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Abstract. Garg, Gentry and Halevi (GGH13) described the first candi-
date multilinear maps using ideal lattices. However, Hu and Jia recently
presented an efficient attack on the GGH13 map, which breaks the mul-
tipartite key exchange (MPKE) and witness encryption (WE) based on
GGH13. In this work, we describe a new variant of GGH13 using secret
ring, which preserves the origin functionality of GGH13. The security
of our variant depends upon the following new hardness problem. Given
the determinant of the circular matrix of some element in a secret ring,
the problem is to find this secret ring and reconstruct this element.
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1 Introduction

Garg, Gentry, and Halevi (GGH13) described the first candidate construction
of multilinear maps from ideal lattices [16]. Following the framework of GGH13,
Coron, Lepoint, and Tibouchi (CLT13) presented another candidate over the
integers using Chinese remainder theorem [11]. Gentry, Gorbunov and Halevi
(GGH15) [19] constructed a graph-induced multilinear maps from lattices. To
improve efficiency, Langlois, Stehlé, and Steinfeld [34] also proposed a variant
GGHLite of GGH13.

While cryptographic multilinear maps have found extensive applications, in-
cluding witness encryption [23], general program obfuscation [18,38], function
encryption [18], and other applications [3,17,5,18], all known constructions of
multilinear maps exist security problems [7,21,28,2,1,9,10].

For the GGH13 map, Hu and Jia [28] recently described an efficient at-
tack, which breaks the GGH13-based applications on multipartite key exchange
(MPKE) and witness encryption (WE) based on the hardness of 3-exact cover
problem. Cheon and Lee [8] proposed an attack for the GGH13 map by com-
puting a basis of secret ideal lattice. To fix the GGH13 map, Gentry, Halevi
and Lepoint [26] first described a variant of the GGH13 scheme [16], in which
the linear zero-testing procedure from [16] is replaced by a quadratic (or higher-
degree) procedure. However, Brakerski et al. [2] have showed that this variant
of the GGH13 map fails to thwart zeroizing attacks. Then, Halevi [27] described
a variant of GGH13 based on graph-induced constraints. But, Coron et al [9]
proved that this variant is also insecure.
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On the other hand, Gu (Gu map-1) [24] constructed a new multilinear map
without encodings of zero, which is a variant of GGH13. Since no encodings of
zero are given in the public parameters, MPKE based on Gu map-1 [30] suc-
cessfully avoids the attack in [28]. However, Gu map-1 cannot be used for the
instance of witness encryption based on the hardness of 3-exact cover problem
[29]. This is because there is no randomizer in Gu map-1. But the instance of
WE based on the hardness of 3-exact cover problem is a strong application of
multilinear map. To support witness encryption, Gu (Gu map-2) [25] also sug-
gested another variant of GGH13 with encodings of zero by introducing random
matrices.

For the CLT13 map, Cheon, Han, Lee, Ryu, and Stehlé [7] broke CLT13
using zeroizing attack introduced by Garg, Gentry, and Halevi. To fix the CLT13
scheme, Garg, Gentry, Halevi and Zhandry [20], and Boneh, Wu and Zimmerman
[4] suggested two candidate fixes of multilinear maps over the integers. However,
Coron, Lepoint, and Tibouchi showed that two candidate fixes of CLT13 can also
be defeated using extensions of the Cheon et al.’s Attack [7]. By modifying zero-
testing parameter, Coron, Lepoint and Tibouchi [13] proposed a new variant of
CLT13. Unfortunately, this new version CLT15 is also broken by Cheon, Lee,
and Ryu [10], and Minaud and Fouque [35].

For the GGH15 map, Coron et al [9] recently [9] described an efficient attack
of GGH15 by extending the Cheon et al.’s attack [7], which breaks the GGH15-
based MPKE by generating an equivalent user private key.

Although Gu map-2 has included encodings of zero, it uses the public ring
R = Z[x]/〈xn + 1〉. In fact, all computations in Gu map-2 are operated over
Zq, and no longer use R. In particular, The disclosure of this ring R may have
security weaknesses. In this work, we will focus on the GGH13 variant based on
secret rings.

Concurrently, Halevi [27] have observed that this kind of secret ring may
improve the security of the scheme. However, Halevi wrote in [27] “It is not
clear if there are very many different rings that have such ‘nice geometry’, and
in particular it is not clear if hiding the ring is really possible.” Note that ‘nice
geometry’ means to be able to encode arbitrary cosets as small matrices.

Therefore, it can be said that this paper continues the work of [25] and [27].
On one hand, we describe a new variant of the scheme in [25] by using secret
rings. On the other hand, we also partially answer the problems presented by
Halevi in [27].

1.1 Our results

The GGH13 map. The GGH13 map works in a polynomial ringR = Z[x]/〈xn+
1〉, where n is a positive integer. A random large integer q , a secret short ring
element g ∈ R , and a secret random invertible element z ∈ Rq = R/qR are
chosen during generating the public parameters of the GGH13 construction. A
plaintext element e in R/gR is encoded at level-k as [c/zk]q , where c is a small
element in the coset eI = e+rg for some r ∈ R . Encodings at the same level can
be added and subtracted as long as the numerator of the sum of the encodings
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is not reduced modulo q . Similarly, encodings at levels i, j can be multiplied so
long as the numerator of the product of the encodings is not reduced modulo q .
A zero-testing parameter pzt = [hzκ/g]q is presented to test for zero at a level-κ
encoding. Given a level-κ encoding u = [c/zκ]q , one computes v = [u · pzt]q and
checks if the norm of v is smaller than q to determine whether u is zero or not.

Our construction. The basic idea of our construction is to use some secret
ring R = Z[x]/〈f〉 with monic irreducible polynomial f , and transform GGH13
over R into its matrix version. Concretely speaking, our construction works in

a polynomial ring R = Z[x]/〈f〉, where f = xn +
∑n/2

i=0
fix

i such that |fi|
are small integers. Similar to GGH13, we can generate the public parameter as
follows:

First, we generate the level-1 encodings yi = [aig+eiz ]q of some non-zero
elements ei ∈ R and transform them into its matrix form Yi = [TRot(yi)T

−1]q
over Zn×nq , where T ∈ Zn×nq , and Rot(yi) is a matrix whose j-th column is the

vector of the coefficients of xj−1yi mod f .
Then, we generate the zero-testing parameters corresponding to yi in matrix

form Pzt,i = [TRot( z
κ(big+ei)

g )S]q, where T,S ∈ Zn×nq .

Next, we generate a list of level-1 encodings xi = [ cigz ]q of “0” and transform
them into its matrix form Xi = [TRot(xi)T

−1]q over Zn×nq .
Finally, we sample another two matrics T1 ← DZk1×n,σ, S1 ← DZn×k2 ,σ with

k1, k2 ∈ [n], and set T∗ = T1T
−1, S∗ = S−1S1.

It is not difficult to verify that this construction supports addition and mul-
tiplication operations of encodings as long as encodings in the operation satisfies
the level constraints corresponding to operations. Moreover, given a level-κ en-
coding U, we can compute V = [T∗UPztS

∗]q and checks if the norm of V is

smaller than q to determine if U encodes zero, where Pzt =
∑

i
diPzt,i with

di ∈ Z. Therefore, we have obtained a new variant of GGH13.
To enhance the security of our scheme, we can further introduce random

matrices in the construction as follows:

Yi = [T
AiRot(g) +Rot(ei)

z
T−1]q,

Xi = [T
CiRot(g)

z
T−1]q,

Pzt,i = [T(zκ(Bi +Rot(ei/g)))S]q

where z ∈ Zq, Ai,Ci ← DZn×n,σ, Bi ← DZn×n,q1/2 .
To improve the efficiency of our scheme, we can replace Z in R with Ry =

Z[y]/〈yλ + 1〉, and set λ as the security parameter. In this case, we can take a
constant n and a monic irreducible polynomial f with coefficients fi ∈ Ry such
that ‖fi‖ ≤ O(λ).

Furthermore, our construction supports all applications using GGH13 as pub-
lic tools of encoding since it includes encodings of zero in the public parameters.
As a consequence, our scheme can adaptively support the GGH13-based MPKE
and WE that have been broken by Hu and Jia in [28].
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1.2 Organization

We briefly recall some background in Section 2. We describe our construction
using secret ring in Section 3. We describe new hardness assumption and analyze
the security of our scheme in Section 4. We present MPKE and WE based on
our construction in Section 5. Finally we draw some conclusions in Section 6.

2 Preliminarie

2.1 Notations

We denote Z,Q,R the ring of integers, the field of rational numbers, and the
field of real numbers. We take n as a positive integer, and let [n] be the set
{1, 2, ..., n}. We use the absolute minimum residual system of modulo q, namely
[a]q ∈ (−q/2, q/2]. We denote vectors by lowercase bold letters, and matrices
by uppercase bold letters, such as a,A. We write I as the identity matrix. We
denote by aj the j-th element of a, and Ai,j the element of the i-th row and j-th
colomn of A. Notation ‖a‖ (resp. ‖a‖∞) denotes the Euclidean norm (resp. the
infinity norm) of a.

2.2 Algebra

We denote by Z[x] and Q[x] the sets of polynomials with integer and rational
coefficients respectively. A polynomial is monic if the coefficient of its highest
degree is one. A polynomial is irreducible if it cannot be represented as a product
of lower degree polynomials. Let f ∈ Z[x] be a monic irreducible polynomial
with degree n. Let R be the polynomial ring Z[x]/〈f〉, and Rq = R/qR. For
a ∈ Rq, [a]q denotes each coefficient [ai]q ∈ (−q/2, q/2] of a. For simplicity, we
identify degree-(n−1) polynomials with the corresponding n-dimensional vectors
whose coordinates are corresponding to the coefficients of the polynomial. For
example, we define the p-norm ‖a‖p of a polynomial a ∈ Z[x] as the norm of the
corresponding vector. When there is no ambiguity, we sometimes abuse a ∈ R
and its corresponding vector a.

In this paper, we need some definitions and lemma introduced by Lyuba-
shevsky and Micciancio [33].

Lemma 2.1 (Lemma 3.2, [33]). Every ideal I of Z[x]/〈f〉, where f is a
monic, irreducible polynomial of degree n, is isomorphic to a full-rank lattice in
Zn.

We first recall the definition of the expansion factor of polynomials [33].
Definition 2.2. Let f ∈ Z[x] be a monic irreducible polynomial of degree n.

The expansion factor of f is defined as

φf = max
a∈Z[x],deg(a)≤2(deg(f)−1)

‖a mod f‖∞
‖a‖∞

.

Lemma 2.3 (Theorem 3.5, [33]). Given a monic polynomial f ∈ Z[x]:
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(1) If f = xn +
n/2∑
i=0

fix
i, then φf ≤ (‖2f‖1)3.

(2) If f = xn +
n−1∑
i=0

fix
i, then φf ≤ (‖2f‖1)n−1.

2.3 Lattices

An n-dimensional full-rank lattice L ⊂ Rn is the set of all integer linear com-

binations
∑n

i=1
xibi of n linearly independent vectors bi ∈ Rn. If we arrange

the vectors bi as the columns of matrix B ∈ Rn×n , then L = {Bx : x ∈ Zn} .
We say that B spans L if B is a basis for L. Given a basis B of L , we define
P (B) = {Bx|x ∈ Rn and xi ∈ [−1/2, 1/2)} as the parallelization corresponding
to B. Let det(B) denote the determinant of B.

Given g ∈ R, let I = 〈g〉 be the principal ideal in R generated by g. We denote
the Z-basis of I by Rot(g) = (g mod f, xg mod f, ..., xn−1g mod f). Namely,
the i-th column of Rot(g) is the vector of the coefficients of xi−1g mod f .

Given c ∈ Rn , σ > 0, the Gaussian distribution of a lattice L is defined
as DL,σ,c = ρσ,c(x)/ρσ,c(L) for x ∈ L , where ρσ,c(x) = exp(−π‖x − c‖2/σ2),

ρσ,c(L) =
∑

x∈L
ρσ,c(x). As shorthand, we will write DL,σ instead of DL,σ,0.

We denote a Gaussian sample as x← DL,σ (or d← DI,σ) over the lattice L (or
I).

Definition 2.4 (Smoothing parameter [36]). For an n-dimensional lat-
tice L, and positive real ε > 0, the smoothing parameter ηε(L) is defined to be
the smallest s such that ρ1/s(L

∗\{0}) ≤ ε.
Lemma 2.5 (Lemma 3.3 [36]). For any n-dimensional lattice L and a

negligible function ε(n), ηε(L) ≤
√
ω(log n) ·λn(L), where ω(log n) is any super-

logarithmic function.
Lemma 2.6 (Lemma 4.4 [36]). For any n-dimensional lattice L, vector

c ∈ Rn, and reals 0 < ε < 1, s ≥ ηε(L), we have

Pr
x←DL,s,c

{‖x− c‖ > s
√
n} ≤ 1 + ε

1− ε
· 2−n.

2.4 Multilinear Maps

Definition 2.7 (Multilinear Map [3]). For κ+ 1 cyclic groups G1, ..., Gκ, GT
of the same order q , a κ-multilinear map e : G1×...×Gκ → GT has the following
properties:

(1) Elements {gj ∈ Gj}j=1,...,κ , index j ∈ [κ] , and integer a ∈ Zq hold that

e(g1, ..., a · gj , ..., gκ) = a · e(g1, ..., gκ)

(2) Map e is non-degenerate in the following sense: if elements {gj ∈ Gj}j=1,...,κ

are generators of their respective groups, then e(g1, ..., gκ) is a generator of GT .
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Definition 2.8 ( κ-Graded Encoding System [16]). A κ-graded encoding

system over R is a set system of S = {S(a)
j ∈ R : a ∈ R, j ∈ [κ]} with the

following properties:

(1) For every index j ∈ [κ], the sets S = {S(a)
j ∈ R : a ∈ R} are disjoint.

(2) Binary operations‘+’ and‘−’ exist, such that every a1, a2, every index

j ∈ [κ], and every u1 ∈ S(a1)
j and u2 ∈ S(a2)

j hold that u1 + u2 ∈ S(a1+a2)
j and

u1 − u2 ∈ S(a1−a2)
j , where a1 + a2 and a1 − a2 are the addition and subtraction

operations in R respectively.
(3) Binary operation ‘×’ exists, such that every a1, a2, every index j1, j2 ∈ [κ]

with j1+j2 ≤ κ, and every u1 ∈ S(a1)
j1

and u2 ∈ S(a2)
j2

hold that u1×u2 ∈ S(a1×a2)
j1+j2

,
where a1 × a2 is the multiplication operation in R and j1 + j2 is the integer
addition.

3 Multilinear map via secret ring

Setting the parameters. Let λ be the security parameter, κ the multilinearity
level, n the dimension of elements of R. Concrete parameters are set as σ = λ,
α = λ2, n = λ2, τ = 2n, β =

√
q, q ≥ 212κ+1λ64κ+124, k1, k2 ∈ [n] such that

k1k2 < n.

3.1 Construction

Instance generation Par← InstGen(1λ, 1κ):
(1) Choose a prime q ≥ 216κλnO(κ).
(2) Choose a monic irreducible polynomial f(x) ∈ Z[x] such that f = xn +∑n/2

i=0
fix

i with |fi| < σ. Let R = Z[x]/〈f〉, Rq = R/qR, and K = Q[x]/〈f〉.
(3) Sample g ← DR,σ so that g is a prime element in R and ‖g−1‖ ≤ n, and

a random element z ← Rq so that z−1 ∈ Rq.
(4) Sample T,S ∈ Zn×nq so that T−1,S−1 ∈ Zn×nq .

(5) Sample T1 ← DZk1×n,σ, S1 ← DZn×k2 ,σ, and set T∗ = T1T
−1, S∗ =

S−1S1.
(6) For i ∈ [τ ],

(6.1) sample elements ai, ei, ci ← DR,α, bi ← DR,β ;
(6.2) set Yi = [TRot(aig+eiz )T−1]q, Xi = [TRot( cigz )T−1]q;

(6.3) set Pzt,i = [TRot( z
κ(big+ei)

g )S]q.

(7) Output the public parameters Par = {q, {Yi,Xi,Pzt,i}i∈[τ ],T∗,S∗}.
Generating level-t encoding U← Enc(Par, t,d, r):
Given d← DZτ ,α and r← DZτ ,α, generate a level-t encoding

U =
[∑τ

i=1
di · (Yi)

t +
∑τ

i=1
ri · (Xi)

t
]
q
.

Adding encodings U← Add(Par, t,Ui, · · · ,Uk):
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Given k level-t encodings Ui, i ∈ [k], their sum U =
[∑k

i=1
Ui

]
q

is a level-t

encoding.
Multiplying encodings U← Mul(Par, 1,U1, · · · ,Uk):

Given k level-1 encodings Ui, i ∈ [k], their product U =
[∏k

i=1
Ui

]
q

is a

level-k encoding.
Zero testing IsZero(Par,U,d):

Given a level-κ encoding U =
[
TRot( rg+ezκ )T−1

]
q

and a vector d← DZτ ,α,

(1) we compute Pzt =
∑τ

i=1
diPzt,i, V =

[
T∗ ·U ·Pzt · S∗

]
q
;

(2) we check whether ‖V‖ is short. That is,

IsZero(Par,U,d) =

{
1, if ‖V‖ < q3/4;

0, otherwise.

Extraction sk ← Ext(Par,U,d):
Given a level-κ encoding U and a vector d← DZτ ,α,

(1) we compute Pzt =
∑τ

i=1
diPzt,i, V =

[
T∗ ·U ·Pzt · S∗

]
q
;

(2) we collect (log q)/4−λ most-significant bits of each element of the k1×k2-
matrix V. That is,

Ext(Par,U,d) = MSB(V).

Remark 3.1. (1) Note that the above construction is similar to that in [25].
The main difference is that this scheme uses some secret ring R = Z[x]/〈f〉,
whereas the scheme in [25] uses the public ring R = Z[x]/〈xn + 1〉. As a result,
this difference can lead to significant differences in their security. Concrete details
are analyzed later. (2) It is easy to transform the above symmetric construction
into an asymmetric variant by using different elements zj and random matrices
Tj .

3.2 Correctness

To prove the correctness, we first describe two simple lemmas.
Lemma 3.2. If a, b ∈ R, then Rot(a)Rot(b) = Rot(ab mod f).
Proof. We only need to show that the first column of Rot(a)Rot(b) is equal

to the vector corresponding to the polynomial ab mod f .
It is easy to verify that the first column of Rot(a)Rot(b) is corresponding to∑n−1

i=0
bi · (axi mod f) = (a ·

∑n−1

i=0
bix

i) mod f = ab mod f .

Lemma 3.3. If a, b ∈ Rq, then [Rot(a)Rot(b)]q = [Rot(ab mod f)]q.
Proof. The proof is completely similar to that of Lemma 3.2.
Lemma 3.4. The algorithm InstGen(1λ, 1κ) runs in PPT.
Proof. A prime element g ∈ R can be generated in PPT according to Landau’s

prime number theorem (Theorem 5.17, [15]). It is easy to verify that all other
operations can run in PPT.
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Lemma 3.5. The encoding U← Enc(Par, t,d, r) is a level-t encoding.

Proof. By Yt
i =

[
T Rot(aig+eiz )tT−1

]
q

and Xt
i =

[
T Rot( cigz )tT−1

]
q
, we

have

U =
[∑τ

i=1
di ·Yt

i +
∑τ

i=1
ri ·Xt

i

]
q

=
[
T Rot

(∑τ

i=1
dia

′

ig +
∑τ

i=1
ric
′

ig +
∑τ

i=1
die

t
i

zt

)
T−1

]
q

=
[
T Rot

(ag + e

zt
)
T−1

]
q

where a
′

i = ((aig + ei)
t − eti)/g, c

′

i = (cig)t/g, a =
∑τ

i=1
di · a

′

i +
∑τ

i=1
ric
′

i,

and e =
∑τ

i=1
di · eti.

Lemma 3.6. U = Add(Par, t,Ui, · · · ,Uk) is a level-t encoding.

Proof. Given level-t encodings Ui, i ∈ [k]. Let Ui =
[
T Rot

( r′ig+e′i
zt

)
T−1

]
q
.

Then

U =
[∑k

i=1
Ui

]
q

=
[
T Rot

(rg + e

zt
)
T−1

]
q
,

where r =
∑k

i=1
r
′

i and e =
∑k

i=1
e
′

i.

Lemma 3.7. U← Mul(Par, 1,U1, · · · ,Uk) is a level-k encoding.

Proof. Given level-1 encodings Ui, i ∈ [k], let Ui =
[
T Rot

( r′ig+e′i
z

)
T−1)

]
q
.

Then, by Lemma 3.3 we have

U =
[
T Rot

(rg + e

zk
)
T−1

]
q
,

where e =
∏k

i=1
e
′

i, r = (
∏k

i=1
(r
′

ig + e
′

i)− e)/g.

Lemma 3.8. IsZero(Par,U,d) correctly determines whether U is a level-κ
encoding of zero or not.

Proof. By Lemma 2.3 and f = xn +
∑n/2

i=0
fix

i, we have

φf = ‖2f‖31 = (nσ)3 = λ9.

Given Pzt,i =
[
TRot( z

κ(big+ei)
g )S

]
q

and d← DZτ ,α, we have

Pzt =
∑τ

i=1
diPzt,i =

[
TRot

(zκ(hg + c)

g

)
S
]
q
,

where h =
∑τ

i=1
dibi, and c =

∑τ

i=1
diei.
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By bi ← DR,β , ei ← DR,α, and d← DZτ ,α, we obtain

‖h‖ = ‖
∑τ

i=1
dibi‖ ≤ τ |di|‖bi‖ ≤ 2n2αβ ≤ 2λ7

√
q,

‖c‖ = ‖
∑τ

i=1
diei‖ ≤ τ |di|‖ei‖ ≤ 2n2α2 ≤ 2λ8,

‖hg + c‖ ≤ 2φf‖h‖‖g‖ ≤ λ9 · 2λ7
√
q ·
√
nσ ≤ 2λ18

√
q.

Without loss of generality, we let U =
[∏κ

j=1
Uj

]
q

since U is a level-κ

encoding.
According to Uj = Enc(Par, 1,dj , rj), we have

Uj =
[∑τ

i=1
dj,i ·Yi +

∑τ

i=1
rj,i ·Xi

]
q

=
[
T Rot

(a(j)g + e(j)

z

)
T−1

]
q
,

where a(j) =
∑τ

i=1
dj,iai +

∑τ

i=1
rj,ici, e(j) =

∑τ

i=1
dj,iei.

Similarly, by ai, ei, ci ← DR,α, and dj ← DZτ ,α, we have

‖a(j)‖ = ‖
∑τ

i=1
dj,iai +

∑τ

i=1
rj,ici‖ ≤ 2τ |dj,i|‖ai‖ ≤ 4n2α2.

‖e(j)‖ = ‖
∑τ

i=1
dj,iei‖ ≤ τ |dj,i|‖ei‖ ≤ 2n2α2.

So, we get

‖
∏κ

j=1

(
a(j)g + e(j)

)
‖ ≤ φκ−1f

∏κ

j=1
‖
(
a(j)g + e(j)

)
‖

≤ φκ−1f

(
max
j∈[κ]

2‖a(j)‖‖g‖φf
)κ‖

≤ φκ−1f

(
2 · 4n2α2 ·

√
nσ · φf

)κ
≤ φ2κ−1f

(
8n2.5α2σ

)κ
≤ 8κλ16κ−4.

We now analyze the encoding U encodes 0 or non-zero, respectively.
For simplicity, we let

U =
[
T Rot

(ag + e

zκ
)
T−1

]
q
,

where e =
∏κ

j=1
e(j), and a =

∏κ

j=1

(
a(j)g + e(j)

)
− e.

If U is a level-κ encoding of zero (i.e. e = 0), then,

V =
[
T∗ ·U ·Pzt · S∗

]
q

=
[
T∗ ·TRot(ag

zκ
)T−1 ·T Rot

(zκ(hg + c)

g

)
S · S∗

]
q

=
[
T1Rot

(
a(hg + c)

)
S1

]
q
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Since ‖T1‖ = ‖S1‖ ≤ n
√
nσ ≤ λ4, we obtain

‖T1Rot
(
a(hg + c)

)
S1‖ ≤ ‖T1‖ · ‖Rot

(
a(hg + c)

)
‖ · ‖S1‖

≤ λ8 · ‖a(hg + c)‖
≤ λ8 · ‖a‖ · ‖hg + c‖ · φf
≤ λ8 · 8κλ16κ−4 · 2λ18√q · λ9

< q3/4

Thus, V is not reduced modulo q. That is, [V]q = V.
If U is a level-κ encoding of non-zero, i.e. e 6= 0 mod g. Thus,

V =
[
T∗ ·U ·Pzt · S∗

]
q

=
[
T1Rot(

ag + e

zκ
) Rot

(zκ(hg + c)

g

)
S1

]
q

=
[
T1Rot

( (ag + e)(hg + c)

g

)
S1

]
q

=
[
T1Rot

(
a(hg + c)

)
S1 + T1Rot

(e(hg + c)

g

)
S1

]
q

By Lemma 4 in [16], we have

‖T1Rot
(e(hg + c)

g

)
S1‖ ≈ q.

Again using ‖T1Rot
(
a(hg + c)

)
S1‖ ≤ q3/4, we have ‖V‖ ≈ q.

Lemma 3.9 Suppose that two level-κ encodings U1, U2 encode same plain-
text, then

Ext(Par,U1,d) = Ext(Par,U2,d).

Proof. Assume that Ui =
[
T Rot(uig+ezκ )T−1

]
q
, i ∈ [2]. So, we have

Vi =
[
T∗ ·Ui ·Pzt · S∗

]
q

=
[
T1Rot(

uig + e

zκ
) Rot

(zκ(hg + c)

g

)
S1

]
q

=
[
T1Rot

( (uig + e)(hg + c)

g

)
S1

]
q

=
[
T1Rot

(
ui(hg + c)

)
S1 + T1Rot

(e(hg + c)

g

)
S1

]
q

For our parameters setting, ‖T1Rot
(
ui(hg + c)

)
S1‖ ≤ q3/4. When e 6= 0

mod g, by Lemma 4 in [16], we have

‖T1Rot
(e(hg + c)

g

)
S1‖ ≈ q.

Thus, Ext(Par,U1,d) = Ext(Par,U2,d) with overwhelming probability.
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3.3 Variant 1

To enhance the security of our scheme, we may further introduce random ma-
trices in the construction.

Instance generation Par1 ← InstGen(1λ, 1κ):
(1) Choose a prime q ≥ 216κλnO(κ).
(2) Choose a monic irreducible polynomial f(x) ∈ Z[x] such that f = xn +∑n/2

i=0
fix

i with |fi| < σ. Let R = Z[x]/〈f〉, Rq = R/qR, and K = Q[x]/〈f〉.
(3) Sample g ← DR,σ so that g is a prime element in R and ‖g−1‖ ≤ n.
(4) Sample T,S ∈ Zn×nq so that T−1,S−1 ∈ Zn×nq , and a random element

z ∈ Zq so that z−1 ∈ Zq.
(5) Sample T1 ← DZk1×n,σ, S1 ← DZn×k2 ,σ, and set T∗ = T1T

−1, S∗ =

S−1S1.
(6) For i ∈ [τ ],

(6.1) sample elements ei ← DR,α, Ai,Ci ∈ Zn×nα , Bi ∈ Zn×nβ ;

(6.2) set Yi = [TAiRot(g)+Rot(ei)
z T−1]q, Xi = [TCiRot(g)

z T−1]q;
(6.3) set Pzt,i = [T(zκ(Bi +Rot(ei/g)))S]q.

(7) Output the public parameters Par1 = {q, {Yi,Xi,Pzt,i}i∈[τ ],T∗,S∗}.
Furthermore, we may remove the encoding Xi of “0” for some applications

such as MPKE and Witness Encryption to approach the classical lattice hard
problems. We denote the parameters of this variant as Par2 = {q, {Yi,Pzt,i}i∈[τ ],T∗,S∗}.
It is easy to show that this variant is still correct. We may prove that the secret
element g can not be obtained by the so-called zeroing attack.

3.4 Variant 2

To improve the efficiency of our construction, we use polynomial ring instead of
integer ring. Concretely speaking, we let Ry = Z[y]/〈yλ + 1〉, and R = Ry[x]/f ,

Rq = R/qR. In this case, we can set n as a constant and f = xn +
n−1∑
i=0

fix
i with

coefficients fi ∈ Ry such that ‖fi‖ ≤ O(λ). It is easy to verify that this new
variant is still correct.

4 Security

4.1 Hardness assumption

Consider the following security experiment:
(1) Par← InstGen(1λ, 1κ)
(2) For j = 0 to κ:

Sample dj ← DZτ ,α, rj ← DZτ ,α;

Generate level-1 encoding Uj =
[∑τ

i=1
dj,iYi +

∑τ

j=1
rj,iXi

]
q
.

(3) Set U =
[∏k

j=1
Uj

]
q

and Pzt =
∑τ

i=1
d0,iPzt,i.
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(4) Set Vc = Vd =
[
T∗ ·U ·Pzt · S∗

]
q
.

(5) Sample s← DZτ ,α, and set Pzt,r =
∑τ

i=1
siPzt,i.

(6) Set Vr =
[
T∗ ·U ·Pzt,r · S∗

]
q
.

Definition 4.1. (ext-GCDH/ext-GDDH). According to the security experi-
ment, the ext-GCDH and ext-GDDH are defined as follows:

Level-κ extraction CDH (ext-GCDH): Given {Par,U0, · · · ,Uκ}, out-
put a level-κ extraction encoding W ∈ Zk1×k2q such that

∥∥[Vc −W]q
∥∥ ≤ q3/4.

Level-κ extraction DDH (ext-GDDH): Given {Par,U0, · · · ,Uκ,V},
distinguish between

Dext−GDDH = {Par,U0, · · · ,Uκ,Vd},
Dext−RAND = {Par,U0, · · · ,Uκ,Vr}.

4.2 Cryptanalysis

In this section, we first generate easily computable quantities in our construction,
then analyze possible attacks using these quantities.

4.2.1 Easily computable quantities.

Since T,S ∈ Zn×nq , we must compute V =
[
T∗ ·U · Pzt · S∗

]
q

to eliminate

T,S, where U is a level-κ encoding, Pzt =
∑τ

i=1
diPzt,i with d ∈ Zτ .

For simplicity, we write

Pzt =
∑τ

i=1
diPzt,i =

[
TRot

(zκ(hg + c)

g

)
S
]
q

=
[
TRot

(zκh1
g

)
S
]
q
,

where h1 = hg + c.

Let integer t > 0, Ui,j,t = Xt
iY

κ−t
j be a level-κ encoding of zero. So, we have

Vi,j,t =
[
T∗ ·Ui,j,t ·Pzt · S∗

]
q

=
[
T1 ·Rot(cig)t ·Rot(yj)κ−t ·Rot

(h1
g

)
· S1

]
q

=
[
T1 ·Rot

(
cti · gt−1 · yκ−tj · h1

)
· S1

]
q

= T1 ·Rot
(
cti · gt−1 · yκ−tj · h1

)
· S1,

where yj = ajg + ej .

The final equality is to use the fact that Vi,j,t are not reduced modulo q.
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4.2.2 Attacks on secret ring

Using different level-κ encodings Ui,j,t, we can generate a list of Vi,j,t that
are not reduced modulo q. Furthermore, we can keep some encoding in Ui,j,t

unchanged, and change other encodings to produce (n×n)-dimensional matrices
in combination. In this way, we can compute the determinants of Rot(ci), Rot(g),
Rot(yj), Rot(h1) by applying GCD algorithm.

1. Attack of known ring
We choose cyclotomic rings as known rings. Let f = xn + 1 be the public

polynomial that is used to generated the ring R, where n is power of 2. Let
p = det(Rot(g)). Since p is a prime, GCD(f, g) = x − µ mod p. Using the
quantum algorithm [6], we may recover short generator of 〈g〉.

Without loss of generality, let Vi = T1Rot(ri)S1 be a list of (n × n)-
dimensional matrices generated by the public parameters. Assume that we obtain
ri by the quantum algorithm [6], then we can compute V1V

−1
2 = T1Rot(r1/r2)T−11 .

Since we have obtained r1/r2, we can compute T1 and S1. As a consequence,
we can further find other secret parameters in our construction. Therefore, there
may be security weaknesses in the constructions on public rings.

Note that in fact, the quantum algorithm in [6] can only recover short gen-
erator of ri, cannot guarantee this short generator must be ri. In this case, the
above attack may not be successful.

2. Attack of secret ring

If we keep f secret and choose f = xn +
∑n/2

i=0
fix

i with |fi| < σ, as far as

we know, our construction did not find security weaknesses.
According to Landau’s prime number theorem (Theorem 5.17, [15]), the num-

ber of the irreducible polynomials f that satisfy constraints is exponential in n.

For any irreducible polynomial f = xn+
∑n/2

i=0
fix

i ∈ Z[x], if there exists linear

factor x− µ in f over modulo p, then (p, µ) can generate a principal ideal that
has small generator. However, given p = det(Rot(g)), we do not know how to
effectively find g or f . We conjecture that this problem is difficult.

3. Lattice reduction attack
Given Vi = T1Rot(ri)S1, we can find T1, S1 by lattice reduction algorithms

[14,32], and further obtain Rot(ri) and f . However, when n is large enough, all
known lattice reduction algorithms run in exponential time in λ.

4.2.3 Hu-Jia Attack.

In this section, we show that the Hu-Jia attack [28] does not work for our
construction.

1. Hu-Jia Attack



14 Chunsheng Gu

Hu-Jia attack includes three steps. That is, Step 1 generates an equivalent
level-0 encoding for a level-1 encoding; Step 2 computes an equivalent level-0
encoding for the product of several level-0 encodings; Step 3 obtains the shared
secret key of an equivalent product level-0 encoding by the modified encod-
ing/decoding. The concrete details are as follows:

Step 1: Generate an equivalent level-0 encoding for a level-1 encoding
(1) Let par be the public parameters of the GGH13 map, i.e.

par =
{
q, y =

[1 + ag

z

]
q
, x1 =

[c1g
z

]
q
, x2 =

[c2g
z

]
q
, pzt =

[hzκ
g

]
q

}
.

We generate special decodings {y(1), x(i), i = 1, 2}, where

y(1) =
[
pzty

κ−1x1
]
q

= h(1 + ag)κ−1c1,

x(i) =
[
pzty

κ−2xix1
]
q

= h(1 + ag)κ−2(cig)c1, i = 1, 2,

where y(1), x(i) are not reduced modulo q.

(2) Given a level-1 encoding u, we have u =
[
dy + r1x1 + r2x2

]
q
, where d is

secret level-0 encoding, and r1, r2 random noise elements.
Compute special decoding

v =
[
pztuy

κ−2x1
]
q

= dy(1) + r1x(1) + r2x(2).

Since v is not reduced modulo q, we compute

v mod y(1) = r1x(1) mod y(1) + r2x(2) mod y(1).

(3) Given v mod y(1) and {x(1) mod y(1), x(2) mod y(1)}, we get v′ = v
mod y(1) ∈ 〈x(1), x(2)〉 such that (v− v′) mod y(1) = 0. Let v′ = r′1x(1) + r′2x(2).

(4) Compute d(0) = (v − v′)/y(1) over K = R[X]/〈xn + 1〉 such that the
quotient d(0) ∈ R. By arranging, we obtain

d(0) =
v − v′

y(1)
= d+

(r1 − r′1)c1g + (r1 − r′2)c2g

1 + rg

Again since g and 1 + rg are co-prime, we get d− d(0) ∈ 〈g〉. Thus, d(0) is an
equivalent level-0 encoding of d. Although ‖d(0)‖ is not small, Hu and Jia [28]
controlled the size of d(0) by using x(i) ∈ 〈g〉.

Step 2: Compute an equivalent product of several level-0 encodings
Let d(k) be the level-0 encoding included by level-1 encoding uk, d(k,0) an e-

quivalent encoding of d(k). Then
∏κ+1

k=1
d(k,0) is an equivalent secret of

∏κ+1

k=1
d(k)

such that
∏κ+1

k=1
d(k,0) −

∏κ+1

k=1
d(k) ∈ 〈g〉.

Step 3: Find the shared secret key of an equivalent product level-0 encoding

Let η =
∏κ+1

k=1
d(k,0). We compute η′ = y(1)η mod x(1), and η′′ = [yx1η

′]q.

2. Non-applicabiltiy of Hu-Jia Attack
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(1) Let Par be the public parameters of our construction, i.e.

Par = {q, {Yi,Xi,Pzt,i}i∈[τ ],T∗,S∗}

For convenience, we let Pzt =
[
TRot

(
zκh1

g

)
S
]
q
, yi = aig + ei, xj = cjg.

Similarly, we generate special decodings S = {{Y(i)}i∈[τ ], {X(j)}j∈[τ ]} as
follows:

Y(i) =
[
T∗ · (Yκ−2

1 YiX1) ·Pzt · S∗
]
q

= T1Rot(y
κ−2
1 yic1h1)S1,

X(j) =
[
T∗ · (Yκ−2

1 XjX1) ·Pzt · S∗
]
q

= T1Rot(y
κ−2
1 xjc1h1)S1,

where Y(i), X(j) are not reduced modulo q.

(2) Given a level-1 encoding U =
[∑τ

i=1
di·Yi+

∑τ

j=1
rj ·Xj

]
q
, we compute

special decoding

V =
[
T∗ · (UYκ−2

1 X1) ·Pzt · S∗
]
q

=
∑τ

i=1
di ·Y(i) +

∑τ

j=1
rj ·X(j).

Since V is not reduced modulo q and V ∈ Zk1×k2 , V belongs to the space
spanned by k = k1 × k2 elements in S.

On the one hand, we cannot efficiently find k elements in S such that V =∑τ1

t=1
dit ·Y(it)+

∑k−τ1

t=1
rjt ·X(jt), and dit , rjt are small integers. In fact, there

sometimes does not exist k elements in S satisfying to the condition that dit , rjt
are small integers.

On the other hand, we cannot efficiently solve V =
∑τ1

t=1
dit · Y(it) +∑k−τ1

t=1
rjt · X(jt) such that dit , rjt are small integers if we choose k = 2τ

elements in S to guarantee that there are small integers dit , rjt .
The integers dit , rjt , are required to be small since Vi = T1Rot(ri)S1 cannot

be directly multiplied to derive the product of some equivalent secret keys as
that in [28]. We need to use dit , rjt to generate the zero-testing parameter Pzt

corresponding to the level-1 encoding U.
In short, we cannot find an equivalent level-0 encoding encoded by U. Thus,

the Hu-Jia attack is prevented in our construction.

5 Applications

In this section, we describe two applications using our variant scheme without
zero-encoding, the MPKE protocol and the instance of witness encryption.

5.1 MPKE protocol

The MPKE protocol consists of Setup, Publish, and KeyGen as follows:
Setup(1λ, 1N ):
Output Par2 ← InstGen(1λ, 1κ) as the public parameters.
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Publish(Par2, j):

The j-th party samples dj ← DZτ ,α publishes the public key Uj =
[∑τ

i=1
(dj,i·

Yi)
]
q

and remains dj as the secret key.

KenGen(Par2, j,dj , {Uk}k 6=j):
The j-th party computes Vj =

∏
k 6=j

Uk, Pzt,j =
∑τ

i=1
dj,iPzt,i, and

extracts the common secret key skj = Ext(Par2,Vj ,dj) = MSB
(
[T∗ ·Vj ·Pzt,j ·

S∗]q
)
.

Theorem 5.1. Suppose the ext-GCDH/ext-GDDH defined in Section 4.1
is hard, then our construction is one round multipartite Diffie-Hellman key ex-
change protocol.

5.2 Witness Encryption

5.2.1 Construction

Garg, Gentry, Sahai, and Waters [23] constructed an instance of witness
encryption based on the NP-complete 3-exact cover problem and the GGH map.
However, Hu and Jia [28] have broken the GGH-based WE. In this section, we
present a new construction of WE based our new multilinear map.

3-Exact Cover Problem [22]. Given a collection Set of subsets T1, T2, · · · , Tπ
of [K] = {1, 2, · · · ,K} such that K = 3ξ and |Ti| = 3, find a 3-exact cover of
[K]. For an instance of witness encryption, the public key is a collection Set and
the public parameters Par in our construction, the secret key is a hidden 3-exact
cover of [K].

Encrypt(1λ,Par,M):
(1) For k ∈ [K], sample dk ← DZτ ,α, rk ← DZτ ,α and generate level-1

encodings Uk =
[∑τ

i=1

(
dk,iYi + rk,i ·Xi

)]
q
.

(2) Compute U =
[∏K

k=1
Uk

]
q

and sk = Ext(Par,U, {1, 0, · · · , 0}), and

encrypt a message M into ciphertext C.
(3) For each subset Tj = {j1, j2, j3}, sample rTj ← DZτ ,α, and generate a

level-3 encoding UTj =
[
Uj1Uj2Uj3 +

∑τ

i=1
rTj ,iX

3
i

]
q
.

(4) Output the ciphertext C and all level-3 encodings E = (UTj , Tj ∈ Set).
Decrypt(C,E,W ):

(1) Given C, E and a witness set W , compute U =
[∏

Tj∈W
UTj

]
q
.

(2) Generate sk = Ext(Par,U, {1, 0, · · · , 0}), and decrypt C to a message
M .

Similar to [23], the security of our construction depends on the hardness
assumption of the Decision Graded Encoding No-Exact-Cover.

Theorem 5.2. Suppose that the Decision Graded Encoding No-Exact-Cover
is hard. Then our construction is a witness encryption scheme.
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5.2.2 Hu-Jia Attacks.

(1) The Hu-Jia attack [28] is prevented in our new construction. One cannot
obtain an equivalent secret key according to the analysis in 4.2.2. As a result,
one cannot get an equivalent secret key using a combined 3-exact cover.

(2) The Hu-Jia attack [29] is thwarted in our new construction. Since Gu map-
1 [24] uses hidden randomizers, in some sense one merely can generate a deter-

ministically level-3 encoding. As a result, one can compute UTt =
[
UTjUTk(UTl)

−1
]
q

if Tt = Tj ∪ Tk − Tl. Thus, one can generate a combined 3-exact cover, and cor-

rectly compute a secret level-K encoding. However, since UTj =
[
Uj1Uj2Uj3 +∑τ

i=1
rTj ,iX

3
i

]
q

is a level-3 encoding in our new construction, one cannot ob-

tain UTt =
[
UTjUTk(UTl)

−1
]
q

when Tt = Tj ∪ Tk − Tl. This is because our

construction contains the level-1 encodings Xi of zero.
(3) It is easy to verify that The Hu-Jia attack [29] is also thwarted in our

variant scheme without the level-l encodings Xi of zero. Because the encod-
ings in our variant use random matrices and cannot be divided to generate the
combinatorial solution of the 3-Exact Cover problem.

6 Conclusions

In this paper, we describe a new variant of GGH13 via secret ring, which sup-
ports all applications for public tools of encoding in GGH13, such MPKE and
WE. However, the security of our construction depends upon new hardness as-
sumption, which cannot be reduced to classical hardness problem, such as LWE
or SVP.
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