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Abstract. Like any other cryptanalytic attack, the success rate of a
linear attack is expected to improve as more data becomes available.
Bogdanov and Tischhauser (FSE 2013) made the rather surprising claim
that the success rate of a linear attack may go down with increasing
plaintext amount, after an optimal point. They supported this claim
with experimental evidence by an attack on SmallPresent-20. Different
explanations have been given to explain this surprising phenomenon. In
this note, we give quantitative values regarding when this phenomenon
can be observed. We conclude that it should not be an issue for attacks
in practice except for those with a tiny bias.
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1 Introduction

A linear cryptanalytic attack aims to recover a portion of the last round key of
a block cipher by trying possible subkey values with a large number, denoted
by N , of plaintext-ciphertext blocks in a linear equation (“approximation”) [6].
The approximation is a probabilistic binary equation with a non-negligible cor-
relation, with a probability p 6= 1/2. Its strength is indicated by its “bias”,
ε = p − 1/2. The traditional assumption in linear cryptanalysis has been that,
when the right key is tried over the plaintext sample, the approximation will
demonstrate a bias close to ε. However, when a wrong key value is tried, it will
randomize the outcome of the approximation, and hence the bias observed will
be practically 0. This was the traditional “wrong key randomization hypothesis.”

Bogdanov and Tischhauser [5] studied the wrong key randomization hypoth-
esis in more detail, and gave a more accurate model of the bias for wrong key
values. Using this model, they obtained a more accurate formulation of the suc-
cess probability, which they validated by experimental results [5, 4].

A more surprising claim in [5] was regarding the non-monotonic behavior of
the success probability with an increasing amount of plaintext provided: Using
their new formula for the success probability, they calculated a local optimum
for the number of plaintexts, N0, and claimed that the success rate of the attack
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would deteriorate when N > N0. They supported this claim by an experimental
attack on SmallPresent-20.

Later, Ashur et al. [2, 1] contested this claim. They gave the following expla-
nation for the non-monotonic behavior observed in the experiments of [5]: Let
m denote the bit length of the round key portion under attack and a denote the
aimed advantage level of the attack. (I.e., the attack’s aim is to get the right key
value ranked within the top 2m−a out of 2m key candidates tried.) When the
bias of the approximation is so low that the right key’s bias is not sufficient to
put it within the top 2m−a key candidates (i.e., there are 2m−a or more wrong
keys with a random bias that dominate the right key in the approximation), the
success rate of the attack will deteriorate with increasing N , as it should. But
the non-monotonicity claim is true only for approximations with such a low bias.

More recently, Samajder and Sarkar [7] presented a more complex, statistical
analysis of the non-monotonicity phenomenon.

In this paper, we aim to clarify the confusion surrounding the non-monotonicity
claim. We point out a misinterpretation in [5]. Our findings support the view
of [2], namely that non-monotonicity of the success probability can be an issue
only when the approximation has an extremely small bias.

2 Non-Monotonicity of the Success Probability

In the traditional approach in linear cryptanalysis, the bias of an approximation
with a wrong key value substituted had been assumed to be 0. This assumption
was challenged by Bogdanov and Tischhauser [5] who gave a more accurate
model, known as the “adjusted wrong key randomization hypothesis.”

Let n be the block length of the cipher, p be the probability of the approx-
imation, and ε = p − 1/2 be its bias (taken without the absolute value). Let
εw denote the approximation’s bias for a wrong key value, as a random variable
with respect to the random wrong key. The adjusted wrong key randomization
hypothesis can be summarized as follows:

εw ∼ N (0, 2−n−2), (1)

where N (µ, σ2) denotes the normal distribution with mean µ and variance σ2.
Bogdanov and Tischhauser [5] revised the success probability formula given

by Selçuk [8] accordingly and obtained a more accurate formula:

PS ≈ Φ

(
2
√
N |ε| −

√
1 +

N

2n
Φ−1(1− 2−a−1)

)
. (2)

Taking the first derivative of (2) w.r.t. N , they obtained the relative extremum1,

N0 =
4ε222n

(Φ−1(1− 2−a−1))2 − 4ε22n
. (3)

1 As we checked with the authors [3], the power 2n in the denominator was a typo
and should instead be n, as we write here.
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They interpreted this to be the optimum data amount for a linear attack.

They presented the results of an experimental attack to support this claim:
They implemented an attack on SmallPresent-20 using a linear approximation
with bias |ε| = 2−10, aiming an advantage of a = 12 bits. The attack’s success
rate obtained a peak value of PS = 0.0011 with N = 218.75 plaintexts and then
deteriorated with more plaintexts used.

They attributed this non-monotonic behavior of the success probability to
the increasing noise with increasing data; “the probability of duplicates increases
with N , up to a point where adding more samples to the statistic only amplifies
the noise.” [5].

3 A More Critical Look

If we look at the denominator of (3) carefully, we see that the denominator will
be negative as long as Φ−1(1 − 2−a−1) < |ε| 2n/2+1. The inverse normal Φ−1

is a very slowly growing function, and in most attacks in practice we will have
Φ−1(1− 2−a−1) < 8. Numeric values of Φ−1 are demonstrated in Table 1.

Table 1. Slow increase of Φ−1 for exponentially decreasing tail.

q Φ−1(1 − q)

2−10 3.097
2−20 4.763
2−30 6.009
2−40 7.048
2−50 7.956

Provided that the approximation’s bias |ε| is significantly greater than 2−n/2

(e.g., 4 2−n/2 or larger), which is needed anyway to have a viable linear attack,
the denominator of (3) and hence the N0 value obtained will be negative! A simi-
lar check of the second derivative reveals it to be positive under these conditions,
indicating a relative minimum rather than a maximum.

4 Discussion

As mentioned above, the experiment in [5] used to verify the non-monotonicity
claim had parameters n = 20, |ε| = 2−10, and a = 12, yielding a small success
probability of at most PS = 0.0011. These results are very much in line with
our findings: The attack has a tiny bias, with |ε| = 2−n/2, and a small success
chance of 0.1%.

At this juncture, we would like to point out that a bias of 2−n/2 is only slightly
above the expected bias of a random approximation, and hence almost trivial:
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Given that a random approximation’s bias is distributed with N (0, 2−n−2), the
mean of its absolute value is,√

2

π
2−

n
2 −1 ≈ 0.4 2−

n
2 .

As Ashur et al. [2, 1] argued, such a low bias as in the experiment of [5] was
insufficient to rank the right key among the top 2m−a wrong keys. Hence it was
just natural that the success rate deteriorated with the increasing number of
plaintexts.

As a final remark, we would like to note that the condition for monotonicity
of the success probability, |ε| > 2−n/2−1Φ−1(1 − 2−a−1), coincides exactly with
that derived by Ashur et al. in Theorem 1 of [2] using a different approach.

5 Conclusion

In this brief note, we tried to clarify the non-monotonicity phenomenon that
has been a matter of discussion in linear cryptanalysis over the past couple
of years. We conclude that it is an issue only when the bias is so small that
|ε| ≤ c 2−n/2, where c is some small coefficient such as 4. Since linear attacks
typically use approximations with a bias |ε| � 2−n/2, non-monotonicity of the
success probability should not be an issue for such attacks in practice.
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8. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J.
Cryptology 21(1), 131–147 (2008)


