ·m′
random bits (yj,j′)j∈[m],j′∈[m′] conditioned on ⊕m′j′=1yj,j′ = yj for every j ∈ [m]. Since we assume
that exactly m′ virtual clients, corresponding to the same input bit yj , where tampered by the
adversary, it follows that with probability 2−(m′−1) ≤ ε the client will see only consistent views.
Therefore, for every y ∈ {0, 1}m it holds that∣∣∣qy,⊥ −MT

g (·, (y,⊥)) · p
∣∣∣ = |qy,⊥ − p⊥| = Pr

[
γ+ (y,b,a∗[b]) 6= ⊥

]
≤ ε,

and for every z 6= ⊥∣∣∣qy,z −MT
g (·, (y, z)) · p

∣∣∣ =
∣∣∣Pr

[
γ+ (y,b,a∗[b]) = z

]
− 0

∣∣∣ ≤ ε.
Equation (5) follows. �

We next show that the protocol has perfect client-security. Consider an adversary A corrupting
the client. We construct the simulator SimA. The construction of the simulator is done in the
natural way, namely, it will apply the simulators of ΠBCS and ΠROT, and then the decoding of the
PRE, to receive an output. It can then use the MPC simulator to simulate the views of the virtual
servers in its watchlist. Formally, the simulator operates as follows.

1. On input y ∈ {0, 1}m and auxiliary input aux ∈ {0, 1}∗, query A to receive a message b∗ to
be sent to the OT.

2. Write b∗ = (b∗1,b∗2), where b∗1 corresponds to the outputs and b∗2 corresponds to the watchlist.
18Although Hoeffding’s inequality is stated for the sum of independent random variables, it still works in our case

since the sampled can be modeled as if we are picking vertices without repetitions. Sampling with repetitions only
decreases the probability for an edge.
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3. Apply the simulator guaranteed by the security of ΠBCS to each pair of messages in b∗1 to
obtain (bj)j∈[m·m′] for some bj ∈ {0, 1}, and apply the simulator SimROT, guaranteed by the
security of ΠROT, for each pair in b∗2 to obtain a set W ⊆ [n].

4. Send Dec((bj)j∈[m·m′]) to T to obtain an output z.

5. Apply the PRE simulator on z to obtain outputs (zj)j∈[m·m′] for each virtual client.

6. If |W| > t then output (zj)j∈[m·m′] alongside whatever SimROT outputs and halt.

7. Otherwise, apply the (semi-honest) MPC simulator for the parties {Si}i∈W with random
strings as inputs, and on {Cj,bj

}j∈[m·m′] with zj as the output respectively. Send the output
of the MPC simulator to SimROT, outputs whatever it outputs and halt.

The security of ΠBCS and ΠROT implies that (bj)j∈[m·m′] and W are distributed exactly the
same in both worlds. Therefore, the output z = g(x,Dec((bj)j∈[m·m′])) is distributed the same,
hence applying the PRE simulator on z will also result in the same distribution. Now, if |W| > t
then SimROT is guaranteed to produce a correct view as an output. If |W| ≤ t, then the MPC
simulator will perfectly generate |W| virtual views. Handing them over to SimROT would result in
the view that is distributed the same as in the OT -hybrid world. �

5.4 Proof of Lemma 5.5

We first prove the following simple claim, stating that the client will always reconstruct a unique
secret (if its not outputting ⊥).

Claim 5.11. Consider a message a∗ = ((a∗1,0, a∗1,1), . . . , (a∗n,0, a∗n,1)) ∈ {0, 1}2sn sent to the OT by
a malicious server. Then for any different inputs y1 6= y2 for the client, either it will output ⊥
for at least one of the inputs, or there exists a common secret r that will be reconstructed for both
inputs.

Proof. Let B = {i ∈ [n] : i /∈ y1 ∧ i /∈ y2} be the set of all indexes not chosen by both inputs.
Observe that for every i ∈ B, for both inputs the client will receive the string a∗i,1 which corresponds
to a share. Then |B| ≥ n − t, hence the client can reconstruct a secret r in case these share are
consistent. Therefore the secret will be the same for both y1 and y2. �

We now prove the lemma.

Proof of Lemma 5.5. By construction, it is not hard to see that the protocol is correct. We next
prove that the protocol has perfect input-dependent security. Consider an adversary A corrupting
the server. We construct a simulator SimA as follows.

1. On input x and auxiliary input aux ∈ {0, 1}∗, query A to receive the message

a∗ =
(
(a∗1,0, a∗1,1), . . . , (a∗n,0, a∗n,1)

)
∈ {0, 1}2sn,

it sends to the OT functionality.
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2. If there are no n − t shares from (a∗i,1)i∈[n] that are consistent, then send the constant 1
predicate alongside some arbitrary input x0 to the trusted party T (i.e., fix the output of the
client to ⊥).

3. Otherwise, let B be the maximum set of indexes i ∈ [n] such that the a∗i,1 are shares consistent
with single value r ∈ ({0, 1}s)n.

4. Send to T the input ((a∗i,0 ⊕ ri)i/∈B, (0s)i∈B) alongside the predicate PB defined as PB(y) = 1
if and only if y ∩ B 6= ∅.

To see why the simulator works, observe that SimA sends constant 1 predicate if and only if
A sent at most t consistent shares, forcing the client to output ⊥ in the ideal world. Since this
happens if there are too many inconsistencies, C will output ⊥ in the OT -hybrid world as well.
Furthermore, if there are at least n − t shares that are consistent, then by Claim 5.11, there is a
unique secret r that can be reconstructed. Therefore, in the OT -hybrid world, on input y, C will
output ⊥ if y ∩ B 6= ∅, and output (a∗[βROT (y)]i ⊕ ri)i∈y otherwise. As B was chosen to be the
maximum set of indexes, the same holds in the input-dependent ideal world.

We next show that the relaxed security requirement against malicious clients holds. Let A be
an adversary corrupting the client. The simulator SimA works as follows.

1. On input y and auxiliary input aux ∈ {0, 1}∗, query A to receive the message b∗ ∈ {0, 1}n it
sends to the OT functionality.

2. If there are strictly more than t 0’s in b∗ then output n random strings, each of length s.

3. Otherwise, send {i ∈ [n] : b∗i = 0} to T to receive the output (xi)i:b∗i =0.

4. Sample n random strings r1, . . . , rn ← {0, 1}s, and for every i ∈ [n] let r[i] ∈ {0, 1}sn be a
share of r = (r1, . . . , rn) in an (n− t)-out-of-n Shamir’s secret sharing (pad r[i] if needed).

5. Generate the values

a :=
(

(αBCS(xi ⊕ ri, r[i]))i:b∗i =0 , (αBCS (0sn, r[i]))i:b∗i =1

)
,

where each xi ⊕ ri is padded accordingly.

6. Compute and output (
2
1

)
-bit-OT`

(
a,
(
βBCS (b∗1) , . . . , βBCS (b∗n)

))
.

SimA works since in the case where there are more than t 0’s in b∗, by the properties the secret
sharing scheme, the view of C in the OT -hybrid world consist only of random values. Otherwise,
C will receive the masked xi for the indexes i on which b∗i = 0, and shares of the maskings for the
indexes i on which b∗i = 1.

�
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6 Tightness of the Analysis
Recall that our final protocol is a “wrapper” for an upgraded version of the protocol by Ishai et al.
[20], namely, protocol Π+

IKOPS from Section 5.3. In the following section, we prove that for any
(randomized) Boolean function f that is not full-dimensional, and does not satisfy the constraints in
Corollary 3.5, no “wrapper” protocol for Π+

IKOPS will compute f with perfect full-security. Here, the
“wrapper” protocol simply replaces the output ⊥ that the client receive from Π+

IKOPS with a random
bit. Formally, any “wrapper” protocol is parametrized with a probability vector v ∈ [0, 1]|Y| and an
ε > 0, and is denoted as Πv

f (ε). Let g : (X ∪ {⊥})× Y 7→ {⊥, 0, 1} be defined as g(x, y) = f(x, y)
if x 6= ⊥ and g(⊥, y) = ⊥. The “wrapper” protocol Πv

f is described as follows.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 6.1 (Πv

f (ε)).
Input: Server S has input x ∈ X and client C has input y ∈ Y.

1. The parties execute protocol Π+
IKOPS (ε) in order to compute g. Let z be the output C receive.

2. If z 6= ⊥, then C output z. Otherwise, output 1 with probability vy.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We next claim that the protocol cannot compute Boolean functions that are not full-dimensional
with perfect full-security.

Theorem 6.2. Let f : X × Y 7→ {0, 1} denote a (possibly randomized) Boolean function that has
no constant columns, i.e., Mf (·, y) is not constant for every y ∈ Y, and is not full-dimensional,
i.e., dim(aff

(
MT
f

)
) < |Y|. Then for every v ∈ [0, 1]|Y| and every ε > 0, Πv

f (ε) does not compute
f with perfect server-security.

Proof. Assume towards contradiction that Πv
f (ε) has perfect server-security, for some v and ε. We

next construct |Y| + 1 adversaries, such that each adversary forces the vector of outputs of the
client qΠv

f (ε), to be a different point inside the convex-hull of the rows of Mf . We then show that
these points are affinely independent, giving us a contradiction. First, write each input of the client
as a binary string y of length m. For every y ∈ Y define the adversary Ay as follows.

1. Fix an encoding y′ = (yj,1, . . . , yj,m′)j∈[m] ∈ Supp (Enc(y)), and fix some x∗y ∈ X such that
f(x∗y,y) 6= vy. (such an x∗y exists, since Mf does not have constant columns).

2. Execute Π+
IKOPS (ε) honestly with input x∗y, as fixed above, with the following one exception:

for every i ∈ [n], j ∈ [m], and j′ ∈ [m′], modify V i
m′(j−1)+j′,1−yj,j′

such that it is inconsistent
with Vi.

Finally, define the adversary A0 who picks an arbitrary x∗0 ∈ X as an input, and acts honestly
with the exception that it tampers with all V i

j,b’s, making them inconsistent with the corresponding
Vi. Let a∗(x∗y) be the message Ay sends to the OT.

Let us analyze the client’s vector of outputs qΠv
f (ε)(a∗(x∗y)), for any adversary Ay, for y ∈

Y ∪ {0}. For brevity, we will write q(x∗y) instead. By definition, A0 forces the client to sample its
output according to v, hence q (x∗0) = v. Next, fix y ∈ Y. Observe that for every ŷ 6= y, any of
their encodings will differ on at least one bit, i.e., ŷj

′

j 6= yj,j′ for some j ∈ [m] and j′ ∈ [m′], hence
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on input ŷ, the client will see V i
m′(j−1)+j′,1−yj,j′

for every i. Since the inconsistency is made with
every virtual server, on input ŷ, the client will notice it and output ⊥ with probability 1. By the
description of Πv

f , it follows that

qŷ
(
x∗y

)
= vŷ, (6)

for every ŷ 6= y. On the other hand, on input y, the client outputs ⊥ if and only if the event
Enc (y) = y′ occurs, which happens with probability 1− 2−m(m′−1). With the complement proba-
bility 2−m(m′−1) it does not detect an inconsistency, and outputs f(x∗y,y). Therefore

qy
(
x∗y

)
= 2−m(m′−1) · f(x∗y,y) + (1− 2−m(m′−1)) · vy. (7)

Let

δy = 2−m(m′−1)(vy − f(x∗y,y)). (8)

Then Equations 6, 7, and 8 imply that

q
(
x∗y

)
= v− δy · ey,

where ey is the yth unit vector in R|Y|.
To conclude the proof, observe that x∗y was chosen so that f(x∗y,y) 6= vy, hence δy 6= 0, implying

that the set of points {q(x∗y)}y∈Y∪{0} are affinely independent. Furthermore, since Πv
f is assumed

to have perfect server security, Lemma 3.1 implies that all of theses points lie inside conv(MT
f ).

Therefore, aff(MT
f ) = R|Y| contradicting the assumption that f is not full-dimensional. �

7 A Note on Efficiency
While our main goal is to understand the feasibility of perfectly secure 2PC, our construction does
confer concrete efficiency benefits for certain parameter ranges. It is instructive to compare our
construction with the IKOPS protocol, for deterministic functions (from the right class). Here we
focus on the number of OT calls, which are the most expensive part to implement in practice
(usually with computational security). Specifically, for simplicity, we consider the number of calls
to a

(2
1
)
-s-string-OT oracle, of any length s, rather than

(2
1
)
-bit-OT. We note that the strings’ length

of our OT’s is quite a bit larger than in IKOPS (due to the step ensuring perfect client security,
where the length is multiplied by the number of servers). However, we claim that this comparison
is somewhat justified when having practical efficiency in mind, since for particularly long strings,
a string-OT oracle can be used to pick short PRG seeds instead of the strings themselves during a
preprocessing phase. This will be done by having the server send s0 and s1 to the “short” string-
OT functionality, and the client will receive sb, where b ∈ {0, 1} as its input. Then, to implement
the “long” string-OT during the protocol execution, the sender sends to the client G(sa)⊕ma, for
a ∈ {0, 1}, where G is a PRG and m0 and m1 are the “long” messages.

Fix a deterministic function f : X×Y → {0, . . . , k − 1} satisfying the conditions of Corollary 3.5.
The number of calls to string-OT in Π+

IKOPS (ε) and ΠIKOPS(ε) is log(ε−1)(log |Y|+ c), where c is a
constant circa 1400 (c is roughly the same in both protocols). When considering our perfectly secure
protocol, we set ε = 1

2n(n+1)! , where n = (k−1)·|Y|. On the one hand, this results in communication
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complexity that is polynomial in |Y| and k, which may be prohibitive for functions with large client-
domain or range sizes. On the other hand, for functions with a small client-domain and range sizes,
we do better than IKOPS even for real world error ranges, and the advantage grows as the allowed
error ε decreases. For instance, consider the greater than function 3GT : {0, 1, 2}×{0, 1, 2} → {0, 1},
with an error of ε = 2−40. The communication complexity we obtain is bounded by a factor smaller
than 40/ log(24) ≈ 8.724 than that of the IKOPS protocol.
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