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Abstract. In 2006, Groth, Ostrovsky and Sahai designed one non-interactive

zero-knowledge (NIZK) proof system [new version, J. ACM, 59(3), 1-35, 2012] for

plaintext being zero or one using bilinear groups with composite order. Based on the

system, they presented the first perfect NIZK argument system for any NP language

and the first universal composability secure NIZK argument for any NP language in

the presence of a dynamic/adaptive adversary. This resolves a central open problem

concerning NIZK protocols.

In this note, we remark that in their proof system the prover has not to invoke the

trapdoor key to generate witnesses. The mechanism was dramatically different from

the previous works, such as Blum-Feldman-Micali proof system and Blum-Santis-

Micali-Persiano proof system. We would like to stress that the prover can cheat the

verifier to accept a false claim if the trapdoor key is available to him.
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1 Introduction

Non-interactive zero-knowledge (NIZK) proof in the common random string model, introduced

by Blum et al. [3], plays a key role in many constructions, including digital signatures [9],

E-voting [12], Shuffle [1], polynomial evaluation [2], arithmetic circuits [6, 7] and multiple-party

computation protocols. In 1988, Blum et al. [3] constructed some computational NIZK proof

systems for proving a single statement about any NP language. In 1991, they [4] presented

the first computational NIZK proof system for multiple theorems. These systems are based

on the hardness of deciding quadratic residues modulo a composite number. In 1998, Kilian

and Petrank [18] designed an efficient noninteractive zero-knowledge proof system for NP with

general assumptions.

In 1999, Feige et al.[8] developed a method to construct computational NIZK proof systems
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based on any trapdoor permutation. Goldreich et al. [11] discussed the possibility of converting

a statistical zero knowledge (SZK) proof into a NIZK proof. In 2001, Santis et al. [20, 21] inves-

tigated the robustness and randomness-optimal characterization of some NIZK proof systems.

In 2003, Sahai and Vadhan [19] presented an interesting survey on SZK. Groth [14, 15] designed

some linear algebra with sub-linear zero-knowledge arguments and short pairing-based NIZK

arguments. In 2015, Gentry et al. [10] explored the problem of using fully homomorphic hybrid

encryption to minimize NIZK proofs.

At EUROCRYPT’06, Groth, Ostrovsky and Sahai [13] designed a new NIZK proof system

for plaintext being zero or one using bilinear groups with composite order. The refined version

[16] was published by Journal of ACM in 2012. The behind intractability is the subgroup

decision problem introduced by Boneh et al. [5]. Based on the basic NIZK proof system,

they presented one NIZK proof for circuit satisfiability. Furthermore, they constructed the first

perfect NIZK argument system for any NP language and the first universal composability secure

NIZK argument for any NP language in the presence of a dynamic/adaptive adversary. This

resolves a central open problem concerning NIZK protocols.

In this note, we would like to remark that in Groth-Ostrovsky-Sahai proof system the prover

has not to invoke the trapdoor key to generate witnesses. The mechanism was dramatically

different from the previous works, such as Blum-Feldman-Micali proof system [3] and Blum-

Santis-Micali-Persiano proof system [4]. They did adopt a different security model although it

was not specified explicitly. We also find that if the trapdoor key is available to the prover then

he can cheat the verifier to accept a false claim.

2 Review of Groth-Ostrovsky-Sahai NIZK Proof System

Common reference string. G,G1 are two cyclic groups of order n, where n = pq and p, q are

primes such that it is difficult to factor n. ê : G × G → G1 is a bilinear map. We require that

ê(g, g) is a generator of G1 if g is a generator of G. Pick a generator h ∈ Gq, where Gq ⊂ G is

of order q. The common reference string is σ = (n,G,G1, ê, g, h).

Statement. The statement is an element c ∈ G. The claim is that there exists a pair (m,w) ∈
Z2 so m ∈ {0, 1} and c = gmhw.

Proof. Given (σ, c,m,w), check m ∈ {0, 1} and c = gmhw. Return failure if check fails. Pick

r ∈ Z∗n, compute π1 = hr, π2 = (g2m−1hw)wr
−1
, π3 = gr. Return π = (π1, π2, π3).

Verification. Given the parameter σ and c, π, check c ∈ G and π ∈ G3. Check

ê(c, cg−1) = ê(π1, π2), ê(π1, g) = ê(h, π3)

Return 1 if both checks pass, else return 0.

2



It is easy to check its correctness because

ê(c, cg−1) = ê(gmhw, gm−1hw) = ê(g, g)m(m−1)
::::::::::::

ê(g, h)(2m−1)wê(h, h)w
2

ê(π1, π2) = ê(hr, (g2m−1hw)wr
−1

) = ê(g, h)(2m−1)wê(h, h)w
2

If m ∈ {0, 1}, then ê(c, cg−1) = ê(π1, π2) holds.

3 Analysis of Groth-Ostrovsky-Sahai NIZK Proof System

For convenience, we will call the prover, Alice, and the verifier, Bob. We now consider the

following problems.

3.1 What is “common reference string”

The notion of “common reference string” used in NIZK can be traced back to Ref.[4]. It had

stressed that

The moral is that one must be careful when using the same set-up, i.e., common

reference string, and the same pair (x, y), to prove an “unlimited” number of formulae

to be satisfiable.

Apparently, “common reference string” represents the same set-up known to the prover and

the verifier. But it does not specify that whether or not there is any trapdoor key related to the

common reference string.

Recalling the Blum-Santis-Micali-Persiano proof system [4] and its like, we find they have not

any trapdoor key at all. For completeness, we now briefly describe Blum-Santis-Micali-Persiano

proof system [4] as follows.

Common reference string. The random string is ρ = ρ1ρ2 · · · ρn2 , each ρi has length n.

Statement. The odd number x < n is a composite of two different primes p, q. Assume that

|J+1
x | = |J−1x |, where

J+1
x =

{
y ∈ Z∗x | Jacobi symbol

(
y

x

)
= 1

}
, J−1x =

{
y ∈ Z∗x |

(
y

x

)
= −1

}
and Z∗x = {1, 2, · · · , x − 1}. Alice knows p, q and want to convince Bob of this fact while

preventing Bob from knowing p, q.

Proof. Alice picks y < x such that
(
y
x

)
= 1 and y is not a quadratic residue of x. She

then computes
(
ρi
x

)
for i = 1, 2, · · · , n2. If

(
ρi
x

)
= 1, compute si such that s2i = ρi modx or

s2i = yρi modx. Send these si and x, y to Bob.

Verification. Bob checks that x is not a perfect square. Verify that
(
y
x

)
= 1 and the number

of si is greater than 3n. He then checks that each
(
ρi
x

)
= 1 and s2i = ρi or s2i = yρi modx.
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It is easy to find that in Ref.[4] there is not any trapdoor key related to the set-up. We refer

to the following table for the differences between Blum-Santis-Micali-Persiano proof system and

Groth-Ostrovsky-Sahai proof system.

Blum-Santis-Micali-Persiano Groth-Ostrovsky-Sahai

Common reference A random string ρ = ρ1ρ2 · · · ρn2 , (n,G,G1, ê, g, h)

string where each ρi is of length n. where n = pq.

[trapdoor key] NO (p, q).

Statement Knowing the factorization c is of the structure gmhw

of the integer x. with (m,w) ∈ {0, 1} × Z.

Proof x; y, {si} c;π1, π2, π3

Verification
(
ρi
x

)
= 1, and s2i = ρi ê(c, cg−1) = ê(π1, π2),

or s2i = yρi modx and ê(π1, g) = ê(h, π3)

Clearly, Blum-Santis-Micali-Persiano proof system needs only a very simple common refer-

ence string, and Alice has to make use of her private key to generate witnesses. To the contrary,

Groth-Ostrovsky-Sahai proof system needs a very complicated common reference string accom-

panied with a trapdoor key. They did adopt different security models.

3.2 What is the true claim

Give c ∈ G, Alice claims that c is of the form gmhw for some (m,w) ∈ {0, 1} × Zn. This is

equivalent to check whether c or c/g is in the subgroup Gq.

If the trapdoor key q is available, then it suffices to check that cq = 1 or (c/g)q = 1.

However, the trapdoor key q cannot be directly shown to Bob. Therefore, Alice has to produce

some witnesses to convince Bob of that c or c/g is indeed in the subgroup Gq.

3.3 Does Alice invoke the trapdoor key

It is easy to find that Alice does not invoke the trapdoor key (p, q) to generate witnesses. Besides,

the system does not specify that who is responsible for generating the common reference string.

So, it is reasonable to assume that there is a third-party, Cindy, who generates the common

reference string. Of course, Cindy is not fully trustable and she knows the trapdoor key.

3.4 Can Alice and Cindy conspire to cheat Bob

Can Cindy form an alliance with Alice? If so, we now show that Alice and Cindy can conspire

to cheat Bob to accept a false claim.

Alice picks an integer r and sets π1 = hr, π3 = gr, c = gα1hα2 , π2 = gβ1hβ2 , where α1, α2, β1, β2
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are to be determined. Since

ê(c, cg−1) = ê(gα1hα2 , gα1−1hα2) = ê(g, g)α1(α1−1)
:::::::::::::

ê(g, h)α1α2+α2(α1−1)ê(h, h)α
2
2

ê(π1, π2) = ê(hr, gβ1hβ2) = ê(h, g)rβ1 ê(h, h)rβ2

it suffices for Alice to solve 
α1(α1 − 1) = 0 modn

2α1α2 − α2 = rβ1 modn

α2
2 = rβ2 modn

for those exponents.

Armed with the trapdoor key p, q, Alice can obtain k, ` using Extended Euclid Algorithm

such that

kq − `p = 1.

She then sets α1 = kq. She picks β1 < n and computes α2 = rβ1(2kq − 1)−1, β2 = α2
2r
−1 modn.

It is easy to find that the above values c, π1, π2, π3 pass the verification.

Clearly, α1 = kq 6= 0, 1. Besides, (gα1)q = (gkq)q = (g`p+1)q = gq 6= 1, namely gα1 6∈ Gq.

Thus, there does not exist an integer α′ such that gα1 = hα
′
. That means c = gα1hα2 cannot be

eventually expressed as hw1 or ghw2 . Thus, the adversary can cheat Bob to accept a false claim.

4 Conclusion

We remark that the Groth-Ostrovsky-Sahai proof system adopts a special security model due

to the existence of trapdoor key related to the common reference string. Under the strong

assumption that the adversary cannot access to the trapdoor key, the proof system seems secure.

But the assumption is somewhat incompatible with the general primitive of zero-knowledge

proof, and makes the system itself unsuitable to more broader applications.
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