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Abstract

Collision resistant hashing is a fundamental concept that is the basis for many of the impor-
tant cryptographic primitives and protocols. Collision resistant hashing is a family of compress-
ing functions such that no efficient adversary can find any collision given a random function in
the family.

In this work we study a relaxation of collision resistance called distributional collision resis-
tance, introduced by Dubrov and Ishai (STOC ’06). This relaxation of collision resistance only
guarantees that no efficient adversary, given a random function in the family, can sample a pair
(x, y) where x is uniformly random and y is uniformly random conditioned on colliding with x.

Our first result shows that distributional collision resistance can be based on the existence
of multi -collision resistance hash (with no additional assumptions). Multi-collision resistance
is another relaxation of collision resistance which guarantees that an efficient adversary cannot
find any tuple of k > 2 inputs that collide relative to a random function in the family. The
construction is non-explicit, non-black-box, and yields an infinitely-often secure family. This
partially resolves a question of Berman et al. (EUROCRYPT ’18). We further observe that in a
black-box model such an implication (from multi-collision resistance to distributional collision
resistance) does not exist.

Our second result is a construction of a distributional collision resistant hash from the
average-case hardness of SZK. Previously, this assumption was not known to imply any form of
collision resistance (other than the ones implied by one-way functions).
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1 Introduction

Collision resistant hashing (CRH) is one of the most fundamental building blocks in any crypto-
graphic protocol. Collision resistance is associated with a family of compressing functions H =
{h : {0, 1}2n → {0, 1}n} and it assures us that while it is easy to compute h(x) for any h ∈ H and
x ∈ {0, 1}2n, for any polynomial time algorithm it is hard to find x1 6= x2 such that h(x1) = h(x2)
for a random h ← H. Families of functions with the above presumed hardness exist based on
a variety of assumptions such as the hardness of factoring integers, finding discrete logs in finite
groups, learning with errors (LWE), and more. On the other hand there is no known construction
of CRHs based solely on the existence of one-way functions or even one-way permutations and,
furthermore, such a construction does not exist in a black-box model [Sim98].

Recently, [KNY17] introduced a relaxation of collision resistance called multi -collision resistance
(MCRH). In multi-collision resistance, the family of compressing functions H is associated with a
parameter k = k(n) and the security requirement is that for any polynomial-time algorithm and
a random h ← H it is hard to find distinct x1, . . . , xk such that h(x1) = . . . = h(xk). In follow-
up works [BDRV18, BKP18, KNY18], multi-collision resistance was studied as an independent
primitive and shown to have many applications.

CRH trivially implies MCRH for any k ≥ 2 and the latter implies one-way functions. Fur-
thermore, in a black-box model, MCRH for any k > 2 cannot be used to get a CRH, yet MCRH
cannot be constructed from one-way permutations [BDRV18, KNY18]. In terms of constructions,
[BDRV18] gave a construction of an MCRH from the (average-case) min-max entropy approximation
assumption first studied in [DGRV11]. This is a strengthening of the entropy approximation as-
sumption that is known to be complete for (average-case) non-interactive statistical zero-knowledge
(NISZK) [GV99]. The applications of MCRH in [BDRV18, BKP18, KNY18] are broad, showing
that not only it is a natural relaxation of CRH, but it is also a useful replacement in several key
applications such as constant-round statistically-hiding succinct commitments and various zero-
knowledge protocols.

In this work we study yet another relaxation of CRH, called distributional collision resistance
(dCRH), introduced by Dubrov and Ishai [DI06] (see more on their work below). The security notion
of this primitive says that it may be possible to find some specific collision, but it is computationally
hard to sample a random collision. More precisely, given a random hash function h ← H, it is
computationally hard to sample a pair (x1, x2) such that x1 is uniform and x2 is uniform in the set
h−1(x1) = {x : h(x1) = h(x)}. This definition is reminiscent of the distributional version of one-way
function, where we require hardness of coming up with a uniform preimage of a random image.
In the world of one-way functions, by a result of Impagliazzo and Luby [IL89], the distributional
version is known to be existentially equivalent to plain one-way functions (by an explicit and black-
box transformation).

Very little is known about dCRH function families. Intuitively, this is a very weak notion of
collision resistance since an adversary may be able to actually find all collisions (but with a skewed
distribution). Nevertheless, as observed by Dubrov and Ishai [DI06], in a black-box model, dCRH
cannot be constructed from one-way permutations. (The oracle of Simon [Sim98] that finds a
random collision is actually an oracle that breaks dCRH.) The main question we are interested in
is the power of dCRH and its relation to MCRH and CRH. Can CRH be constructed from dCRH?
Can dCRH be constructed from weak assumptions that are not known to imply CRH or MCRH? In
what scenarios does the notion of dCRH suffice? What is the relation between MCRH and dCRH?
(The latter question was explicitly asked by Berman et al. [BDRV18]).
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1.1 Our Results

We begin by observing that the separation of [KNY18] of CRH from MCRH uses the same oracle
of Simon [Sim98] that finds a random collision. Thus, the separation actually applies to dCRH,
thereby implying that there is no black-box construction of a dCRH from an MCRH.

MCRH ⇒ DCRH. Our first result is that the existence of MCRH for any constant k ∈ N implies
the existence of dCRH (and no further assumptions). Our proof is non-constructive and uses
an adversary in a non-black-box way. Actually, our proof results in an infinitely-often dCRH,
and should merely serve as evidence that multi-collision resistance is a stronger assumption than
distributional collision resistance. This partially resolves the question of Berman et al. [BDRV18]
mentioned above.

SZK ⇒ DCRH. Our second result is an explicit construction of a dCRH from the average-case
hardness of the class of problems that posses a statistical zero-knowledge (SZK) proof. More con-
cretely, our construction is based on the average-case hardness of the statistical difference problem,
that is known to be complete for SZK, by a result of Sahai and Vadhan [SV03]. This assumption
is known to imply one-way functions by a result of Ostrovsky [Ost91], but is not known to imply
multi-collision resistance (let alone plain collision resistance). It is also weaker than the assumption
used by Berman et al. [BDRV18] to construct an MCRH.

As an application, we obtain that indistinguishability obfuscation and one-way permutations
(and thus their many derivatives) do not imply hardness in SZK via black-box reductions. We use
the result of Asharov and Segev [AS16] that shows that indistinguishability obfuscation and one-
way permutations do not imply (in a black-box model) collision resistance. We observe that their
separation applies to distributional collision resistance as well (again, because they use the oracle
of Simon [Sim98] that finds a random collision) which immediately implies our result. Previously,
a direct proof of this result (i.e., not going through [AS16]) was shown by Bitansky et al. [BDV17].

A summary of the known results together with ours appears in Figure 1.

1.2 Related Work

The work of Dubrov and Ishai. Dubrov and Ishai [DI06] studied the question of whether every
efficiently samplable distribution can be efficiently sampled, up to a small statistical distance,
using roughly as much randomness as the length of its output. They gave a positive answer to
this question under various assumptions. They further showed that a negative answer to their
question gives rise to a construction of a distributional collision resistant hash from any one-way
permutation, thus bypassing the separation of Simon [Sim98].

Overcoming black-box barriers. The framework of black-box constructions was introduced
by Impagliazzo and Rudich [IR89] in order to capture “natural” constructions of one primitive
from another. This framework has been extensively used to capture the limits of cryptographic
primitives under this sort of constructions. Black-box constructions are not only the most natural
ones, but often they result with more efficient and scalable construction since each building block
is treated independently as a “black-box”.

A black-box separation does not mean that one primitive cannot be constructed from another,
but rather that specific or natural types of constructions cannot work. Due to the nature of these
constructions, in many cases it is hard to imagine a construction that circumvents the separation.
Indeed, we have only a few examples where a black-box barrier was circumvented.
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Figure 1: An illustration of the known results and our new implications. Solid lines mean positive
implications, namely, a solid arrow from A to B means that the existence of A implies the existence
of B. Crossed out dashed red lines mean black-box separations, namely, such a line from A to B
means that there is an impossibility for a black-box construction of B from A.

A well known tool that enables to bypass such limitations is using garbled circuits on circuits
with embedded cryptography (e.g., a one-way function). This technique was used by Beaver [Bea96]
to construct round-efficient OT extension protocols (see also the recent work of Garg et al. [GMM17]).
They have also been recently used by Döttling and Garg [DG17] to construct an IBE scheme from
the computational Diffie-Hellman assumption.

Another technique, introduced by Barak et al. [BOV07], is via derandomization. Mahmoody
and Pass [MP12] showed a black-box separation for constructions of non-interactive commitments
from a stronger notion of one-way functions, which they called hitting one-way functions. Then,
using the derandomization technique, they showed that there exists a non-black-box construction
of non-interactive commitments from hitting one-way functions. Note that the notion of a hitting
one-way function was introduced especially for this purpose.

Another technique inspired by complexity theory is due to Harnik and Naor [HN10] who intro-
duced the task of compressibility of NP instances. Here, the task is to come up with a compression
scheme that preserves the solution to an instance of a problem rather than preserving the in-
stance itself. One of their results is a construction of a collision resistant hash function from any
one-way function, assuming a compression algorithm for SAT. (Recall that there is no black-box
construction of collision resistant hash functions from one-way functions [Sim98].) Fortnow and
Santhanam [FS11] showed that such a compression algorithm cannot exist unless NP ⊆ coNP/poly.
The result of Dubrov and Ishai [DI06] discussed above can be viewed as complementary to the one
of Harnik and Naor [HN10], as they show consequences of the non-existence of (strong forms of)
such algorithms.

A more recent technique comes from the area of program obfuscation. There, it was first shown
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by Asharov and Segev [AS16] that a private-key functional encryption scheme cannot be used to
construct a public-key encryption scheme in a black-box way. Here, the definition of black-box is
more delicate as we do not want to limit the obfuscation to circuits that have no cryptography in
them. So, the actual separation is from an even stronger primitive called private-key functional
encryption for oracle-aided circuits which are allowed to have one-way function gates. This sepa-
ration was bypassed by Bitansky et al. [BNPW16] using a non-black-box component of Brakerski
et al. [BKS16] (see also [KS17]), where they generate a functional key for a function that calls the
encryption/key-generation procedure of the same scheme. In the same line of works and the same
high-level non-black-box use, indistinguishability obfuscation was constructed from a primitive
called constant-degree multilinear maps in works by Ananth, Lin, Sahai, Tessaro, and Vaikun-
tanathan [Lin16, LV16a, Lin17, AS17, LT17], while such constructions were proven impossible in a
black-box model by Mahmoody et al. [MMN+16].

Lastly, we mention that there is a rich line of work, starting with Barak [Bar01], on non-black-
box simulation. Here, the construction is black-box but only the simulator (which is constructed to
prove the security of the scheme) is allowed to be non-black-box (usually in a potential adversary).

Statistical zero-knowledge. The notion of statistical zero-knowledge (SZK) proofs was intro-
duced in the seminal work of Goldwasser, Micali and Rackoff [GMR89]. It is known that homomor-
phic encryption schemes and non-interactive computational private-information retrieval schemes
imply hard problems in SZK [BL13, LV16b]. Concrete assumptions such as Discrete Log, QR,
lattices, and more, are also known to imply SZK hardness.

The class of (promise problems) with SZK proofs is characterized by the problems statistical
difference (SD) and entropy difference (ED) by results of Sahai and Vadhan [SV03] and Goldreich
and Vadhan [GV99]. Statistical difference is the problem of deciding whether two distributions
(specified by circuits that sample from them) are close or far in statistical distance. Entropy
difference is the problem of deciding which of two given distributions (specified by circuits that
sample from them) has noticeably higher Shannon entropy than the other.

There are closely related problems that are known to be complete for the class NISZK – the class
that contains all (promise) problems for which there is a non-interactive statistical zero-knowledge
proof. The complete problems, presented by Goldreich et al. [GSV99], are statistical difference
from uniform (SDU) and entropy approximation (EA). The former is the SD problem but where
one of the distributions is the uniform one. The latter is the ED problem but where one of the
distributions has known entropy k (so the goal is to decide whether the other distribution has
entropy bigger than k + 1 or smaller than k − 1).

The assumption of Berman et al. [BDRV18] (leading to a construction of MCRH) is the average-
case hardness of the promise problem to distinguish between distributions (specified by circuits)
whose min-entropy is at least k from ones with max-entropy at most k− 1. It is a strengthening of
the (average-case) EA assumption which is in turn stronger than (average-case) ED and (average-
case) SD.

1.3 Our Techniques

We give an overview of our proof of existence of a dCRH family based on MCRH. It is instructive to
give the idea of the construction and proof first in an idealized world where we have an (imaginary)
oracle Magic. This oracle Magic, given any efficiently samplabe distribution D over pairs (x1, x2)
and any particular value x∗1, samples x2 from the marginal of D conditioned on x∗1 being the first
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output. Using this oracle, we show how to transform an MCRH family to a dCRH family. Then,
we show how to replace the oracle with an efficient procedure; this is the non-black-box part in our
construction. Notice that in general this oracle cannot be implemented in polynomial time (unless
P=NP). Our implementation will not exactly be of the oracle Magic, but of a much weaker one
which is still enough to carry out the proof.

To simplify the argument even further let us start with a 3-MCRH function family H where
each function maps 2n bits to n bits. By definition, no polynomial-time algorithm, given h ← H,
can find a triple of values that are mapped to the same image. We assume towards contradiction
that dCRH families do not exist. In particular, H is not a dCRH and thus there exists an adversary
A that can break its security. Namely, A can sample random pairs of collisions relative to h← H.
We show that given A and the oracle Magic we can find a 3-collision relative to a given h.

Given h, we run A to get a collision (x1, x2), i.e., h(x1) = h(x2). We treat A as describing a
distribution over pairs of inputs that collide and run the oracle Magic on A with x∗1 = x1 to sample
another pair of collision (x1, x3), i.e., h(x1) = h(x2). This results with three values x1, x2, x3 that
collide relative to h, that is, h(x1) = h(x2) = h(x3). Are they all distinct? We argue that indeed
this is the case.

The first pair (x1, x2) was sampled uniformly at random, namely, x1 is uniformly random and
x2 is uniformly random conditioned on colliding with x1. Since our hash function is compressing
enough, with high probability we have that the set of preimages h(−1)(x1) is exponentially large
and thus the probability that x1 = x2 is negligible. What about x3? Recall that x3 is also sampled
uniformly at random conditioned on colliding with x1, that is, uniformly at random from all the
preimages of h(x). Thus, the probability that x3 is either x1 or x2 is negligible, which completes
the argument that x1, x2 and x3 are a 3-way collision.

We have shown that if H is not a dCRH family, then the adversary together with the oracle
Magic can be used to find a 3-way collision. It remains to explain how we implement this oracle.
Our key observation is that in the (false) world where dCRH do not exist and MCRH does exist,
we can actually implement an efficient yet limited version of this oracle (where x∗ is uniform rather
than arbitrary) which suffices for the purposes of our proof. This is the non-constructive (and
non-black-box) part of the proof and is our main new insight.

We define a new hash family H′ that depends not only on H but also on the adversary A. Each
h′ ∈ H′ uses the input x as random coins to run the adversary A. If the adversary needs ` random
coins then our hash function h′ will map ` bits to n bits (w.l.o.g. ` > 2n). First, let A1 be the
adversary A that outputs only the first element of the collision that A finds. That is, A1(h; r) on
input a hash function h← H and random coins r, runs A(h; r) on h with coins r to get a collision
(x, y) and it outputs only x. Using A1 and a key h ∈ H we define a key h′ ∈ H′ as follows:

h′(x) = h(A1(h;x)).

This is why our construction is non-explicit: we do not know who the adversary A is, but we only
know it exists.

Since H′ is also not a dCRH function family, there exists an adversary A′ that can sample a
random collision relative to h′ ← H′. We use A′ in order to implement (some version of) the oracle
Magic. First, we run A′ on h′ to get a collision (x1, x2). Since x1 is uniform, we have that A1 gets
random bits and will output u1 which is part of a pair (u1, u2) that collides relative to h. Moreover,
x2 is chosen such that it collides with x1. Thus, if we let (u3, u4) ← A(h;x2), then it must be
that h(u1) = h(u3), and therefore h(u1) = h(u2) = h(u3). Can we show that u1, u2, and u3 are all
distinct?
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Let Uy be the set of all u’s that h maps to y = h(u1). Sinc h is compressing enough, the
set Uy is exponentially large. Moreover, since x1 is uniformly random, then (u1, u2) is a random
collision (under the right distribution) which implies that u1 6= u2 with high probability. Arguing
distinctness of u3 is slightly more involved. Our goal is to show that indeed u3 is sampled uniformly
from the set Uy and thus will be distinct from u1, u2 with high probability.

Recall that x2 is sampled uniformly at random conditioned on h′(x2) ∈ Uy. Thus, the distribu-
tion of the element u3 depends on the adversary A, and how he uses his random coins to output
a pair (u3, u4) that collide relative to h and where h(u3) = y. Since A is an adversary for H, we
know that A1 “maps” randomnesses x to elements u. For a string u, denote by Xu the set of all
x’s such that A1(h;x) = u. By the guarantee on the output distribution of A, this mapping is
regular in the sense that for each u, u′ ∈ Uy, it holds that |Xu| = |Xu′ |. Thus, the probability that
u3 = u1 (and similarly u3 = u2) is bounded by the probability that x2 comes from Xu1 . By the
above, x2 comes (uniformly) from one of the Xu’s where u ∈ Uy. But, Uy is exponentially large
and all the Xu’s are of the same size, implying that the probability that u3 = u1 is exponentially
small. Altogether, indeed u1, u2, and u3 form a 3-way collision.

The above argument is slightly over-simplified since it does not take into account errors that A
or A′ can make. In addition, we assumed that A and A′ above output uniformly random collisions
in the corresponding families, while in reality they can only be used to sample a collision which is
statistically close to a random one. In the formal proof we handle these issues.

Finding larger collisions. In the proof above we used an adversary A that can find random
pairs of collisions to construct a new hash function family, for which there is an adversary A′ with
which we designed an algorithm that finds 3-way collisions in the alleged 3-MCRH function family
H. Let us call this algorithm by BreakMCRH. We first observe that BreakMCRH actually finds an
(almost) random 3-way collision, namely, breaking the security of H as a distributional 3-MCRH.
The distribution of our 3-way collision (x1, x2, x3) is such that x1 is uniformly random and x2 and
x3 are independent uniformly random conditioned on colliding with x1.

We thus use BreakMCRH in a recursive manner to replace the adversary A (that finds pairs)
and define a new hash function family. Finally, we modify the final algorithm BreakMCRH to find
a 4-way collision. To this end, we define a new hash function family H′ such that each h′ ∈ H′ is
defined as

h′(x) = h(BreakMCRH1(h;x)),

where BreakMCRH1(h;x) is the algorithm BreakMCRH but outputs only the first element from the
triple. Since (distributional) 3-MCRH do not exist, there is an adversary that can find a triple of
collisions in a random h′. Similarly to the proof above, we use the first two elements to get a 3-way
collision. Then, since the extra third element in the collision is sampled uniformly from a large set
of pre-images it can be used to find the fourth colliding input.

This process can be generalized and continued for several iterations. The cost of each iteration
is a polynomial blow-up in the running time of the hash function and the reduction (and also the
success probability). Thus, we can apply this iteratively for k times where k ∈ N is any fixed
constant, resulting with the statement that k-MCRH implies a dCRH.

A construction from statistical difference. To present the idea behind the construction let us
assume first that we have circuits C0, C1 : {0, 1}n → {0, 1}n such that it is computationally hard
to distinguish whether they describe distributions that are identical or disjoint. This corresponds
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to the statistical difference problem with parameters 0 and 1. We will overload C0 and C1 and let
them denote (also) the corresponding distributions.

Our hash function h : {0, 1}n+1 → {0, 1}n is indexed by both circuits C0 and C1, and it operates
as follows

hC0,C1(x, b) = Cb(x).

Let us assume that it is not a dCRH. Namely, there is an efficient adversary A that gets C0 and
C1, and finds (x, b), (x′, b′) that collide relative to hC0,C1 , as defined above. We claim that if the
collision is such that b 6= b′ then the circuits C0 and C1 must be identically distributed. Indeed, if
b 6= b′, this means that we have x, x′ such that, say, C0(x) = C1(x′) which means that the induced
distributions are not disjoint (and hence must be identical). The other case, if b = b′, can occur in
both cases that the distributions are identical or disjoint, but each will happen only with probability
1/2. Thus, to distinguish the two cases we run the adversary A and check whether b 6= b′. If the
distributions are identical, it will always be that b = b′, while if they are disjoint this will happen
only with probability 1/2. This is enough to distinguish between whether C0 and C1 are disjoint
or identical with noticeable probability.

The case where the statistical distance is not 0 or 1 but is ε vs. (1 − ε) for a small constant
ε > 0 follows the same high-level idea but requires a slightly more involved analysis. The goal is to
relate the probability that b = b′ to the statistical distance between C0 and C1 and show that these
values are correlated. We choose to use a specific f -divergence called the triangular discrimination1

measure which is defined by

∆TD(C0, C1) =
∑
y

(Pr[C0 = y]− Pr[C1 = y])2

Pr[C0 = y] + Pr[C1 = y]
.

We first related the probability that b′ = b to the triangular discrimination between C0 and C1 by
(simple) algebraic manipulations. Concretely, we show that

Pr[b′ = b] =
1

2
+

∆TD(C0, C1)

4
.

Then, we use the fact that the triangular discrimination can be bounded both from above and from
below by a function that depends on the statistical distance.2 More precisely, it holds that

2∆(C0, C1)2 ≤ ∆TD(C0, C1) ≤ 2∆(C0, C1).

We use this to get our separation between the value of Pr[b′ = b] in the case that C0 and C1 are
close and in the case that they are far.

2 Preliminaries

Unless stated otherwise, the logarithms in this paper are base 2. For an integer n ∈ N we denote
by [n] the set {1, . . . , n}. For a distribution X we denote by x ← X an element chosen from X

1f -divergence is a family of measures of distance between probability distributions defined by Df (P‖Q) =∑
x Q(x) · f (P (x)/Q(x)). Statistical distance is a special case with f(x) = |1− x| and triangular deiscrimination is

a special case with f(x) = (x− 1)2/(x + 1).
2This is why we use the triangular discrimination measure as opposed to more well-known measures such as the

Kullback-Leibler divergence. The latter is only lower-bounded by a function that depends on the statistical distance.
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uniformly at random. We denote by ◦ the string concatenation operation. A function negl : N→ R+

is negligible if for every constant c > 0, there exists an integer Nc such that negl(n) < n−c for all
n > Nc. Throughout the paper, we denote by n the security parameter.

2.1 Distance Measures

Definition 1 (Statistical distance). The statistical distance between two random variables X,Y
over a finite domain Ω, is defined by

∆(X,Y ) ,
1

2
·
∑
x∈Ω

|Pr[X = x]− Pr[Y = x]| .

We say that X and Y are δ-close (resp. -far) if ∆(X,Y ) ≤ δ (resp. ∆(X,Y ) ≥ δ).

We will use another (less well-known) distance measure called the triangular discrimination
(a.k.a Le Cam Divergence).

Definition 2 (Triangular discrimination). The triangular discrimination between two random vari-
ables X,Y over a finite domain Ω, is defined by

∆TD(X,Y ) =
∑
x∈Ω

(Pr[X = x]− Pr[Y = x])2

Pr[X = x] + Pr[Y = x]

It is known that the triangular discrimination is bounded from above by the statistical distance
and from below by the statistical distance squared (see, for example, [Top00, Eq. (2.11)]).

Proposition 1. For any two random variables X,Y over the same finite domain, it holds that

2 ·∆(X,Y )2 ≤ ∆TD(X,Y ) ≤ 2 ·∆(X,Y ).

2.2 Efficient Function Families

A function f , with input length m1(n) and outputs length m2(n), specifies for every n ∈ N a
function fn : {0, 1}m1(n) → {0, 1}m2(n). We only consider functions with polynomial input lengths
(in n) and occasionally abuse notation and write f(x) rather than fn(x) for simplicity. The function
f is computable in polynomial time (efficiently computable) if there exists an algorithm that for
any x ∈ {0, 1}m1(n) outputs fn(x) and runs in time polynomial in n.

A function family ensemble is an infinite set of function families, whose elements (families) are
indexed by the set of integers. Let F = {Fn : Dn → Rn}n∈N stand for an ensemble of function
families, where each f ∈ Fn has domain Dn and range Rn. An efficient function family ensemble
is one that has an efficient sampling and evaluation algorithms.

Definition 3 (Efficient function family ensemble). A function family ensemble F = {Fn : Dn →
Rn}n∈N is efficient if:

• F is samplable in polynomial time: there exists a probabilistic polynomial-time machine that
given 1n, outputs (the description of) a uniform element in Fn.

• There exists a deterministic algorithm that given x ∈ Dn and (a description of) f ∈ Fn, runs
in time poly(n, |x|) and outputs f(x).
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2.3 Distributional Collision Resistant Hash Functions

A distributional collision resistant hash function is a hash function with the security guarantee that
no efficient adversary can sample a uniform collision. This relaxation of classical collision resistance
was introduced by Dubrov and Ishai [DI06].

For h : {0, 1}m → {0, 1}n, we associate a random variable COLh ⊆ {0, 1}m × {0, 1}m over pairs
of inputs (x1, x2) to h sampled by the following process: x1 is chosen uniformly at random from
{0, 1}m and then x2 is chosen uniformly at random from the set {x ∈ {0, 1}m : h(x) = h(x1)}. Note
that it is possible that x1 = x2.

Definition 4 (Distributional collision resistant hashing). Let H = {Hn : {0, 1}m(n) → {0, 1}n}n∈N
be an efficient function family ensemble, where m(n) < n. We say that H is a secure distributional
collision resistant hash (dCRH) function family if for any probabilistic polynomial-time algorithm
A and any two negligible functions δ(·) and ε(·), it holds that

Pr
h←H

[∆ (A(1n, h),COLh) ≤ δ(n)] ≤ 1− ε(n)

for all sufficiently large n ∈ N. Note that the probability above is only over the choice of h← H.

We say that a dCRH as above is infinitely-often secure if the above security only holds for
infinitely many n’s rather than for all large enough n’s.

2.4 Multi-Collision Resistant Hash Functions

A multi-collision resistant hash function is a relaxation of standard notion of collision resistant hash
function in which it is hard to find multiple distinct values that all collide on the same value. This
primitive has been recently studied in several works [KNY17, BDRV18, BKP18, KNY18].

Definition 5 (Multi-collision resistant hashing). Let k = k(n) be a polynomial function. An
efficient function family ensemble H = {Hn : {0, 1}2n → {0, 1}n}n∈N is a secure k-multi-collision
resistant hash (MCRH) function family if for any probabilistic polynomial-time algorithm A there
exists a negligible function negl(·) such that for all n ∈ N, it holds that

Pr

[
x1, . . . , xk are distinct and

h(x1) = · · · = h(xk)

∣∣∣∣ h← Hn
(x1, . . . , xk)← A(h)

]
≤ negl(n).

We call such x1, . . . , xk that map to the same value under h a k-way collision.

3 Constructing dCRH from MCRH

In this section we present our main result. The theorem states that the existence of any MCRH
implies the existence of a dCRH. Our construction is non-black-box.

Theorem 1. Assuming the existence of a secure 3-MCRH function family that compresses 2n bits
to n bits, then there exists an (infinitely often) secure dCRH function family.

Proof. Let H = {h : {0, 1}2n → {0, 1}n} be a secure 3-MCRH function family. Assume towards
contradiction that infinitely-often dCRH function families do not exist, and we will show that 3-
MCRH families do not exist as well (which is a contradiction). Since there are no dCRH function
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families, in particular, H is not a dCRH and there exists an adversary A and two negligible functions
δ(·) and ε such that for all large enough n’s it holds that

Pr
h←H

[∆ (A(1n, h),COLh) ≤ δ(n)] > 1− ε(n)

That is, A gets h ∈ H as input, and randomness r and outputs a collision (x1, x2) that is
distributed as a random collision from COLh. We denote this process by (x1, x2)← A(h; r) (notice
that we omit the 1n argument to simplify notation). Denote by A1 the same adversary that outputs
only x1. That is, x1 ← A1(h; r).

Our key observation is that we can use A1 to define a new family H′ of hash functions which
will be an infinitely-often secure dCRH function family. The keys in this family are denoted by h′

and have the same representation as h ∈ H but perform a different operation. Let ` = `(n) be
an upper bound on the number of random bits that A uses, and assume that ` > 2n without loss
of generality. We define a new hash family where the input x is used as random coins to run the
adversary A1. Formally, we define each function in the family H′ = {h′ : {0, 1}` → {0, 1}n} by

h′(x) = h(A1(h;x)).

Again, since there are no infinitely-often dCRH function families, then in particular, H′ is not a
dCRH. Thus, again again there is an adversary A′ and two negligible functions δ′(·) and ε′(·) such
that

Pr
h′←H′

[
∆
(
A′(1n, h′),COLh′

)
≤ δ(n)

]
> 1− ε(n) .

We show how to construct an adversary BreakH that uses both A and A′ to break the security
of the given MCRH. The full description of BreakH(1n, h) is given in Figure 2.

Algorithm BreakH(1n, h):

1. Define h′ such that h′(x) = h(A1(h;x)).

2. (x1, x2)← A′(h′) with fresh randomness.

3. (u1, u2)← A(h;x1).

4. (u3, u4)← A(h;x2).

5. Output (u1, u2, u3).

Figure 2: The description of the adversary BreakH that uses A and A′ to break the security of the
MCRH function family H.

To simplify the analysis we will analyze a different adversary called B̃reakH, described in Fig-
ure 3. This adversary is inefficient but its output distribution is negligibly close (in statistical

distance) to the output distribution of BreakH. So, once we show that B̃reakH breaks H, we will
get that BreakH breaks H with almost the same probability which is a contradiction.

Let us set-up some notation first. Recall that COLh is a distribution over pairs of inputs (x1, x2)
to h such that x1 is chosen uniformly at random and x2 is chosen uniformly at random conditioned
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on h(x1) = h(x2). Let COL1
h be a distribution that outputs the first element in the collision, namely

x1. Let COL2
h,x1 be the distribution that outputs the second elements conditioned on colliding with

the first, namely, a random x2 conditioned on h(x1) = h(x2). We also denote by COLh(r) a sample
from COLh using randomness r.

Algorithm B̃reakH(1n, h):

1. Define h′ such that h′(x) = h(A1(h;x)).

2. (u1, u2)← COLh(x1), where x1 ← COL1
h′ .

3. (u3, u4)← A(h;x2), where x2 ← COL2
h′,x1 .

4. Output (u1, u2, u3).

Figure 3: The description of the adversary B̃reakH that uses A and A′ to break the security of the
MCRH function family H.

Claim 1. If B̃reakH breaks the security of H, then so does BreakH.

Proof. We prove the claim by defining a hybrid adversaries BreakH∗ and show the following
sequence of implications:

1. If B̃reakH breaks the security of H, then so does BreakH∗.

2. If BreakH∗ breaks the security of H, then so does BreakH.

The adversary BreakH∗ is the same as B̃reakH except that we change Item 3 to the following:

2. (u1, u2)← A(h;x1), where x1 ← COL1
h′ .

First, we argue that if B̃reakH breaks the security of H, then so does BreakH∗. Denote by µ̃(n)

the success probability of B̃reakH in breaking the security of H. With probability 1− ε(n) over the
choice of h← H we sample a “good” h, that is, a h for which the adversaryA outputs a collision that
is δ(n)-close to one from COLh. Then, for any such “good” h, the success probability of BreakH∗
is µ̃(n)− δ(n). So, overall, the success probability of BreakH∗ is µ∗(n) = µ̃(n)− δ(n)− ε(n).

Second, we argue that if BreakH∗ breaks the security of H, then so does BreakH. Denote by
µ∗(n) the success probability of BreakH∗ in breaking the security of H. With probability 1− ε′(n)
(over the choice of h′ ← H′) the adversary A′ outputs a collision that is δ′(n)-close to one from
COLh′ . Then, for any such “good” h, the success probability of BreakH is µ∗(n)−δ′(n). So, overall,
the success probability of BreakH is µ(n) = µ∗(n)− δ′(n)− ε′(n).

Combining both of the above, we have that if B̃reakH breaks the security of H with probability
µ̃(n), then BreakH breaks it with probability

µ(n) = µ̃(n)− δ(n)− ε(n)− δ′(n)− ε′(n).

11



By the definition of x1 ← COL1
h and x2 ← COL2

h,x1 , we have that x1 is uniformly random in

the domain of h′ (namely, {0, 1}`) and x2 is a uniform element in {0, 1}` conditioned on satisfying
h(x1) = h(x2).

Lemma 1. With all but negligible probability we have that h(u1) = h(u2) = h(u3).

Proof. By the union bound

Pr[h(u1) = h(u2) = h(u3)] ≥ 1− Pr[h(u1) 6= h(u2) or h(u1) 6= h(u3)]

≥ 1− Pr[h(u1) 6= h(u2)]− Pr[h(u1) 6= h(u3)].

If (x1, x2) is a collision under h′, by definition of h′, then it holds that

h(u1) = h(A1(h;x1)) = h(A1(h;x2)) = h(u3).

Thus, since by the definition of COLh′ , the inputs x1 and x2 are a collision relative to h′, then u1

and u3 are a collision relative to h. That is,

Pr[h(u1) 6= h(u3)] = 0.

Additionally, recall that the pair (x1, x2) is a random collision sampled via COLh. Namely, x1

is uniformly random in {0, 1}`. Since A outputs a collision relative to h for all but a δ(n)-fraction
of possible randomnesses, it must be that h(u1) = h(u2), except with probability δ(n). That is,

Pr[h(u1) 6= h(u2)] ≤ δ(n).

What is left to show, and is the most technical part of the proof, is that all three elements u1, u2, u3

are distinct. An illustration of the main ideas and the notations used in the proof is given in
Figure 4.

Lemma 2. With all but negligible probability we have that u1, u2, u3 are distinct.

Proof. To argue distinctness, we first show that set of inverses of h(u1) is large with high proba-
bility. We use the following claim.

Claim 2. For any h ∈ H, it holds that

Pr
x←{0,1}2n

[|h−1(h(x))| > 2n/2] ≥ 1− 2−n/2.

Proof. We count how many x’s might there be that satisfy |{h−1(h(x))}| ≤ 2n/2. Let us denote
by U1, . . . , Uk a partition of {0, 1}2n into sets according to the output of h. That is, ∀i ∀x, y ∈
Ui : h(x) = h(y) and for all i 6= j and x ∈ Ui, y ∈ Uj it holds that h(x) 6= h(y). Each set Ui
that is larger than 2n/2 is called “good” and others are called “bad”. The total number of sets
k is bounded by 2n and thus, there can be at most 2n bad sets Ui. Namely, the total number of
elements in the bad sets is bounded by 2n · 2n/2 = 23n/2. Thus, the number of elements in good
sets is 22n − 23n/2 = (1− 2−n/2) · 22n and each such good element x satisfies |{h−1(h(x))}| > 2n/2.
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Figure 4: An illustration of the ideas and notations used in the proof of the proof.

Let y = h(u1) and let us denote all the values u that are mapped to y by:

Uy = {u | h(u) = y}.

Note that, by Claim 2, with very high probability over the choice of x1, it holds that

|Uy| ≥ 2n/2. (1)

The elements u1 and u2 are a sample of COLh using fresh randomness x1. Since x2 is sampled from
the set of all preimages of x1, we have that

Pr[u1 6= u2] ≥ Pr
[
u1 6= u2 | |U | > 2n/2

]
· Pr

[
|U | > 2n/2

]
≥ 1− negl(n).

We continue to show that u3 is distinct from u1, u2. From now on, let us condition on x1 being
such that Eq. (1) holds. We also condition on h ∈ H being such that ∆(A(1n, h),COLh) ≤ δ(n).
The former happens with probability 1− 2−Ω(n) and the latter happens with probability 1− ε(n).
Overall, by the conditioning we will lose an additive negl(n) term in the overall success probability

of B̃reakH.
The algorithm A1 (i.e., A when restricted to output only the first element) gives us a mapping

between x’s and u’s. Namely, for every x ∈ {0, 1}`, there is a u ∈ {0, 1}2n such that (u, ·) = A(h;x).
For u ∈ {0, 1}2n, denote

Xu = {x | A1(h;x) = u}.

We claim that for any two u, u′, the sizes of Xu and Xu′ are roughly the same.

Claim 3. For any u, u′ ∈ Uy,

Pr
(x1,x2)←COLh′

[x2 ∈ Xu] ∈ Pr
(x1,x2)←COLh′

[x2 ∈ Xu′ ]± δ(n).
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Proof. Since A(h; ·) outputs a pair that is distributed statistically close to a pair coming from
COLh and in the latter the first element is uniformly random in {0, 1}2n, it must be that A1(h; ·)
is distributed almost uniformly at random. Hence, the mapping between x’s and u’s is regular,
except with probability δ(n). Namely,

|Xu|
2`
∈ |Xu′ |

2`
± δ(n).

The claim now follows since x2 is chosen uniformly at random from the set of all values that go to
y.

By the definition of Xu, by Claim 3, and by Eq. (1), we have that

Pr[u3 = u1] ≤ Pr[x2 ∈ Xu1 ] ≤ 1

|Uy|
+ δ(n) ≤ negl(n).

By a similar reasoning, it holds that

Pr[u3 = u2] ≤ Pr[x2 ∈ Xu2 ] ≤ 1

|Uy|
+ δ(n) ≤ negl(n).

Therefore, we get that u3 /∈ {u1, u2} with all but negligible probability.

Combining Lemmas 1 and 2 we get that we will find a 3-way collision with high probability which
concludes the proof.

Distributional MCRH. One can also defined a distribution notion for a k-MCRH. Here, the task
of the adversary is to find, given a hash function h← H, not an arbitrary k-way collision, but one
that is statistically close to a random one. By a random k-way collision we mean the following
distribution. First, sample x1 uniformly at random and then sample x2, . . . , xk independently
uniformly at random conditioned on h(xi) = h(x1) for every 2 ≤ i ≤ k. We call this distribution
COLkh.

We observe that in the proof above we get an algorithm that finds a 3-way collision that is
statistically close to a random one from COL3

h. That is, the proof above shows that existence of
dCRH can be based on the existence of the seemingly weaker notion of distributional 3-MCRH.

3.1 Going Beyond 3-MCRH

In the previous section we have shown how to construct a dCRH from a 3-MCRH family. Our
construction and proof inherently relied on the fact that an adversary cannot find a 3-way collision.
In this part, we show how to extend the ideas from the above proof to give a recursive construction
that shows the existence of a dCRH from the existence of a k-MCRH for any constant k. We will
exemplify the idea for k = 4 next and explain the general afterwards.

Suppose that we are given a 4-MCRH family H and assume towards contradiction that dCRH
function families do not exist. As in the proof above, there is an adversary A that breaks H as
a dCRH and finds a random collision from COLh, where h ← H. We define H′ = {h′ : {0, 1}` →
{0, 1}n} as in the proof above

h′(x) = h(A1(h;x)).
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Since H′ do not exist, the adversary BreakH3 , BreakH from Figure 2 can be used to find a random
3-way collision (u1, u2, u3) for a random key h← H. Denote by `′ = `′(n) an upper bound on the
number of bits of randomness used by BreakH3.

The key observation is that we can use BreakH3 recursively to get an algorithm BreakH4 that
find a 4-way collision. We define an new hash function family H′′ = {h′′ : {0, 1}`′ → {0, 1}n} by

h′′(x) = h(BreakH1
3(h;x)),

where BreakH1
3 is a modified version of the algorithm BreakH3 that outputs only the first element

from its output triple. Since the function family H′′ is not a dCRH, there is an algorithm A′′
that can find a collision in h′′ ← H′′ that is statistically close to one from COLh′′ . We construct
an algorithm BreakH4(1n, h) that is similar to BreakH3(1n, h), except that it uses BreakH3(1n, h)
instead of the adversary A to find a 4-way collision.

That is, BreakH4 runs A′′ to get a random collision (x1, x2). Then, x1 is used as randomness to
BreakH3(1n, h) to get a 3-way collision (u1, u2, u3), and x2 is used to get (u4, u5, u6). Similarly to
the arguments in the original proof, here we claim that u4 will also hash to the same value as u1,
u2, and u3, and since it is random in the set of all elements that collide with u1, the probability
that it is distinct from u1, u2, and u3 is very high. Thus, u1, u2, u3, u4 is a 4-way collision with high
probability. (Not only that, it is actually negligibly-close to a random 4-way collision.)

The general case. The above idea extends to starting with a k-MCRH for higher values of
k. Namely, our transformation allows one to go from k-MCRH to dCRH. But, there is a cost
in parameters since in each step, the algorithm we construct and the construction itself incur a
polynomial blowup in the running time (and also a decrease in the success probability). Thus, we
can apply this iteratively k times for any constant k ∈ N. This results with the statement that the
existence of k-MCRH for any constant k implies the existence of dCRH. The resulting algorithm
is denoted BreakHk+1(1n, h) and is given in Figure 5.

Algorithm BreakHk+1(1n, h):

1. Define h(k) such that h(k)(x) = h(BreakH1
k(h;x)).

2. (x1, x2)← A(k)(h(k)).

3. Let (u1, . . . , uk)← BreakHk(h;x1).

4. Let (uk+1, . . . , u2k)← BreakHk(h;x2).

5. Output (u1, u2, . . . , uk+1).

Figure 5: The description of the adversary BreakHk+1.

Remark 1 (A note on non-uniformity). Notice that the first step in the above argument from
3-MCRH to dCRH results with an infinitely-often dCRH. This can be circumvented by having a
non-uniform construction. In particular, instead of having a single adversary A that works for
infinitely many input length, we can hardwire an adversary that works for each input length. The
result is a standard dCRH (as opposed to an infinitely-often one) that is computed by circuits instead

15



of Turing machines. This is important for our recursive argument, as otherwise each step of the
reduction might work on a different sequence of input lengths.

Remark 2 (Distributional multi-collision resistance). The above idea can be summarized as a
transformation from k-dMCRH to a (k − 1)-dMCRH. A k-dMCRH is the distributional analog of
MCRH, where the goal of the adversary is to come up with a random k-way collision (x1, . . . , xk).
The distribution of such a collision relative to a hash function h is that x1 is chosen uniformly
at random and x2, . . . , xk are all chosen independently and uniformly at random conditioned on
colliding with x1 on h.

4 Constructing dCRH from SZK

In this section we show how to construct a dCRH from the average-case hardness of SZK. The
statistical difference problem, which is complete for SZK [SV03], is a promise problem where one
is given two distributions, described by circuits that sample from them, and the goal is to decide
whether the distributions are close or far in statistical distance. The hardness of SZK implies the
hardness of SD. For our application we will need the average-case hardness of this problem, where
there is an underlying efficient sampler that samples the two aforementioned circuits.

Definition 6 (Distributions encoded by circuits). Let C : {0, 1}n → {0, 1}n be a Boolean circuit.
The distribution encoded by C is the distribution induced on {0, 1}n by evaluating the circuit C
on a uniformly sampled string of length n. We abuse notation and sometimes write C for the
distribution defined by C.

Definition 7 (The statistical difference problem). Statistical Difference is the promise problem
SDε,1−ε = (SDY ,SDN ) over all pairs of circuits C0, C1 : {0, 1}n → {0, 1}n, where the “Yes” instances
are those that encode statistically far distributions

SDY = {(C0, C1) : ∆(C0, C1) ≥ 1− ε}

and the “No” instances are those that encode statistically close distributions

SDN = {(C0, C1) : ∆(C0, C1) ≤ ε}.

Definition 8 (Average-case hardness). We say that the SDε,1−ε problem is hard-on-the-average if
there exists a probabilistic polynomial-time sampler S that outputs pairs of circuits C0, C1 : {0, 1}n →
{0, 1}n such that for any (non-uniform) probabilistic polynomial-time decider D that outputs “Y”
or “N”, there exists a negligible function negl(·) such that for all n ∈ N it holds that

Pr
(C0,C1)←S(1n)

[x← D(C0, C1) and (C0, C1) ∈ SDx] ≤ 1

2
+ negl(n).

The beautiful result of Sahai and Vadhan [SV03] shows that (average-case) SD
1
3
, 2
3 is complete for

(average-case) SZK. Not only that, they showed that the constants 1/3 and 2/3 in the Statistical
Difference problem are somewhat arbitrary and the gap can be amplified. In more detail, they
showed that given two distributions D0, D1, and a number k, then in polynomial time (in k) one
can sample from distributions D′0 and D′1 such that if ∆(D0, D1) ≤ 1/3, then ∆(D′0, D

′
1) ≤ 2−k,

and if ∆(D0, D1) ≥ 2/3, then ∆(D′0, D
′
1) ≤ 1− 2−k.

Our main result in this section is a construction of a dCRH that compresses by 1 bit from the
average-case hardness of SZK.
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Theorem 2. There exists an explicit dCRH mapping n bit to (n−1) bits assuming the average-case
hardness of SZK.

Proof. Since SZK is hard-on-the-average, SD
1
3
, 2
3 is hard-on-the-average. Also, SDε,1−ε for ε = 0.01

is average-case hard [SV03]. Let S be the sampler for SDε,1−ε.
We define our dCRH family H next. The key sampler for H runs the simulator S and outputs

the two circuits (that describe distributions). Given a key (C0, C1) we define the hash function
h(C0,C1) : {0, 1}n → {0, 1}n−1 in by

hC0,C1(x, b) = Cb(x). (2)

In the rest of the proof we shall prove that this function family is a dCRH. We will do so by
contradiction, showing that if it were insecure, then we would get a statistical-distance distinguisher
for circuits that are output by S. This is a contradiction to the average-case hardness of SDε,1−ε.

Suppose (towards contradiction) that H is not a dCRH. This means that there is a probabilistic
polynomial-time adversary A and two negligible functions δ(·) and ε(·) such that A with probability
at least 1− ε(n) over the choice of h← H can generate a collision which is δ-close to a uniform one
from COLh. That is,

Pr
h←H

[∆ (A(1n, h),COLh) ≤ δ(n)] > 1− ε(n).

We design an algorithm BreakSD that uses A and solves SD on circuits given by S(1n; ·). The idea
is pretty simple: we run A to get a collision pair ((x, b), (x′, b′)). If b = b′, then we output “Y” (i.e.,
far) and otherwise, we output “N” (i.e., close). This algorithm is described in Figure 6.

Algorithm BreakSD(1n, (C0, C1)):

1. Run (x, b), (x′, b′)← A(1n, hC0,C1) with fresh randomness.

2. If b = b′ then output “Y”, and otherwise output “N”.

Figure 6: The description of the adversary BreakSD.

We next prove that when the statistical distance between C0 and C1 is large, then with high
probability the collision will be such that b = b′. On the other hand, when the distributions are
far, the collision will be with b = b′ only with bounded probability. If the gap between the events is
noticeable, then our algorithm is able to decide whether C0 and C1 are close or far with noticeable
probability which violates the average-case hardness of SD.

Before we formalize this intuition, let us set up some notation. We say that h ∈ H is “good” if
the adversary A acts well on this h, namely,

∆ (A(1n, h),COLh) ≤ δ(n).

Since A succeeds to come up with a uniform collision for all but a negligible fraction of the h’s, we
have that

Pr
h←H

[h is “good”] ≥ 1− 1

n
.

17



From now on, we condition on the case that h is “good” and lose a factor of n−1 in the success
probability. Moreover, we know that for good functions h it holds that A outputs a collision that
is negligibly-close to COLh. Thus, we can analyze the success probability of BreakSD with COLh
instead of A, and at the end lose another factor of δ(n). Together, these two lost factors will not
be significant since our distinguishing gap will be Ω(1).

In the following lemma we show that the probability that the adversary outputs a collision in
which b = b′ is related to the triangular discrimination between C0 and C1 (see Definition 2).

Lemma 3. It holds that

Pr[b′ = b] =
1

2
+

∆TD(C0, C1)

4
.

By this lemma together with Proposition 1 (that says that the triangular discrimination is
bounded from above by the statistical distance and from below by the square of the statistical
distance), we get that when the statistical distance between C0 and C1 is at least 1 − ε = 0.99,
then Pr[b′ = b] > 0.6, while when the statistical distance between C0 and C1 is at most ε = 0.01,
then Pr[b′ = b] < 0.55. Overall, our adversary has a noticeable distinguishing gap, as required. We
prove Lemma 3 next.

Proof of Lemma 3. Let Py = Prx←{0,1}n [C0(x) = y] be the probability that C0 outputs y and
similarly define Qy = Prx←{0,1}n [C1(x) = y].

It happens that b′ = b if b = b′ = 0 or if b = b′ = 1. So, by the rule of total probability

Pr[b′ = b] = Pr[b = 0] · Pr[b′ = 0 | b = 0] + Pr[b = 1] · Pr[b′ = 1 | b = 1].

Expanding the LHS (the RHS is expanded analogously):

Pr[b = 0]·Pr[b′ = 0 | b = 0]

=
1

2
·
∑

y∈{0,1}n
Pr[b′ = 0 ∧ y′ = y | b = 0]

=
1

2
·
∑

y∈{0,1}n
Pr[b′ = 0 | b = 0 ∧ y′ = y] · Pr[y′ = y | b = 0]

=
1

2
·
∑

y∈{0,1}n
Py ·

Py
Py +Qy

.

Thus,

Pr[b′ = b] =
1

2
·
∑

y∈{0,1}n

P 2
y

Py +Qy
+

1

2
·
∑

y∈{0,1}n

Q2
y

Py +Qy
. (3)
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Let us expand the LHS (again, the RHS is expanded analogously):

∑
y∈{0,1}n

P 2
y

Py +Qy
=

∑
y∈{0,1}n

P 2
y −Q2

y +Q2
y

Py +Qy

=
∑

y∈{0,1}n
(Py −Qy) +

∑
y∈{0,1}n

Q2
y

Py +Qy

=
∑

y∈{0,1}n

Q2
y

Py +Qy
.

Hence,

∑
y∈{0,1}n

P 2
y

Py +Qy
=

1

2
·
∑

y∈{0,1}n

P 2
y +Q2

y

Py +Qy

=
1

4
·
∑

y∈{0,1}n

(Py +Qy)
2

Py +Qy
+

1

4
·
∑

y∈{0,1}n

(Py −Qy)2

Py +Qy

=
1

2
+

1

4
·
∑

y∈{0,1}n

(Py −Qy)2

Py +Qy
.

By plugging this into Eq. (3), we finish the proof.

5 Open Questions and Further Research

In this work, we presented two constructions of DCRH from different assumptions. The first con-
struction is from the existence of an MCRH. This construction is non-black-box which is necessary
due to a black-box separation between the two. The other construction is from the average-case
hardness of SZK. This construction is fully black-box. There are many questions still left open
regarding the power of DCRH and its relation to other notions of collision resistance.

We do not know how to construct an MCRH from a dCRH. We also do not know how to
separate MCRH from dCRH or even CRH from dCRH. The latter questions require coming up
with a new oracle that can only be used to find collision that are far from random ones.

Another question we did not address in this work is the applicability of dCRH. Does it (exis-
tentially) imply any useful cryptographic primitive that is not implied by one-way functions?
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