
Quantum Multi-Key Homomorphic Encryption for

Polynomial-Sized Circuits

Rishab Goyal
rgoyal@cs.utexas.edu

Abstract

Fully homomorphic encryption (FHE) is a powerful notion of encryption which allows data to be
encrypted in such a way that anyone can perform arbitrary computations over the encrypted data without
decryption or knowledge of the secret key. Traditionally, FHE only allows for computations over data
encrypted under a single public key. López-Alt et al. (STOC 2012) introduced a new notion of FHE,
called multi-key FHE (MFHE), which permits joint computations over data encrypted under multiple
independently-generated (unrelated) keys such that any evaluated ciphertext could be (jointly) decrypted
by the parties involved in the computation. Such MFHE schemes could be readily used to delegate
computation to cloud securely.

Recently a number of works have studied the problem of constructing quantum homomorphic en-
cryption (QHE) which is to perform quantum computations over encrypted quantum data. In this work
we initiate the study of quantum multi-key homomorphic encryption (QMHE) and obtain the following
results:

1. We formally define the notion of quantum multi-key homomorphic encryption and construct such
schemes from their classical counterpart. Building on the framework of Broadbent and Jeffery
(Crypto 2015) and Dulek et al. (Crypto 2016), we show that any classical multi-key leveled homo-
morphic encryption can be used to build a quantum multi-key leveled homomorphic encryption if
we also have certain suitable error-correcting quantum gadgets. The length of the evaluation key
grows linearly with the number of T-gates in the quantum circuit, thereby giving us a quantum
multi-key leveled homomorphic encryption for circuits with polynomial but bounded number of
T-gates.

2. To enable a generic transformation from any classical multi-key scheme, we introduce and construct
a new cryptographic primitive which we call conditional oblivious quantum transform (COQT). A
COQT is a distributed non-interactive encoding scheme that captures the essence of error-correcting
gadgets required for quantum homomorphic encryption in the multi-key setting. We then build CO-
QTs themselves from any classical multi-key leveled homomorphic encryption with NC1 decryption.
We believe that COQTs might be an object of independent interest.

3. We also show that our quantum multi-key homomorphic encryption schemes support distributed
decryption of multi-key ciphertexts as well as allows ciphertext re-randomizability (thereby achieves
quantum circuit privacy) if the underlying classical scheme also supports distributed decryption and
satisfies classical circuit privacy. We show usefulness of distributed decryption and ciphertext re-
randomizability for QMHE by providing efficient templates for building multi-party delegated/server-
assisted quantum computation protocols from QMHE.

Additionally, due to our generic transformation, our quantum multi-key HE scheme inherits various
features of the underlying classical scheme such as: identity/attribute-based, multi-hop, etc.

1 Introduction

Fully homomorphic encryption (FHE) is a powerful notion of encryption which allows data to be encrypted
in such a way that anyone can perform arbitrary computations over the encrypted data without decryption

1

or knowledge of the secret key. With widescale adoption of cloud storage, it has become essential to encrypt
sensitive data before moving it to the cloud. If one encrypts the data using FHE, then it not only solves
the privacy problem but also provides the capability to delegate computation and perform numerous useful
tasks without sacrificing confidentiality.

The problem of computing over encrypted data was introduced by Rivest, Adleman and Dertouzos [RAD78],
however constructing a general purpose FHE scheme remained an open problem for more than three decades.
In a breakthrough result in 2009, Gentry [Gen09] provided the first construction for FHE for general cir-
cuits.1 Since then there has been a tremendous progress [Gen10, vDGHV10, BV11b, BV11a, GH11b, GH11a,
CMNT11, CNT12, BGV12, GHS12a, GHS12b, LATV12, Bra12, GSW13] with constructions being simplified
greatly and their security being based on hardness of the learning with errors (LWE) assumption [Reg05],
a standard cryptographic assumption which is based on the worst-case hardness of certain lattice problems
(GapSVP,SIVP).

In today’s world, where distributed computing is widely prevalent, FHE is not always sufficient as it only
allows for computations over data encrypted under a single public key. This shortcoming of FHE prevents its
more wider adoption. Consider the following scenario with two users — Alice and Bob. They both have some
private data and would like to perform joint computations over their combined datasets, however they would
like to delegate this task as they do not have sufficient computational power to complete the task. Now we
can solve this problem using FHE, but with the extra assumption of existence of a fully trusted third party/
cloud server, i.e. Alice and Bob can publish their data encrypted under server’s public key, after which the
server could perform the specified computations and relay the respective outputs. Clearly without a trusted
third party this approach does not work. To this end, López-Alt et al. [LATV12] introduced a new notion of
FHE which they called multi-key FHE (MFHE). In a few words, MFHE allows joint computations over data
encrypted under multiple independently-generated (unrelated) keys such that any evaluated ciphertext could
be (jointly) decrypted by the parties involved in the computation. Such MFHE schemes could be readily used
to delegate computation to cloud securely. Since its introduction there has been a steady stream of work on
FHE in the multi-key setting [CM15, MW16, BP16, PS16, DHRW16, CO17] with variety of improvements
ranging from basing hardness on LWE to providing 1-round threshold decryption to achieving circuit privacy
and more.

The problem of computing over encrypted data becomes even more interesting when one considers the
existence of quantum computers. Now if (and when) quantum computing becomes practical, it would unlock
several new facets of this problem. Broadly, those could be divided in the following two categories —
(1) constructing (multi-key) homomorphic encryption schemes for encrypting classical information that are
secure even under quantum attacks, and (2) constructing secure (multi-key) homomorphic encryption schemes
that could be used to encrypt quantum information. Informally, one involves tightening security of classical
primitives in presence of quantum adversaries and other explores providing new functionality in presence of
quantum information. Now LWE is widely believed to be a quantum-safe assumption as it is conjectured that
approximating GapSVP (or SIVP) within any polynomial factors (or even certain subexponential factors) is
hard even for polynomial time quantum algorithms. Thus it is one of the most suitable candidates to base
quantum-resistant cryptography. Since most current (M)FHE constructions rely on LWE for security, thus
the first direction has already been explored. In this work, we make progress along the second direction.
One of our main contributions is to construct multi-key homomorphic encryption schemes for encrypting
and evaluating quantum data.2

Recently a number of works [Lia13, YPDF14, OTF15, BJ15, DSS16] have studied the problem of con-
structing quantum fully homomorphic encryption (QFHE). The idea of quantum homomorphic encryption

1Although some progress was made in [GM84, Elg84, Pai99, SYY99, BGN05, IP07], none of these solved the problem
completely.

2We would like to point out that, due to our modular approach, we also make qualitative improvements in single-key setting
and not just new constructions for multi-key schemes. Concretely, we show how to construct a quantum HE scheme from any
classical HE scheme without assuming any special structure or additional properties like space/time-efficient decryption in the
starting scheme. Instead we require only for bootstrapping our quantum gadget that there exists a classical HE scheme with a
log-depth decryption. This allows our transformation to preserve all the properties of the underlying classical HE system like it
being identity-based and/or attribute based [GSW13] etc. Although the same result in the single-key setting could be achieved
in a non-black box way by exploiting the underlying structure of [DSS16], we achieve this generically.

2

first appeared in [Lia13] where they proposed a restricted symmetric-key variant satisfying limited homomor-
phism using quantum one-time pads [AMTdW00] without making any computational assumption (i.e., in the
information-theoretic setting). Although the problem of quantum homomorphic encryption was informally
introduced in [RFG12, Lia13], the formal definitions (both in the public-key and symmetric-key settings)
first appeared in [BJ15]. An important contribution made by Broadbent and Jeffery [BJ15] was to present a
security notion for quantum encryption schemes which they referred to as quantum indistinguishability un-
der chosen plaintext attacks (q-IND-CPA), and is a natural extension of the standard IND-CPA (semantic)
security to the quantum setting.

Although one cannot hope to construct information-theoretically secure classical FHE schemes, as that
would break the lower bound on communication complexity of private information retrieval protocols [CGKS95,
KO97, CKGS98], a natural question to ask is whether the impossibility could be bypassed in the quantum
world. Unfortunately, Yu et al. [YPDF14] proved impossibility of information-theoretically secure QFHE
by proving an exponential lower bound on the size of encrypted states in such a system. Informally, they
showed that there cannot exist a perfectly secure QFHE scheme that can be used to evaluate arbitrarily
large quantum circuits while also satisfying compactness.3 These negative results, however, still leave a gap
as in they do not immediately rule out existence of a computationally-secure QFHE, or a perfectly secure
quantum leveled homomorphic encryption (QLHE).4 Recent works by Ouyang et al. [OTF15], Broadbent
and Jeffery [BJ15], and Dulek et al. [DSS16] make progress towards filling this gap with [OTF15] construct-
ing information-theoretically secure QLHE for circuits with a constant number of non-Clifford operations,
and [BJ15] and [DSS16] constructing computationally secure QLHE for circuits with constant T-gate depth
and polynomially many (but a-priori bounded) T-gates, respectively.5

Since the impossibility result of Yu et al. [YPDF14] readily extends to the multi-key setting, therefore
a natural question is whether it could be bypassed using computational assumptions as in the single-key
setting. In this work, we answer this in the affirmative by presenting a quantum multi-key leveled homomor-
phic encryption scheme based on the LWE assumption. We start by formally defining quantum multi-key
homomorphic encryption. As in prior works [BJ15, DSS16, Mah17]6 we consider security against chosen
plaintext attacks (q-IND-CPA), and our definition is a generalization of QFHE definition to the multi-key
setting. Towards constructing quantum multi-key homomorphic encryption, we match the current state-of-
the-art results in the single-key setting [DSS16], that is we provide a construction of quantum multi-key
homomorphic encryption for poly-sized quantum circuits. At a high level, our approach is similar to that
used in prior works which is to use quantum one-time pads in conjunction with a classical homomorphic
encryption scheme. A detailed technical overview is given in Section 2.

Applications and Related Work. The most natural application of homomorphic encryption is dele-
gation of computation. As observed by prior works [BJ15, DSS16, Mah17], any quantum homomorphic
encryption scheme can be used to construct constant-round protocols for blind delegated quantum compu-
tation [Chi05, AS06, BFK09, ABOE08].7 Typically, in blind quantum computation we have two parties —
Alice (client) and Bob (server). Here Alice does not have sufficient quantum technology whereas Bob has
unlimited quantum resources. Alice wants Bob to perform some computation using his quantum resources
such that Bob does not learn anything about Alice’s input, output or, the function evaluated other than

3Roughly, a (Q)FHE scheme is compact if the size of evaluated ciphertexts is independent of size of circuit evaluated.
4Throughout this paper we say a (quantum) homomorphic encryption scheme is leveled if the class of (quantum) circuits

that can be homomorphically evaluated is bounded/fixed during key generation.
5Broadbent and Jeffery [BJ15] also provide another construction that can be used to evaluate arbitrary quantum circuits,

although it only satisfies a weaker compactness notion, namely quasi-compactness. However, in this work, we only focus on
compact homomorphic encryption schemes.

6In [Mah17], the authors give constructions of quantum (single-key) homomorphic encryption that remove the a-priori bound
on the number of T-gates, but are less general as they use more restricted primitives like indistinguishability obfuscation and
classical (single-key) homomorphic encryption with certain special properties, and also lead to imperfect correctness. In this
work, we focus on generic transformations from classical multi-key homomorphic encryption to quantum multi-key homomorphic
encryption.

7As pointed out in [DSS16], QFHE schemes can be used to do delegated quantum computation in two or three rounds
depending on the quantum resources available to the client as well as the underlying QFHE construction.

3

trivial to compute information. Although there has been a long line of work to construct protocols for
blind delegated quantum computation [Chi05, AS06, BFK09, ABOE08, RFG12, BGS13, DFPR14, FBS+14,
Bro15, TKO+16, ABOEM17], none of these protocols match efficiency (in terms of round complexity, com-
munication complexity, universality of computation) of those obtained via QFHE. Therefore, this makes
constructing QFHE an even more interesting problem.

A quantum multi-key homomorphic encryption scheme not only subsumes standard quantum (single-
key) homomorphic encryption, but also all its potential applications like delegation and blind quantum
computation. Additionally, it could also lead to more efficient solutions for multi-party quantum computa-
tion [CGS02, BOCG+06] (MPQC) as well as multi-party blind quantum computing [KP16]. In the classical
setting, López-Alt et al. [LATV12] showed that a multi-key FHE could be used to do multi-party compu-
tation (MPC) [Yao82, Yao86, GMW87] by providing a simple and elegant template. In a follow-up work,
Mukherjee and Wichs [MW16] extended the MFHE definition to include a 1-round threshold decryption
algorithm which lead to an even simpler template and more efficient protocol for MPC. At a high level, the
MPC protocol proceeds as follows. Each party starts by independently generating an MFHE key pair and
encrypting its private input under its respective public key. In the first round of communication, each party
broadcasts its encrypted input to all other parties. Next, each party (independently and) homomorphically
computes the desired function over the encrypted inputs. Finally, they run the threshold decryption algo-
rithm on the evaluated ciphertext and broadcast the partial decryption which could be used by any party
to reconstruct the final output of computation.

The most attractive property of this template is that it is extremely suitable to achieve round-efficient
MPC in the classical setting as shown in [MW16, BHP17]. The MPC protocols constructed in [LATV12,
MW16, BHP17] are first proven to be secure against semi-malicious adversaries [AJW11, AJL+12], and
later their security is generically boosted to full security (i.e., against malicious adversaries) using non-
interactive zero knowledge (NIZK) arguments. An interesting question is whether such a template could be
extended to the quantum setting. To this end, we make some partial progress and show how to extend the
classical template to the quantum setting. Independently and concurrently, Brakerski [Bra18] presented a
QFHE scheme with classical key generation building on the work of Mahadev [Mah17] and improving the
underlying assumption. Another interesting question is whether similar ideas could be used in the multi-key
setting as well.

Our Results. In this work we initiate the study of quantum multi-key homomorphic encryption (QMHE)
and study the notion of threshold decryption of quantum multi-key ciphertexts and its potential applications.
We start by formally defining the notion of quantum multi-key homomorphic encryption. We then build
quantum multi-key leveled homomorphic encryption for circuits with polynomial (but bounded) number
of T-gates from classical multi-key leveled homomorphic encryption, and certain error-correcting quantum
gadgets which we call conditional oblivious quantum transform (COQT). We show that COQTs can be
generically constructed from any classical multi-key leveled homomorphic encryption that support NC1

decryption.
Our QMHE achieves compactness in the sense that the size of ciphertexts is independent of the size of

quantum circuits evaluated, however the size of the evaluation key grows linearly with the number of T-gates
which can be homomorphically evaluated. We also define the notion of distributed (non-interactive) decryp-
tion for quantum multi-key ciphertexts. Note that (unlike classical multi-key ciphertexts) quantum multi-key
ciphertexts can not be in possession of more than one party at any point of time due to unclonability of
quantum states, thus there is not necessarily any single natural definition that one could consider in quan-
tum setting. Our definition is inspired by its potential applications to multi-party quantum computation,
delegation etc. We show that our QMHE scheme supports distributed (non-interactive) decryption as well
as allows ciphertext re-randomizability (thereby achieves quantum circuit privacy) if the underlying classical
scheme also supports distributed decryption and satisfies classical circuit privacy. We show that QMHE
schemes that support threshold decryption can be directly used for multi-party delegated quantum compu-
tation [KP16], thereby answering the question (in affirmative) raised in [KP16] on whether quantum FHE
could be adapted to multiple parties and if it could be used to multi-party delegated quantum computation.

4

2 Technical Overview

We start by briefly reviewing the quantum (single-key) homomorphic encryption schemes provided in [BJ15,
DSS16]. Next, we discuss some natural ideas to extend those schemes to the multi-key setting as well as the
technical difficulties faced in doing so. We then explain the new abstractions and framework we introduce
to construct quantum multi-key homomorphic encryption as well as show how to instantiate our framework
using only classical multi-key homomorphic encryption schemes. Finally, we describe the notion of threshold
decryption for quantum multi-key ciphertexts and discuss its applications.

2.1 Prior Work

Broadbent and Jeffery [BJ15] start with a simpler goal of constructing QMHE schemes for evaluating only
Clifford circuits. To that end, they describe a simple and elegant scheme called Clifford scheme (or CL). The
main idea in the CL scheme is to encrypt the quantum message state using a quantum one-time pad, and
encrypt the corresponding one-time pad keys using a classical homomorphic encryption scheme. Since all the
unitaries in Clifford group commute with the Pauli matrices, thus if one directly evaluates a Clifford circuit
over the encrypted quantum state, then (due to commutativity property) the circuit evaluation on encrypted
cipherstate can be rewritten as a one-time pad encryption of the circuit evaluation on message-states instead.
Also, the final one-time pad keys will be fixed functions of initial one-time pad keys and the circuit being
evaluated. Thus, to homomorphically evaluate a quantum circuit, the evaluator simply proceeds as follows
— first, it directly evaluates the quantum circuit on the encrypted cipherstates; next, it updates the one-time
pad keys using classical homomorphic evaluation algorithm.

Now, it turns out that performing non-Clifford operations (homomorphically) on encrypted states in
CL scheme, without losing correctness or security, is not a straightforward task. Concretely, if we evaluate
a T-gate (i.e., a non-Clifford group gate) on a quantum one-time pad encrypted state XaZb |ψ〉, then the
resulting state is of the form PaXaZbT |ψ〉, i.e. the evaluated state might contain an unwanted (non-Pauli)
error Pa. Thus, one either needs to leak the one-time pad key a sacrificing security, or lose correctness.
Since the Clifford group is not a universal quantum gate-set8, thus this implies that the CL scheme cannot
be directly used to homomorphically evaluate arbitrary poly-sized quantum circuits.

In order to evaluate non-Clifford operations, prior works [BJ15, DSS16] follow a similar template which
is to extend the basic CL scheme so to allow evaluation of a bounded number of T-gates. Very informally,
the central idea is to provide auxiliary (classical-)quantum states as part of the evaluation key that can be
used to instantaneously remove the non-Pauli errors after each T-gate evaluation.9 Most recently, Dulek et
al. [DSS16] proposed a new QHE scheme, named TP, in which one could evaluate polynomial (but a-priori
bounded) number of T-gates.

At a very high level, their idea was to construct efficient error-correcting gadgets that do not break q-
IND-CPA security, but could be used to remove such evaluation errors on-the-fly. Observe that, in the CL
scheme, if the evaluator knows the underlying quantum one-time pad keys, which it could learn if it knows
the classical HE secret key, then it could instantly correct the error in the quantum state after each T gate
evaluation. More generally, it would be sufficient for the evaluator to have access to a quantum channel
which takes an encrypted quantum state and encrypted one-time pad key as inputs and removes the P gate
error (if any). Concretely, consider the following quantum channel which takes two inputs — an (encrypted)
quantum state ρ and encryption of a classical bit a under HE public key pk. If a = 0, then it simply maps the
output to state ρ, otherwise it maps the output to state P†ρP, i.e. it simply maps the output to (Pa)†ρPa.
There are a few important observations that we can make about such a channel — (1) it can be used to
remove a P error introduced by quantum evaluation of a T gate, (2) it needs to contain information about
classical HE secret key sk, (3) it can be used to learn the plaintext value m in any ciphertext Encpk(m).

The first point suggests that any evaluator, given access to such a channel, can instantaneously correct
non-Pauli errors introduced while evaluating a T gate. The second point suggests that it could only be

8However, by including any non-Clifford gate, we get a universal gate-set [NRS01]. As in prior works [BJ15, DSS16], we will
use the T-gate, sometimes called π/8-gate, to extend the Clifford group to a universal set.

9[BJ15] also gave a non-compact solution, but here we are only interested in compact solutions.

5

created by someone who knows the secret key sk. And, the last observation suggests it could be used to
decrypt a quantum one-time pad given the encryptions of the corresponding one-time pad keys. Therefore,
such a channel will not be useful since one cannot hope to hide the secret key sk in any reasonable way.
However, if such a channel also re-randomized the state ρ after removing the P error by say re-encrypting
using a fresh quantum one-time pad, then at least intuitively it seems to prevent the obvious attack. At
a high level, this is the approach taken in [DSS16] where they show how to efficiently construct quantum
gadgets which can simulate the behaviour of such a quantum channel. It turns out that in their scheme,
one gadget is required per T-gate and each gadget is “consumed” during error correction process, therefore
the number of gadgets in the evaluation key bounds the number of T-gates that can be homomorphically
evaluated.

More formally, in TP scheme, an evaluator who knows (classical) HE encryption of the one-time pad keys
(a, b) can efficiently transform a state PaXaZbT |ψ〉 to Xa

′
Zb
′
T |ψ〉, where (a′, b′) depend on keys (a, b) and

other auxiliary information included as part of the evaluation key. Additionally, the evaluator can update
the one-time pad keys from (a, b) to (a′, b′) using only classical homomorphic evaluations and the auxiliary
information. Thus, TP scheme is identical to the Clifford scheme CL, except (1) during setup, polynomially
many gadgets (for T-gate evaluation) are constructed and stored them as part of the evaluation key, (2)
during evaluation of a T gate, the evaluator first applies the T gate directly over the encrypted cipherstate
and then uses a gadget from the evaluation key to remove any P error and finally updates the one-time pad
keys homomorphically.

Now to construct such quantum gadgets, they rely on quantum teleportation and recent results in the area
of instantaneous non-local quantum computation [Spe16]. In instantaneous non-local computation, there are
two parties who want to jointly perform a quantum operation, using only some pre-shared entanglement and
a single round of simultaneous communication. At a high level, the non-Pauli error correction could be
visualized as an application of instantaneous non-local computation, where one party (key generator) holds
classical HE secret key, while the other party (evaluator) holds the encrypted cipherstate and HE encryption
of one-time pad keys. Since both the parties jointly have all the information to determine whether a P error
was introduced or not, thus the joint quantum operation they want to perform is applying an inverse phase
gate P† on the cipherstate. Dulek et al. show using Speelman’s results [Spe16] that the key generator can
pre-compute all its operations with only a bounded amount of entanglement, thereby removing the need
to interact with the evaluator completely. An important caveat in their gadget construction is that the
underlying classical FHE scheme must have a log-space computable decryption procedure. This is because,
for applying Speelman’s results, it is necessary for the FHE decryption procedure to have low garden-hose
complexity [BFSS13].

2.2 This Work

We will now describe our quantum multi-key homomorphic encryption scheme for poly-sized quantum cir-
cuits. Our starting point is the CL scheme. It turns out that CL already is a quantum multi-key homomorphic
encryption scheme (for Clifford circuits) if the underlying classical scheme used is multi-key as well. That is,
if the quantum one-time pad keys are encrypted using a classical multi-key scheme, then the resulting scheme
will satisfy quantum multi-key homomorphism and can be used to evaluate arbitrary Clifford circuits. Now
as in the single-key setting, multi-key version of CL scheme cannot be directly used to evaluate non-Clifford
gates. Thus, to build quantum multi-key scheme for poly-sized quantum circuits, we need a mechanism to
perform non-Clifford operations.

At this point, a natural question to ask is whether the TP scheme can be made to be a multi-key scheme
similarly by simply using a multi-key classical scheme? Unfortunately, this is not the case. Recall that TP
scheme crucially relies on their quantum gadgets to perform error correction, where a gadget basically takes
a quantum cipherstate and one-time pad keys encrypted under a single public key pk. Now the main reason
why TP does not directly extend to the multi-key setting is because of these gadgets. To understand this
in more detail, consider encryptions of qubits |ψ1〉 and |ψ2〉 under keys pk1 and pk2 (respectively), i.e. let
σi = XaiZbi |ψi〉 and cti = Encpki(ai, bi) for i = 1, 2. Note that encryption of |ψi〉 consists of both σi and cti.
Suppose we want to homomorphically evaluate a CNOT gate on these two qubits. The evaluator starts by

6

directly applying a CNOT on σ1 and σ2. Next, using multi-key homomorphism it could update the one-time
pad keys. Now note that the updated one-time pad keys will now be encrypted under both pk1 and pk2. Let σ′i
and ct′i denote the evaluated cipherstate and ciphertexts, respectively. Now suppose we also want to evaluate
a T-gate on the first qubit. Following TP, the evaluator will apply T directly on σ′1 which could introduce
a non-Pauli error. Now to remove the error one would hope to use a quantum gadget as before, however
that does not directly work as the one-time pad keys are encrypted under two independently-generated keys
instead of one. Thus, in order to remove such errors, we need better “distributed” gadgets where each gadget
is associated with only a single-key, but could be combined with gadget(s) associated with other key(s) such
that a combined gadget could be used to remove errors where the one-time pad keys are encrypted under
multiple keys. Another very important aspect that is required from these gadgets which makes them hard
to construct is that the gadget generation should be completely independent of other keys, as otherwise it
will not be useful. Now such gadgets are not known to be implied by Speelman’s results [Spe16] since here
the (instantaneous) quantum computation could be between more than two parties10 with an additional
constraint that it should be possible for all parties except one to pre-compute all their computation and
that too without any interaction. Looking ahead, it turns out that the second construction of single-key
quantum gadgets by Dulek et al. (used for building quantum HE from classical HE with NC1 decryption)
can be extended for building such multi-key gadgets. Due to the distributed and non-interactive generation
process of these gadgets as described above, the single-key to multi-key gadget extension has to be done in
a non-black box way which we discuss later.

Our Framework. We start by introducing and constructing a new cryptographic primitive which we call
conditional oblivious quantum transform (COQT). A COQT is a distributed non-interactive encoding scheme
that captures the essence of gadgets that we require. It consists of three poly-time algorithms — encode,
apply, and decode that work as follows. Consider a classical circuit C that takes as input N + 1 strings of
possibly unequal lengths. The encoding algorithm takes as input a bit string x, classical circuit C and an
index i ≤ N , and outputs an encoded quantum state σ along with a classical decoding key key. The apply
algorithm takes as input a sequence of N encoded states {σi}i≤N , another input string y and a single-qubit
state ρ, and outputs a transformed quantum state ρ′ along with some classical auxiliary information aux.
And, the decoding algorithm takes as input N decoding keys {keyi}i≤N and auxiliary information aux, and
outputs two bits (a, b).

Informally, a COQT encoding procedure can be used to encode N bit-strings x1, . . . , xN independently
with respect to a classical circuit C into N encoded quantum states {σi}i≤N and classical decoding keys
{keyi}i≤N such that the encodings σ1, . . . , σN could be used in combination to conditionally apply a quantum
gate G on a single-qubit state ρ, where the condition/predicate is C(x1, . . . , xN , xN+1) and xN+1 is any
arbitrary bit-string of appropriate length chosen/known only at the time of applying the transform. Now
for correctness we only require that applying the COQT on state ρ transforms it into state ρ′ such that

ρ′ = (XaZbGC(x1,...,xN+1))ρ(XaZbGC(x1,...,xN+1))†,

where (a, b) is the decoding algorithm’s output. For security, we require that an encoded state σi should not
reveal any information about the encoded input/bit-string xi if one does not know the decoding key keyi
associated with it.

Now it turns out that if we have a secure COQT for applying the P†-gate, then that is sufficient to build a
quantum multi-key homomorphic encryption scheme from its classical counterpart. For an easier exposition,
let us start with a simpler goal of building a relaxed notion of QMHE which we call quantum multi-key
positional homomorphic encryption (QMPHE). A QMPHE scheme is just like the standard non-positional
scheme, except the key generation algorithm now also takes as input the number of parties N and a position
i ≤ N . This puts two restrictions — (1) number of users/parties need to be known and fixed during key
generation, and (2) ciphertexts computed using public keys of any two users/parties, generated for the same

10In the multi-key setting, we will have N + 1 parties where one party (evaluator) holds the encrypted cipherstate (encrypted
under N public keys) and other N parties (key generators), each hold a classical HE secret key. And, they jointly want to
remove a non-Pauli error (if any).

7

position i, cannot be combined/evaluated together. Looking ahead, taking position as an additional input
during key generation helps in generating appropriate COQTs. Both COQTs and QMPHE are formally
introduced later in Section 4.

Building QMPHE using COQTs. As mentioned before, our QMPHE scheme is an extension of the
multi-key CL scheme in which during setup, the key generation algorithm also generates some quantum
gadgets in the form of COQTs which will be used later while homomorphically evaluating T gates. At a
high level, the scheme works as follows. The key generation algorithm takes as input the number of users
N , position i, and an upper bound on the number of T-gate evaluations supported, say k. Now it samples k
COQTs along with a MFHE key pair (pk, ek, sk). Each COQT is an encoding of key sk for MFHE decryption
circuit, index i and gate P†. Let (σj , keyj) be the corresponding quantum encodings and classical decoding
keys for j ≤ k. Next, it computes ctj as encryption of key keyj under public key pk. Finally, it sets sk and
pk as the secret and public keys, and the quantum evaluation key will consist of the classical key ek along
with all (σj , ctj)j≤k pairs. At a high level, the idea is that an evaluator will pick one COQT from evaluation
key of each party and together apply those on the encrypted cipherstate to remove P errors after a T-gate
evaluation.

Concretely, to evaluate a T-gate, the evaluator first applies the T-gate on the corresponding (encrypted)
state followed by a COQT application. To apply the COQT on the encrypted state, it first selects an unused
encoding in ith user’s (quantum) evaluation key as the encodings for ith position and sets the ciphertext
encrypting the error indicator bit11 as the input string. By correctness of COQT, this removes the P error
(if any). Let aux be the auxiliary information generated during COQT application. Next, it generates the
one-time pad key updates by homomorphically running the COQT decoding algorithm (with aux hardwired)
on the ciphertexts encrypting appropriate decoding keys.

Now in order to prove security, the above construction has to be slightly modified similar to the TP
scheme [DSS16]. The full scheme along with a more detailed outline is provided in Section 5. Also, we
would like to point out that to apply the above transformation we only need COQTs for circuit class which
contains the classical decryption circuit. In other words, if we have COQTs that can encode the classical
decryption circuit and be used for applying P†-gate, then we could construct a quantum multi-key positional
homomorphic encryption scheme from any classical multi-key homomorphic encryption scheme. We believe
this to be a very useful feature of our abstraction and framework.

Constructing COQTs for poly-sized circuits. We construct conditional oblivious quantum transform
schemes in two steps. First, we build COQTs for NC1 circuits and gate set

{
P†
}

, and prove it to be
unconditionally secure. Next, we show that any COQT for class of log-depth circuits can be securely
bootstrapped to all poly-size circuits using any classical multi-key HE scheme with log-depth decryption
circuit. Since most existing classical multi-key schemes already have low-depth decryption circuits, they
could be used to build COQTs for all poly-sized classical circuits. Below we give a brief overview. The
starting point of our COQT construction for log-depth circuits is the quantum gadget construction of Dulek
et al. [DSS16]. Roughly, our COQTs for N = 1 (i.e., in the single-key setting) are principally the same as
the Dulek et al. error-correcting gadgets. In the main body we highlight the similarities in greater detail.

COQTs for NC1. At a high level, the scheme for log-depth circuits works as follows. To encode an input
x for some index pos with circuit C and gate G, the encoder provides a partial encoding of the branching
program (corresponding to the circuit C) in the form of a set of entangled pairs of qubits with gate G applied
on one special qubit.12 This encoding could be visualized as an alternate branching program representation
of circuit C(. . . , x, . . .), i.e. circuit C with input x hardwired at posth input position. Now, the information
about the pairs that are entangled and the qubit that has G applied to it, is stored as part of the decoding key.
During application, these partial (branching program) encodings, for each index i ≤ N , are first re-arranged

11By error indicator bit we mean bit a which denotes whether the encrypted state has X-gate applied or not. Note that P
error gets introduced only if X was present.

12For proving security it is necessary to encrypt one qubit in each pair of entangled qubits using a quantum one-time pad.
The corresponding one-time pad keys will be stored as part of the decoding key.

8

to get a single conjoined encoding of a branching program corresponding to circuit C(x1, . . . , xN , ·), i.e. C
with inputs x1, . . . , xN hardwired. Next, the input qubit ρ is teleported through the branching program,
such that G is applied on ρ if only if C(x1, . . . , xN , y) = 1 where y is chosen by the evaluator. These
sequential teleportations require many Bell measurements, and the output of each measurement is stored as
part of auxiliary information. Finally, the decoding algorithm simply traces the path of input qubit ρ after
each teleportation and using the decoding keys as well as measurement outcomes, it computes final Pauli
coefficients. From Barrington’s theorem [Bar86] we know that log-depth circuits have poly-size branching
program, thus we get that the size of each encoding is polynomially bounded as required.

Bootstrapping to P/poly. The idea behind bootstrapping to poly-sized circuits is to combine COQTs with
multi-key HE schemes in a way that circuit/predicate computation is done using homomorphic evaluations
and the quantum transform on input qubit is later done using only NC1 COQTs. Concretely, the encoder
first samples a key pair (pk, sk) for a multi-key HE system. Next, it computes ciphertext ct as encryption of
input x (being encoded) under key pk, and also creates a COQT (σ, key) for multi-key HE decryption circuit
with secret key sk as the input bit string. Finally, it sets σ and ct as the final encoded state, and key as the
decoding key. During evaluation, one could simply evaluate the circuit homomorphically on the encrypted
inputs and later apply the transform on the input qubit ρ with the ciphertext encrypting the circuit output
as the input. The decoding procedure will be identical to that of the underlying scheme.

Later in Sections 8 and 9 we provide a more detailed overview as well as our COQT constructions for
NC1 and P/poly, respectively.

Removing Positional Constraint, Threshold Decryption and More. Recall that the quantum
multi-key homomorphic encryption scheme we describe above is restricted in the sense that the key generation
algorithm takes as input a position i. Later in Section 7, we show how to construct a standard (non-positional)
quantum multi-key homomorphic encryption scheme for bounded number of users. In other words, the key
generation algorithm will no longer take as input a position, but it will only take as input an upper bound
on the number of users. At a very high level, the idea is to add redundancy in the system by providing
many more COQTs such that each evaluation key contains all the information to be used as a positional
evaluation key for any position ≤ N . Additionally, we discuss various other improvements like achieving
multi-hop evaluation, etc.

Threshold Decryption and Ciphertext Re-Randomizability. First, we would like to point out that we have
to be careful in defining the notion of distributed decryption in the quantum setting as there is not necessarily
any single natural definition that one could consider directly. Briefly, the issue is that unlike classical multi-
key ciphertexts, quantum multi-key ciphertexts can not be in possession of more than one party at any point
of time due to unclonability of quantum states. Thus, while defining the notion of threshold decryption,
we need to consider that how our notion of threshold decryption could possibly be useful for applications
such multi-party computation, delegation etc. With this observation, we visualize threshold decryption for
QMHE as follows. We consider that a quantum cipherstate σ can be divided into two components — purely
classical and purely quantum, i.e. say σ = ρ(ct)⊗ σ̃ (where ct denotes the purely classical component and σ̃
denotes the quantum component). Now for threshold decryption, we consider that the classical component
ct is distributed to all parties (which hold the corresponding secret keys), and each party can compute a
partial decryption of ct using their secret key. Our goal here is that given all these partial decryptions of
ct, anyone who possesses the quantum component σ̃ can recover the underlying message state efficiently. At
first, it might seem that there could be many trivial ways to build QMHE with threshold decryption (as
described above), however we require the scheme to satisfy certain useful simulation-based security properties
additionally and that makes it hard to construct and more useful for further applications. In the main body,
we discuss the above stated aspects in more detail, and provide our definitions of threshold decryption and
ciphertext re-randomizability for quantum multi-key homomorphic encryption schemes in Section 3.3, and
later provide our threshold decryption algorithm and modifications required for ciphertext re-randomizability
in Section 6.

Next, we briefly describe a protocol for multi-party delegated quantum computation using threshold

9

QMHE (as defined above) as the underlying primitive.13 Let us start with the most natural idea which is
to first ask each delegating party to encrypt its input using QMHE, and then sending the encrypted input
(as well as the evaluation keys) over to the powerful server. The server then homomorphically evaluates the
desired quantum circuit on the encrypted quantum input states, and broadcasts the evaluated cipherstates.
Finally, all the delegating parties run a distributed decryption protocol on the (evaluated) encrypted quantum
output states. However, this doesn’t work because of the well known “no-cloning” folklore. Note that unlike
classical ciphertexts, ciphertexts encrypting arbitrary quantum information can not be copied thus they can
not be broadcast to all parties. To this end, we resort to the observation made above that every encrypted
cipherstate in our QMHE scheme into a purely classical and a quantum component, where we could perform
distributed decryption on only the classical component of the cipherstate, and reconstruct a decoding key
from these partial decryptions which could eventually be used to decrypt the quantum component of the
cipherstate thereby giving the final quantum output state. At a high level, the template we finally follow
can be informally described as follows:

Setup and Input Encryption Phase. In the first round, each party independently samples a QMHE key
pair and encrypts their input states under their respective public keys. Then they send their public
key, (quantum) evaluation key and cipherstate to the server. (Here each party broadcasts the classical
components of their keys and cipherstates to all other parties, but sends the quantum states only to
the server.)

Evaluation Phase. In the second round, the server receives public keys, (quantum) evaluation keys and
input cipherstates from all the N parties. It homomorphically evaluates the quantum circuit on these
input cipherstates, and sends the output cipherstates to the respective parties. (As before, classical
components of the cipherstates are broadcast.)

Distributed Decryption Phase. Finally, each party computes partial decryption of all the classical com-
ponents of the output cipherstates. It only broadcasts those partial decryption values that do not
correspond to its own output cipherstate.

Offline Output Phase. Each party first reconstructs the decoding key using the partial decryptions and
eventually decrypts the quantum component of its cipherstate using the decoding key.

Now one might expect the above protocol to achieve security notions such as quantum analogue of semi-
malicious security [AJW11, AJL+12], however we do not know that to be the case. Briefly, this is due to
the fact that weaker classical notions of security do not seem to translate well to the quantum setting. We
elaborate more on such issues as well as formalize the above template and describe the protocol in detail
later in Section 10.

3 Preliminaries

Notations. Let PPT denote probabilistic polynomial-time. We will use bold letters for vectors (e.g. v,T).
For any positive integer n, we denote the set of all positive integers upto n as [n] := {1, . . . , n}. For any
finite set S, x← S denotes a uniformly random element x from the set S. Similarly, for any distribution D,
x← D denotes an element x drawn from distribution D. For any set U = {1, . . . , n}, we say that {S1, . . . , S`}
are ` set intervals of U if for all i, Si are non-empty and there exists integers m1,m2, . . . ,m`−1 ∈ U such
that m1 ≤ m2 ≤ . . . ≤ m`−1 and Si = {mi−1, . . . ,mi} for all i, where m0 = 1,m` = n. Also, we define
|Φ+〉 := 1√

2
(|00〉+ |11〉) to denote an EPR pair.

13We note that the same template also seems be useful for building protocols for “on-the-fly” multi-party quantum computa-
tion (i.e., server-assisted MPQC). Here on-the-fly MPQC can be defined as an extension of its classical counterpart [LATV12].

10

3.1 Quantum Computation: Gates, Circuits and One-time Pad

We work with the following set of unitary gates:

X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
, P =

[
1 0
0 i

]
,

H =
1√
2

[
1 1
1 −1

]
, T =

[
1 0
0 eiπ/4

]
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
The single-qubit Pauli matrices are X,Y,Z and I, where Y = iXZ and I is the identity matrix. An n-qubit
Pauli operator is the tensor product of n single-qubit Pauli matrices. Note that the single-qubit Pauli group
can be generated by X,Z up to a global phase. Throughout this paper, we ignore the global phase since it
is not observable by any measurement.

The Clifford group is defined as the normalizer of the Pauli group, i.e. a Clifford group on n qubits
consists of all unitaries that commute with the Pauli group. The set {H,P,CNOT} generates the Clifford
group up to a global phase when applied to arbitrary qubits [Got98]. Also, all Pauli operators are part of
the Clifford group. Now, the Clifford group does not give a universal gate-set, however by including any
non-Clifford gate, we get a universal gate-set [NRS01]. As in prior works [BJ15, DSS16], we will use the
T-gate, sometimes called π/8-gate, to extend the Clifford group to a universal set.

A density operator on a (complex Euclidean) space X is a positive semidefinite, Hermitian operator of
trace 1 acting on X . We denote the set of density operators on any space X by D(X). For a random
variable X defined over the possible basis states B for a quantum system, we use ρ(X) to denote the density
matrix corresponding to X, i.e. ρ(X) :=

∑
x∈B Pr[X = x] |x〉〈x|. The density matrix of a completely mixed

state on any system X of dimension d is simply the matrix Id/d. Also, throughout the paper we represent a

classical-quantum state (over two systems M and A) jointly as ρMA :=
∑
x Pr[X = x] |x〉〈x|M ⊗ ρAx .

A quantum channel Φ from space X to Y refers to any physically-realizable mapping on quantum registers.
Let two quantum channels Φ1 and Φ2 on spaces X1 and X2, then Φ1 ⊗ Φ2 denotes the quantum channel
acting on joint registers in D(X1 ⊗ X2) with Φi acting on Xi register. We denote the identity channel on
space E as IE . For simplicity of notation, we drop the superscript E , and also omit writing the identity
channel explicitly (in a multi-register setting) whenever clear from context.

Now the trace norm of a state ρ is denoted by ‖ρ‖1, and is defined as ‖ρ‖1 := Tr
(√

ρ†ρ
)

. Also, let

ΦC denote the channel induced by some circuit C, then the diamond norm on the channel ΦC is defined
as ‖ΦC‖� := maxρ ‖(ΦC ⊗ I)ρ‖1. That is, diamond norm represents the maximzation of a quantum channel
over all input states ρ.

Quantum one-time pads [AMTdW00] provide a way to encrypt qubits in a perfectly secure manner. To
encrypt, one simply chooses a Pauli operator uniformly at random and applies it on the message state. For
instance, let ρ be a single-qubit system, and a, b be two classical bits. Quantum one-time pad encryption of ρ
with keys a, b results in the cipherstate XaZbρZbXa. To decrypt, it suffices to apply the same Pauli operator
(XaZb) on the cipherstate. The correctness of the scheme follows directly. The important property of a
quantum one-time pad is that if a, b are chosen uniformly at random, then encryption results in a completely
mixed state. Concretely, we know that for all ρ,∑

a,b

(
1

4
XaZbρZbXa

)
=

I2
2
.

Therefore, quantum one-time pad provides perfect secrecy even against computationally unbounded quantum
adversaries.

11

3.2 Multi-Key Homomorphic Encryption

A multi-key leveled homomorphic encryption (MLHE) scheme MLHE with message space M consists of six
poly-time algorithms Setup,KeyGen,Enc,Expand,Eval,Dec with the following syntax:

• Setup(1λ, 1d) → params. The setup algorithm takes as input the security parameter λ and the circuit
depth bound d and outputs the system parameters params.

• KeyGen(params) → (pk, ek, sk). The key generation algorithm takes as input the system parameters
params and outputs a public key pk, an evaluation key ek and a secret key sk.

• Enc(pk,m) → ct. The encryption algorithm takes as input a public key pk, message m ∈ M, and
outputs a ciphertext ct.

• Expand((pk1, . . . , pkN), i, ct)→ ĉt. The expansion algorithm takes as input a sequence of N public keys
pk1, . . . , pkN , a ciphertext ct encrypted under the ith public key, and it outputs an expanded ciphertext
ĉt.

• Eval(C, (ek1, . . . , ek`′), (ĉt1, . . . , ĉt`)) → ĉt
′
. The evaluation algorithm takes as input description of a

circuit C along with two tuples comprising `′ evaluation keys eki and ` ciphertexts ĉti. It outputs an
evaluated ciphertext ĉt

′
.

• Dec(sk1, . . . , skN , ĉt) → m. The decryption algorithm takes as input a sequence of N secret keys
sk1, . . . , skN , an expanded ciphertext ĉt, and outputs a message m.

We now define correctness, compactness and security properties for MLHE schemes. First, we have
the correctness and compactness properties. Informally, correctness states that decryption of an expanded
ciphertext must output the underlying message as well as decryption of a homomorphically evaluated ci-
phertext must output the circuit evaluation on the underlying messages. And, the compactness property
says that size of any evaluated ciphertext must not depend on the circuit being evaluated.

Correctness and Compactness. For any security parameter λ, circuit-depth bound d, consider parame-
ters params← Setup(1λ, 1d), and any sequence of N key tuples (pki, eki, ski)← KeyGen(params) (for i ≤ N).
For any ` tuples of message-index pairs (m1, j1), . . . , (m`, j`), consider ciphertexts cti ← Enc(pkji ,mi) (i.e.

encryptions of ith message under its corresponding public key), and corresponding expanded ciphertexts
ĉti ← Expand((pk1, . . . , pkN), ji, cti) (for i ≤ `). The scheme MLHE is said to be (perfectly) correct if for any
circuit C of depth ≤ d, and evaluated ciphertext ĉt ← Eval(C, (ek1, . . . , ekN), (ĉt1, . . . , ĉt`)), the following
holds:

• Expansion. ∀i ≤ `, Dec(sk1, . . . , skN , ĉti) = mi.

• Evaluation. Dec(sk1, . . . , skN , ĉt) = C(m1, . . . ,m`).

Also, it is also said to be compact if there exists a polynomial p(·, ·, ·) such that |ĉt| ≤ p(λ, d,N), i.e. size of
ĉt does not depend on circuit C or the number of inputs `.

Security. For security, we require the scheme to satisfy q-IND-CPA security, which is identical to IND-CPA
except the adversary could now be a quantum algorithm.

Definition 3.1 (q-IND-CPA). A multi-key leveled homomorphic encryption scheme MLHE = (Setup,
KeyGen, Enc, Expand, Eval, Dec) is IND-CPA secure if for every stateful quantum PT adversary A, there
exists a negligible function negl(·), such that for all λ ∈ N, the following holds:∣∣∣∣∣∣Pr

A(ctb) = b :
params← Setup(1λ, 1d); (pk, ek, sk)← KeyGen(params)

m← A(params, pk, ek); b← {0, 1}
ct0 ← Enc(pk,0); ct1 ← Enc(pk,m)

− 1

2

∣∣∣∣∣∣ ≤ negl(λ).

The above definition is based on the work of Mukherjee and Wichs [MW16] who formally introduced the
notion of “expanding” ciphertexts. Here we work with this abstraction as it allows for a simpler exposition.

12

3.2.1 Threshold Decryption

An MLHE scheme that also supports a 1-round distributed decryption protocol additionally provides two
more algorithms — PartDec and FinDec. The PartDec algorithm performs partial decryption of any ex-
panded (and possibly evaluated) ciphertext given only a single party’s secret key. And, the FinDec algorithm
reconstructs the output message from the partial decryptions. Formally, we have

• PartDec((pk1, . . . , pkN), i, ski, ĉt) → shi. The algorithm takes as input a sequence of N public keys
pk1, . . . , pkN , secret key for the ith user, an expanded ciphertext ĉt, and outputs a partial decryption
shi.

• FinDec(sh1, . . . , shN)→ m. The algorithm takes as input a sequence ofN partial decryptions sh1, . . . , shN ,
and outputs a message m.

For correctness, it is required that the message computed by first running partial decryption independently
using all N keys and later combining them using the FinDec algorithm matches the actual output. And for
security, apart from q-IND-CPA, it is also required that partial decryption for any user can be simulated
given secret keys for all other users, and the encrypted message.

Correctness and Simulation Security. For any security parameter λ, circuit-depth bound d, consider
parameters params ← Setup(1λ, 1d), and any sequence of N key tuples (pki, eki, ski) ← KeyGen(params)
(for i ≤ N). For any ` tuples of message-index pairs (m1, j1), . . . , (m`, j`), consider ciphertexts cti ←
Enc(pkji ,mi) (i.e. encryptions of ith message under its corresponding public key), and corresponding ex-

panded ciphertexts ĉti ← Expand((pk1, . . . , pkN), ji, cti) (for i ≤ `). The scheme MLHE is said to be (per-
fectly) correct if for any circuit C of depth≤ d, evaluated ciphertext ĉt← Eval(C, (ek1, . . . , ekN), (ĉt1, . . . , ĉt`)),
and partial decryptions shi ← PartDec((pk1, . . . , pkN), i, ski, ĉt) for i ∈ [N], the following holds:

• Reconstruction. FinDec(sh1, . . . , shN) = C(m1, . . . ,m`).

• Simulation of Partial Decryption. There exists a PPT simulator Simthr which on input an index
i ∈ [N], all but the ith keys {skj}j∈[N]\{i}, the evaluated ciphertext ĉt, and the output message

msg = C(m1, . . . ,m`) produces a simulated partial decryption sh′i. The scheme is said to satisfy
partial decryption simulation security if there exists a negligible function negl(·) such that

SD(Dist,Dist′) ≤ negl(λ), where
Dist =

{
shi : shi ← PartDec((pk1, . . . , pkN), i, ski, ĉt)

}
Dist′ =

{
sh′i : sh′i ← Simthr(msg, ĉt, i, {skj}j∈[N]\{i})

}
and SD denotes the statistical distance.

Definition 3.2. We say that a scheme MLHE satisfies partial decryption simulation security property if the
above conditions hold.

3.3 Quantum Multi-Key Homomorphic Encryption

A quantum multi-key leveled homomorphic encryption (QMLHE) scheme QMLHE with message space M
consists of six poly-time algorithms Setup,KeyGen,Enc,Expand,Eval,Dec with the following syntax:

• Setup(1λ, 1d) → params. The setup algorithm takes as input the security parameter λ and the circuit
size bound d and outputs the (classical) system parameters params.

• KeyGen(params) → (pk, ρek, sk). The key generation algorithm takes as input the system parameters
params and outputs a (classical) public key pk, a quantum evaluation key ρek ∈ D(Rek) and (classical)
secret key sk.

13

• Enc(pk, ρ)→ σ. The encryption algorithm takes as input a public key pk, a quantum state ρ ∈ D(M)
and outputs a cipherstate σ ∈ D(C).

• Expand((pk1, . . . , pkN), i, σ)→ σ̂. The expansion algorithm takes as input a sequence of N public keys
pk1, . . . , pkN , a single cipherstate σ encrypted under the ith public key, and it outputs an expanded
cipherstate σ̂. For expanding multi-fold cipherstates, the expansion algorithm will be run as many
times on each cipherstate.

• Eval(C, (ρek1 , . . . , ρek`), σ̂) → σ̂′. The evaluation algorithm takes as input description of a quantum
circuit C along with an `-tuple of evaluation keys ρeki , an n-fold cipherstates σ̂, and outputs an m-fold
cipherstates σ̂′, where the circuit C takes as input n qubits and outputs m qubits.

• Dec(sk1, . . . , skN , σ̂) → ρ. The decryption algorithm takes as input a sequence of N secret keys
sk1, . . . , skN , a single (expanded) cipherstate σ̂, and outputs a quantum state ρ in the message space
M. For decrypting multi-fold cipherstates, the decryption algorithm will be run as many times on
each cipherstate.

In the above description, one could alternatively view the encryption, expansion, evaluation, and de-
cryption algorithms as quantum channels where the evaluation algorithm could consume the evaluation keys
partially, or even completely during the process. In this work, we consider only divisible schemes [BJ15]
where decryption algorithm works qubit-by-qubit instead of decrypting a multi-qubit quantum cipherstate
at once. We now define correctness, compactness and security properties for QMLHE schemes analogous to
its classical counterpart. Here and throughout whenever we talk about quantum circuits of some bounded
size d, we consider quantum circuits of size at most d represented using an apriori fixed gate set.

Correctness and Compactness. For any security parameter λ, circuit-size bound d, consider parameters
params ← Setup(1λ, 1d), and any sequence of N key tuples (pki, ρeki , ski) ← KeyGen(params) (for i ≤ N).

Let Φ
pki
Enc denote the induced quantum channel that on input a quantum message state in D(M), outputs

the cipherstate encrypted under key pki in D(C). Similarly, let Φ
(pkj)j ,i

Expand , Φ
C,(ρekj)j ,i

Eval and Φ
(skj)j
Dec denote the

induced quantum channels for cipherstate expansion, evaluation, and decryption (respectively). The scheme
QMLHE is said to be (perfectly) correct if the following holds:

Expansion. For every index i ∈ N ,
∥∥∥Φ

(skj)j
Dec ◦ Φ

i,(pkj)j
Expand ◦ Φ

pki
Enc − I

∥∥∥
�

= 0.

Evaluation. For any N (non-negative) sequence of indices n1, . . . , nN , and for any quantum circuit C of
size ≤ d (represented using an apriori fixed gate set) with induced channel ΦC :M⊗

∑
i ni →M⊗m,∥∥∥∥(Φ

(skj)j
Dec

)⊗m
◦ Φ

C,(ρekj)j

Eval ◦ ⊗Ni=1

(
Φ
i,(pkj)j
Expand ◦ Φ

pki
Enc

)⊗ni

− ΦC

∥∥∥∥
�

= 0.

Let σ̂ denote the quantum cipherstate that is output by the evaluation algorithm above, i.e. output of the

quantum channel Φ
C,(ρekj)j

Eval . The scheme QMLHE is said to be compact if there exists a polynomial p(·, ·, ·)
such that |σ̂| ≤ p(λ, d,N), i.e. size of σ̂′ does not depend on circuit C or the number of inputs

∑
i ni.

14

Security. For security, we require the scheme to satisfy q-IND-CPA security.

Definition 3.3 (q-IND-CPA). A quantum multi-key leveled homomorphic encryption scheme QMLHE =
(Setup, KeyGen, Enc, Expand, Eval, Dec) is q-IND-CPA secure if for every stateful quantum PT adversary A,

14Here and throughout when we say that the size of encrypted state does not depend on the circuit C we mean that it should
not grow with the total number of quantum gates in C but is allowed to (linearly) depend on the number of output qubits,
that is m.

14

there exists a negligible function negl(·), such that for all λ ∈ N, the following holds:∣∣∣∣∣∣Pr

A(R(b)
C) = b :

params← Setup(1λ, 1d); (pk,Rek, sk)← KeyGen(params)
RM ← A(params, pk,Rek); b← {0, 1}

R(0)
C ← Enc(pk, |0〉〈0|); R(1)

C ← Enc(pk,RM)

− 1

2

∣∣∣∣∣∣ ≤ negl(λ).

Here Rek corresponds to the quantum registers containing the evaluation key, RM corresponds to a quantum

register containing a state inM, and R(0)
C ,R(1)

C correspond to the registers encrypting the state |0〉 and the
state in RM, respectively. Note that since the adversary is a stateful quantum adversary, therefore the
contents of the register RM are allowed to be arbitrarily entangled with the adversary’s local states. (Also,
in the above experiment, the challenger basically receives a input-state from the adversary and either encrypts
it directly (if b = 1), otherwise erases the register and then encrypts it.)

3.3.1 Threshold Decryption

Due to the no-cloning folklore, we know that one can not create copies of an arbitrary quantum state.
Thus, the notion of threshold decryption in the case of quantum multi-key homomorphic encryption can
not be defined in an analogous way to its classical counterpart, at least directly. To avoid the no-cloning
pitfall, we assume that the quantum ciphertext σ̂ can be divided into two components — purely classical and
purely quantum. Now the PartDec algorithm only takes as input the classical component of the ciphertext
σ̂, and outputs some partial decryption information such that FinDec algorithm combines all the partial
decryption information along with the quantum component of σ̂ to compute the message state. Formally,
we have that every expanded (possibly evaluated) cipherstate σ̂ can be decomposed as σ̂ = ρ(ĉt)⊗ σ̃ (where
ĉt denotes the purely classical component and σ̃ denotes the quantum component). Now due to technical
reasons pertaining to defining simulation security for QMLHE, we divide FinDec procedure into two separate
algorithms — FinDecPre and FinDecPost. Here FinDecPre performs a classical reconstruction operation
given only partial decryptions, and FinDecPost takes that reconstructed key to perform the final quantum
decryption operation. The algorithms are described as follows

• PartDec((pk1, . . . , pkN), i, ski, ĉt) → shi. The algorithm takes as input a sequence of N public keys
pk1, . . . , pkN , secret key for the ith user, classical component of an expanded ciphertext ĉt, and outputs
a partial decryption shi.

• FinDecPre(sh1, . . . , shN) → rk. The algorithm takes as input a sequence of N partial decryptions
sh1, . . . , shN , and outputs a reconstructed key rk.

• FinDecPost(σ̃, rk)→ ρ. The algorithm takes as input a quantum component of an expanded ciphertext
σ̃, a reconstructed key rk, and outputs a quantum state ρ in the message space M.

Now the correctness condition is defined analogously. And for simulation security, it is only required
that partial decryption for any user can be simulated given secret keys for all other users, and the final
reconstruction key. Additionally, we require that the reconstruction key rk is known at the time of encryption
for any ciphertext.

Correctness, Unique Reconstruction and Simulation Security. For any security parameter λ,
circuit-size bound d, consider parameters params ← Setup(1λ, 1d), and any sequence of N key tuples
(pki, ρeki , ski) ← KeyGen(params) (for i ≤ N). The scheme QMLHE is said to be (perfectly) correct if
the following holds:

Reconstruction Correctness. For anyN (non-negative) indices n1, . . . , nN , any input-state ρ ∈ D(M⊗
∑

i ni⊗
E), any quantum circuit C of size ≤ d (represented using an apriori fixed gate set) with induced channel

15

ΦC :M⊗
∑

i ni →M⊗m, the following holds:

∥∥∥∥ (Φrk
FinDecPost ⊗ IE

)
σ̃

−
(
ΦC ⊗ IE

)
ρ

∥∥∥∥
1

= 0, where
σ̂ =

((
Φ
C,(ρekj)j

Eval ◦ ⊗Ni=1

(
Φ
i,(pkj)j
Expand ◦ Φ

pki
Enc

)⊗ni
)
⊗ IE

)
ρ,

σ̂ = ρ(ĉt)⊗ σ̃, (∀i ∈ [n]) shi ← PartDec((pkj)j , i, ski, ĉt),
rk = FinDecPre(sh1, . . . , shN).

In the expression σ̂ = ρ(ĉt) ⊗ σ̃, we mean that ĉt denotes the purely classical component of the
cipherstate σ̂, and σ̃ the quantum component.

Unique Reconstruction. For every index i ∈ [N], and any input-state ρ ∈ D(M ⊗ E), consider the

cipherstate σ which encrypts ρ under pki, that is σ =
(

Φ
pki
Enc ⊗ IE

)
ρ. Let ct denote the purely classical

component of cipherstate σ, and σ̃ the quantum component. Also, let ri denote the classical random
coins15 used while computing the quantum component of cipherstate σ̃ from the input-state ρ. We say
that the scheme satisfies unique reconstruction property if there exists a deterministic PPT algorithm
Extract such that Extract(r) = rk = FinDecPre(PartDec(pki, 1, ski, ct)).

16

Simulation of Partial Decryption. There exists a quantum PT simulator Simthr which on input an index
i ∈ [N], all but the ith keys {skj}j∈[N]\{i}, the classical component of evaluated ciphertext ĉt, and

the reconstruction key rk produces a simulated partial decryption sh′i. The scheme is said to satisfy
partial decryption simulation security if for any N (non-negative) indices n1, . . . , nN , any input-state
ρ ∈ D(M⊗

∑
i ni ⊗E), any quantum circuit C of size ≤ d, there exists a negligible function negl(·) such

that

SD(Dist,Dist′) ≤ negl(λ), where

Dist =
{
shi : shi ← PartDec((pk1, . . . , pkN), i, ski, ĉt)

}
Dist′ =

{
sh′i : sh′i ← Simthr(rk, ĉt, i, {skj}j∈[N]\{i})

}
σ̂ =

((
Φ
C,(ρekj)j

Eval ◦ ⊗Ni=1

(
Φ
i,(pkj)j
Expand ◦ Φ

pki
Enc

)⊗ni
)
⊗ IE

)
ρ,

σ̂ = ρ(ĉt)⊗ σ̃, (∀i ∈ [n]) shi ← PartDec((pkj)j , i, ski, ĉt),
rk = FinDecPre(sh1, . . . , shN).

and SD denotes the statistical distance.

Definition 3.4. We say that a scheme QMLHE satisfies partial decryption simulation security property if
the above conditions hold.

3.3.2 Re-Randomizability of Cipherstates

Now we define the notion of re-randomization for quantum multi-key HE. It is a slightly stronger property
than quantum circuit privacy. At a high level, it states that there exists a re-randomization algorithm
that takes as input HE public keys and a possibly evaluated cipherstate, and re-randomizes the cipherstate
such that new cipherstate looks indistinguishable from a freshly generated cipherstate encrypting the same
quantum state. Formally, we have an additional algorithm ReRand described as follows

• ReRand((pk1, . . . , pkN), σ̂)→ σ̂′. The re-randomization algorithm takes as input a sequence of N public
keys pk1, . . . , pkN , and an expanded (possibly evaluated) cipherstate σ̂, and outputs a cipherstate σ̂′.

Now correctness is defined naturally, i.e. the re-randomized cipherstate should decrypt to the correct
message state. For security, we require that a re-randomized cipherstate is indistinguishable from a freshly
expanded cipherstate encrypting the same message state.

15We would like to stress that here the state σ corresponds to an honestly encrypted input-state, and not an adversarially
constructed state. Since we only define the unique reconstruction property for honestly computed cipherstates, thus we could
explicitly refer to the classical random coins used by the quantum algorithm during encryption.

16Similarly, one could also extend this property such that the classical random coins used by Expand algorithm could be used
to generate the updates for the reconstructed key during ciphertext expansion.

16

Correctness and Re-Randomizability. For any security parameter λ, circuit-size bound d, consider
parameters params ← Setup(1λ, 1d), and any sequence of N key tuples (pki, ρeki , ski) ← KeyGen(params)

(for i ≤ N). Let Φ
pki
Enc, Φ

(pkj)j ,i

Expand , Φ
C,(ρekj)j ,i

Eval , Φ
(skj)j
Dec , and Φ

(pkj)j
ReRand denote the induced quantum channels for

encryption, cipherstate expansion, evaluation, decryption, and re-randomization (respectively). The scheme
QMLHE is said to be (perfectly) correct if the following holds:

Decryption of Re-Randomized Ciphertext. For any N (non-negative) sequence of indices n1, . . . , nN ,
and for any quantum circuit C of size ≤ d (represented using an apriori fixed gate set) with induced
channel ΦC :M⊗

∑
i ni →M⊗m,∥∥∥∥(Φ

(skj)j
Dec

)⊗m
◦
(

Φ
(pkj)j
ReRand

)⊗m
◦ Φ

C,(ρekj)j

Eval ◦ ⊗Ni=1

(
Φ
i,(pkj)j
Expand ◦ Φ

pki
Enc

)⊗ni

− ΦC

∥∥∥∥
�

= 0.

Re-Randomizability. The scheme is said to be re-randomizable if for any index k ∈ [N], any N (non-
negative) sequence of indices n1, . . . , nN , and for any quantum circuit C of size ≤ d (represented using
an apriori fixed gate set) with induced channel ΦC : M⊗

∑
i ni → M⊗m, there exists a negligible

function negl(·) such that∥∥∥∥(Φ
(pkj)j
ReRand

)⊗m
◦ Φ

C,(ρekj)j

Eval ◦ ⊗Ni=1

(
Φ
i,(pkj)j
Expand ◦ Φ

pki
Enc

)⊗ni

−
(

Φ
k,(pkj)j
Expand ◦ Φ

pkk
Enc

)⊗m
◦ ΦC

∥∥∥∥
�
≤ negl(λ).

Definition 3.5. We say that a scheme QMLHE satisfies ciphertext re-randomizability property if the above
conditions hold.

3.4 Branching Programs

Branching programs are a model of computation used to capture space-bounded computations [BDFP86,
Bar86]. In this work, we will be using a restricted notion called permutation branching programs.

Definition 3.6 (Permutation Branching Program). A permutation branching program of length L, width w
and input space {0, 1}n consists of a sequence of 2L permutations σi,b : {1, . . . , w} → {1, . . . , w} for 1 ≤ i ≤
L, b ∈ {0, 1}, an input selection function inp : {1, . . . , L} → {1, . . . , n}, an accepting state acc ∈ {1, . . . , w}
and a rejection state rej ∈ {1, . . . , w}. The starting state st0 is set to be 1 without loss of generality. The
branching program evaluation on input x ∈ {0, 1}n proceeds as follows:

• For i = 1 to L,

– Let pos = inp(i) and b = xpos. Compute sti = σi,b(sti−1).

• If stL = acc, output 1. If stL = rej, output 0, else output ⊥.

In a remarkable result, Barrington [Bar86] showed that any circuit of depth d can be simulated by a
permutation branching program of width 5 and length 4d.

Theorem 3.1 ([Bar86]). For any boolean circuit C with input space {0, 1}n and depth d, there exists a
permutation branching program BP of width 5 and length 4d such that for all inputs x ∈ {0, 1}n, C(x) =
BP(x).

This permutation property will be useful later in our construction. We also need to define a notion
of “interval-alternating” branching programs. A branching program (for n-bit inputs) is said to be an S-
interval-alternating branching program (where S = (S1, . . . , SN+1) is a sequence of N + 1 intervals of set
{1, . . . , n} for some N ≥ 1) if the input bits read during odd transitions lie in interval SN+1 and the input
bit read during ith even transition lies in interval S(i−1 mod N)+1. In other words, the input bit read at each
transition alternates between first N intervals and the last interval, and input bits (in the even transitions)
are read in a round-robin fashion. Also, the length of an interval-alternating branching program must always
be even. Formally, it is defined as follows.

17

Definition 3.7 (Interval-Alternating Permutation Branching Program). A permutation branching program
of length L with input space {0, 1}n is said to be an (S1, . . . , SN+1)-interval-alternating branching program
if L is even, and for all ` ≤ L/2, inp(2`− 1) ∈ SN+1 and inp(2`) ∈ S(`−1 mod N)+1.

We would like to point out that any permutation branching program of length L and input space {0, 1}n
can be easily transformed to an S-interval-alternating branching program of length 2N ·L for any sequence of
N + 1 set intervals S = (S1, . . . , SN+1). We will use the following corollary, which follows from Theorem 3.1.

Corollary 3.1. For any boolean circuit C with input space {0, 1}n and depth d, and for any set intervals
S = (S1, . . . , SN+1), there exists an S-interval-alternating branching program BP of width 5 and length
2 ·N · 4d such that for all inputs x ∈ {0, 1}n, C(x) = BP(x).

4 Our Framework: QMPHE and COQT

4.1 Quantum Multi-Key Positional Homomorphic Encryption (QMPHE)

A quantum multi-key positional homomorphic encryption (QMPHE) scheme is a relaxation of quantum
multi-key homomorphic encryption in which the key generation algorithm also takes as input the number of
parties N and a position i ≤ N . This puts two restrictions — (1) number of users/parties need to be known
and fixed during key generation, and (2) ciphertexts computed using public keys of any two users/parties,
generated for the same position i, can not be combined together, i.e. expansion and evaluation algorithms
can not be used to perform homomorphic computations on multiple keys for the same position. Later we
show how to remove these restrictions. Specifically, we show that a (quantum) multi-key positional HE
scheme gives a (quantum) multi-key HE scheme with bounded number of users.

More formally, a quantum multi-key positional leveled homomorphic encryption (QMPLHE) scheme
QMPLHE with message spaceM consists of six poly-time algorithms Setup,KeyGen,Enc,Expand,Eval,Dec17

with all algorithms having same syntax as for a QMLHE scheme, except the key generation and evaluation
algorithms that have the following syntax:

• KeyGen(params, N, i)→ (pk, ρek, sk). The setup algorithm takes as input the system parameters params,
number of users N , a position i ≤ N , and outputs a (classical) public key pk, a quantum evaluation

key ρek ∈ D(R(i,N)
ek) and (classical) secret key sk.18

• Eval(C, (ρek1 , . . . , ρekN), σ̂) → σ̂′. The evaluation algorithm takes as input description of a quantum
circuit C along with an N -tuple of evaluation keys ρeki , an n-fold cipherstates σ̂, and outputs an
m-fold cipherstates σ̂′, where the circuit C takes as input n qubits and outputs m qubits.19

The compactness and security properties for the positional schemes is same as that for standard (non-
positional) schemes.20 The correctness of a positional scheme is only guaranteed when all the N key pairs
are generated for a distinct position in 1 through N . For completeness, below we define the correctness
property.21

Correctness. For any security parameter λ, circuit-size bound d, consider parameters params← Setup(1λ, 1d),

and any sequence of N key tuples (pki, ρeki , ski) ← KeyGen(params, N, i) (for i ≤ N). Let Φ
pki
Enc denote the

induced quantum channel that on input a quantum message state in D(M), outputs the cipherstate en-

crypted under key pki in D(C). Similarly, let Φ
(pkj)j ,i

Expand , Φ
C,(ρekj)j ,i

Eval and Φ
(skj)j
Dec denote the induced quantum

channels for cipherstate expansion, evaluation, and decryption (respectively). The scheme QMLHE is said
to be (perfectly) correct if the following holds:

17The algorithms for threshold decryption are defined exactly as before.
18Note that the quantum evaluation key space is allowed to depend on the position and number of users.
19The only difference being that now the evaluation algorithm always takes as inputs all N evaluation keys, whereas previously

there was no such restriction set during setup.
20For security, we would require that q-IND-CPA holds for all positions.
21Correctness of threshold decryption can be analogously defined.

18

Expansion. For every index i ∈ N ,
∥∥∥Φ

(skj)j
Dec ◦ Φ

i,(pkj)j
Expand ◦ Φ

pki
Enc − I

∥∥∥
�

= 0.

Evaluation. For any N (non-negative) sequence of indices n1, . . . , nN , and for any quantum circuit C of
size ≤ d (represented using an apriori fixed gate set) with induced channel ΦC :M⊗

∑
i ni →M⊗m,∥∥∥∥(Φ

(skj)j
Dec

)⊗m
◦ Φ

C,(ρekj)j

Eval ◦ ⊗Ni=1

(
Φ
i,(pkj)j
Expand ◦ Φ

pki
Enc

)⊗ni

− ΦC

∥∥∥∥
�

= 0.

Looking ahead, the position i during key generation will act as a guideline for us to generate the evaluation
key during key generation.

4.2 Conditional Oblivious Quantum Transform

A conditional oblivious quantum transform (COQT) is a distributed non-interactive encoding procedure.
It allows encoding multiple bit-strings x1, . . . , xN independently with respect to a classical circuit C into
encoded states σi and decoding key keyi such that the encodings σ1, . . . , σN could be used to conditionally
apply a quantum gate G on a single-qubit state ρ, where the predicate is C(x1, . . . , xN , xN+1) and xN+1 is
any arbitrary bit-string of appropriate length chosen while applying the transform. The security requirement
is that an encoded state σ reveals no information about the associated input/bit-string x if one does not
know its corresponding decoding key key.

Looking ahead to our construction, we show how to

1. Construct unconditionally secure COQT scheme for class of log-depth circuits (i.e., NC1),

2. Bootstrap a secure COQT scheme for class of log-depth circuits to all poly-size circuits using classical
multi-key leveled homomorphic encryption with log-depth decryption circuits.

Let Ck be a class of classical circuits that takes as input k bits and outputs 1 bit, and let GS be a set
of single-qubit gates. A conditional oblivious quantum transform COQT for circuit class Ck and gate set GS
consists of three poly-time algorithms Encode,Apply,Decode that have the following syntax:

• Encode(C, (S1, . . . , SN+1), i, x,G)→ (σ, key). The encoding algorithm takes as input a classical circuit
C ∈ Ck, an (N + 1)-tuple of set intervals22 Si ⊂ {1, . . . k}, index i ≤ N , a bit string x of length |Si|,
and a single-qubit gate G ∈ GS. It outputs a quantum encoded state σ, classical decoding key key.

• Apply(C, (S1, . . . , SN+1), σ1, . . . , σN , x, ρ) → (ρ′, aux). The apply algorithm takes as input a classical
circuit C ∈ Ck, an (N + 1)-tuple of set intervals Si, a sequence of N encoded states σi, an input string
x of length |SN+1|, and a state ρ.23 It outputs a transformed quantum state ρ′, auxiliary classical
information aux.

• Decode(key1, . . . , keyN , aux)→ (a, b). The decoding algorithm takes as input N decoding keys keyi and
auxiliary information aux, and outputs two bits (a, b).

We now define correctness and security properties for COQT schemes.

Correctness. For any circuit C ∈ Ck, N+1 non-empty intervals Si ⊂ {1, . . . k}, N+1 inputs xi ∈ {0, 1}|Si|,
single-qubit gate G ∈ GS, consider encodings (σi, keyi) ← Encode(C, (S1, . . . , SN+1), i, xi,G) for all i ≤ N .
For any input-state ρ ∈ D(C{0,1} ⊗ E), consider transformed state (ρ′, aux) ← Apply(C, (S1, . . . , SN+1),

22Recall that set intervals are simply contiguous set partitions. For example, if S1, S2 are set intervals of {1, . . . , k}, then
S1 = {1, . . . , `} and S2 = {`+ 1, . . . , k} for some `.

23Basically, the apply algorithm takes as input a single quantum register, thus transforms a single-qubit state at a time.

19

σ1, . . . , σN , xN+1, ρ).24 Let (a, b)← Decode(key1, . . . , keyN , aux). The scheme COQT is said to be (perfectly)
correct if the following holds:∥∥∥∥ρ′ − (XaZbGC(x1,...,xN+1) ⊗ IE

)
ρ
(
XaZbGC(x1,...,xN+1) ⊗ IE

)†∥∥∥∥
1

= 0.

That is, output of the apply algorithm is same as first applying gate G on the first register of state ρ if
C(x1, . . . , xN+1) = 1, and then a quantum one-time pad with keys (a, b) on the same register.

Security. For security, we require that no quantum PT adversary should be able to distinguish quantum
encoded states of two different input strings x(0), x(1). In other words, if an adversary does not receive the
decoding keys, then for any circuit C, input intervals, index, single-qubit gate, the encoded state on any two
input strings will be indistinguishable.

Definition 4.1. A conditional oblivious quantum transform COQT = (Encode, Apply, Decode) is secure if
for every stateful quantum PT adversary A, there exists a negligible function negl(·), such that for every
circuit C ∈ Ck, single-qubit gate G ∈ GS, the following holds:∣∣∣∣Pr

[
A(R(b)

σ) = b :

(
(S1, . . . , SN+1), i, x(0), x(1)

)
← A(C,G); b← {0, 1}

(R(b)
σ , keyb)← Encode(C, (S1, . . . , SN+1), i, x(b),G)

]
− 1

2

∣∣∣∣ ≤ negl(k),

where {Si}i≤N+1 are non-empty intervals (Si ⊂ {1, . . . k} for i ≤ N+1), index i ≤ N , and strings x(0), x(1) ∈
{0, 1}|Si|, and R(b)

σ denotes the output quantum registers.

5 Constructing Quantum Multi-Key Positional HE

In this section, we construct a quantum multi-key positional homomorphic encryption scheme (for quantum
circuits with polynomially bounded T-gates) from a classical multi-key (leveled) homomorphic encryption
scheme and a conditional oblivious quantum transform. Our construction satisfies compactness requirement
as the size of the ciphertexts does not grow with the quantum circuit being evaluated (however, the size
of evaluation key grows linearly with the number of T-gates in the quantum circuit). For simplicity, we
describe the construction starting with a (classical) multi-key fully homomorphic encryption scheme. Later
in Section 7, we discuss how to set the circuit depth bound during setup thereby relying only on a leveled
scheme. Also, in Section 6, we show that our scheme also provides threshold decryption if the underlying
classical scheme provides threshold decryption. Below we give a brief overview.

Outline. The public parameters will consist of the MFHE parameters params and the T-gate bound k.
Now, to sample the keys for position pos and N users, the key generation algorithm starts by sampling
k + 1 MFHE key tuples (pki, eki, ski). Next, it computes k COQTs (i.e., runs COQT encoding algorithm)
for MFHE decryption circuit, input string ski, position pos and gate P†. Let (σi, keyi) be the corresponding
quantum encodings and classical decoding keys. It computes ctkey,i and ctsk,i as encryptions of keys keyi
and ski under public key pki+1. Finally, it sets the secret key as all the MFHE secret keys, the public key
as MFHE public keys, and the quantum evaluation key will contain all eki, σi, ctkey,i, ctsk,i components. For
ease of exposition, we will say (pki, eki, ski) are at level i, and similarly for other components.

Next, we describe the encryption, decryption and expansion algorithms. First, encryption simply involves
applying a quantum one-time pad and encrypting the one-time pad keys under the base (i.e., level 1) public
key. For decryption, the algorithm first decrypts the MFHE ciphertext using appropriate secret key to get the
one-time pad keys and then performs one-time pad decryption. The expansion algorithm is straightforward
as it involves expanding only the MFHE ciphertext.

Now, the evaluation algorithm works as follows. It starts by expanding the key and sk MFHE ciphertexts
for all k levels and N users. Next, it performs the evaluation gate-by-gate. For evaluating a gate in the

24Here the apply algorithm is run on the first register of state ρ.

20

Clifford group, it applies the corresponding gate directly to the encrypted state(s) and then updates one-
time pad keys using MFHE evaluation. For evaluating a T-gate, it starts by applying the T-gate on the
corresponding (encrypted) state followed by COQT application. Suppose the MFHE ciphertexts encrypting
the one-time pad keys are at level `. For applying the COQT on the encrypted state, it first selects the

level ` encoding in jth user’s (quantum) evaluation key, say σ
(j)
` , as the encodings for jth position and

sets the ciphertext encrypting the error indicator bit25 as the input string. By correctness of COQT, this
removes the P error (if any). Let aux be the auxiliary information generated during application. Next, it
generates the key updates by homomorphically running the COQT decoding algorithm (with aux hardwired)
on expanded key ciphertexts at level `. Note that the output of this evaluation will be encrypted under level
` + 1 MFHE public keys of all N users, since level ` key and sk ciphertexts are encrypted under level ` + 1
public keys. Thus, before updating the one-time pad keys, the evaluator recrypts the one-time pad keys for
all wires to level ` + 1 (using expanded sk ciphertexts). And, finally it updates the one-time pad key by
(homomorphically) ⊕-ing the original one-time pad keys with the key updates. Observe that after `th T-gate
evaluation, the quantum one-time pad keys are at level `+ 1. Thus, we can evaluate a quantum circuit with
at most k T gates. Below we describe our construction in detail.

5.1 Construction

Let MFHE = (MFHE.Setup,MFHE.KeyGen,MFHE.Enc,MFHE.Expand,MFHE.Eval,MFHE.Dec) be a classi-
cal multi-key fully homomorphic encryption scheme for 1-bit messages with decryption circuit of depth
d(λ,N), expanded ciphertexts of length p(λ,N) and secret keys of length s(λ,N). Also, let COQT =
(Encode,Apply,Decode) be a conditional oblivious quantum transform for circuit class Cd (i.e., the class
of depth d(λ,N) circuits) and gate set

{
P†
}

. Below we describe our scheme QMPLHE. For notational
convenience, let p = p(λ,N), d = d(λ,N) and s = s(λ,N).

• Setup(1λ, 1k) : The setup algorithm takes as input the security parameter λ and T-gate bound k. It runs
MFHE.Setup to generate public parameters as params← MFHE.Setup(1λ), and outputs (params, 1k) as
the public parameters.

• KeyGen((params, 1k), N, pos) : The key generation algorithm takes as input the public parameters
(params, 1k), number of users N and position pos. The key generation proceeds as follows:

1. First, it generates k + 1 classical MFHE key tuples as (pki, eki, ski)← MFHE.KeyGen(params) for
i ≤ k + 1.

2. Consider set intervals Sj = {s · (j − 1) + 1, . . . , s · j} for j ≤ N , and SN+1 = {s ·N + 1, . . . , s ·N + p}.
Let S = (S1, . . . , SN+1). It computes k COQTs as follows:

(σi, keyi)← Encode(MFHE.Dec,S, pos, ski,P
†) for i ≤ k.

3. Next, it encrypts the ith classical decoding keys keyi and the ith MFHE secret keys ski under the
(i+ 1)th MFHE public key pki+1 as26

ctkey,i ← MFHE.Enc(pki+1, keyi), ctsk,i ← MFHE.Enc(pki+1, ski) for i ≤ k.

4. Let ρ1 = ρ(ctkey,1, . . . , ctkey,k), ρ2 = ρ(ctsk,1, . . . , ctsk,k) and ρ3 = ρ(ek1, . . . , ekk+1). Finally, it
outputs the key tuple as

pk =
(
pk1, . . . , pkk+1

)
, sk = (sk1, . . . , skk+1)

ρek = ρ1 ⊗ ρ2 ⊗ ρ3 ⊗ σ1 ⊗ · · · ⊗ σk.
25By error indicator bit we mean bit a which denotes whether the encrypted state has X-gate applied or not. Note that P

error gets introduced only if X was present.
26Note that MFHE scheme supports bit encryption. Therefore, to encrypt multi-bit messages, the MFHE.Enc algorithm will

be run independently on each message bit. However, for notational convenience throughout this section as well as rest of the
paper, we overload the notation and use MFHE.Enc, MFHE.Expand and MFHE.Dec algorithms to encrypt, expand and decrypt
multi-bit messages respectively.

21

• Enc(pk, ρ) : The encryption algorithm takes as input a public key pk and a single-qubit ρ.27 Let
pk =

(
pk1, . . . , pkk+1

)
. It chooses bits a, b uniformly at random, encrypts them under pk1 and computes

a quantum one-time pad of ρ using a, b. Concretely, it outputs a cipherstate σ in the following classical-
quantum state

1

4

∑
a,b∈{0,1}

ρ(MFHE.Enc(pk1, (a, b)))⊗ (XaZb)ρ(XaZb)†.

• Expand((pk(1), . . . , pk(N)), i, σ) : The expansion algorithm takes as input N public keys pk(j) and a

single cipherstate σ encrypted under ith public key. Let pk(j) = (pk
(j)
1 , . . . , pk

(j)
k+1) for j ≤ N , and σ

is a classical-quantum state with the classical component being a MFHE ciphertext ct and quantum
component being a single-qubit σct.

It runs the MFHE expansion algorithm on ciphertext ct to compute expanded ciphertext as ĉt ←
MFHE.Expand((pk

(1)
1 , . . . , pk

(N)
1), i, ct), and outputs ρ(ĉt)⊗ σct as the expanded cipherstate.

• Eval(C, (ρ
(1)
ek , . . . , ρ

(N)
ek), σ̂) : The evaluation algorithm takes as input a circuit C, a tuple of N evaluation

keys for each position and expanded cipherstate σ̂. Let n be the number of input wires to circuit C
and t be the number of T-gates in it.

Let ρ
(i)
ek = ρ

(i)
1 ⊗ ρ

(i)
2 ⊗ ρ

(i)
3 ⊗ σ

(i)
1 ⊗ · · · ⊗ σ

(i)
k for i ≤ N . Also, let ρ

(i)
1 = ρ(ct

(i)
key,1, . . . , ct

(i)
key,k), ρ

(i)
2 =

ρ(ct
(i)
sk,1, . . . , ct

(i)
sk,k) and ρ

(i)
3 = ρ(ek

(i)
1 , . . . , ek

(i)
k+1). The evaluation algorithm first expands the key and

sk ciphertexts for all k levels and N users as

ĉt
(i)
key,j ← MFHE.Expand((pk

(1)
j+1, . . . , pk

(N)
j+1), i, ct

(i)
key,j), ĉt

(i)
sk,j ← MFHE.Expand((pk

(1)
j+1, . . . , pk

(N)
j+1), i, ct

(i)
sk,j)

The expanded cipherstate σ̂ consists of an n-fold state σ̂ct and nMFHE expanded ciphertexts
{
ĉtw
}n
w=1

,

where ĉtw is the ciphertext corresponding to wire w. Let σ̂w denote the qubit at wire w.

Let ` denote the current MFHE ciphertext level. Each T-gate evaluation increases ` by 1. The
evaluation algorithm starts with ` = 1 and performs evaluation (gate-by-gate) as follows:

1. P-Gate on wire w: Apply P-gate to σ̂w (i.e., qubit at wire w). Let fP denote the following circuit

on two bits — fP(a, b) = (a, a⊕ b). Update ĉtw as ĉtw ← MFHE.Eval(fP, (ek
(1)
` , . . . , ek

(N)
`), ĉtw).

2. H-Gate on wire w: Apply H-gate to σ̂w. Let fH denote the following circuit on two bits —

fH(a, b) = (b, a). Update ĉtw as ĉtw ← MFHE.Eval(fH, (ek
(1)
` , . . . , ek

(N)
`), ĉtw).

3. CNOT-Gate on wires v, w: Apply CNOT-gate to σ̂v, σ̂w. Let fvCNOT and fwCNOT denote the
following circuits on four bits — fvCNOT(a, b, c, d) = (a, b⊕ d), fwCNOT(a, b, c, d) = (a⊕ c, d). Update
ĉtv, ĉtw as

ĉtv ← MFHE.Eval(fvCNOT, (ek
(1)
` , . . . , ek

(N)
`), (ĉtv, ĉtw)),

ĉtw ← MFHE.Eval(fwCNOT, (ek
(1)
` , . . . , ek

(N)
`), (ĉtv, ĉtw)).

4. T-gate on wire w: Apply T-gate to σ̂w. Note that ĉtw is an encryption of two classical bits (say
a, b). Let ĉtw,1 denote the expanded ciphertext of first bit (i.e., a).28

Consider set intervals Si = {s · (i− 1) + 1, . . . , s · i} for i ≤ N , and SN+1 = {s ·N + 1, . . . , s ·N + p}.
Let S = (S1, . . . , SN+1). It applies the COQTs on σ̂w as follows

(σ̂w, aux)← Apply(MFHE.Dec,S, σ
(1)
` , . . . , σ

(N)
` , ĉtw,1, σ̂w).

27Multi-qubits could be encrypted analogously.
28Recall that the MFHE scheme supports bit encryption, therefore each ciphertext only encrypts one-bit. Thus, each ĉtw

consists of two ciphertexts ĉtw,1, ĉtw,2.

22

Next, it recrypts the current one-time pad keys from level ` to ` + 1 for all wires v ≤ n. Let
fvDec be the MFHE.Dec circuit with ciphertext ĉtv hardwired. Concretely, fvDec(x1, . . . , xN) =
MFHE.Dec(x1, . . . , xN , ĉtv). The evaluator recrypts ĉtv (for all v ≤ n) as follows

ĉtv ← MFHE.Eval(fvDec, (ek
(1)
`+1, . . . , ek

(N)
`+1), (ĉt

(1)
sk,`, . . . , ĉt

(N)
sk,`)).

Let f auxDecode be the Decode circuit with auxiliary information aux hardwired. Concretely, f auxDecode(x1, . . . , xN) =
Decode(x1, . . . , xN , aux). Next, it generates key updates for wire w as

ĉt
′
w ← MFHE.Eval(f auxDecode, (ek

(1)
`+1, . . . , ek

(N)
`+1), (ĉt

(1)
key,`, . . . , ĉt

(N)
key,`)).

Also, let f⊕ denote the following circuit on four bits — f⊕(a, b, c, d) = (a⊕c, b⊕d). The evaluation
algorithm updates the wire key as

ĉtw ← MFHE.Eval(f⊕, (ek
(1)
`+1, . . . , ek

(N)
`+1), (ĉtw, ĉt

′
w)).

Finally, it increases the MFHE ciphertext level (i.e., sets ` = `+ 1).

• Dec(sk(1), . . . , sk(N), σ̂) : Let sk(i) = (sk
(i)
1 , . . . , sk

(i)
k+1). The decryption algorithm takes as input N

secret keys and a single (expanded) cipherstate σ̂ = ρ(ĉt) ⊗ σ̂ct. Let ĉt be a ciphertext under level `

public keys.29 It decrypts ĉt using level ` keys as (a, b) ← MFHE.Dec(sk
(1)
` , . . . , sk

(N)
` , ĉt). Finally, it

performs one-time decryption using keys a, b and outputs

(XaZb) σ̂ct (XaZb)†.

5.2 Correctness

We will prove that the quantum multi-key positional homomorphic encryption scheme described above
satisfies the correctness property. The proof is divided in two parts where we prove correctness of expansion
as well as homomorphic evaluation of arbitrary quantum circuits with at most k T-gates. For simplicity of
notation, we only look at the message registers and ignore the auxiliary registers for the purposes of the
correctness proof. Also, throughout this section whenever we talk about equality on quantum registers, then
we simply mean that the trace distance between the states in those registers is 0.

For any security parameter λ, T-gate bound k, consider public parameters params ← MFHE.Setup(1λ).

For any number of users N , the key tuple for ith user (pk(i), ρ
(i)
ek , sk

(i)) is of the following form.

pk(i) =
(
pk

(i)
1 , . . . , pk

(i)
k+1

)
, sk =

(
sk

(i)
1 , . . . , sk

(i)
k+1

)
,

ρ
(i)
ek = ρ

(i)
1 ⊗ ρ

(i)
2 ⊗ ρ

(i)
3 ⊗ σ

(i)
1 ⊗ · · · ⊗ σ

(i)
k ,

where ρ
(i)
1 = ρ(ct

(i)
key,1, . . . , ct

(i)
key,k), ρ

(i)
2 = ρ(ct

(i)
sk,1, . . . , ct

(i)
sk,k) and ρ

(i)
3 = ρ(ek

(i)
1 , . . . , ek

(i)
k+1), and MFHE keys

are generated as (pk
(i)
j , ek

(i)
j , sk

(i)
j)← MFHE.KeyGen(params), and (σ

(i)
j , key

(i)
j)← Encode(MFHE.Dec,S, i, sk

(i)
j ,P†)

for all i ≤ N, j ≤ k + 1. Also, ciphertexts ct
(i)
key,j , ct

(i)
sk,j are generated as ct

(i)
key,j ← MFHE.Enc(pk

(i)
j+1, key

(i)
j),

ct
(i)
sk,j ← MFHE.Enc(pk

(i)
j+1, sk

(i)
j).

Expansion. Consider any single-qubit state ρM and any index i ≤ N . Encryption of ρM under pk(i)

will be of the form σ = ρ(ct) ⊗ σct, where ct ← MFHE.Enc(pk
(i)
1 , (a, b)) and σct = (XaZb)ρM(XaZb)†

for some random bits a, b. Note that the expansion algorithm simply expands the classical ciphertext

29Note that the expanded ciphertexts might not be encrypted under top level keys. The MFHE ciphertext component in
expanded cipherstates (i.e., just after expansion) will be at level 1. And, in evaluated cipherstates, MFHE ciphertexts will be
at level t, where t is the number of T-gates in circuit C being evaluated.

23

ct = MFHE.Enc(pk
(i)
1 , (a, b)) as ĉt ← MFHE.Expand((pk

(1)
1 , . . . , pk

(N)
1), i, ct). The corresponding expanded

ciphertext will be σ̂ = ρ(ĉt)⊗ σct.
From correctness of MFHE scheme, we know that MFHE.Dec(sk

(1)
1 , . . . , sk

(N)
1 , ĉt) = (a, b). Also, we know

that (XaZb)σct(X
aZb)† = ρM. Therefore, Dec(sk(1), . . . , sk(N), σ̂) = ρM. As stated before, here by equality

we mean that the trace distance between the associated states is zero. This concludes proof of correct
expansion.

Evaluation. Since we have proven correctness of expansion, for proving correct evaluation we only need
to show that given an expanded cipherstate σ̂, the evaluation algorithm preserves correctness at each step.
The proof follows from an inductive argument. Below we prove that for every C ∈ {P,H,CNOT,T}, the
evaluated cipherstate correctly decrypts.

Case 1 (C ∈ {P,H,CNOT}) : The proof of correctness is similar to that of CL scheme of [BJ15]. First,
we argue correctness if C ∈ {P,H} (i.e., a single-qubit gate).

Let σ̂ = ρ(ĉt)⊗σ̂ct be an expanded cipherstate encrypting a single qubit ρM under level ` keys. For ease of

exposition, consider that ρM = |ψ〉〈ψ| (i.e., a single-qubit pure state |ψ〉). Let MFHE.Dec(sk
(1)
` , . . . , sk

(N)
` , ĉt) =

(a, b) for some bits a, b. Thus, we know that σ̂ct = (XaZb) |ψ〉〈ψ| (XaZb)†. Note that the evaluation algorithm
simply applies the gate C to σ̂ct. This can be written as

CXaZb |ψ〉 =

{
XaZa⊕bC |ψ〉 if C = P

XbZaC |ψ〉 if C = H.

Next, it updates ĉt as ĉt = MFHE.Eval(fC , (ek
(1)
` , . . . , ek

(N)
`), ĉt). Since ĉt encrypted (a, b) before evaluation.

After evaluation, ĉt will encrypt fC(a, b). This follows from correctness of MFHE scheme. Thus, we could
write that

MFHE.Dec(sk
(1)
` , . . . , sk

(N)
` , ĉt) =

{
(a, a⊕ b) if C = P

(b, a) if C = H.

Therefore, if C ∈ {P,H}, then evaluated cipherstates correctly decrypt. Next, we argue correctness in
the case C = CNOT. Let σ̂ = ρ(ĉt1, ĉt2) ⊗ σ̂ct be an expanded cipherstate encrypting two qubits. Let

MFHE.Dec(sk
(1)
` , . . . , sk

(N)
` , ĉti) = (ai, bi) for some bits a1, b1, a2, b2. As before assume that σ̂ct is in pure

state, so σ̂ct = (Xa1Zb1 ⊗ Xa2Zb2) |ψ〉〈ψ| (Xa1Zb1 ⊗ Xa2Zb2)†. Thus,

C(Xa1Zb1 ⊗ Xa2Zb2) |ψ〉 = (Xa1⊕a2Zb1 ⊗ Xa2Zb1⊕b2)C |ψ〉 .

Similarly, the correctness of key update follows from the correctness of MFHE scheme. This concludes the
proof of evaluation correctness if C ∈ {P,H,CNOT}.

Case 2 (C = T) : Let σ̂ = ρ(ĉt)⊗ σ̂ct be an expanded cipherstate encrypting a single qubit under level

` keys, such that MFHE.Dec(sk
(1)
` , . . . , sk

(N)
` , ĉt) = (a, b) for some bits a, b, and σ̂ct = (XaZb)ρM(XaZb)† for

some quantum state ρM. Also, let ĉt = (ĉta, ĉtb), where ĉta and ĉtb encrypt a and b, respectively.30

The evaluation algorithm starts by applying T-gate to the state σ̂ct. This updates the state σ̂ct to

(PaXaZbT)ρM(PaXaZbT)†.

Let σ` = (σ
(1)
` , . . . , σ

(N)
`), ek` = (ek

(1)
` , . . . , ek

(N)
`) and sk` = (sk

(1)
` , . . . , sk

(N)
`). Next, the evaluator applies

COQTs on σ̂ct as
(σ̂ct, aux)← Apply(MFHE.Dec,S,σ`, ĉta, σ̂ct).

And, it homomorphically runs the decoding algorithm as

ĉt
′ ← MFHE.Eval(f auxDecode, ek`+1, (ĉt

(1)
key,`, . . . , ĉt

(N)
key,`)).

30Recall MFHE scheme encrypts bit-by-bit.

24

First, note that by correctness of MFHE expansion ĉt
(i)
key,` is an encryption of key

(i)
` . Also, by correctness of

MFHE evaluation, we can claim that ĉt
′

is an MFHE encryption of (a′, b′) = Decode(key
(1)
` , . . . , key

(N)
` , aux)

under level ` + 1 public keys. Let α = MFHE.Dec(sk`, ĉta). By correctness of MFHE decryption, we know
that α = a. Therefore, we can claim by correctness of COQTs that σ̂ct is transformed as follows:

σ̂ct =
(
Xa
′
Zb
′
(P†)αPaXaZbT

)
ρM

(
Xa
′
Zb
′
(P†)αPaXaZbT

)†
=
(
Xa
′
Zb
′
XaZbT

)
ρM

(
Xa
′
Zb
′
XaZbT

)†
=
(
Xa
′⊕aZb

′⊕bT
)
ρM

(
Xa
′⊕aZb

′⊕bT
)†

So, σ̂ct is a quantum one-time pad encryption of ρM with a′ ⊕ a, b′ ⊕ b as secret keys. The evaluation
algorithm also recrypts ĉt (i.e., the one-time pad keys a, b) from encryptions under level ` keys to level `+ 1.
So, by correctness of decryption and evaluation, we know that recryption procedure is correct and thus ĉt is
an encryption of (a, b) under level `+ 1 keys.31 Finally, the evaluator performs “xor” on ciphertexts ĉt and

ĉt
′

as follows
ĉt← MFHE.Eval(f⊕, ek`+1, (ĉt, ĉt

′
)).

By correctness of MFHE evaluation, we know that ĉt now encrypts (a′⊕a, b′⊕b) under level `+1 public keys.
Therefore, the decryption algorithm will first compute the keys (a′ ⊕ a, b′ ⊕ b), and then perform one-time
pad decryption to correctly recover message state ρM. This conclude the proof of correctness.

5.3 Security

We will now show that the scheme described above is q-IND-CPA secure as per Definition 3.3. Formally, we
prove the following.

Theorem 5.1. If MFHE = (MFHE.Setup,MFHE.KeyGen,MFHE.Enc,MFHE.Expand, MFHE.Eval,MFHE.Dec)
is a q-IND-CPA secure multi-key fully homomorphic encryption scheme for 1-bit messages satisfying Defini-
tion 3.1, and COQT = (Encode,Apply,Decode) is a secure conditional oblivious quantum transform for circuit
class Cd and gate set

{
P†
}

satisfying Definition 4.1, then the scheme QMPLHE (described in Section 5.1)
is a q-IND-CPA secure quantum multi-key positional leveled homomorphic encryption scheme for quantum
circuits with polynomially bounded T-gates as per Definition 3.3.

Our proof proceeds via a sequence of hybrid games. Each game is played between the challenger and
attacker A. Let A be any quantum PPT adversary that wins the q-IND-CPA game with non-negligible
advantage. We argue that such an adversary must break security of at least one underlying primitive. The
first game corresponds to the q-IND-CPA game as described in Definition 3.3. In the final game, the challenge
cipherstate does not contain any information about the challenge message state. We would like point out
that in the hybrid games the adversary is given public-evaluation key pair for N users, position pos ≤ N
and T-gate bound k. And, the indistinguishability proofs hold irrespective of the choice of N , pos and k.

The high level proof idea is as follows. First, note that the ith COQT depends on key ski, and its
decoding key keyi as well as ski is encrypted under public key pki+1. That is, level i decoding key and
secret key in encrypted under level i + 1 key. Now, the adversary has no information about the secret key
for level k + 1 (i.e., last level). Thus, using q-IND-CPA security of underlying MFHE scheme, we could
switch the corresponding ciphertexts to encryptions of all-zeros strings, thereby removing the decoding key
of kth COQT. Next, using COQT security, we could switch to an encoding of all-zeros string instead of
the kth secret key. This removes the information about kth secret key completely. Proceeding this way, we
could switch all COQTs to be empty transforms and all ciphertexts to encrypt to all-zeros strings. Finally,

31Actually the evaluator recrypts all the wire keys at this point. The correctness of all recryptions is guaranteed by correctness
of underlying MFHE scheme.

25

we could switch the encryption of one-time pad keys (in the challenge cipherstate) to encryption of zeros,
thereby reducing it to the security of quantum one-time pad. Below we describe the proof in detail.

Throughout the hybrids, the set intervals S = (S1, . . . , SN+1) are defined as in the construction, i.e.
Si = {s · (i− 1) + 1, . . . , s · i} for i ≤ N and SN+1 = {s ·N + 1, . . . , s ·N + p}. Also, we will use 0 to denote
the all-zeros string of appropriate length.

Game 1: This game is same as the original q-IND-CPA game.

1. Setup Phase. The challenger sets up by sampling the MFHE public parameters params← MFHE.Setup(1λ).
Next, it proceeds as follows:

(a) It generates k + 1 classical MFHE key tuples as (pki, eki, ski) ← MFHE.KeyGen(params) for i ≤
k + 1.

(b) It computes k COQTs as (σi, keyi)← Encode(MFHE.Dec,S, pos, ski,P
†) for i ≤ k.

(c) Next, it computes 2k MFHE ciphertexts ctkey,i, ctsk,i as ctkey,i ← MFHE.Enc(pki+1, keyi), ctsk,i ←
MFHE.Enc(pki+1, ski) for i ≤ k.

(d) Let ρ1 = ρ(ctkey,1, . . . , ctkey,k), ρ2 = ρ(ctsk,1, . . . , ctsk,k) and ρ3 = ρ(ek1, . . . , ekk+1). Finally, it
sends the public parameters, public key and evaluation key to A as

params′ = (params, 1k), pk =
(
pk1, . . . , pkk+1

)
ρek = ρ1 ⊗ ρ2 ⊗ ρ3 ⊗ σ1 ⊗ · · · ⊗ σk.

2. Challenge. Next, A sends the challenge message register RM to the challenger.

The challenger chooses a random bit β ← {0, 1}. If β = 0, it erases the message state in register
RM, otherwise the register is unchanged. That is, if β = 0 then the register RM contains state
|0〉〈0|, otherwise it contains some message state ρM. It chooses random bits a, b← {0, 1}, and applies
a quantum one-time pad on register RM using a, b. It also encrypts (a, b) under key pk1 as ct ←
MFHE.Enc(pk1, (a, b)). Finally, it sends the encrypted register RM and ciphertext ct to the adversary
A.

3. Guess. A outputs it guess β′ and wins if β′ = β.

We will now define 2k + 1 intermediate games — Game (2, i∗, 0), (2, i∗, 1) for i∗ ∈ {0, 1, . . . , k − 1} and Game
(2, k, 0). The hybrid game (2, 0, 0) will be same as Game 1. Also, hybrid game (2, k, 0) will be same as Game
3.

Game (2, i∗, 0): This is same as Game 1, except the challenger computes COQTs (σi, keyi) and ciphertexts
ctkey,i, ctsk,i for top i∗ levels (i.e., for i > k−i∗) as transforms of 0 instead of ski, and ciphertexts as encryptions
of all-zeros string (respectively).

1. Setup Phase. The challenger sets up by sampling the MFHE public parameters params← MFHE.Setup(1λ).
Next, it proceeds as follows:

(a) It generates k + 1 classical MFHE key tuples as (pki, eki, ski) ← MFHE.KeyGen(params) for i ≤
k + 1.

(b) It computes k COQTs as (σi, keyi) ← Encode(MFHE.Dec,S, pos, ski,P
†) for i ≤ k − i∗, and

(σi, keyi)← Encode(MFHE.Dec,S, pos,0,P†) otherwise.

(c) Next, it computes 2k MFHE ciphertexts ctkey,i, ctsk,i as ctkey,i ← MFHE.Enc(pki+1, keyi), ctsk,i ←
MFHE.Enc(pki+1, ski) for i ≤ k−i∗, and ctkey,i ← MFHE.Enc(pki+1,0), ctsk,i ← MFHE.Enc(pki+1,0)
otherwise.

26

(d) Let ρ1 = ρ(ctkey,1, . . . , ctkey,k), ρ2 = ρ(ctsk,1, . . . , ctsk,k) and ρ3 = ρ(ek1, . . . , ekk+1). Finally, it
sends the public parameters, public key and evaluation key to A as

params′ = (params, 1k), pk =
(
pk1, . . . , pkk+1

)
ρek = ρ1 ⊗ ρ2 ⊗ ρ3 ⊗ σ1 ⊗ · · · ⊗ σk.

Game (2, i∗, 1): This is same as previous game, except the challenger computes ciphertexts ctkey,k−i∗ , ctsk,k−i∗
as encryptions of all-zeros strings.

1. Setup Phase. The challenger sets up by sampling the MFHE public parameters params← MFHE.Setup(1λ).
Next, it proceeds as follows:

(a) It generates k + 1 classical MFHE key tuples as (pki, eki, ski) ← MFHE.KeyGen(params) for i ≤
k + 1.

(b) It computes k COQTs as (σi, keyi) ← Encode(MFHE.Dec,S, pos, ski,P
†) for i ≤ k − i∗, and

(σi, keyi)← Encode(MFHE.Dec,S, pos,0,P†) otherwise.

(c) Next, it computes 2k MFHE ciphertexts ctkey,i, ctsk,i as ctkey,i ← MFHE.Enc(pki+1, keyi), ctsk,i ←
MFHE.Enc(pki+1, ski) for i ≤ k−(i∗+1), and ctkey,i ← MFHE.Enc(pki+1,0), ctsk,i ← MFHE.Enc(pki+1,0)
otherwise.

(d) Let ρ1 = ρ(ctkey,1, . . . , ctkey,k), ρ2 = ρ(ctsk,1, . . . , ctsk,k) and ρ3 = ρ(ek1, . . . , ekk+1). Finally, it
sends the public parameters, public key and evaluation key to A as

params′ = (params, 1k), pk =
(
pk1, . . . , pkk+1

)
ρek = ρ1 ⊗ ρ2 ⊗ ρ3 ⊗ σ1 ⊗ · · · ⊗ σk.

Game 3: This is same as Game (2, k, 0), i.e. the challenger computes all COQTs (σi, keyi) as transforms
of 0 instead of ski, and all ciphertexts ctkey,i, ctsk,i as encryptions of all-zeros string.

1. Setup Phase. The challenger sets up by sampling the MFHE public parameters params← MFHE.Setup(1λ).
Next, it proceeds as follows:

(a) It generates k + 1 classical MFHE key tuples as (pki, eki, ski) ← MFHE.KeyGen(params) for i ≤
k + 1.

(b) It computes k COQTs as (σi, keyi)← Encode(MFHE.Dec,S, pos,0,P†) for i ≤ k.

(c) Next, it computes 2k MFHE ciphertexts ctkey,i, ctsk,i as ctkey,i ← MFHE.Enc(pki+1,0), ctsk,i ←
MFHE.Enc(pki+1,0) for i ≤ k.

(d) Let ρ1 = ρ(ctkey,1, . . . , ctkey,k), ρ2 = ρ(ctsk,1, . . . , ctsk,k) and ρ3 = ρ(ek1, . . . , ekk+1). Finally, it
sends the public parameters, public key and evaluation key to A as

params′ = (params, 1k), pk =
(
pk1, . . . , pkk+1

)
ρek = ρ1 ⊗ ρ2 ⊗ ρ3 ⊗ σ1 ⊗ · · · ⊗ σk.

Game 4: This is same as Game 3, except the challenger does not encrypt quantum one-time pad keys
(a, b) under pk1 in the challenge ciphertext. Instead it always encrypts (0, 0).

1. Setup Phase. The challenger sets up by sampling the MFHE public parameters params← MFHE.Setup(1λ).
Next, it proceeds as follows:

(a) It generates k + 1 classical MFHE key tuples as (pki, eki, ski) ← MFHE.KeyGen(params) for i ≤
k + 1.

(b) It computes k COQTs as (σi, keyi)← Encode(MFHE.Dec,S, pos,0,P†) for i ≤ k.

27

(c) Next, it computes 2k MFHE ciphertexts ctkey,i, ctsk,i as ctkey,i ← MFHE.Enc(pki+1,0), ctsk,i ←
MFHE.Enc(pki+1,0) for i ≤ k.

(d) Let ρ1 = ρ(ctkey,1, . . . , ctkey,k), ρ2 = ρ(ctsk,1, . . . , ctsk,k) and ρ3 = ρ(ek1, . . . , ekk+1). Finally, it
sends the public parameters, public key and evaluation key to A as

params′ = (params, 1k), pk =
(
pk1, . . . , pkk+1

)
ρek = ρ1 ⊗ ρ2 ⊗ ρ3 ⊗ σ1 ⊗ · · · ⊗ σk.

2. Challenge. Next, A sends the challenge message register RM to the challenger.

The challenger chooses a random bit β ← {0, 1}. If β = 0, it erases the message state in register
RM, otherwise the register is unchanged. That is, if β = 0 then the register RM contains state
|0〉〈0|, otherwise it contains some message state ρM. It chooses random bits a, b← {0, 1}, and applies
a quantum one-time pad on register RM using a, b. It also encrypts (0, 0) under key pk1 as ct ←
MFHE.Enc(pk1, (0, 0)). Finally, it sends the encrypted register RM and ciphertext ct to the adversary
A.

3. Guess. A outputs it guess β′ and wins if β′ = β.

5.3.1 Analysis

Let AdviA = |Pr[β′ = β]− 1/2| denote the advantage of adversary A in guessing the bit β in Game i. First,

note that |Adv1A − Adv
(2,0,0)
A | = 0, i.e. A’s advantage in distinguishing Games 1 and (2, 0, 0) is 0. This is

because they are identical games. Similarly, we have that |Adv(2,k,0)A − Adv3A| = 0.
To complete the proof, we establish via a sequence of lemmas that no quantum PPT adversary A can

distinguish between each adjacent game with non-negligible probability. Below we discuss our lemmas in
detail.

Lemma 5.1. If MFHE = (MFHE.Setup,MFHE.KeyGen,MFHE.Enc,MFHE.Expand, MFHE.Eval,MFHE.Dec)
is a q-IND-CPA secure multi-key fully homomorphic encryption scheme, then for all i∗ ∈ {0, 1, . . . , k − 1}
and all quantum PPT adversaries A, |Adv(2,i

∗,0)
A − Adv

(2,i∗,1)
A | is negligible in the security parameter λ.

Proof. Suppose there exists an adversary A such that |Adv(2,i
∗,0)

A − Adv
(2,i∗,1)
A | is non-negligible for some

i∗ ∈ {1, . . . , k − 1}. We construct an algorithm B that can distinguish encryptions of classical strings
keyk−i∗ , skk−i∗ from encryptions of all zeros strings under public key pkk−i∗+1, therefore break q-IND-CPA
security of the MFHE scheme.

The MFHE challenger generates public parameters params and a public-evaluation key pair (pk∗, ek∗),
and sends these to B. B samples k MFHE key tuples as (pki, eki, ski) ← MFHE.KeyGen(params) for i ≤
k + 1 and i 6= k − i∗ + 1, and sets (pkk−i∗+1, ekk−i∗+1) = (pk∗, ek∗). Next, it computes k COQTs as
in Game (2, i∗, 0), i.e. (σi, keyi) ← Encode(MFHE.Dec,S, pos, ski,P

†) for i ≤ k − i∗, and (σi, keyi) ←
Encode(MFHE.Dec,S, pos,0,P†) otherwise. It also computes 2k−2 MFHE ciphertexts ctkey,i, ctsk,i as ctkey,i ←
MFHE.Enc(pki+1, keyi), ctsk,i ← MFHE.Enc(pki+1, ski) for i ≤ k− (i∗+1), and ctkey,i ← MFHE.Enc(pki+1,0),
ctsk,i ← MFHE.Enc(pki+1,0) for i ≥ k − (i∗ − 1). For computing ciphertexts ctkey,k−i∗ , ctsk,k−i∗ , it sends
(keyk−i∗ , skk−i∗) as its challenge messages to MFHE challenger.32 The MFHE challenger flips a random bit
γ and encrypts either (keyk−i∗ , skk−i∗) or all-zeros strings, and sends the corresponding ciphertexts ct∗1, ct

∗
2

to B. B sets ctkey,k−i∗ , ctsk,k−i∗ = ct∗1, ct
∗
2. B also sets params′, pk, ρek as in Game (2, i∗, 0), and sends these

to the adversary A. Next, A sends the challenge RM to B. B chooses a random bit β ← {0, 1}. If β = 0,
it erases RM, otherwise leaves it unchanged. It chooses random bits a, b← {0, 1}, encrypts them under pk1
as ct← MFHE.Enc(pk1, (a, b)). Next, it applies a quantum one-time pad on RM with keys a, b. B sends the
challenge cipherstate as the ciphertext ct and register RM to A. Finally, A outputs its guess β′. If β = β′,

32We would like to note that the reduction algorithm B is playing a multi-bit/multi-message q-IND-CPA game with MFHE
challenger. Since multi-bit/multi-message q-IND-CPA security follows from standard single-bit/single-message q-IND-CPA
security via a standard hybrid game, thus our lemma follows.

28

then B sends 0 as its guess (i.e., (keyk−i∗ , skk−i∗) were encrypted), otherwise it sends 1 as its guess (i.e.,
all-zeros strings were encrypted) to the MFHE challenger.

First, note that B does not need to know the secret skk−i∗+1 (i.e., secret key corresponding to pk∗) in
the above reduction because ciphertext ctsk,k−i∗+1 is already an encryption of 0 as well as (k − i∗ + 1)th

COQT is an encoding of 0. Also, if the MFHE challenger encrypted (keyk−i∗ , skk−i∗) (i.e., γ = 1), then B
perfectly simulates Game (2, i∗, 0) for adversary A. Otherwise it simulates Game (2, i∗, 1) for A. As a result,

if |Adv(2,i
∗,0)

A − Adv
(2,i∗,1)
A | is non-negligible, then B breaks the MFHE scheme’s security with non-negligible

advantage.

Lemma 5.2. If COQT = (Encode,Apply,Decode) is a secure conditional oblivious quantum transform, then

for all i∗ ∈ {0, 1, . . . , k − 1} and all quantum PPT adversaries A, |Adv(2,i
∗,1)

A − Adv
(2,i∗+1,0)
A | is negligible in

the security parameter λ.

Proof. Suppose there exists an adversary A such that |Adv(2,i
∗,1)

A − Adv
(2,i∗+1,0)
A | is non-negligible for some

i∗ ∈ {1, . . . , k − 1}. We construct an algorithm B that can distinguish a COQT of input skk−i∗ from COQT
of all zeros strings with circuit MFHE.Dec, set intervals S, position pos and gate P†, therefore break security
of the COQT scheme.
B generates public parameters params and samples k + 1 MFHE key pairs as (pki, eki, ski)← MFHE.KeyGen(params)

for i ≤ k + 1. Next, it computes k − 1 COQTs as (σi, keyi) ← Encode(MFHE.Dec,S, pos, ski,P
†) for

i ≤ k − (i∗ + 1), and (σi, keyi) ← Encode(MFHE.Dec,S, pos,0,P†) for i ≥ k − (i∗ − 1). To compute
σk−i∗ , B sends circuit MFHE.Dec, set intervals S, index pos, input strings skk−i∗ and 0, and gate P† to the
COQT challenger. The COQT challenger chooses a random bit γ, encodes either skk−i∗ or 0, and sends
σ∗ as the corresponding challenge encoding. B sets σk−i∗ = σ∗. Next, it computes 2k MFHE ciphertexts
ctkey,i, ctsk,i as ctkey,i ← MFHE.Enc(pki+1, keyi), ctsk,i ← MFHE.Enc(pki+1, ski) for i ≤ k − (i∗ + 1), and
ctkey,i ← MFHE.Enc(pki+1,0), ctsk,i ← MFHE.Enc(pki+1,0) for i ≥ k− i∗. B sets params′, pk, ρek as in Game
(2, i∗, 1), and sends these to the adversary A. Next, A sends the challenge RM to B. B chooses a random
bit β ← {0, 1}. If β = 0, it erases RM, otherwise leaves it unchanged. It chooses random bits a, b← {0, 1},
encrypts them under pk1 as ct ← MFHE.Enc(pk1, (a, b)). Next, it applies a quantum one-time pad on RM
with keys a, b. B sends the challenge cipherstate as the ciphertext ct and register RM to A. Finally, A
outputs its guess β′. If β = β′, then B sends 0 as its guess (i.e., skk−i∗ was encoded), otherwise it sends 1 as
its guess (i.e., all-zeros strings was encoded) to the COQT challenger.

First, note that B does not need to know the secret keyk−i∗ (i.e., decoding key corresponding to σ∗) in the
above reduction because ciphertext ctkey,k−i∗ is already an encryption of 0. Also, if the COQT challenger
encoded skk−i∗ (i.e., γ = 0), then B perfectly simulates Game (2, i∗, 1) for adversary A. Otherwise it

simulates Game (2, i∗+ 1, 0) for A. As a result, if |Adv(2,i
∗,1)

A −Adv
(2,i∗+1,0)
A | is non-negligible, then B breaks

the COQT’s security with non-negligible advantage.

Lemma 5.3. If MFHE = (MFHE.Setup,MFHE.KeyGen,MFHE.Enc,MFHE.Expand,MFHE.Eval,MFHE.Dec) is
a q-IND-CPA secure multi-key fully homomorphic encryption scheme, then for all quantum PPT adversaries
A, |Adv3A − Adv4A| is negligible in the security parameter λ.

Proof. The proof of this lemma is similar to that of Lemma 5.1.

Lemma 5.4. For all quantum PPT adversaries A, |Adv4A| = 0.

Proof. The proof of this lemma is similar to that of [BJ15, Theorem 5.3]. Let ρM denote the quantum
message state encrypted. The main idea is that the quantum component of the challenge cipherstate looks
like a completely mixed state. This is because

1

4

∑
a,b

ρ(MFHE.Enc(pk1, (0, 0)))⊗ (XaZb)ρM(XaZb)† = ρ(MFHE.Enc(pk1, (0, 0)))⊗ 1

4

∑
a,b

(XaZb)ρM(XaZb)†

= ρ(MFHE.Enc(pk1, (0, 0)))⊗ 1

2
I2.

29

Therefore, challenge cipherstate σ from the perspective of A is independent of β.

This concludes the analysis and proof of Theorem 5.1.

6 Building Threshold Quantum Multi-Key Positional HE and Achiev-
ing Re-Randomizability

In this section, we show that the QMPHE scheme described in Section 5 gives 1-round distributed threshold
decryption if the underlying classical scheme provides threshold decryption as well. Additionally, we argue
that if the underlying classical scheme satisfies classical circuit privacy in the semi-honest setting [IP07],
then our quantum multi-key HE scheme provides re-randomizability of cipherstates.

6.1 Threshold Decryption

Let MFHE.PartDec,MFHE.FinDec be the threshold decryption algorithms supported by the classical multi-key
fully homomorphic encryption scheme. First, we want to point out that any single expanded (and possibly
evaluated) ciphertext σ̂ in the QMPHE scheme is a classical-quantum state that consists of two parts — (1)
expanded classical ciphertext ĉt, (2) single-qubit state σ̂ct. Below we describe the PartDec, FinDecPre and
FinDecPost algorithms for the quantum multi-key positional homomorphic encryption scheme. As before,
we only focus on decrypting single-qubit cipherstates at a time.

• PartDec((pk1, . . . , pkN), i, ski, ĉt) : The partial decryption algorithm takes as input N public keys pk(j),

secret key of the ith user, and a single (expanded) ciphertext ĉt. Let sk(i) = (sk
(i)
1 , . . . , sk

(i)
k+1), and ĉt be a

ciphertext under level ` public keys.33 It decrypts ĉt using level ` keys as shi ← MFHE.PartDec(sk
(i)
` , ĉt),

and outputs shi as the output of partial decryption.

• FinDecPre(sh1, . . . , shN) : The algorithm takes as input N partial decryptions sh1, . . . , shN , runs the
FinDec algorithm as rk = MFHE.FinDec(sh1, . . . , shN), and outputs rk as the reconstructed key.

• FinDecPost(σ̂ct, rk) : The algorithm takes as input a single cipherstate σ̂ct, and key rk. Let rk = (a, b).
It performs one-time decryption using keys a, b and outputs

(XaZb) σ̂ct (XaZb)†.

Correctness of Threshold Decryption. The proof of correct threshold decryption is similar to the proof
of correct evaluation provided in Section 5.2. The only difference is that we will now use correctness of thresh-
old decryption of the underlying classical MFHE scheme instead. Since we know that the classical component
of the evaluated ciphertext encrypts the correct one-time pad keys, therefore running MFHE.PartDec on the
ciphertext ĉt with key ski give partial decryption shares shi such that MFHE.FinDec(sh1, . . . , shN) = (a, b)
where σ̂ct = (XaZb) C |ψ〉 (XaZb)†. Thus, we get that FinDecPost(σ̂ct, rk = (a, b)) = C |ψ〉.

Unique Reconstruction. Note that during encryption, the algorithm chooses two random bits (a, b) for
one-time pad encryption. Now the Extract algorithm simply outputs these two classical bits that are part of
the random coins using during encryption. Clearly this matches the reconstructed key by correctness of the
underlying MFHE scheme.

Simulation Security. Let MFHE.Simthr denote the simulator for the classical MFHE scheme. The sim-
ulator for the QMPHE scheme is identical to the simulator MFHE.Simthr. The proof of security follows
directly from the threshold simulation security of the classical MFHE scheme.

33Recall that the expanded ciphertexts might not be encrypted under top level keys.

30

6.2 Achieving Re-Randomizability

Informally, circuit privacy says that an evaluated cipherstate must be indistinguishable from a fresh encryp-
tion of the circuit output. If we modify our construction similar to that in [DSS16, Theorem 3], we also could
prove quantum circuit privacy of our multi-key scheme in the semi-honest setting. Now to re-randomize ci-
pherstates in our quantum multi-key HE scheme, we would simply do a fresh one-time pad encryption of the
already encrypted state and update the one-time pad keys homomorphically. The idea is that by using quan-
tum circuit privacy, we could argue that the evaluated cipherstates are simulatable given only the output of
the evaluation. Next, by performing the re-randomization as described above (i.e., applying fresh quantum
one-time pad and updating keys homomorphically) we can again use classical circuit privacy to hide the
homomorphic key update and we already that applying a quantum one-time pad in succession simply ⊕s
the keys which makes them look uniformly random (by a perfect secrecy argument).

7 Quantum Multi-Key HE: Removing Positional Constraint, Multi-
Hop and More

In this section, we discuss various improvements to our quantum multi-key positional homomorphic encryp-
tion scheme construction described in Section 5. First, we show how to construct a standard (non-positional)
quantum multi-key homomorphic encryption scheme for bounded number of users. In other words, the key
generation algorithm will no longer take as input a position, but it will only take as input an upper bound on
the number of users. Second, we discuss how to support multi-hop quantum computation as our current con-
struction supports only single-hop evaluation where all parties must be known when computation/evaluation
starts. Next, we also discuss how to set the circuit depth bound during setup, and finally reducing the number
of classical MFHE key pairs required per user.

7.1 Constructing Quantum Multi-Key HE

The construction described in Section 5 can be easily extended to a (leveled) quantum multi-key homomorphic
encryption scheme for a-priori bounded number of users, where the bound is fixed during key generation. At
a high level, the idea is to redundantly add COQTs in the system such that each evaluation key contains all
the information to be used as a positional evaluation key for any position ≤ N . We briefly sketch the ideas
below.

For simplicity, let us first only remove “position” as an input to the key generation algorithm, that is the
key generation still takes as input the exact number of users, and not just an upper bound. This could be
handled as follows — during key generation, the algorithm computes N × k COQTs as follows:

(σi,j , keyi,j)← Encode(MFHE.Dec,S, j, ski,P
†) for i ≤ k, j ≤ N.

That is, it outputs k COQTs for each position pos ∈ {1, . . . , N} where S is as defined in the construction.
Next, it encrypts keyi,j for all i, j, and includes all these N×k COQTs as part of the quantum evaluation key.
The encryption, decryption and expansion algorithm are same as before. Now the homomorphic evaluation
procedure proceeds as before for clifford group operations, but for applying a T-gate on wire w, it first applies
T-gate to σ̂w and then takes applies the COQTs on σ̂w as follows

(σ̂w, aux)← Apply(MFHE.Dec,S, σ
(1)
`,1 , . . . , σ

(N)
`,N , ĉtw,1, σ̂w).

That is, it picks the ith COQT from the ith evaluation key corresponding to position i for each i ≤ N . The
(quantum) one-time pad key update procedure proceeds analogously. The security proof is also identical.
The only modification will be that in the inner hybrids, all N COQTs at any particular level will be
simultaneously switched from transforms of secret keys to all-zeros string. Indistinguishability of this step
can be proved by a standard hybrid argument assuming security of COQT.

31

Finally, using similar ideas, above construction could be extended such that key generation algorithm
takes as input an upper bound on the number of users, instead of an exact number. The idea will be to
redundantly generate even more COQTs. More formally, during key generation the algorithm computes
N(N − 1)/2× k COQTs as follows:

(σi,j,n, keyi,j,n)← Encode(MFHE.Dec,Sn, j, ski,P
†) for i ≤ k, j ≤ n, n ≤ N,

where Sn = (Sn1 , . . . , S
n
n+1) is a sequence of n+1 set intervals where Sni = {s(λ, n) · (i− 1) + 1, . . . , s(λ, n) · i}

for i ≤ n, and Snn+1 = {s(λ, n) ·N + 1, . . . , s(λ, n) ·N + p(λ, n)}. In other words, it outputs k COQTs for
each position pos ∈ {1, . . . , n} and every set size (i.e., exact number of users) n ≤ N . As before, the only
other modification will be during T-gate evaluation in which the evaluator will appropriately pick the COQTs
and apply on the encrypted state. Also, the proof of security will be analogous with all N(N − 1)/2 COQTs
at any particular level being switched simultaneously.

7.2 Multi-Hop Evaluation

In a multi-hop multi-key homomorphic encryption scheme, for homomorphically evaluating any gate, only
the keys associated with the ciphertexts corresponding to each input wire are required. In other words, it
is not necessary to know all the evaluation keys associated with input ciphertexts at the start of evaluation
phase, and repeated homomorphic evaluations can be performed on evaluated ciphertexts. It turns out that
the quantum multi-key homomorphic encryption scheme (for a-priori bounded number of users) described
above can easily be turned into a fully dynamic multi-hop scheme if the underlying classical scheme is fully
dynamic multi-hop scheme. The only modification that has to be made is in the evaluation procedure. Below
we discuss the changes to make it multi-hop. We would like to point out that the following construction also
works only for a-priori bounded number of users which has be set during key generation.

In a multi-hop scheme we won’t have a expansion algorithm as there is not necessarily any special
distinction between evaluated ciphertexts and ciphertexts output by the encryption algorithm. Also, we
would consider that evaluation algorithm only takes as input a single gate in {P,H,CNOT,T}, one or two
cipherstates and all the evaluation keys associated with cipherstates. In order to perform homomorphic
operations on larger quantum circuits, one could simply run the evaluation algorithm gate-by-gate. Moving
on to our multi-hop construction, the key generation algorithm will be same as that for our QMLHE scheme
for a-priori bounded number of parties. In particular, during key generation we sample k + 1 classical MFHE
key pairs, compute N(N − 1)/2× k COQTs, encrypt all N(N − 1)/2× k decoding keys and k MFHE secret
keys appropriately. Next, the encryption and decryption algorithms will behave identically as well, that is
encryption is simply computing a quantum one-time pad and encrypting the one-time pad keys under base
public keys, and decryption proceeds by first extracting the quantum one-time pad keys from the classical
ciphertexts and then performing a one-time pad decryption. Now the evaluation algorithm proceeds as
follows:

1. Evaluating a P or H gate. This will mostly stay the same, i.e. first apply the gate to the quantum
cipherstate and then update the one-time pad key components using MFHE evaluation. The only
difference shall be that the evaluator will provide only the (classical) evaluation keys associated with
the ciphertexts instead of all N keys at that level.

2. Evaluating a T gate. Suppose the ciphertexts encrypting the one-time pad keys are associated with

n keys pk
(1)
` , . . . , pk

(n)
` at level `. The evaluator first applies the T gate on the cipherstate, next it

applies the COQT on it with set intervals Sn and quantum encodings σ
(1)
1,n,`, . . . , σ

(n)
n,n,` (i.e., encodings

at level ` corresponding to set size n and appropriate positions). Next, it recrypts the one-time pad
keys to level `+1, computes the decoding circuit, and performs the final ⊕ operation homomorphically.
Note that for this (classical) homomorphic evaluation it only needs the associated evaluation keys at
this level since the underlying scheme is multi-hop.

At a high level, the T-gate evaluation proceeds analogously, except that now the evaluator only needs
the associated evaluation keys and it does not recrypt the one-time pad keys to level ` + 1 for all

32

available wires. Previously, in T-gate evaluation, the one-time pad keys for all wires were recrypted
together, but now this can’t be done since evaluation is done gate-by-gate and independently. Thus,
when we evaluate a CNOT gate, which is the only 2-qubit gate, the input wires might be at different
level.

3. Evaluating a CNOT gate. As mentioned above, the ciphertexts encrypting the one-time pad keys
for the input cipherstates might be at different levels. Suppose one of them is level ` and other at
level `′ with `′ ≤ `. The evaluator proceeds as follows — first, apply the CNOT gate on appropriate
wires; next, recrypt the ciphertexts at level `′ to level `; and finally, perform the key updates after both
ciphertexts are at level `. In short, the only difference will be that before applying key update, the
evaluator must recrypt the ciphertexts encrypting original one-time pad keys to the lowest common
level.

7.3 Efficiency and More

Setting Circuit Depth Bound. For simplicity, in our current construction we assumed that the underly-
ing classical scheme is fully homomorphic instead of being a leveled scheme. We would like point out that our
transformation also works if we start with a leveled scheme. The circuit depth bound could be set as follows
during the setup. Let d1 and d2 be the depth of circuits f auxDecode and fvDec (respectively) as defined in the
evaluation algorithm. Apart from homomorphic evaluations of these two circuits, the quantum evaluation
algorithm only performs ⊕ operations on the encrypted keys for each gate evaluation. So, the circuit depth
bound could be set as d1 + d2 + c where c is an upper bound on the clifford operations performed between
any two consecutive T-gate computations.

Reducing number of MFHE key pairs. First, note that as per the current construction during key
generation each user samples k + 1 MFHE key pairs where k is the upper bound on the number of T gate
evaluations that the scheme supports. We would like to point out that we could have instead sampled
only ` + 1 MFHE key pairs per user where ` would have been the maximum T-depth of quantum circuits
supported. By T-depth of a quantum circuit, we mean the number of T layers in the quantum circuit if it
is represented as a layered quantum circuit [AMMR13].

8 Instantiating Our Framework: Conditional Oblivious Quantum
Transform for NC1

In this section, we construct a conditional oblivious quantum transform scheme for NC1 circuits and gate
set
{
P†
}

. We prove our scheme is unconditionally secure. Later in Section 9, we discuss how to bootstrap a
conditional oblivious quantum transform scheme for class of log-depth circuits to all poly-size circuits. Below
we give a brief overview. We would like to point out that our COQT construction for log-depth circuits is
based on the gadget construction of Dulek et al. [DSS16]. Concretely, a COQT with N = 1 is the same as
the DSS error-correcting gadget.

Outline. To encode an input x for index pos, we first generate an interval-alternating branching program
BP corresponding to circuit C with intervals {Si}i. Recall that by definition of an interval-alternating BP,
we have that the input bit read in each 2ith state transition in BP lies in interval S(i−1 mod N)+1, and in
remaining transitions the input bit read lies in interval SN+1. In other words, during even transitions/levels
BP reads bits from first N intervals, and during odd transitions/levels it reads bits from the last interval.

Suppose N = 2, pos = 1, C takes as input 3 bits, and Si = {i} for i ≤ 3. Thus, the input x being
encoded is just a single bit. Also, for simplicity consider that the interval-alternating branching program
corresponding to C reads the bit in following order - 3, 1, 3, 2. Now, the encoding σ of input x consists of
5 EPR pairs, thus 10 qubits. We label the qubits as follows: the ith qubit (for i ≤ 5) denotes branching
program state i and level 2, and for i > 5 it denotes state i−5 and level 3. Let π = π2,x, i.e. the permutation

33

representing state transition at level 2 when input bit read is x. The qubits at levels 2 and 3 are connected
according to permutation π, i.e. qubits i and 5 + π(i) for i ≤ 5, are an EPR pair. The encoder also applies
random Pauli matrices to the first qubit in each EPR pair, and these Pauli coefficients (for each pair) are
included as part of the decoding key. Also, if the input bit read during last state transition lies in Spos (in
other words, if pos = N), then the encoder applies gate G on the first qubit before applying random Pauli
matrices.

So, at a high level, the quantum encoded state σ will be a collection of 5m pairs of entangled qubits
(thus, total 10m qubits) with arbitrary Pauli operators applied on a single qubit in each pair and gate G
conditionally applied on one special qubit, where m in the number of state transitions where input from
interval Spos is read. Note that each qubit is labeled by its state and level.

Now an evaluator gets as input N encodings, one for each index i ≤ N . Recall that all the N intervals
S1, . . . , SN are mutually exclusive and all even-numbered transitions read input bits from these intervals.
Now, the evaluator re-arranges all these qubits according to their levels and states. In other words, for every
branching program state and level, the evaluator uniquely associates a qubit in the encodings. Next, it labels
the input qubit ρ to be at level 1 and state 1, i.e. starting state. Let xN+1 be the evaluator’s input string.
For applying the transform, it performs Bell measurements between qubits at level 2`− 1 and 2` as per the
permutation specified for state transition at level 2`− 1 and corresponding input bit in xN+1. And, it stores
all the measurement outcomes along with the location of associated qubits as the auxiliary information. In
other words, at all odd state transitions the input bit is read from interval SN+1, thus depending on the
string xN+1 the evaluator performs successive Bell measurements between qubits associated with odd state
transitions and stores the outcomes. This process continues until the input qubit is teleported to either an
accepting or rejecting state in the last level. Now note that since the evaluator does not know the output
of circuit C, thus it could not deterministically set the output qubit. In order to work around this issue,
we use the idea from [DSS16] to apply an inverse branching program for circuit C afterwards. That is, now
the encoder will start by generating the interval-alternating BP and then compute a new branching program
which will be twice the size by appending the inverse of original program. This results in the invariant that
the final state of the new program on each input will always be 1 (i.e., same as the starting state). Thus,
the evaluator always sets the qubit in state 1 at the last level as the output qubit.34

The decoding procedure takes as input the decoding key which contains the information about entangled
qubit pairs and their corresponding Pauli coefficients, and the auxiliary information which consists of the
measurement outcomes. The decoder simply traces the path of the qubit from the starting level to last level,
and generates the key updates accordingly. Below we describe our scheme is detail.

8.1 Construction

Let
{
Cd(n)

}
n

denote the class of all depth d(n) circuits on n input bits with 1-bit output. Below we describe

our scheme COQT = (Encode,Apply,Decode) for circuit class
{
Cd(n)

}
n

such that d(n) = O(log n), and gate

set
{
P†
}

.35 For notational convenience, let d = d(n).

• Encode(C, (S1, . . . , SN+1), pos, x,G) : The encoding algorithm takes as input a classical circuit C ∈ Cd,
(N + 1) set intervals {Si}i≤N+1 of set {1, . . . , n}, index pos ≤ N , a bit string x ∈ {0, 1}|Si|, and
description of a single-qubit gate G.

Let ni = |Si| for i ≤ N + 1, and S = (S1, . . . , SN+1). The encoder generates an S-interval-alternating
branching program BP for circuit C.36 By Corollary 3.1, we know that branching program BP has
length L = 2 ·N · 4d and width 5, and can be represented as

BP =
(
inp : [L]→ [n], {πi,b : [5]→ [5]}i≤L,b∈{0,1} , acc ∈ [5], rej ∈ [5]

)
.

34Technically, the qubit that the evaluator sets as the output bit is not always in the starting state, but the evaluator always
knows which qubit to be set as the output.

35We would like to point out that the current construction could be used to give COQTs for Clifford group as well.
36Throughout this section we assume that the interval-alternating branching program constructed for any circuit C and set

intervals S will always be the same branching program. In other words, constructing an interval-alternating branching program
is a deterministic procedure. Note that this is not an extra assumption, and is already satisfied.

34

Let B̃P denote a length 2L branching program of width 5 on n bits with accepting and rejecting states
ãcc, r̃ej = 1, 2, and the input selection function ĩnp and permutations π̃i,b defined as follows

ĩnp(i) =

{
inp(i) if i ≤ L
inp(2L+ 1− i) otherwise.

π̃i,b =

{
πi,b if i ≤ L
π−12L+1−i,b otherwise.

Let T denote the set of state transitions in B̃P where the input bit read is from interval Spos, i.e.

T =
{
i ∈ {1, . . . , 2L} : ĩnp(i) ∈ Spos

}
. Let m denote the number of times an input bit from interval

Spos is read (i.e., m = |T |), and ti denote the ith element in T for i ≤ m. Also, let xi denote the
(i− ipos)th bit of string x (where ipos =

∑
i<pos ni), and let next(j, w) = π̃j,x

ĩnp(j)
(w).37

Let p`,w = 10(` − 1) + w and q`,w = 10` − 5 + next(t`, w) for all ` ≤ m, w ≤ 5. The encoded state σ
will be defined as

m⊗
`=1

5⊗
w=1

(
Xa`,wZb`,wGc`,w

) ∣∣Φ+
〉〈

Φ+
∣∣
p`,w,q`,w

(
Xa`,wZb`,wGc`,w

)†
,

where all single-qubit gates are applied to first qubit (i.e., qubit p`,w), and |Φ+〉〈Φ+|p`,w,q`,w denotes
entanglement between qubits p`,w, q`,w, and a`,w, b`,w are random bits, and c`,w is defined as

c`,w =

{
1 if t` = L and next(L,w) = acc

0 otherwise.

In other words, the encoder sets the quantum encoded state σ as a collection of 10m qubits as follows

- For ` ≤ m,w ≤ 5, pth`,w qubit is (maximally) entangled with qth`,w qubit.

- If t` = L and next(t`, w) = acc for some `, w, then gate G is applied on pth`,w qubit.

- For ` ≤ m,w ≤ 5, random Pauli matrices are applied to qubit pth`,w.

Next, the decoding key will contain 5m 6-tuples as described below

key =
(

(t`, w, next(t`, w), a`,w, b`,w, c`,w)`≤m,w≤5

)
.

The encoding algorithm outputs the quantum encoding state σ and decoding key key.

• Apply(C, (S1, . . . , SN+1), σ1, . . . , σN , x, ρ) → (ρ′, aux). The apply algorithm takes as input a classical
circuit C ∈ Cd, (N + 1) set intervals {Si}i≤N+1, N encoded states σi, bit string x ∈ {0, 1}|SN+1|, and
a single-qubit state ρ.

It computes branching program B̃P corresponding to circuit C as during the encoding procedure. B̃P is
a length 2L branching program of width 5 on n bits with accepting and rejecting states ãcc = 1, r̃ej = 2,
and the input selection function ĩnp and permutations π̃i,b.

Let ni = |Si|, Ti =
{
j ∈ {1, . . . , 2L} : ĩnp(j) ∈ Si

}
, mi = |Ti| for i ≤ N + 1, and σ

(j)
i denote the jth

qubit of encoding σi for i ≤ N and j ≤ 10mi. Also, let xi denote the (i− iN+1)th bit of string x, where
iN+1 =

∑
i<N+1 ni.

Let pos : [2L] → [N + 1] be a function such that pos(t) = i iff ĩnp(t) ∈ Si, and ind : [2L] → [L] be a
function such that ind(t) = j iff |Tpos(t) ∩ {1, . . . , t} | = j. Also, let next(j, w) = π̃j,x

ĩnp(j)
(w) for j ≤ 2L,

w ≤ 5.

The apply algorithm performs bell measurements as follows and stores the corresponding measurement
outcomes as part of the auxiliary information:

37Note that since BP is S-interval-alternating BP, we know that m = L/N and T = {2iN + 2pos− 2N}i≤L/2N ∪
{L+ 2iN − 2pos + 1}i≤L/2N .

35

- It performs bell measurements on qubits ρ and σ
(next(1,1))
1 . Let the outcomes be x, y.

- For t ∈ TN+1 \ {1, 2L} and w ≤ 5, it performs bell measurements on qubits σ
(10ind(t−1)+w−5)
pos(t−1) and

σ
(10ind(t+1)+next(t,w)−10)
pos(t+1) . Let the outcomes be xt,w, yt,w.

- For w ≤ 5 and ` = ind(L), it performs bell measurements on qubits σ
(10`+w−5)
N and σ

(10`+w)
N . Let

the outcomes be x′w, y
′
w.

Finally, qubit σ
(10m1+next(1,1)−5)
1 will be set as the output qubit ρ′. And, the auxiliary information will

contain (5L− 4) 5-tuples as described below.

aux =
(

(1, 1, next(1, 1), x, y) , (⊥, w, w, x′w, y′w)w≤5 , (t, w, next(t, w), xt,w, yt,w)t∈T ′,w≤5

)
,

where T ′ = TN+1 \ {1, 2L}.

• Decode(key1, . . . , keyN , aux)→ (a, b). The decoding algorithm takes as input N decoding keys keyi and
auxiliary information aux, and outputs two bits (a, b).

Let 5L be the total number of 6-tuples contained in the all the N decoding keys combined, and key
denote the combined decoding key (i.e., all these 5L 6-tuples).

The decoding algorithm sets a = 0, b = 0 and st = 1, t = 1. It proceeds as follows.

– For 1 ≤ t ≤ L:

∗ If t is odd, search (t, st, w, x, y) in aux and update a = a+ x, b = b+ y, st = w, t = t+ 1.

∗ Otherwise, search (t, st, w, x, y, z) in key and update a = a+x, b = a·z+b+y, st = w, t = t+1.

– For t = L+ 1, search tuple (⊥, st, st, x, y) in aux and (t, st, w, x̃, ỹ, z̃) in key.

Update a = a+ x+ x̃, b = (a+ x) · z̃ + b+ y + ỹ, st = w, t = t+ 1.

– For L+ 1 < t ≤ 2L− 1:

∗ If t is even, search (t, st, w, x, y) in aux and update a = a+ x, b = b+ y, st = w, t = t+ 1.

∗ Otherwise, search (t, st, w, x, y, z) in key and update a = a+x, b = a·z+b+y, st = w, t = t+1.

Finally, it outputs bits (a mod 2, b mod 2).

8.2 Correctness

We will prove that the conditional oblivious quantum transform scheme described above satisfies the cor-
rectness property. Consider any classical circuit C ∈ Cd, (N + 1) set intervals {Si}i≤N+1 of set {1, . . . , n},
(N +1) inputs xi ∈ {0, 1}|Si|, let B̃P denote the length 2L branching program as defined in the construction,

and sti denote the state of branching program B̃P on input y after i steps, where y = x1 ||x2 . . . ||xN+1.

We know that st0 = 1 and st2L = 1 (by construction). Also, the first L permutations of B̃P represent
circuit C, thus we know that stL = acc if C(y) = 1, and stL = rej otherwise. Now the encoding of ith input
xi (for i ≤ N) with circuit C and gate P† is of the following form

σi =

mi⊗
`=1

5⊗
w=1

(
Xa

(i)
`,wZb

(i)
`,wGc

(i)
`,w

) ∣∣Φ+
〉〈

Φ+
∣∣
p
(i)
`,w,q

(i)
`,w

(
Xa

(i)
`,wZb

(i)
`,wGc

(i)
`,w

)†
,

keyi =

((
t
(i)
` , w, next(t

(i)
` , w), a

(i)
`,w, b

(i)
`,w, c

(i)
`,w

)
`≤mi,w≤5

)
,

where Ti =
{
j ∈ {1, . . . , 2L} : ĩnp(j) ∈ Si

}
, mi = |Ti|, t(i)` denotes `th element in Ti, next(j, w) = π̃j,y

ĩnp(j)
(w)

where yi denotes ith bit of y, and p
(i)
`,w = 10(`−1)+w, q

(i)
`,w = 10`−5+next(t

(i)
` , w) and a

(i)
`,w, b

(i)
`,w are random

bits for ` ≤ mi, w ≤ 5. Also, if i = N and t
(i)
` = L, then c

(i)
`,w = 1, otherwise c

(i)
`,w = 0.

36

Next, consider any single-qubit state ρ. For ease of exposition, assume that ρ = |ψ〉〈ψ| (i.e., a pure state
|ψ〉). We would like to show that applying the transform on |ψ〉 with these N encodings σi results in a state∣∣∣ψ̃〉 = (XaZb(P†)C(y)) |ψ〉 where (ρ′, aux) ← Apply(C, (S1, . . . , SN+1), σ1, . . . , σN , x, ρ), (a, b) = Decode(key1,

. . . , keyN , aux) and ρ′ =
∣∣∣ψ̃〉〈ψ̃∣∣∣.

We prove correctness of our construction by induction on the levels/branching program steps. If the
measurements during apply procedure are sequentially analyzed, then we show that the decoding procedure
correctly updates Pauli coefficients a, b and location of qubit ρ after each teleportation step. In other words,
to prove correctness we trace the path of qubit during apply phase and verify a, b updates step-by-step.

Throughout the rest of the proof, whenever we say that the qubit is at level 2j and state w, then we
mean it is (10 · ind(2j) + w − 5)th qubit in σpos(2j) (if j ≤ L/2), and (10 · ind(2j − 1) + w − 5)th qubit in

σpos(2j−1) (otherwise).38 Similarly, a qubit at level 2j−1 and state w corresponds to (10 · ind(2j) +w−10)th

qubit in σpos(2j) (if j ≤ L/2), and (10 · ind(2j − 1) + w − 10)th qubit in σpos(2j−1) (otherwise). Also, we say
that the input qubit ρ is at level 0 and state 1.

Below we prove (by induction) that after jth set of measurements, the qubit will be teleported to level 2j
and state st2j (if j ≤ L/2), otherwise it will be teleported to level 2j and state st2j−1. Also, it will be in state(
XaZb(P†)c

)
|ψ〉, where values a, b will match those determined by partial execution of decoding procedure,

and c = 1 if j ≥ L/2 and C(y) = 1, else c = 0.

Base Case. Initially (i.e., before any measurement) the qubit is in state |ψ〉. Thus, by definition it is at
level 0 and state st0 = 1, and a, b, c are all 0. Also, the decoding algorithm sets a, b to be 0 initially. This
completes the proof for base case. For induction step, we show that if the above invariant holds till jth set
of measurements, then it also holds after (j + 1)th set of measurements.

Induction Step. (Case 1: j < L/2) After jth set of measurements (i.e., between levels 2(j−1) and 2j−1),
we have that the qubit is in state

(
XaZb(P†)c

)
|ψ〉 where c = 0 and a, b match those determined by partial

execution of decoding procedure. We know that the qubit will be at level 2j and state st2j .
First, note that the (j + 1)th set of measurements denotes bell measurements between qubits at level 2j

and state w, and level 2j + 1 and state next(2j + 1, w) (for w ≤ 5). Also, we have that qubits at level 2j + 1
and state w, and level 2(j + 1) and state next(2j + 2, w) (for w ≤ 5) are entangled. Therefore, we know that
(j + 1)th set of measurements will teleport qubit at level 2j and state st2j to qubit at level 2j + 2 and state
st2j+2.

Let x, y be the outcome of the bell measurement, and x̃, ỹ, z̃ = a
(i)
`,w, b

(i)
`,w, c

(i)
`,w where ` = ind(2j + 2), w =

st2j+1, i = pos(2j + 2). First, the measurement changes the state to

(XxZy)
(
XaZb(P†)c

)
|ψ〉 =

(
Xa+xZb+y(P†)c

)
|ψ〉 .

Next, the qubit is teleported through the entangled pair and since
(
Xx̃Zỹ(P†)z̃

)
is applied to the first qubit

in the entangled pair, thus teleportation changes the current state to(
Xx̃Zỹ(P†)z̃

) (
Xa+xZb+y(P†)c

)
|ψ〉 =

(
Xx̃Zỹ

)(
Xa+xZ(a+x)·z̃+b+y(P†)c+z̃

)
|ψ〉 .

=
(
Xa+x+x̃Z(a+x)·z̃+b+y+ỹ(P†)c+z̃

)
|ψ〉 .

Thus, the a, b pair is updated to a′, b′ = a+ x, b+ y first, and then to a′+ x, a′ · z̃+ b′+ ỹ. Note that during
the decoding phase, the same update procedure is carried out in two steps. Since the keys keyi and auxiliary
information aux contains the correct key values and measurement outcomes (respectively), thus the decoding
procedure correctly updates a, b pair.

Also, we know that c = 0 (by inductive hypothesis) and z̃ = 1 only if 2j + 2 = L and stL = acc, thus
c+ z̃ = 1 only if stL = acc (i.e., if C(y) = 1), otherwise c+ z̃ = 0. This maintains the invariant on c as well,

38Here ind and pos are as defined in the construction.

37

thereby completing the proof if j < L/2.

Induction Step. (Case 2: j ≥ L/2) The proof in this case is identical to that for Case 1, except in the
(L/2 + 1)th set of measurements, the apply algorithm performs measurements between qubits at level L and
state w, and level L + 1 and state w. In other words, it applies an identity permutation. Since qubits at
level 2j + 1 and state w are entangled with qubits at level 2(j + 1) and state next(2j + 1, w), thus we know
that (L/2 + 1)th set of measurements will teleport qubit to level L+ 2 and state stL+1. Thus, the invariant
after (L/2 + 1)th measurements will also be maintained. The remaining proof is same as before.

This completes the proof of our claim that after jth set of measurements, the qubit will be in state(
XaZb(P†)c

)
|ψ〉 at level 2j and state st2j (if j ≤ L/2), or at level 2j and state st2j−1 (if j > L/2), where

values a, b will match those determined by partial execution of decoding procedure, and c = 1 if j ≥ L/2,
else c = 0.

This implies that after Lth set of measurements (i.e., at the end of apply procedure), the qubit will be in
state

(
XaZb(P†)c

)
|ψ〉 at level 2L and state st2L−1 where (a, b) = Decode(key1, . . . , keyN , aux) and c = 1 iff

C(y) = 1. This completes the correctness proof.

8.3 Security

We will now show that the scheme described above is secure as per Definition 4.1. Formally, we prove the
following.

Theorem 8.1. The scheme COQT = (Encode,Apply,Decode) (described in Section 8.1) is a secure condi-
tional oblivious quantum transform for circuit class Cd and gate set

{
P†
}

as per Definition 4.1.

The above statement holds unconditionally, and is not based on any cryptographic assumption. We prove
a slightly stronger theorem by showing that even a computationally unbounded quantum adversary can not
distinguish encodings of two different inputs x(0), x(1) for index i and circuit C. We show that encodings
look like a completely mixed state to any adversary who does not know the corresponding key. Below we
discuss this in more detail.

First, note that for any circuit C ∈ Cd, intervals {Si}i≤N+1 of set {1, . . . , n}, index i ≤ N , a bit string

x ∈ {0, 1}|Si|, its encoding σ is of the following form

m⊗
`=1

5⊗
w=1

(
Xa`,wZb`,w(P†)c`,w

) ∣∣Φ+
〉〈

Φ+
∣∣
p`,w,q`,w

(
Xa`,wZb`,w(P†)c`,w

)†
,

where a`,w, b`,w are random bits, and single-qubit gates are applied to first qubit in the entangled pair. Now,
note that for any c, we have

1

4

 ∑
a,b∈{0,1}

(
XaZb(P†)c

) ∣∣Φ+
〉〈

Φ+
∣∣ (XaZb(P†)c)†

 =
I4
4
.

Since σ consists of 5m such pairs of qubits, therefore it is also a completely mixed state. More formally, we
can write that

1

45m


∑

∀`≤m,w≤5:

a`,w,b`,w∈{0,1}

m⊗
`=1

5⊗
w=1

(
Xa`,wZb`,w(P†)c`,w

) ∣∣Φ+
〉〈

Φ+
∣∣
p`,w,q`,w

(
Xa`,wZb`,w(P†)c`,w

)†
 =

I45m
45m

.

Thus, for every input string x, its encoding looks like a completely mixed state on 10m qubits to any
adversary that does not know the decoding key. This concludes the security proof.

38

9 Bootstrapping Conditional Oblivious Quantum Transform

In this section, we show how to bootstrap a conditional oblivious quantum transform scheme for a class of
NC1 circuits to P/poly. Concretely, we show that using a (classical) multi-key homomorphic encryption
scheme with log-depth decryption circuit, we can construct COQTs for poly-sized circuits from COQTs for
log-depth circuits. Below we describe the construction in detail.

Outline. The main idea is to encrypt the inputs to be encoded under MLHE public keys and create COQT
for the MLHE decryption circuit with input the corresponding secret key. Now during evaluation, one could
simply evaluate the circuit homomorphically on the encrypted inputs and later apply the transform on the
input qubit with the ciphertext encrypting the circuit output as the input. The decoding procedure will be
identical to that of the underlying scheme.

The encoder gets as input a string x, circuit C, set intervals {Si}i, index pos and gate G. It first
chooses an MLHE key pair and computes ct as the encryption of string x. Next, it computes a COQT for
MLHE decryption circuit with the MLHE secret key as the input string, index pos and gate G. The encoder
outputs the quantum encoding, MLHE public-evaluation keys and ciphertext ct as the encoded state, and
the decoding key will simply be the same decoding keys output by the underlying encoding procedure.

Now an evaluator gets as input N encodings, one for each index i ≤ N . It starts by homomorphically
evaluating the circuit C(. . . , y) on the N MLHE ciphertexts contained in the encodings, where y is the input
used by the evaluator. Let ct be the evaluated ciphertext. Next, it evaluates the COQTs with input ct on
the input qubit and sets the output state and auxiliary information appropriately. Using the correctness of
MLHE scheme, we can argue that ct is an encryption C(x1, . . . , xN , y), and by correctness of the underlying
COQT scheme, we can argue the correctness of our bootstrapped scheme.

The security proof here is fairly simple. Using the security of the underlying COQT, we first switch the
encodings of MLHE secret key to encodings of all-zeros string. Once the underlying quantum encoding is
switched to be an encoding of all-zeros string, we no longer need the MLHE secret key. Therefore, we can
also replace the MLHE encryption of string x with encryption of zeros, thereby erasing all the information
about input x except its size. Below we describe our scheme in detail.

9.1 Construction

Let MLHE = (MLHE.Setup,MLHE.KeyGen,MLHE.Enc,MLHE.Expand,MLHE.Eval,MLHE.Dec) be a multi-
keyleveled homomorphic encryption scheme for 1-bit messages with log-depth decryption circuit, expanded ci-
phertexts of length p(λ,N) and secret keys of length s(λ,N). Also, let COQTNC1 = (EncodeNC1 ,ApplyNC1 ,DecodeNC1)
be a conditional oblivious quantum transform for NC1 and gate set GS. Below we describe our scheme
COQT = (Setup,Encode,Apply,Decode)39 for circuit class Cd (i.e., the class of depth d(n) circuits on n in-
put bits with 1-bit output) and gate set GS, where d is any polynomial. For notational convenience, let
p = p(λ,N), s = s(λ,N) and d = d(n).

• Setup(1n, 1d) : The setup algorithm takes as input the circuit input length n and depth bound d. It
runs MLHE.Setup to generate public parameters as params← MLHE.Setup(1n, 1d), and outputs params
as the public parameters.

• Encode(params, C, (S1, . . . , SN+1), pos, x,G) : The encoding algorithm takes as input the public param-
eters params, a classical circuit C ∈ Cd, (N+1) set intervals {Si}i≤N+1 of set {1, . . . , n}, index pos ≤ N ,

a bit string x ∈ {0, 1}|Spos|, and description of a single-qubit gate G ∈ GS.

It generates classical MLHE key pair as (pk, ek, sk) ← MLHE.KeyGen(params). Consider set inter-
vals Ti = {s · (i− 1) + 1, . . . , s · i} for i ≤ N , and TN+1 = {s ·N + 1, . . . , s ·N + p}. Let T =
(T1, . . . , TN+1). It computes a COQT as (σ′, key′) ← EncodeNC1(MLHE.Dec,T, pos, sk,G). Next,

39Note that here we have an additional setup algorithm. This slightly departs from the definition in Section 4.2. We would
like to point out that this constraint is due to the underlying MLHE scheme. If the underlying MLHE scheme has an empty
setup algorithm, then our COQT scheme can be defined without setup as well.

39

it encrypts input x under public key pk as ct← MLHE.Enc(pk, x). Finally, it outputs the encoded state
and decoding key as

σ = ρ (pk, ek, ct)⊗ σ′, key = key′.

• Apply(C, (S1, . . . , SN+1), σ1, . . . , σN , x, ρ) : The apply algorithm takes as input a classical circuit C ∈ Cd,
(N + 1) set intervals {Si}i≤N+1, N encoded states σi, bit string x ∈ {0, 1}|SN+1|, and a single-qubit
state ρ. Let σi = ρ (pki, eki, cti)⊗ σ′i for i ≤ N .

The apply algorithm expands all N ciphertexts cti as ĉti ← Expand((pk1, . . . , pkN), i, cti) for i ≤ N . Let

C̃ denote the circuit C with last |SN+1| bits hardwired to be x, i.e. C̃(y1, . . . , yN) = C(y1, . . . , yN , x)

where |yi| = |Si|. It homomorphically evaluates circuit C̃ on expanded ciphertexts ĉti as c̃t ←
MLHE.Eval(C̃, (ek1, . . . , ekN), (ĉt1, . . . , ĉtN)).

Consider set intervals Ti = {s · (i− 1) + 1, . . . , s · i} for i ≤ N , and TN+1 = {s ·N + 1, . . . , s ·N + p}.
Let T = (T1, . . . , TN+1). Finally, it applies the COQT on ρ as

(ρ′, aux)← ApplyNC1(MLHE.Dec,T, σ′1, . . . , σ
′
N , c̃t, ρ)

and outputs (ρ′, aux) as the transformed state and auxiliary information.

• Decode(key1, . . . , keyN , aux) : The decoding algorithm takes as input N decoding keys keyi and auxiliary
information aux. It outputs (a, b) where (a, b)← DecodeNC1(key1, . . . , keyN , aux).

9.2 Correctness

Consider any classical circuit C ∈ Cd, (N + 1) set intervals {Si}i≤N+1 of set {1, . . . , n}, (N + 1) inputs

xi ∈ {0, 1}|Si|, public parameters params ← MLHE.Setup(1n, 1d) and gate G ∈ GS. Let z denote the string
x1 ||x2 . . . ||xN+1, and T = (T1, . . . , TN+1) be (N + 1) set intervals defined as Ti = {s · (i− 1) + 1, . . . , s · i}
for i ≤ N , and TN+1 = {s ·N + 1, . . . , s ·N + p}.

For any index i ≤ N , the encoding of ith input xi with circuit C, gate G and index i is of the following form
ρ (pki, eki, cti)⊗σi, where (pki, eki, ski)← MLHE.KeyGen(params), cti ← MLHE.Enc(pki, xi) and (σi, keyi)←
EncodeNC1(MLHE.Dec, T, i, ski,G). Also, it corresponding decoding key is simply keyi.

For correctness we need to argue that the apply algorithm applies gate G on state ρ iff C(z) = 1,
and the decoding algorithm correctly computes the Pauli coefficients. First, note that (by correctness
of MLHE expansion) we have that ĉti is an encryption of xi under keys (pk1, . . . , pkN), where ĉti ←
Expand((pk1, . . . , pkN), i, cti). In other words, MLHE.Dec(sk1, . . . , skN , ĉti) = xi for i ≤ N . Next, by correct-
ness of COQTNC1 , we have that

ρ′ =
(
XaZbGc

)
ρ
(
XaZbGc

)†
,

where (ρ′, aux) ← ApplyNC1(MLHE.Dec,T, σ1, . . . , σN , c̃t, ρ), (a, b) ← DecodeNC1(key1, . . . , keyN , aux), c =

MLHE.Dec(sk1, . . . , skN , c̃t), c̃t← MLHE.Eval(C̃, (ek1, . . . , ekN), (ĉt1, . . . , ĉtN)) and C̃(y1, . . . , yN) = C(y1, . . . , yN , xN+1).
As before, equality here means zero trace distance between the associated states.

By correctness of MLHE evaluation, we have that c̃t is an encryption of C(z). Formally, we have that

MLHE.Dec(sk1, . . . , skN , c̃t) = C̃(x1, . . . , xN) = C(x1, . . . , xN , xN+1) = C(z). Therefore, we know that

ρ′ =
(
XaZbGC(z)

)
ρ
(
XaZbGC(z)

)†
.

This completes the proof of correctness.

9.3 Security

We will now show that the scheme described above is secure as per Definition 4.1.40 Formally, we prove the
following.

40The security property for a COQT scheme with Setup is analogously defined. The only difference is that the adversary is
also given the public parameters.

40

Theorem 9.1. If MLHE = (MLHE.Setup,MLHE.KeyGen,MLHE.Enc,MLHE.Expand, MLHE.Eval,MLHE.Dec)
is a q-IND-CPA secure multi-key leveled homomorphic encryption scheme for 1-bit messages satisfying Def-
inition 3.1, and COQTNC1 = (EncodeNC1 ,ApplyNC1 ,DecodeNC1) is a secure conditional oblivious quantum
transform for NC1 and gate set GS satisfying Definition 4.1, then the scheme COQT (described in Section 9.1)
is a secure conditional oblivious quantum transform for P/poly and gate set GS as per Definition 4.1.

Our proof proceeds via a sequence of hybrid games. Each game is played between the challenger and
attackerA. LetA be any quantum PPT adversary that wins the security game with non-negligible advantage.
We argue that such an adversary must break security of at least one underlying primitive. The first game
corresponds to the security game as described in Definition 4.1. In the next game, we switch the COQTs to
an empty transform (i.e., encoding of all-zeros string instead of sk). Indistinguishability of this step follows
directly from COQT security. Next, we could argue (using q-IND-CPA security) that since the adversary has
no information about the MLHE secret key, it can not distinguish between encryptions of challenge inputs
x(0), x(1). Below we describe the proof in detail.

Throughout the hybrids, the set intervals T = (T1, . . . , TN+1) are defined as in the construction, i.e.
Ti = {s · (i− 1) + 1, . . . , s · i} for i ≤ N and TN+1 = {s ·N + 1, . . . , s ·N + p}. Also, we will use 0 to denote
the all-zeros string of appropriate length. We would like point out that in the hybrid games the adversary
and the challenger are both given a circuit C ∈ Cd and gate G ∈ GS. And, the indistinguishability proofs
hold irrespective of the choice of C, or G.

Game 1: This game is same as the original security game.

1. Setup Phase. The challenger sets up by sampling the MLHE public parameters params← MLHE.Setup(1n, 1d).
It sends the public parameters to A.

2. Challenge. A sends a sequence of (N + 1) set intervals {Si}i≤N+1 of set {1, . . . , n}, index i ≤ N , and

two bit strings x(0), x(1) ∈ {0, 1}|Si|.

The challenger chooses a random bit b← {0, 1}. It generates classical MLHE key pair as (pk, ek, sk)←
MLHE.KeyGen(params). It computes a COQT as (σ, key) ← EncodeNC1(MLHE.Dec,T, i, sk,G). Next,
it encrypts input x(b) under public key pk as ct ← MLHE.Enc(pk, x(b)). Finally, it sends the encoded
state as ρ (pk, ek, ct)⊗ σ to A.

3. Guess. A outputs it guess b′ and wins if b′ = b.

Game 2: This game is same as Game 1, except the challenger computes COQT (σ, key) as transforms of
0 instead of sk.

2. Challenge. A sends a sequence of (N + 1) set intervals {Si}i≤N+1 of set {1, . . . , n}, index i ≤ N , and

two bit strings x(0), x(1) ∈ {0, 1}|Si|.

The challenger chooses a random bit b← {0, 1}. It generates classical MLHE key pair as (pk, ek, sk)←
MLHE.KeyGen(params). It computes a COQT as (σ, key) ← EncodeNC1(MLHE.Dec,T, i,0,G). Next,
it encrypts input x(b) under public key pk as ct ← MLHE.Enc(pk, x(b)). Finally, it sends the encoded
state as ρ (pk, ek, ct)⊗ σ to A.

9.3.1 Analysis

Let AdviA = |Pr[b′ = b]− 1/2| denote the advantage of adversary A in guessing the bit b in Game i. To
complete the proof, we establish via a sequence of lemmas that no quantum PPT adversary A can distinguish
between Games 1 and 2 with non-negligible probability, and the advantage of every quantum PPT adversary
in Game 2 is also negligible. Below we discuss our lemmas in detail.

Lemma 9.1. If COQTNC1 = (EncodeNC1 ,ApplyNC1 ,DecodeNC1) is a secure conditional oblivious quantum
transform, then for every quantum PPT adversary A, |Adv1A − Adv2A| is negligible in n.

41

Proof. Suppose there exists an adversary A such that |Adv1A − Adv2A| is non-negligible. We construct an
algorithm B that can distinguish a COQT of input sk from COQT of all zeros strings with circuit MLHE.Dec,
set intervals T, position i and gate G, therefore break security of the COQT scheme.
B generates public parameters params as params← MLHE.Setup(1n, 1d) and sends params to A. A sends

set intervals {Si}i≤N+1, index i ≤ N , and two bit strings x(0), x(1) ∈ {0, 1}|Si| to B. B samples MLHE
key pair as (pk, ek, sk)← MLHE.KeyGen(params). It sends circuit MLHE.Dec, set intervals T, index i, input
strings sk and 0, and gate G to the COQT challenger. The COQT challenger chooses a random bit β, encodes
either sk or 0, and sends σ∗ as the corresponding challenge encoding. B sets σ = σ∗. Next, it chooses a
random bit b← {0, 1}, and encrypts x(b) as ct← MLHE.Enc(pk, x(b)). Finally, B sends the encoded state as
ρ (pk, ek, ct) ⊗ σ to the adversary A. Finally, A outputs its guess b′. If b = b′, then B sends 0 as its guess
(i.e., sk was encoded), otherwise it sends 1 as its guess (i.e., all-zeros strings was encoded) to the COQT
challenger.

First, note that B does not need to know the secret key (i.e., decoding key corresponding to σ∗) in the
above reduction. Also, if the COQT challenger encoded sk (i.e., β = 0), then B perfectly simulates Game 1
for adversary A. Otherwise it simulates Game 2 for A. As a result, if |Adv1A −Adv2A| is non-negligible, then
B breaks the COQT’s security with non-negligible advantage.

Lemma 9.2. If MLHE = (MLHE.Setup,MLHE.KeyGen,MLHE.Enc,MLHE.Expand, MLHE.Eval,MLHE.Dec)
is a q-IND-CPA secure multi-key leveled homomorphic encryption scheme, then for every quantum PPT
adversary A, Adv2A is negligible in n.

Proof. Suppose there exists an adversary A such that Adv2A is non-negligible. We construct an algorithm
B that can distinguish between encryptions of x(0), x(1) under public key pk, therefore breakq-IND-CPA
security of the MLHE scheme.

The MLHE challenger generates public parameters params and a public-evaluation key pair (pk∗, ek∗), and
sends these to B. B sets pk, ek = pk∗, ek∗, and sends params to A. A sends set intervals {Si}i≤N+1, index i ≤
N , and two bit strings x(0), x(1) ∈ {0, 1}|Si| to B. B sends x(0), x(1) as its challenge messages to MLHE chal-
lenger. The MLHE challenger flips a random bit β and encrypts either x(0) or x(1), and sends the correspond-
ing ciphertext ct∗ to B. B sets ct = ct∗, and computes COQT as (σ, key)← EncodeNC1(MLHE.Dec,T, i,0,G).
Finally, B sends the encoded state as ρ (pk, ek, ct)⊗ σ to the adversary A. Finally, A outputs its guess b′. B
simply forwards b′ as its own guess to the MLHE challenger.

First, note that B does not need to know the secret sk∗ (i.e., secret key corresponding to pk∗) in the above
reduction. And, since B perfectly simulates Game 2 for adversary A, therefore if Adv2A is non-negligible,
then B breaks the MLHE scheme’s security with non-negligible advantage.

10 A Template for On-the-Fly Multi-Party Quantum Computa-
tion

In this section, we provide an on-the-fly multi-party quantum computation (MPQC) protocol using quantum
multi-key homomorphic encryption. The same protocol can be used for multi-party delegation by providing
the circuit description along the input qubits and asking the server to run the universal circuit. Below we
briefly mention the target ideal functionalities, and then describe our construction.

On-the-fly MPQC Functionality. For an on-the-fly N -party MPQC protocol, the ideal functionality
FMPQC interacts with N+1 parties where the first N parties correspond to the N parties running the MPQC
protocol, and the (N +1)th party corresponds to the server S. Now the first N parties supply their quantum
inputs for computation, but server S does not provide any input. Finally, the ideal functionality FMPQC

sends the appropriate quantum registers containing the final output to the respective N users, and server
S does not receive any output. Here the functionality FMPQC can also be parameterized by the quantum
circuit C that parties wish to compute. Intuitively, this captures the functionality that we would ideally
expect as each party only learns its final output state whereas the server S does not learn anything.

42

“Blind” MPQC Functionality. If we extend the above functionality such that each party also supplies
the description of the quantum circuit C that they wish to jointly evaluate, and now we also restrict that
the server does not learn any information about the circuit C then that gives us the functionality for blind
MPQC.41

10.1 Protocol

Let QMLHE = (Setup,KeyGen, Enc,Expand, Eval,Dec, PartDec,FinDecPre, FinDecPost,ReRand) be a quan-
tum multi-key leveled homomorphic encryption scheme that supports threshold decryption and allows ci-
phertext re-randomizability. Let M = C{0,1}, and let C : M⊗n → M⊗n be the n-qubit quantum circuit
that the server/parties want to compute. Let k be the number of T-gates in the circuit C, and (for i ∈ [N])
let ni, n

′
i denote the number of qubits provided by ith user as input and received by ith user as output.

Without loss of generality, we assume that input and output qubits (for circuit C) are arranged as per the
natural ordering among the users, i.e. as per their indices.

In case the QMLHE scheme has a non-empty setup algorithm, the server S samples global parameters
as params← Setup(1λ, 1k) and publishes params.42 Otherwise, params is set to be the security parameter 1λ

and T-gate bound k. Now the protocol π is defined as follows:

Round I. For ` ∈ [N], party P` on input ρ` ∈M⊗n` proceeds as follows:

1. It samples a QMLHE key tuple as (pk`, ρek` , sk`)← KeyGen(params).

2. It encrypts the input state ρ` as σ` ← Enc(pk`, ρ`).
43

3. It sends the public-evaluation key pair and the cipherstate (pk`, ρek` , σ`) to the server.44

Round II. The server S on receiving keys and cipherstates as {(pk`, ρek` , σ`)}`∈[N] proceeds as follows:

1. It evaluates circuit C homomorphically by first expanding the cipherstates and then running
homomorphic evaluation as follows:

∀` ∈ [N], σ̂` ← Expand((pk1, . . . , pkN), `, σ`)

σ̂′ ← Eval(C, (ρek1 , . . . , ρek`), σ̂)

2. It re-randomizes the evaluated cipherstates σ̂′ as σ̂∗ ← ReRand((pk1, . . . , pkN), σ̂′).

3. Let σ̂∗ = ⊗`∈[N]σ̂
∗
` where σ̂∗` denotes the cipherstate corresponding to the `th party’s output. By

definition, we have that each cipherstate can be divided into quantum and classical components
as σ̂∗` = ρ(ĉt

∗
`) ⊗ σ̃∗` . Finally, the server S sends σ̃∗` to party P`, and broadcasts all classical

cipherstate components ĉt
∗
` (for ` ∈ [N]).

Round III. For ` ∈ [N], party P` on messages σ̃∗` and
{
ĉt
∗
`

}
`∈[N]

proceeds as follows:

1. For i ∈ [N], it computes partial decryption as sh
(i)
` ← PartDec((pk1, . . . , pkN), `, sk`, ĉt

∗
i).

2. For i ∈ [N] \ {`}, it encrypts (classical) partial decryptions sh
(i)
` as ct

(i)
` ← Enc(pki, sh

(i)
`), and

broadcasts (classical) ciphertexts ct
(i)
` .45

41We would like to point out that our MPQC construction can not be made fully blind. The functionality will always leak
an upper bound on the number of T-gates present in the circuit being evaluated.

42Parameters params could be sampled using a CRS if the Setup is public-coin.
43Recall that a multi-qubit message state is encrypted qubit-by-qubit. However, for notational convenience we overload the

encryption algorithm to encrypt multi-qubit message states as well.
44Here the classical components could be broadcasted and only the quantum information needs to be sent to the server via

an authenticated quantum channel.
45Here we assume for simplicity that the QMLHE also supports directly encrypting classical plaintexts as well. Note that

this is not an additional requirement as QMLHE is strictly stronger than MLHE.

43

Output. For ` ∈ [N], party P` on broadcast messages
{
sh

(i)
`

}
i∈[N]\{`}

proceeds as follows:

1. It computes reconstruction key as rk` ← FinDecPre(sh
(1)
` , . . . , sh

(N)
`).

2. Finally, it decrypts cipherstate σ̃∗` to obtain the output state ρ∗` as ρ∗` ← FinDecPost(σ̃∗` , rk`).

note. We would like to stress that the server S can be choose the circuit C (with at most k T-gates)
anytime after round I. Thus, the resulting protocol is an on-the-fly MPQC protocol.

The correctness of the above protocol follows directly from the correctness of the underlying QMLHE scheme.
Below we briefly sketch our intuition for security. We break down the security analysis in two parts — (1)
Server S is honest, (2) Server S is dishonest but all delegating parties are honest. If S is dishonest but all
delegating parties are honest, then security would simply follow from q-IND-CPA security of the QMHE
scheme.

And if S is honest, we could expect the simulator to work as follows. First, it receives the encrypted input
states from the adversary after round I. Then the simulator extracts the adversary’s input from cipherstates
by running the QMHE decryption algorithm with the adversary’s secret key. Here we assume that the
simulator gets the secret keys from the special witness tape (as defined in the semi-malicious security model).
Next, the simulator gives the extracted input states to the ideal functionality and gets the corresponding
output states. It then encrypts the output states under the public key of appropriate party, expands the
cipherstates, and sends the quantum component of the cipherstates to the appropriate corrupt party and
broadcasts the classical component of the cipherstates. Finally, it simulates the partial decryptions of the
classical ciphertext components on the behalf of honest parties.46 The main proof ideas will be — (1)
simulated partial decryptions are indistinguishable from honest partial decryptions due to partial decryption
simulation security, (2) re-randomized homomorphically evaluated cipherstate is indistinguishable from a
fresh encryption of the quantum circuit output, and (3) honest parties’ input states (which are encrypted
under their public keys) are hidden by q-IND-CPA security.

Now one might expect the above protocol to achieve a quantum analogue of semi-malicious security since
our basic template is inspired by those used in the classical setting [LATV12, AJL+12, MW16]. However,
the notion of semi-malicious quantum adversary does not seem to be well defined (again) because of unclon-
ability of quantum states. To understand the issue, let us first recall the notion of classical semi-malicious
adversaries. Such classical adversaries are restricted to explain their messages sent on the behalf of the
corrupt parties during each round by writing to a special witness tape a classical string (x, r) consisting of
the input x and randomness r used. Now the behaviour of such adversaries could be verified at each step
of the protocol execution. However in the quantum setting, we can not expect the adversary to explain
its messages completely by simply providing its quantum inputs (due to no-cloning). Thus the notion of
semi-malicious security does not seem to translate well to the quantum setting. We leave further analysis
for future work.

Acknowledgements

We thank the anonymous reviewers for helpful comments on our definitions, and especially for pointing out
an error in our formalization of the notion of semi-malicious quantum adversaries in a previous version of
the manuscript.

46Note that for simulating the partial decryptions, the simulator must be able to extract the associated reconstruction key.
Now the simulator can extract this key efficiently because of the unique reconstruction property of the underlying QMHE
scheme.

44

References

[ABOE08] Dorit Aharonov, Michael Ben-Or, and Elad Eban. Interactive proofs for quantum computa-
tions. arXiv preprint arXiv:0810.5375, 2008.

[ABOEM17] Dorit Aharonov, Michael Ben-Or, Elad Eban, and Urmila Mahadev. Interactive proofs for
quantum computations. arXiv preprint arXiv:1704.04487, 2017.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and
Daniel Wichs. Multiparty computation with low communication, computation and interaction
via threshold FHE. In Advances in Cryptology - EUROCRYPT 2012 - 31st Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Cambridge,
UK, April 15-19, 2012. Proceedings, 2012.

[AJW11] Gilad Asharov, Abhishek Jain, and Daniel Wichs. Multiparty computation with low commu-
nication, computation and interaction via threshold fhe. Cryptology ePrint Archive, Report
2011/613, 2011. http://eprint.iacr.org/2011/613.

[AMMR13] Matthew Amy, Dmitri Maslov, Michele Mosca, and Martin Roetteler. A meet-in-the-middle al-
gorithm for fast synthesis of depth-optimal quantum circuits. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2013.

[AMTdW00] Andris Ambainis, Michele Mosca, Alain Tapp, and Ronald de Wolf. Private quantum channels.
In 41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November
2000, Redondo Beach, California, USA, 2000.

[AS06] Pablo Arrighi and Louis Salvail. Blind quantum computation. International Journal of Quan-
tum Information, 4(05):883–898, 2006.

[Bar86] D A Barrington. Bounded-width polynomial-size branching programs recognize exactly those
languages in nc1. In Proceedings of the eighteenth annual ACM symposium on Theory of
computing, STOC ’86, 1986.

[BDFP86] Allan Borodin, Danny Dolev, Faith E. Fich, and Wolfgang J. Paul. Bounds for width two
branching programs. SIAM J. Comput., 15(2):549–560, 1986.

[BFK09] Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Universal blind quantum compu-
tation. In Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE Symposium
on, pages 517–526, 2009.

[BFSS13] Harry Buhrman, Serge Fehr, Christian Schaffner, and Florian Speelman. The garden-hose
model. In Innovations in Theoretical Computer Science, ITCS ’13, Berkeley, CA, USA, Jan-
uary 9-12, 2013, 2013.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In
TCC ’05, volume 3378 of LNCS, pages 325—341. Springer, 2005.

[BGS13] Anne Broadbent, Gus Gutoski, and Douglas Stebila. Quantum one-time programs. In Advances
in Cryptology–CRYPTO 2013, pages 344–360. Springer, 2013.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic en-
cryption without bootstrapping. In ITCS, 2012.

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure computation
without setup. IACR Cryptology ePrint Archive, 2017:386, 2017.

45

http://eprint.iacr.org/2011/613

[BJ15] Anne Broadbent and Stacey Jeffery. Quantum homomorphic encryption for circuits of low
t-gate complexity. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, 2015.

[BOCG+06] Michael Ben-Or, Claude Crépeau, Daniel Gottesman, Avinatan Hassidim, and Adam Smith.
Secure multiparty quantum computation with (only) a strict honest majority. In Foundations of
Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, pages 249–260. IEEE,
2006.

[BP16] Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic multi-key fhe with short
ciphertexts. In Annual Cryptology Conference, pages 190–213. Springer, 2016.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical
gapsvp. In CRYPTO, pages 868–886, 2012.

[Bra18] Zvika Brakerski. Quantum fhe (almost) as secure as classical. Cryptology ePrint Archive,
Report 2018/338, 2018.

[Bro15] Anne Broadbent. Delegating private quantum computations 1 2. Canadian Journal of Physics,
93(9):941–946, 2015.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) lwe. In FOCS, pages 97–106, 2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-lwe and
security for key dependent messages. In CRYPTO, 2011.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information re-
trieval. In Foundations of Computer Science, 1995. Proceedings., 36th Annual Symposium on,
pages 41–50. IEEE, 1995.

[CGS02] Claude Crépeau, Daniel Gottesman, and Adam Smith. Secure multi-party quantum compu-
tation. In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,
pages 643–652. ACM, 2002.

[Chi05] Andrew M Childs. Secure assisted quantum computation. Quantum Information & Computa-
tion, 5(6):456–466, 2005.

[CKGS98] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information re-
trieval. Journal of the ACM (JACM), 45(6):965–981, 1998.

[CM15] Michael Clear and Ciarán McGoldrick. Multi-identity and multi-key leveled fhe from learning
with errors. In Annual Cryptology Conference, pages 630–656. Springer, 2015.

[CMNT11] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully homo-
morphic encryption over the integers with shorter public keys. In CRYPTO, pages 487–504,
2011.

[CNT12] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compression and
modulus switching for fully homomorphic encryption over the integers. In EUROCRYPT,
volume 7237, pages 446–464. Springer, 2012.

[CO17] Wutichai Chongchitmate and Rafail Ostrovsky. Circuit-private multi-key fhe. In IACR Inter-
national Workshop on Public Key Cryptography, pages 241–270. Springer, 2017.

[DFPR14] Vedran Dunjko, Joseph F Fitzsimons, Christopher Portmann, and Renato Renner. Composable
security of delegated quantum computation. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 406–425. Springer, 2014.

46

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D Rothblum, and Daniel Wichs. Spooky encryption and its
applications. In Annual Cryptology Conference, pages 93–122. Springer, 2016.

[DSS16] Yfke Dulek, Christian Schaffner, and Florian Speelman. Quantum homomorphic encryption
for polynomial-sized circuits. In Advances in Cryptology - CRYPTO 2016 - 36th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part III, 2016.

[Elg84] Taher Elgamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
In CRYPTO ’84, pages 10–18, 1984.

[FBS+14] KAG Fisher, Anne Broadbent, LK Shalm, Z Yan, J Lavoie, R Prevedel, T Jennewein, and
KJ Resch. Quantum computing on encrypted data. Nature communications, 5:3074, 2014.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May
31 - June 2, 2009, pages 169–178, 2009.

[Gen10] Craig Gentry. Toward basing fully homomorphic encryption on worst-case hardness. In
CRYPTO, volume 6223, pages 116–137. Springer, 2010.

[GH11a] Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using depth-3
arithmetic circuits. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual
Symposium on, pages 107–109. IEEE, 2011.

[GH11b] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption scheme.
In EUROCRYPT, volume 6632, pages 129–148. Springer, 2011.

[GHS12a] Craig Gentry, Shai Halevi, and Nigel P Smart. Fully homomorphic encryption with polylog
overhead. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 465–482. Springer, 2012.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel P Smart. Homomorphic evaluation of the aes circuit. In
Advances in Cryptology–CRYPTO 2012, pages 850–867. Springer, 2012.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299,
1984.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In STOC ’87, pages 218–229, 1987.

[Got98] Daniel Gottesman. Theory of fault-tolerant quantum computation. Physical Review A,
57(1):127, 1998.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Advances in Cryptol-
ogy - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2013. Proceedings, Part I, pages 75–92, 2013.

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. Theory of
Cryptography, 2007.

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In Foundations of Computer Science, 1997.
Proceedings., 38th Annual Symposium on, pages 364–373. IEEE, 1997.

[KP16] Elham Kashefi and Anna Pappa. Blind multiparty quantum computing. arXiv preprint
arXiv:1606.09200, 2016.

47

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty compu-
tation on the cloud via multikey fully homomorphic encryption. In STOC, pages 1219–1234,
2012.

[Lia13] Min Liang. Symmetric quantum fully homomorphic encryption with perfect security. Quantum
information processing, 12(12):3675–3687, 2013.

[Mah17] Urmila Mahadev. Classical homomorphic encryption for quantum circuits. arXiv preprint
arXiv:1708.02130, 2017.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key fhe. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
2016.

[NRS01] Gabriele Nebe, Eric M Rains, and Neil JA Sloane. The invariants of the clifford groups.
Designs, Codes and Cryptography, 24(1):99–122, 2001.

[OTF15] Yingkai Ouyang, Si-Hui Tan, and Joseph Fitzsimons. Quantum homomorphic encryption from
quantum codes. arXiv preprint arXiv:1508.00938, 2015.

[Pai99] Pascal Paillier. Public key cryptosystems based on composite degree residuosity classes. In
Proceedings of Eurocrypt ’99, volume 1592 of LNCS, pages 223–238, 1999.

[PS16] Chris Peikert and Sina Shiehian. Multi-key fhe from lwe, revisited. In Theory of Cryptography
Conference, pages 217–238. Springer, 2016.

[RAD78] Ron Rivest, Leonard Adleman, and Michael L. Dertouzos. On data banks and privacy homo-
morphisms. In Foundations of Secure Computation, pages 169–180, 1978.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD,
USA, May 22-24, 2005, pages 84–93, 2005.

[RFG12] Peter P Rohde, Joseph F Fitzsimons, and Alexei Gilchrist. Quantum walks with encrypted
data. Physical review letters, 109(15):150501, 2012.

[Spe16] Florian Speelman. Instantaneous non-local computation of low t-depth quantum circuits. In
11th Conference on the Theory of Quantum Computation, Communication and Cryptography,
TQC 2016, September 27-29, 2016, Berlin, Germany, 2016.

[SYY99] Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryptocomputing for nc1. In
FOCS ’99, page 554, Washington, DC, USA, 1999. IEEE Computer Society.

[TKO+16] Si-Hui Tan, Joshua A Kettlewell, Yingkai Ouyang, Lin Chen, and Joseph F Fitzsimons. A
quantum approach to homomorphic encryption. Scientific reports, 6, 2016.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic
encryption over the integers. In EUROCRYPT, pages 24–43, 2010.

[Yao82] Andrew C Yao. Protocols for secure computations. In Foundations of Computer Science, 1982.
SFCS’08. 23rd Annual Symposium on, pages 160–164, 1982.

[Yao86] Andrew Yao. How to generate and exchange secrets. In FOCS, pages 162–167, 1986.

[YPDF14] Li Yu, Carlos A Pérez-Delgado, and Joseph F Fitzsimons. Limitations on information-
theoretically-secure quantum homomorphic encryption. Physical Review A, 90(5):050303, 2014.

48

	Introduction
	Technical Overview
	Prior Work
	This Work

	Preliminaries
	Quantum Computation: Gates, Circuits and One-time Pad
	Multi-Key Homomorphic Encryption
	Threshold Decryption

	Quantum Multi-Key Homomorphic Encryption
	Threshold Decryption
	Re-Randomizability of Cipherstates

	Branching Programs

	Our Framework: QMPHE and COQT
	Quantum Multi-Key Positional Homomorphic Encryption (QMPHE)
	Conditional Oblivious Quantum Transform

	Constructing Quantum Multi-Key Positional HE
	Construction
	Correctness
	Security
	Analysis

	Building Threshold Quantum Multi-Key Positional HE and Achieving Re-Randomizability
	Threshold Decryption
	Achieving Re-Randomizability

	Quantum Multi-Key HE: Removing Positional Constraint, Multi-Hop and More
	Constructing Quantum Multi-Key HE
	Multi-Hop Evaluation
	Efficiency and More

	Instantiating Our Framework: Conditional Oblivious Quantum Transform for NC1
	Construction
	Correctness
	Security

	Bootstrapping Conditional Oblivious Quantum Transform
	Construction
	Correctness
	Security
	Analysis

	A Template for On-the-Fly Multi-Party Quantum Computation
	Protocol

