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Abstract. Substitution-Permutation Networks (SPNs) refer to a family
of constructions which build a wn-bit (tweakable) block cipher from n-bit
public permutations. Many widely deployed block ciphers are part of
this family and rely on very small public permutations. Surprisingly, this
structure has seen little theoretical interest when compared with Feistel
networks, another high-level structure for block ciphers.
This paper extends the work initiated by Dodis et al. in three directions;
first, we make SPNs tweakable by allowing keyed tweakable permutations
in the permutation layer, and prove their security as tweakable block
ciphers. Second, we prove beyond-the-birthday-bound security for 2-round
non-linear SPNs with independent S-boxes and independent round keys.
Our bounds also tend towards optimal security 2n (in terms of the number
of threshold queries) as the number of rounds increases. Finally, all our
constructions permit their security proofs in the multi-user setting.
As an application of our results, SPNs can be used to build provably
secure wide tweakable block ciphers from several public permutations,
or from a block cipher. More specifically, our construction can turn two
strong public n-bit permutations into a tweakable block cipher working on
wn-bit blocks and using a 6n-bit key and an n-bit tweak (for any w ≥ 2);
the tweakable block cipher provides security up to 22n/3 adversarial
queries in the random permutation model, while only requiring w calls
to each permutation and 3w field multiplications for each wn-bit block.

Keywords: substitution-permutation networks, tweakable block ciphers, domain
extension of block ciphers, beyond-birthday-bound security

1 Introduction

Substitution-Permutation Networks. Nowadays block ciphers are mainly
built around two different generic structures: Feistel networks or substitution-
permutation networks (SPNs). These two approaches revolve around the extension
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of a “complex” function or permutation on a small domain to a keyed pseudoran-
dom permutation on a larger domain by iterating several times simple rounds.
SPNs start with a set of public permutations on the set of n-bit strings which
are called S-boxes. These public permutations are then extended to a keyed
permutation on wn-bit inputs for some integer w by iterating the following steps:

1. break down the state in w n-bit blocks;
2. compute an S-box on each block of the state;
3. apply a keyed permutation layer to the whole wn-bit state (which is also

applied to the plaintext before the first round).

Many well-known block ciphers including AES, Serpent and PRESENT follow
this approach. Proving the security of a particular concrete block cipher is
currently beyond our techniques. Thus, the usual approach is to prove that the
high-level structure is sound in a relevant security model. As for Feistel networks,
a substantial line of work starting with Luby and Rackoff’s seminal work [LR88]
and culminating with Patarin’s results [Pat03, Pat04] proves optimal security with
a sufficient number of rounds. Numerous other articles [Pat10, HR10, HKT11,
Tes14, CHK+16] study the security of (variants of) Feistel networks in various
security models. On the other hand, SPNs have comparatively seen very little
interest which seems rather surprising.

Domain Extension of Block Ciphers. Block ciphers following the SPNs
typically rely on very small S-boxes (e.g. an 8 bit S-box for the AES block
ciphers). However, it is also possible to use another block cipher (with a fixed
key) as “S-box” in order to extend the domain of the underlying block cipher,
or to use a large permutation in order to obtain a wide block cipher. From this
point of view, the substitution-permutation networks can also be understood
as (tweakable) enciphering modes of operation (of a fixed input length). The
tweakable enciphering modes of operations have applications to disk encryption
that protects the confidentiality of data stored on a sector-addressable device
such as a hard disk. In this scenario, the disk is divided into several sectors,
and each sector, viewed as a wide block, should be encrypted and decrypted
independently of each other. Non-linear 1-round SPNs with secret S-boxes have
already been used to provide domain extension for block ciphers [CS06b, Hal07].
These constructions provide the birthday bound security, while this level of
security might not be desirable for an environment where stronger security is
required.

1.1 Our Contribution

Security Proof Beyond the Birthday Bound. In this paper, we study
the r-round SPN structure with independent S-boxes and independent round
keys. Specifically, we focus on non-linear tweakable SPNs; the permutation layer
accepts tweaks, while it is non-linear in the state, the key and the tweak.

In particular, we will focus on the case where w ≥ 2, since, when w = 1, we
recover the standard Even-Mansour construction that has already been the focus
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of a long line of work (as briefly reviewed later). Our results can be seen as an
extension of the work initiated by Dodis et al. [DKS+17] in three directions.

1. We make SPNs tweakable by allowing keyed tweakable permutations in the
permutation layer, and prove their security as tweakable block ciphers.

2. We give security bounds both in the single-user and in the multi-user setting
using the point-wise proximity [HT16].

3. Most importantly, we prove beyond-the-birthday-bound security for 2-round
non-linear SPNs with independent S-boxes and independent round keys using
the H-coefficients technique [Pat08]. We also give an asymptotic analysis of
non-linear SPNs using the coupling technique [MRS09, HR10]. For r = 2s,
we prove that s-round SPNs are secure as long as the number of adversarial
queries is well below 2sn/(s+1). Thus, as s grows, our bounds tend towards
optimal security.

In our security proofs, the S-boxes are modeled as independent public random
permutation oracles. Since security proofs in this model are typically given in
the information theoretic sense, our results have inherent limits that the security
proof cannot go beyond the size of the underlying S-boxes. The Even-Mansour
cipher and its variants might provide a sufficient level of security, while such
high-level abstractions are quite far from real block ciphers that are built on top
of small S-boxes and permutation layers.

Application to Wide Tweakable Block Ciphers. Besides providing
theoretical insights on SPN-based block ciphers, our results also have a practical
interest in the context of domain extension for block ciphers and permutation-
based cryptography. For example, if our construction is instantiated with two
n-bit permutations and a tweakable permutation TBPE in the permutation
layer (as defined in Section 2.2), then we can build a wide tweakable block cipher
with key space {0, 1}6n, tweak space {0, 1}n and message space {0, 1}wn for any
integer w ≥ 2. This tweakable block cipher requires w calls to each permutation
and 3w field multiplications for each encryption/decryption call. The multi-user
advantage of any adversary is shown to be small as long as the number of its
queries is well below 22n/3. This means that a 192 bit (resp. 384 bit) permutation
or block cipher is sufficient to get a provably secure mode of operation as long
as the number of adversarial queries is small in front of 2128 (resp. 2256). As
far as we know, this is the first construction for domain extension of a block
cipher/permutation that enjoys beyond birthday-bound security.

Permutation-based Cryptography. With the advent of sponge functions and
the appearance of strong large permutations, we believe that the SPN construction
becomes more relevant. Indeed, the S-boxes could be replaced with the Keccak
permutation [BDPA09] or with Gimli [BKL+17] to create a highly modular
(tweakable) block cipher with a huge message space, while achieving provable
security beyond the birthday bound. In this context, the random permutation
model is meaningful and would be the counterpart of modeling a hash function
in the random oracle model in public-key cryptography. This strategy provides
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good (although weaker than what is achieved in the standard model) arguments
for the soundness of the design of an algorithm.

Open Problems. We conjecture that r rounds should actually be enough to
prove security up to O(2rn/(r+1)) adversarial queries. Proving it using combina-
torial techniques seems very challenging and we leave it as an interesting open
problem. We also leave as open problems the following questions:

– can minimized variants of 2-round SPNs (i.e. with a single S-box and/or a
single key) be proved to be secure up to roughly 22n/3 adversarial queries?

– can we prove beyond-birthday-bound security for 4-round linear SPNs?
– can we extend our construction so that one can handle messages of variable

length or fixed-length that is not a multiple of the block length?
– can we prove the tightness of our security bounds or matching attacks?

1.2 Related Work

Security of SPNs. The first articles investigating the security of SPNs focus on
the case where S-boxes are secret. Iwata and Kurosawa [IK00] showed an attack
against 2-round SPNs and proved security for 3-round SPNs against non-adaptive
adversaries when used with the linear permutation layer from the SERPENT
block cipher.

Miles and Viola [MV15] recently studied the security of various SPN-like block
ciphers. They first proved security for SPNs with random and secret S-boxes.
However, their bound gets worse as the number of rounds of the block cipher
increases. They also analyze the security of several SPNs using the AES S-box
against various classes of attacks, notably differential and linear attacks.

An important difference between our work and most previous work is that
our S-boxes are made public. Very few papers focus on this setting. Dodis
et al. [DSSL16] studied the indifferentiability [MRH04] of confusion-diffusion
networks which can be seen as unkeyed SPNs. They provide positive results for
five rounds and above. More recently, Dodis et al. [DKS+17] studied linear and
non-linear SPNs using a single public S-box in the same model as ours. Precisely,
they prove birthday bound security in the single user setting for 3-round linear
SPNs and for 1-round non-linear SPNs.

The Even-Mansour Construction. As we already stated, the Even-Mansour
construction [EM97] can be seen as an SPN where w = 1 and the permutation
layer is instantiated by a simple XOR of the key. This construction has seen
a lot of interest over the years, culminating with [CS14, HT16] where it was
proved that the r-round Even-Mansour construction is secure up to roughly
2rn/(r+1) adversarial queries when the public S-boxes are uniformly random
and independent permutations and the round keys are independent. Since this
result is already optimal, we focus on the non-degenerate case w ≥ 2. Chen et
al. [CLL+14] also proved that several minimized variants of the 2-round Even-
Mansour construction are also secure up to roughly 22n/3 adversarial queries.

4



Random Permutation Based Tweakable Block Ciphers. Our tweak-
able SPNs can be viewed as tweakable block ciphers based on public random
permutations. It is easy to see that T : (h, t, x) 7→ x ⊕ h(t) is (δ, δ′)-blockwise
universal (as defined in Section 2) if h is chosen from a δ′-almost uniform and
δ-almost XOR-universal hash family. So with this permutation layer (and with
w = 1), we obtain the security bound for the Tweakable Even-Mansour con-
structions [CLS15] in the multi-user setting. In this line of research, a number of
efficient constructions have been proposed [GJMN16, Men16].

Tweakable Enciphering Modes of Operation. Various enciphering modes
of operation have been proposed with application to disk encryption, where the
design principles are classified into three approaches; encrypt-mix-encrypt [HR03,
HR04, Hal04], hash-ECB-hash [CS06b, Hal07], and hash-CTR-hash [WFW05,
CS06a, FM07]. All these constructions typically accept inputs of variable length,
and their security is proved up to the birthday bound in the secret permutation
model. Our constructions based on 2-round SPNs can be viewed as extending
the hash-ECB-hash approach, or more precisely, the hash-ECB-hash-ECB-hash
approach. We do not consider the way of handling inputs of variable length,
while it might not be a critical requirement for certain applications such as disk
encryption.

From a theoretical point of view, balanced Feistel ciphers have been studied
as domain extending constructions for an ideal cipher (resp. a tweakable block
cipher), and their security has been analyzed within the indifferentiability (resp.
indistinguishability) framework [CDMS10].

2 Preliminaries

Throughout this work, we fix positive integers w and n; an element x in {0, 1}wn
can be viewed as a concatenation of w blocks, each of which is of length n. The
i-th block of this representation will be denoted xi for i = 1, . . . , w, so we have

x = x1||x2|| · · · ||xw,

sometimes written as x = (x1, . . . , xw).
For a set R and an integer s ≥ 1, R∗s denotes the set of all sequences that

consists of s pairwise distinct elements of R. For any integer r such that r ≥ s,
we will write (r)s = r!/(r − s)!. If |R| = r, then (r)s becomes the size of R∗s.
The sets of non-negative integers and non-negative real numbers are denoted N
and R≥0, respectively.

The following inequality will be used in our security proof.

Lemma 1. Let m be an integer and let x be a real number such that m ≥ 2 and
−1 ≤ x < 1

m−1 . Then one has

(1 + x)m ≤ 1 + mx

1− (m− 1)x.
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Proof. The inequality holds since

(1 + x)m ≤ 1 + x

(1− x)m−1 ≤
1 + x

1− (m− 1)x = 1 + mx

1− (m− 1)x. ut

2.1 Tweakable Substitution-Permutation Networks

Tweakable Permutations. For an integer m ≥ 1, the set of all permutations
on {0, 1}m will be denoted Perm(m). A tweakable permutation with tweak space
T and message space X is a mapping P̃ : T × X → X such that, for any tweak
t ∈ T ,

x 7→ P̃ (t, x)
is a permutation of X . The set of all tweakable permutations with tweak space
T and message space {0, 1}m will be denoted P̃erm(T ,m).

A keyed tweakable permutation with key space K, tweak space T and message
space X is a mapping T : K × T × X → X such that, for any key k ∈ K,

(t, x) 7→ T (k, t, x)

is a tweakable permutation with tweak space T and message space X . We
will sometimes write T (k, t, x) as Tk(t, x) or Tk,t(x). For an integer s ≥ 1,
let t = (t1, . . . , ts) ∈ T s, and let x = (x1, . . . , xs) ∈ (X )∗s. We will write
(T (k, ti, xi))1≤i≤s as Tk(t,x) or Tk,t(x).
Tweakable SPNs. For fixed parameters w and n, let

T : K × T × {0, 1}wn −→ {0, 1}wn

be a keyed tweakable permutation with key space K, tweak space T and message
space {0, 1}wn.

For a fixed number of rounds r, an r-round substitution-permutation net-
work (SPN) based on T , denoted SPT , takes as input a set of n-bit permutations
S = (S1, . . . , Sr), and defines a keyed tweakable permutation SPT [S] operating on
wn-bit blocks with key space Kr+1 and tweak space T : on input x ∈ {0, 1}wn, key
k = (k0, k1, . . . , kr) ∈ Kr+1 and tweak t ∈ T , the output of SPT [S] is computed
as follows (see also Fig. 1).
y ← x
for i← 1 to r do

y ← Tki−1,t(y)
Break y = y1|| · · · ||yw into n-bit blocks
y ← Si(y1)|| · · · ||Si(yw)

y ← Tkr,t(y)
return y

Remark 1. Both of the permutation layer T and the entire construction SPT can
be viewed as keyed tweakable permutations. However, T will typically be built
upon non-cryptographic operations such as filed multiplications, while SPT are
based on S-boxes which are modeled as public random permutations.
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Fig. 1. A 2-round tweakable SPN with w = 4. The input and output blocks of the SPN
are represented as x = x1||x2||x3||x4 and y = y1||y2||y3||y4, respectively.

Blockwise Universal Tweakable Permutations. A keyed tweakable per-
mutation

T : K × T × {0, 1}wn −→ {0, 1}wn

is called (δ, δ′)-blockwise universal if the following hold.

1. For all distinct (t, x, i), (t′, x′, i′) ∈ T × {0, 1}wn × {1, . . . , w}, we have

Pr
[
k

$← K : Tk,t(x)i = Tk,t′(x′)i′
]
≤ δ.

2. For all (t, x, i, c) ∈ T × {0, 1}wn × {1, . . . , w} × {0, 1}n, we have

Pr
[
k

$← K : Tk,t(x)i = c
]
≤ δ′.

Since each pair of key k ∈ K and tweak t ∈ T defines a permutation Tk,t on
{0, 1}wn, one can define a keyed tweakable permutation

T−1 : K × T × {0, 1}wn −→ {0, 1}wn

such that T−1(k, t, x) = (Tk,t)−1(x). If T and T−1 are both (δ, δ′)-blockwise
universal, then T is called (δ, δ′)-super blockwise universal.

2.2 An Efficient Super Blockwise Tweakable Universal Permutation

In this section, we show that an efficient xor-blockwise universal construction,
dubbed BPE, proposed by Halevi [Hal07] can be made tweakable with a slight
modification. Assuming 2n ≥ w + 3, let F denote a finite field with 2n elements.
For each k ∈ F, define a w × w matrix over F, Mk =def Ak + I, where I is the
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identity matrix and

Ak =


k k2 kw

k k2 kw

. . .

k k2 kw

 .
Precisely, (Ak)i,j = kj for 1 ≤ i, j ≤ w. Let z be a primitive element of F, and let

K =
{
k ∈ F :

w∑
i=0

ki 6= 0
}
× F.

Then BPE is defined as follows.

BPE : K × {0, 1}wn −→ {0, 1}wn

((k, k′), x) 7−→Mkx⊕ ak′ ,

where we identify x ∈ {0, 1}wn with a w-dimensional column vector over F, and

ak′ =


k′

zk′

...
zw−1k′

 .
It is easy to check that Mk is invertible if

∑w
i=0 k

i 6= 0; precisely,

M−1
k = I ⊕ Ak

k∗
,

where k∗ =def ∑w
i=0 k

i. For any (k, k′) ∈ K, BPEk,k′ is also invertible with

BPE−1
k,k′(x) = M−1

k (x⊕ ak′)

for any x ∈ {0, 1}wn. Halevi [Hal07] also proved that for any pair of distinct
(x, i), (x′, i′) ∈ {0, 1}wn × {1, . . . , w} and ∆ ∈ {0, 1}n,

Pr
[
(k, k′) $← K : BPEk,k′(x)i ⊕ BPEk,k′(x′)i′ = ∆

]
≤ w

2n − w,

Pr
[
(k, k′) $← K : BPE−1

k,k′(x)i ⊕ BPE−1
k,k′(x

′)i′ = ∆
]
≤ w

2n − w. (1)

For a fixed (x, i, c) ∈ {0, 1}wn × {1, . . . , w} × {0, 1}n, BPEk,k′(x)i = c implies
that

w∑
j=1

xjk
j ⊕ xi ⊕ zi−1k′ = c,

which holds with probability 1
2n over a random choice of (k, k′) ∈ K. On the

other hand, BPE−1
k,k′(x)i = c implies thatzi−1 ⊕ 1

k∗

w∑
j=1

zj−1kj

 k′ ⊕

c⊕ xi ⊕ 1
k∗

w∑
j=1

xjk
j

 = 0.
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This equation holds with probability at most w
2n−w + 1

2n . To summarize, we have

Pr
[
(k, k′) $← K : BPEk,k′(x)i = c

]
≤ 1

2n ,

Pr
[
(k, k′) $← K : BPE−1

k,k′(x)i = c
]
≤ w + 1

2n − w. (2)

Now we define a tweakable variant of BPE, dubbed TBPE (for Tweakable
Blockwise Polynomial-Evaluation), with tweak space T = {0, 1}n as follows.

TBPE : K × T × {0, 1}wn −→ {0, 1}wn

((k, k′), t, x) 7−→Mk(x⊕ bt)⊕ ak′ ⊕ bt,

where bt is the column vector whose entries are all t, namely,

bt =


t
t
...
t

 .
Since each pair of key (k, k′) ∈ K and tweak t ∈ T defines a permutation
TBPEk,k′,t on {0, 1}wn, one can define a keyed tweakable permutation

TBPE−1 : K × T × {0, 1}wn −→ {0, 1}wn.

Then we can prove the following lemma.

Lemma 2. Let TBPE be the keyed tweakable permutation as defined above, and
let TBPE−1 be its inverse.

1. For all distinct (t, x, i), (t′, x′, i′) ∈ T × {0, 1}wn × {1, . . . , w}, we have

Pr
[
(k, k′) $← K : TBPEk,k′,t(x)i = TBPEk,k′,t′(x′)i′

]
≤ w

2n − w.

2. For all (t, x, i, c) ∈ T × {0, 1}wn × {1, . . . , w} × {0, 1}n, we have

Pr
[
(k, k′) $← K : TBPEk,k′,t(x)i = c

]
≤ 1

2n .

3. For all distinct (t, x, i), (t′, x′, i′) ∈ T × {0, 1}wn × {1, . . . , w}, we have

Pr
[
(k, k′) $← K : TBPE−1

k,k′,t(x)i = TBPE−1
k,k′,t′(x

′)i′
]
≤ w

2n − w.

4. For all (t, x, i, c) ∈ T × {0, 1}wn × {1, . . . , w} × {0, 1}n, we have

Pr
[
(k, k′) $← K : TBPE−1

k,k′,t(x)i = c
]
≤ w + 1

2n − w.
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Proof. For distinct (t, x, i) and (t′, x′, i′), we have

TBPEk,k′,t(x)i⊕TBPEk,k′,t′(x′)i′ = BPEk,k′(x⊕ bt)i⊕BPEk,k′(x′⊕ bt′)i′ ⊕ t⊕ t′.

If (x⊕ bt, i) 6= (x′⊕ bt′ , i′), then BPEk,k′(x⊕ bt)i⊕BPEk,k′(x′⊕ bt′)i′ ⊕ t⊕ t′ = 0
with probability at most w

2n−w by (1). If (x⊕ bt, i) = (x′ ⊕ bt′ , i′), then it implies
t 6= t′, and hence BPEk,k′(x⊕ bt)i ⊕ BPEk,k′(x′ ⊕ bt′)i′ ⊕ t⊕ t′ = t⊕ t′ 6= 0.

For a fixed (t, x, i, c), TBPEk,k′,t(x)i = c if and only if BPEk,k′(x⊕bt)i = c⊕ t,
and this equation holds with probability at most 1

2n . The remaining properties
are proved similarly. ut

From Lemma 2, it follows that TBPE is
(

w
2n−w ,

w+1
2n−w

)
-super blockwise univer-

sal. Except constant multiplications zik′, i = 1, . . . , w − 1, (which also can be
precomputed), each evaluation of TBPEk,k′,t(x) requires w field multiplications.

2.3 Indistinguishability in the Multi-user Setting

Let SPT [S] be an r-round SPN based on a set of S-boxes S = (S1, . . . , Sr) and a
keyed tweakable permutation T with key space K and tweak space T . So SPT [S]
becomes a keyed tweakable permutation on {0, 1}wn with key space Kr+1 and
tweak space T .

In the multi-user setting, let ` denote the number of users. In the real
world, ` secret keys k1, . . .k` ∈ Kr+1 are chosen independently at random.
A set of independent S-boxes S = (S1, . . . , Sr) is also randomly chosen from
Perm(n)r. A distinguisher D is given oracle access to (SPTk1

[S], . . . ,SPTk` [S]) as
well as S = (S1, . . . , Sr). In the ideal world, D is given a set of independent
random tweakable permutations P̃ = (P̃1, . . . , P̃`) ∈ P̃erm(T , wn)` instead of
(SPTk1

[S], . . . ,SPTk` [S]). However, oracle access to S = (S1, . . . , Sr) is still allowed
in this world.

The adversarial goal is to tell apart the two worlds (SPTk1
[S], . . . ,SPTk` [S],S)

and (P̃1, . . . , P̃`,S) by adaptively making forward and backward queries to each
of the constructions and the S-boxes. Formally, D’s distinguishing advantage is
defined by

Advmu
SPT (D) = Pr

[
P̃1, . . . , P̃`

$← P̃erm(T , wn),S $← Perm(n)r : 1← DS,P̃1,...,P̃`
]

− Pr
[
k1, . . . ,k`

$← Kr+1,S $← Perm(n)r : 1← DS,SPTk1
[S],...,SPTk` [S]

]
.

For p, q > 0, we define

AdvSPT (p, q) = max
D

AdvSPT (D)

where the maximum is taken over all adversaries D making at most p queries to
each of the S-boxes and at most q queries to the outer tweakable permutations.
In the single-user setting with ` = 1, Advmu

SPT (D) and Advmu
SPT (p, q) will also be

written as Advsu
SPT (D) and Advsu

SPT (p, q), respectively.
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H-coefficient Technique. Suppose that a distinguisher D makes p queries to
each of the S-boxes, and total q queries to the construction oracles. The queries
made to the j-th construction oracle, denoted Cj , are recorded in a query history

QCj = (j, tj,i, xj,i, yj,i)1≤i≤qj

for j = 1, . . . , `, where qj is the number of queries made to Cj and (j, tj,i, xj,i, yj,i)
represents the evaluation obtained by the i-th query to Cj .1 So according to the
instantiation, it implies either SPTkj [S](tj,i, xj,i) = yj,i or P̃j(tj,i, xj,i) = yj,i. Let

QC = QC1 ∪ · · · ∪ QC` .

For j = 1, . . . , r, the queries made to Sj are recorded in a query history

QSj = (j, uj,i, vj,i)1≤i≤p,

where (j, uj,i, vj,i) represents the evaluation Sj(uj,i) = vj,i obtained by the i-th
query to Sj . Let

QS = QS1 ∪ · · · ∪ QSr .

Then the pair of query histories

τ = (QC ,QS)

will be called the transcript of the attack: it contains all the information that
D has obtained at the end of the attack. In this work, we will only consider
information theoretic distinguishers. Therefore we can assume that a distinguisher
is deterministic without making any redundant query, and hence the output of
D can be regarded as a function of τ , denoted D(τ) or D(QC ,QS).

Fix a transcript τ = (QC ,QS), a key k ∈ Kr+1, a tweakable permutation
P̃ ∈ P̃erm(T , wn), a set of S-boxes S = (S1, . . . , Sr) ∈ Perm(n)r and j ∈
{1, . . . , `}: if Sj(uj,i) = vj,i for every i = 1, . . . , p, then we will write Sj `
QSj . We will write S ` QS if Sj ` QSj for every j = 1, . . . , r. Similarly, if
SPTk [S](tj,i, xj,i) = yj,i (resp. P̃ (tj,i, xj,i) = yj,i) for every i = 1, . . . , qj , then we
will write SPTk [S] ` QCj (resp. P̃ ` QCj ).

Let k1, . . . ,k` ∈ Kr+1 and P̃ = (P̃1, . . . P̃`) ∈ P̃erm(T , wn)`. If SPTkj [S] `
QCj (resp. P̃j ` QCj ) for every j = 1, . . . , `, then we will write (SPTkj [S])j=1,...,` `
QC (resp. P̃ ` QC).

If there exist P̃ ∈ P̃erm(T , wn)` and S ∈ Perm(n)w that outputs τ at the
end of the interaction with D, then we will call the transcript τ attainable. So
for any attainable transcript τ = (QC ,QS), there exist P̃ ∈ P̃erm(T , wn)` and
S ∈ Perm(n)w such that P̃ ` QC and S ` QS . For an attainable transcript

1 The index j in a construction query can be dropped out in the single-user setting.
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τ = (QC ,QS), let

p1(QC |QS) = Pr
[
P̃ $← P̃erm(T , wn)`,S $← Perm(n)r : P̃ ` QC |S ` QS

]
,

p2(QC |QS) = Pr
[
k1, . . . ,k`

$← Kr+1,S $← Perm(n)r : (SPTkj [S])j ` QC |S ` QS
]
.

With these definitions, the following lemma, the core of the H-coefficients tech-
nique (without defining “bad” transcripts), will be also used in our security
proof.

Lemma 3. Let ε > 0. Suppose that for any attainable transcript τ = (QC ,QS),

p2(QC |QS) ≥ (1− ε)p1(QC |QS). (3)

Then one has
Advmu

SPT (D) ≤ ε.

The lower bound (3) is called ε-point-wise proximity of the transcript τ =
(QC ,QS). The point-wise proximity of a transcript in the multi-user setting is
guaranteed by the point-wise proximity of (QCj ,QS) for each j = 1, . . . , ` in the
single-user setting. The following lemma is a restatement of Lemma 3 in [HT16].

Lemma 4. Let ε : N× N→ R≥0 be a function such that

1. ε(x, y) + ε(x, z) ≤ ε(x, y + z) for every x, y, z ∈ N,
2. ε(·, z) and ε(z, ·) are non-decreasing functions on N for every z ∈ N.

Suppose that for any distinguisher D in the single-user setting that makes p
primitive queries to each of the underlying S-boxes and makes q construction
queries, and for any attainable transcript τ = (QC ,QS) obtained by D, one has

p2(QC |QS) ≥ (1− ε(p, q))p1(QC |QS).

Then for any distinguisher D in the multi-user setting that makes p primitive
queries to each of the underlying S-boxes and makes total q construction queries,
and for any attainable transcript τ = (QC ,QS) obtained by D, one has

p2(QC |QS) ≥ (1− ε(p+ wq, q))p1(QC |QS).

2.4 Coupling Technique

Given a finite event space Ω and two probability distributions µ and ν defined on
Ω, the total variation distance between µ and ν, denoted ‖µ− ν‖, is defined as

‖µ− ν‖ = 1
2
∑
x∈Ω
|µ(x)− ν(x)|.

12



The following definitions are also all equivalent.

‖µ− ν‖ = max
Z⊂Ω
{µ(Z)− ν(Z)} = max

Z⊂Ω
{ν(Z)− µ(Z)} = max

Z⊂Ω
{|µ(Z)− ν(Z)|}.

A coupling of µ and ν is a distribution τ on Ω × Ω such that for all x ∈ Ω,∑
y∈Ω τ(x, y) = µ(x) and for all y ∈ Ω,

∑
x∈Ω τ(x, y) = ν(x). In other words, τ

is a joint distribution whose marginal distributions are respectively µ and ν. We
will use the following two lemmas in our security proof.

Lemma 5. Let µ and ν be probability distributions on a finite event space Ω,
let τ be a coupling of µ and ν, and let (X,Y ) be a random variable sampled
according to distribution τ . Then ‖µ− ν‖ ≤ Pr[X 6= Y ].

Lemma 6. Let Ω be some finite event space and ν be the uniform probability
distribution on Ω. Let µ be a probability distribution on Ω such that ‖µ− ν‖ ≤ ε.
Then there is a set Z ⊂ Ω such that

1. |Z| ≥ (1−
√
ε)|Ω|,

2. µ(x) ≥ (1−
√
ε)ν(x) for every x ∈ Z.

We refer to [LPS12] for the proof of the above two lemmas.

3 Security of 2-Round SPNs

In this section, we will prove the following theorem.

Theorem 1. Let δ, δ′ > 0, and let n and w be positive integers such that w ≥ 2.
Let T be a (δ, δ′)-super blockwise universal tweakable permutation. Then for any
integers p and q such that wp+ 3w2q < 2n/2, one has

Advsu
SPT (p, q) ≤ w2q(δ′p+ δwq)(3δ′p+ 3δwq + 2δ′wq) + q2

2wn + q(2wp+ 6w2q)2

22n ,

Advmu
SPT (p, q) ≤ w2q(δ′p+ (δ + δ′)wq)(3δ′p+ 3δwq + 5δ′wq)

+ q2

2wn + q(2wp+ 8w2q)2

22n .

Remark 2. For the sake of simplicity, we assume that the three keyed layers
are actually the same, which is why we require T to be (δ, δ′)-super blockwise
tweakable universal. However, if one looks closely at the proof, only the middle
layer has to be super-blockwise-universal. The first and the last layer only need
to be (δ, δ′)-blockwise universal.

Remark 3. When the S-boxes are modeled as block ciphers using secret keys, the
security bound (in the standard model) is obtained by setting p = 0.

The proof of Theorem 1 relies on the following lemma (with the lower bound
simplified) and on Lemma 3 and Lemma 4.
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Lemma 7. Let p and q be positive integers such that wp + 3w2q < 2n/2, and
let D be a distinguisher in the single-user setting that makes p primitive queries
to each of S1 and S2 and makes q construction queries. Then for any attainable
transcript τ = (QC ,QS), one has

p2(QC |QS)
p1(QC |QS) ≥ 1−w2q(δ′p+δwq)(3δ′p+3δwq+2δ′wq)− q2

2wn −
q(2wp+ 6w2q)2

22n .

Outline of Proof of Lemma 7. Throughout the proof, we will write a
2-round SP construction as

SPT [S]k(t, x) = Tk2,t

(
S
||
2

(
Tk1,t

(
S
||
1 (Tk0,t(x))

)))
,

where S = (S1, S2) is a pair of two public random permutations of {0, 1}n,
k = (k0, k1, k2) ∈ K3 is the key, x ∈ {0, 1}wn is the plaintext, and, for i = 1, 2,

S
||
i : {0, 1}wn → {0, 1}wn

x = x1||x2|| . . . ||xw 7−→ Si(x1)||Si(x2)|| . . . ||Si(xw).

We also fix a distinguisher D as described in the statement and fix an attainable
transcript τ = (QC ,QS) obtained by D. Let

Q(0)
S1

= {(u, v) ∈ {0, 1}n × {0, 1}n : (1, u, v) ∈ QS},

Q(0)
S2

= {(u, v) ∈ {0, 1}n × {0, 1}n : (2, u, v) ∈ QS}

and let

U
(0)
1 = {u1 ∈ {0, 1}n : (u1, v1) ∈ Q(0)

S1
}, V

(0)
1 = {v1 ∈ {0, 1}n : (u1, v1) ∈ Q(0)

S1
},

U
(0)
2 = {u2 ∈ {0, 1}n : (u2, v2) ∈ Q(0)

S2
}, V

(0)
2 = {v2 ∈ {0, 1}n : (u2, v2) ∈ Q(0)

S2
}

denote the domains and ranges of Q(0)
S1

and Q(0)
S2

, respectively.
This type of lemma is usually proved by defining a large enough set of “good”

keys, and then, for each choice of a good key, lower bounding the probability
of observing this transcript, again by lower bounding the number of possible
“intermediate” values. A key is usually said to be good if the adversary cannot use
the transcript to follow the path of computation of the encryption/decryption of
a query up to a contradiction. However, since the S-boxes are used several times
in each round, there will not be enough information in the transcript to allow
such a naive definition. Therefore, instead of summing over the choice of the
key, we will define an extension of the transcript, that will provide the necessary
information, and then sum over every possible good extension.

We will first define what we mean by an extension of the transcript τ . Then we
will define bad extensions and explain the link between good extended transcripts
and the ratio p2(QC |QS)

p1(QC |QS) . Finally, we will show that the number of bad extended
transcripts is small enough in Lemma 8, and then show that the probability to
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obtain any good extension in the real world is sufficiently close to the probability
to obtain τ the ideal world in Lemma 9. We stress that extended transcripts
are completely virtual and are not disclosed to the adversary. They are just an
artificial intermediate step to lower bound the probability to observe transcript
τ in the real world.

Extension of a transcript. We will extend the transcript τ of the attack via
a certain randomized process. We begin with choosing a pair of keys (k0, k2) ∈ K2

uniformly at random. Once these keys have been chosen, some construction
queries will become involved in collisions. A colliding query is defined as a
construction query (t, x, y) ∈ QC such that one of the following conditions holds:

1. there exist an S-box query (1, u, v) ∈ QS and an integer i ∈ {1, . . . , w} such
that Tk0,t(x)i = u;

2. there exist an S-box query (2, u, v) ∈ QS and an integer i ∈ {1, . . . , w} such
that T−1

k2,t
(y)i = v;

3. there exist a construction query (t′, x′, y′) ∈ QC and integers i, j ∈ {1, . . . , w}
such that (t, x, y, i) 6= (t′, x′, y′, j) and Tk0,t(x)i = Tk0,t′(x′)j ;

4. there exist a construction query (t′, x′, y′) ∈ QC and integers i, j ∈ {1, . . . , w}
such that (t, x, y, i) 6= (t′, x′, y′, j) and T−1

k2,t
(y)i = T−1

k2,t′
(y′)j .

We are now going to build a new set Q′S of S-box evaluations that will play
the role of an extension of QS . For each colliding query (t, x, y) ∈ QC , we
will add tuples (1, Tk0(t, x)i, v′)1≤i≤w (if (t, x, y) collides at the input of S1) or
(2, u′, T−1

k2,t
(y)i)1≤i≤w (if (t, x, y) collides at the output of S2) by lazy sampling

v′ = S1(Tk0,t(x)i) or u′ = S−1
2 (T−1

k2,t
(y)i), as long as it has not been determined

by any existing query in QS . We finally choose a key k1 uniformly at random. An
extended transcript of τ will be defined as a tuple τ ′ = (QC ,QS ,Q′S ,k) where
k = (k0, k1, k2). For each collision between a construction query and a primitive
query, or between two construction queries, the extended transcript will contain
enough information to compute a complete round of the evaluation of the SPN.
This will be useful to lower bound the probability to get the transcript τ in the
real world.

Definition of Bad Transcript Extensions. Let

Q(1)
S1

= {(u, v) ∈ {0, 1}n × {0, 1}n : (1, u, v) ∈ QS ∪Q′S}

Q(1)
S2

= {(u, v) ∈ {0, 1}n × {0, 1}n : (2, u, v) ∈ QS ∪Q′S}.

In words, Q(1)
Si

summarizes each constraint that is forced on Si by QS and Q′S .
Let

U1 = {u1 ∈ {0, 1}n : (1, u1, v1) ∈ Q(1)
S1
}, V1 = {v1 ∈ {0, 1}n : (1, u1, v1) ∈ Q(1)

S1
},

U2 = {u2 ∈ {0, 1}n : (2, u2, v2) ∈ Q(1)
S2
}, V2 = {v2 ∈ {0, 1}n : (2, u2, v2) ∈ Q(1)

S2
}
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be the domains and ranges of Q(1)
S1

and Q(1)
S2

, respectively. We define two quantities
characterizing an extended transcript τ ′, namely

α1
def= |{(x, y) ∈ QC : Tk0(x)i ∈ U1 for some i ∈ {1, . . . , w}}| ,

α2
def=
∣∣{(x, y) ∈ QC : T−1

k2
(y)i ∈ V2 for some i ∈ {1, . . . , w}}

∣∣ .
In words, α1 (resp. α2) is the number of queries (t, x, y) ∈ QC which collide with
a query (u1, v1) ∈ Q(1)

S1
(resp. which collide with a query (u2, v2) ∈ Q(1)

S2
) in the

extended transcript. This corresponds to the number of queries (t, x, y) ∈ QC
which collide with either an original query (u1, v1) ∈ Q(0)

S1
(resp. (u2, v2) ∈ Q(0)

S2
)

or with a query (t′, x′, y′) ∈ QC at an input of S1 (resp. at the output of S2),
once the choice of (k0, k2) has been made. We will also denote

βi = |Q(1)
Si
| − |Q(0)

Si
| = |Q(1)

Si
| − p

for i = 1, 2, the number of additional queries included in the extended transcript.
We say an extended transcript τ ′ is bad if at least one of the following

conditions is fulfilled:

(C-1) there exist (t, x, y) ∈ QC , i, j ∈ {1, . . . , w}, u1 ∈ U1, and v2 ∈ V2 such that
Tk0,t(x)i = u1 and T−1

k2,t
(y)j = v2;

(C-2) there exist (t, x, y) ∈ QC , i, j ∈ {1, . . . , w}, u1 ∈ U1, and u2 ∈ U2 such
that Tk0,t(x)i = u1 and Tk1,t

(
S
||
1 (Tk0,t(x))

)
j

= u2
2;

(C-3) there exist (t, x, y) ∈ QC , i, j ∈ {1, . . . , w}, v1 ∈ V1, and v2 ∈ V2 such that
T−1
k2,t

(y)i = v2 and T−1
k1,t

((
S−1

2
)|| (

T−1
k2,t

(y)
))

j
= v1;

(C-4) there exist (t, x, y), (t′, x′, y′) ∈ QC , i, i′, j, j′ ∈ {1, . . . , w} with (t, x, j) 6=
(t′, x′, j′), u1, u

′
1 ∈ U1 such that Tk0,t(x)i = u1, Tk0,t′(x′)i′ = u′1 and

Tk1,t

(
S
||
1 (Tk0,t(x))

)
j

= Tk1,t′

(
S
||
1 (Tk0,t′(x′))

)
j′

;

(C-5) there exist (t, x, y), (t′, x′, y′) ∈ QC , i, i′, j, j′ ∈ {1, . . . , w} with (y, j) 6=
(y′, j′), v2, v

′
2 ∈ V2 such that T−1

k2,t
(y)i = v2, T−1

k2,t′
(y′)i′ = v′2 and

T−1
k1,t

((
S−1

2
)|| (

T−1
k2,t

(y)
))

j
= T−1

k1,t′

((
S−1

2
)|| (

T−1
k2,t′

(y′)
))

j′
.

Any extended transcript that is not bad will be called good. Given an original
transcript τ , we denote Θgood(τ) (resp. Θbad(τ)) the set of good (resp. bad)
extended transcripts of τ and Θ′(τ) the set of all extended transcripts of τ .

2 Note that the value S||1 (Tk0,t(x)) is well-defined thanks to the additional virtual
queries from Q′S .
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From Attainable Transcripts to Good Extended Transcripts. We
are now going to justify the usefulness of extended transcripts. For any extended
transcript τ ′ = (QC ,QS ,Q′S ,k), let us denote

pre(τ ′) =Pr
[
(k′,S) $← K3 × Perm(n)2 : (S ` QS ∪Q′S) ∧ (SPTk [S] ` QC) ∧ (k′ = k)

]
,

p(τ ′) =Pr
[
S $← Perm(n)2 : SPT [S]k ` QC

∣∣∣(S1 ` Q(1)
S1

) ∧ (S2 ` Q(1)
S2

)
]
.

Note that one has

Pr
[
(P̃ ,S) $← P̃erm(T , wn)× Perm(n)2 : (S ` QS) ∧ (P̃ ` QC)

]
≤ 1

(2wn)q(2n)p(2n)p
,

Pr
[
(k,S) $← K3 × Perm(n)2 : (S ` QS) ∧ (SPTk [S] ` QC)

]
≥

∑
τ ′∈Θgood(τ)

pre(τ ′) ≥
∑

τ ′∈Θgood(τ)

1
|K|3(2n)p+β1(2n)p+β2

p(τ ′),

which gives

p1(QC |QS) ≤ 1
(2wn)q

,

p2(QC |QS) ≥
∑

τ ′∈Θgood(τ)

1
|K|3(2n − p)β1(2n − p)β2

p(τ ′).

Thus one has
p2(QC |QS)
p1(QC |QS) ≥

∑
τ ′∈Θgood(τ)

(2wn)q
|K|3(2n − p)β1(2n − p)β2

p(τ ′)

≥ min
τ ′∈Θgood(τ)

((2wn)qp(τ ′))
∑

τ ′∈Θgood(τ)

1
|K|3(2n − p)β1(2n − p)β2

.

Note that the weighted sum
∑
τ ′∈Θgood(τ)

1
|K|3(2n−p)β1 (2n−p)β2

corresponds exactly
to the probability that a random extended transcript is good when it is sampled
as follows:

1. choose keys k0, k2 ∈ K uniformly and independently at random;
2. choose the partial extension of the S-box queries based on the new collisions
Q′S uniformly at random (meaning that each possible u or v is chosen
uniformly at random in the set of its authorized values);

3. finally choose k1 uniformly at random, independently from everything else.

Thus, the exact probability of observing the extended transcript τ ′ is

1
|K|3(2n − p)β1(2n − p)β2

,
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and we have ∑
τ ′∈Θgood(τ)

1
|K|3(2n − p)β1(2n − p)β2

= Pr [τ ′ ∈ Θgood(τ)] .

One finally gets

p2(QC |QS)
p1(QC |QS) ≥ Pr [τ ′ ∈ Θgood(τ)] · min

τ ′∈Θgood(τ)
((2wn)qp(τ ′)). (4)

Lemma 8 and Lemma 9 lower bound Pr [τ ′ ∈ Θgood(τ)] (by upper bounding
Pr [τ ′ ∈ Θbad(τ)]) and minτ ′∈Θgood(τ)((2wn)qp(τ ′)), respectively. Then combining
(4) with Lemma 8 and Lemma 9 will complete the proof of Lemma 7.

Lemma 8. One has

Pr [τ ′ ∈ Θbad(τ)] ≤ w2q(δ′p+ δwq)(3δ′p+ 3δwq + 2δ′wq).

Proof. We fix any attainable transcript, denoted (QC ,Q(0)
S1
,Q(0)

S2
). For any fixed

construction query (t, x, y) ∈ QC , define event

Coll1(t, x, y)⇔ there exist i ∈ {1, . . . , w} and u1 ∈ U1 such that Tk0,t(x)i = u1.

This event can be broken down into the following two subevents:

– there exist i ∈ {1, . . . , w}, j ∈ {1, . . . , p} such that Tk0,t(x)i = uj ,
– there exist (t′, x′, y′) ∈ QC , i, j ∈ {1, . . . , w} such that (t, x, y, i) 6= (t′, x′, y′, j)

and Tk0,t(x)i = Tk0,t′(x′)j .

Note that these events only involve queries from the original transcript, which
means that the choice of the key is actually independent from these values. By
the blockwise uniformity of T , one has

Pr [k0 ∈ K : Coll1(t, x, y)] ≤ δ′wp+ δw2q. (5)

Similarly, let

Coll2(t, x, y)⇔ there exist i ∈ {1, . . . , w} and v2 ∈ V2 such that T−1
k2,t

(y)i = v2.

Then one has
Pr [k2 ∈ K : Coll2(x, y)] ≤ δ′wp+ δw2q. (6)

Also note that one has |Q(1)
S1
|, |Q(1)

S2
| ≤ p+ wq, as additional tuples in Q′S come

from the completion of partial information about a construction query.
We now upper bound the probabilities of the five conditions in turn. The sets

of attainable transcripts fulfilling condition (C-1), (C-2), (C-3), (C-4), (C-5) will
be denoted Θ1, Θ2, Θ3, Θ4, Θ5, respectively.
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Condition (C-1). One has

Pr [τ ′ ∈ Θ1] ≤
∑

(t,x,y)∈QC

Pr [Coll1(t, x, y) ∧ Coll2(t, x, y)] .

Since the random choice of k0 and k2 are independent, and by (5) and (6), one
has

Pr [τ ′ ∈ Θ1] ≤ q(δ′wp+ δw2q)2.

Condition (C-2) and (C-3). Fix any query (t, x, y) ∈ QC . Since the random
choice of k1 is independent from the queries transcript and from the choice of
k0, the probability, over the random choice of k1, that there exist i ∈ {1, . . . , w}
and u2 ∈ U2 such that Tk1,t

(
S
||
1 (Tk0,t(x))

)
i

= u2, conditioned on Coll1(t, x, y),
is upper bounded by δ′w(p + wq). Thus, by summing over every construction
query and using (5), one has

Pr [τ ′ ∈ Θ2] ≤ δ′wq(p+ wq)(δ′wp+ δw2q).

Similarly, one has

Pr [τ ′ ∈ Θ3] ≤ δ′wq(p+ wq)(δ′wp+ δw2q).

Conditions (C-4), and (C-5). Given two distinct pairs (i, (t, x, y)), (i′, (t′, x′, y′)) ∈
{1, . . . , w} × QC such that (t, x, y) and (t′, x′, y′) are both colliding queries, let
us define event

Coll(t, x, y, t′, x′, y′)i,i′ ⇔ Tk1,t

(
S
||
1 (Tk0,t(x))

)
i

= Tk1,t′

(
S
||
1 (Tk0,t′(x′))

)
i′
.

Then for any distinct pairs (i, (t, x, y)), (i′, (t′, x′, y′)) ∈ {1, . . . , w}×QC , one has

Pr [Coll1(t, x, y) ∧ Coll1(t′, x′, y′) ∧ Coll(t, x, y, t′, x′, y′)i,i′ ]
= Pr [Coll(t, x, y, t′, x′, y′)i,i′ |Coll1(t, x, y) ∧ Coll1(t′, x′, y′)]

× Pr [Coll1(t′, x′, y′) |Coll1(t, x, y)]
× Pr [Coll1(t, x, y)] ≤ δ · 1 · (δ′wp+ δw2q),

where, for the last inequality, we used the (δ, δ′)-blockwise uniformity of T and
the fact that the event Coll1(t, x, y) ∧ Coll1(t′, x′, y′) only depends on the choice
of k0 whereas Coll(t, x, y, t′, x′, y′)i,i′ involves the choice of k1. Thus, by summing
over every such pair, one obtains

Pr [τ ′ ∈ Θ4] ≤ δw2q2(δ′wp+ δw2q).

Similarly, one has

Pr [τ ′ ∈ Θ5] ≤ δw2q2(δ′wp+ δw2q).

The lemma follows by taking a union bound over all the conditions. ut
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Our next step is to study good extended transcripts.

Lemma 9. For any good extended transcript τ ′, one has

(2wn)qp(τ ′) ≥ 1− q2

2wn −
q(2wp+ 6w2q)2

22n .

Proof. Fix any good extended transcript τ ′ = (QC ,QS ,Q′S , (k0, k1, k2)). Let us
denote p1 = |Q(1)

S1
| and p2 = |Q(1)

S2
|.

Our goal is then to prove that p(τ ′) is close enough to 1/(2wn)q. In order to
do so, we are going to group the construction queries according to the type of
collision they are involved in:

QU1 = {(t, x, y) ∈ QC : Tk0,t(x)i ∈ U1 for i = 1, . . . , w}
QV2 = {(t, x, y) ∈ QC : T−1

k2,t
(y)i ∈ V2 for i = 1, . . . , w}

Q0 = QC \ (QU1 ∪QV2) .

Note that, thanks to the additional queries from Q′S , there is an equivalence
between the events “Tk0,t(x)i ∈ U1 for each i = 1, . . . , w” and “there exists
i ∈ {1, . . . , w} such that Tk0,t(x)i ∈ U1”. Thus, one has by definition |QU1 | = α1.
Similarly, one has |QV2 | = α2. Also note that these sets form a partition of QC :

– Q0 ∩QU1 = ∅ by definition;
– Q0 ∩QV2 = ∅ by definition;
– QU1 ∩QV2 = ∅ since otherwise τ ′ would satisfy (C-1).

If we denote respectively EU1 ,EV2 and E0 the event SPT [S]k ` QU1 ,QV2 ,Q0, the
event SPT [S]k ` QC is equivalent to EU1 ∧ EV2 ∧ E0. Note that, by definition
of QU1 , each (t, x, y) ∈ QU1 is such that Tk0,t(x)i ∈ U1 for each i = 1, . . . , w;
this means that the output of S1 is already fixed by Q(1)

S1
and EU1 actually only

involves S2. A similar reasoning can be made for EV2 . Thus we have

p(τ ′) = Pr
[
EU1 ∧ EV2 ∧ E0

∣∣∣ S1 ` Q(1)
S1
∧ S2 ` Q(1)

S2

]
= Pr

[
EU1 ∧ EV2

∣∣∣ S1 ` Q(1)
S1
∧ S2 ` Q(1)

S2

]
× Pr

[
E0

∣∣∣ EU1 ∧ EV2 ∧ S1 ` Q(1)
S1
∧ S2 ` Q(1)

S2

]
= Pr

[
EU1

∣∣∣ S2 ` Q(1)
S2

]
· Pr

[
EV2

∣∣∣ S1 ` Q(1)
S1

]
× Pr

[
E0

∣∣∣ EU1 ∧ EV2 ∧ S1 ` Q(1)
S1
∧ S2 ` Q(1)

S2

]
, (7)

where Pr
[
EU1

∣∣∣S2 ` Q(1)
S2

]
(resp. Pr

[
EV2

∣∣∣S1 ` Q(1)
S1

]
) is the probability, over the

random choice of permutation S2 (resp. permutation S1), that S2 (resp. S1)
is compatible with the additional equations implied by QU1 (resp. by QV2),
conditioned on the event S2 ` Q(1)

S2
(resp. S1 ` Q(1)

S1
).
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In order to evaluate Pr
[
EU1

∣∣∣S2 ` Q(1)
S2

]
and Pr

[
EV2

∣∣∣S1 ` Q(1)
S1

]
, we first note

that, since we condition on the event S2 ` Q(1)
S2

, S2 is already fixed on p2 values.
Second, remark that this event is actually equivalent to the following equations:

S2

(
Tk1,t

(
S
||
1 (Tk0,t(x))

)
i

)
= T−1

k2,t
(y)i

for every (t, x, y) ∈ QU1 and i ∈ {1, . . . , w}. All the values Tk1,t

(
S
||
1 (Tk0,t(x))

)
i

are actually pairwise distinct and outside U2 since otherwise (C-2) or (C-4) would
be satisfied. Similarly, the values T−1

k2,t
(y)i are pairwise distinct and outside V2

since otherwise (C-1) would be satisfied. Indeed, if a collision between two values
T−1
k2,t

(y)i had occured, then these values would also appear in V2. Hence the event
EU1 is actually equivalent to wα1 new and distinct equations on S2, so that

Pr
[
EU1

∣∣∣S2 ` Q(1)
S2

]
= 1

(2n − p2)wα1

. (8)

By a similar reasoning, one has

Pr
[
EV2

∣∣∣S1 ` Q(1)
S1

]
= 1

(2n − p1)wα2

. (9)

The next step is to lower bound Pr
[
E0

∣∣∣EU1 ∧ EV2 ∧ S1 ` Q(1)
S1
∧ S2 ` Q(1)

S2

]
.

Conditioned on EU1 ∧ EV2 ∧ S1 ` Q(1)
S1
∧ S2 ` Q(1)

S2
, S1 and S2 are fixed on

respectively p1 + wα2 and p2 + wα1 values. Let U ′1 (resp. U ′2) be the set of
values on which S1 (resp. S2) is already fixed and V ′1 = {S1(u) : u ∈ U ′1} (resp.
V ′2 = {S2(u) : u ∈ U ′2}). Let also q0 = |Q0|. For clarity, we denote

Q0 = {(t1, x1, y1), . . . , (tq0 , xq0 , yq0)},

using an arbitrary ordering of the queries.
Our goal is now to compute a lower bound on the number of possible

“intermediate values” such that the event E0 is equivalent to new and dis-
tinct equations on S1 and S2. First note that the values Tk0,t(x)i for each
(t, x, y) ∈ Q0, i ∈ {1, . . . , w} are pairwise distinct and outside U ′1. Indeed, if this
were not the case, then at least one query in Q0 would be a colliding query. By
definition of our security experiment, this means that this query would either be
in EU1 or EV2 , depending on the type of collision it is involved in. Similarly, the
values T−1

k2,t
(y)i for each (t, x, y) ∈ Q0, i ∈ {1, . . . , w} are pairwise distinct and

outside V ′2 .
Let N0 be the number of tuples of distinct values (v1,i,j)1≤i≤q0,1≤j≤w in

{0, 1}n\V ′1 such that the values (Tk1,ti (||wk=1v1,i,k)j)1≤i≤q0,1≤j≤w are also pairwise
distinct and outside U ′2. Let i ∈ {1, . . . , q0}. There are exactly (2n − |V ′1 | −w(i−
1))w possible tuples of distinct values (v1,i,j)1≤j≤w in {0, 1}n \V ′1 that will also be
different from the previous values v1,i,j for i < q0 and j ∈ {1, . . . , w}. Similarly,
there are exactly (2n − |U ′2| − w(i − 1))w possible tuples of distinct values for
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(Tk1,ti(||wk=1v1,i,k))1≤j≤w in {0, 1}n\U ′2 that will also be different from the previous
values Tk1,ti(||wk=1v1,i,k) for i < q0 and j ∈ {1, . . . , w}. This removes at most
2wn− (2n− |U ′2| −w(i− 1))w tuples of values for (Tk1,ti(||wk=1v1,i,k))1≤j≤w. Since
Tk1,ti is a permutation, we have to remove at most 2wn− (2n− |U ′2| −w(i− 1))w
possible tuples of values for (v1,i,j)1≤j≤w. Thus

N0 ≥
q0∏
i=1

((2n − |V ′1 | − w(i− 1))w + (2n − |U ′2| − w(i− 1))w − 2wn) . (10)

For any tuple of values (v1,i,j) fulfilling the previous conditions, then, conditioned
on S1 satisfying S1(Tk0,ti(xi))j = v1,i,j , the event E0 is equivalent to wq0 distinct
and new equations on S2. Hence, it follows that

Pr
[
E0

∣∣∣ EU1 ∧ EV2 ∧ S1 ` Q(1)
S1
∧ S2 ` Q(1)

S2

]
≥ N0

(2n − p1 − wα2)wq0(2n − p2 − wα1)wq0

. (11)

Combining (7), (8), (9), (10) (11), we obtain

(2wn)qp(τ ′) ≥
(2wn)q

q0−1∏
i=0

(
(2n − p1 − w(α2 + i))w

+(2n − p2 − w(α1 + i))w − 2wn
)

(2n − p1)wq0+wα2(2n − p2)wq0+wα1

= (2wn)q
2q0wn(2n − p1)wα2(2n − p2)wα1

×
q0−1∏
i=0

2wn
(

(2n − p1 − w(α2 + i))w
+(2n − p2 − w(α1 + i))w − 2wn

)
(2n − p1 − wα2 − wi)w(2n − p2 − wα1 − wi)w

≥ (2wn)q
2q0wn(2n − p1)wα2(2n − p2)wα1

·
q0−1∏
i=0

∆i

where

∆i = 1−
(

2wn

(2n − p2 − wα1 − wi)w
− 1
)(

2wn

(2n − p1 − wα2 − wi)w
− 1
)

for i = 0, . . . , q0 − 1. We also have α1 ≤ q and p2 ≤ p+ wq, which gives

2wn

(2n − p2 − wα1 − wi)w
≤
(

2n

2n − p− 3wq

)w
≤
(

1 + p+ 3wq
2n − p− 3wq

)w
.

Then, since wp+ 3w2q < 2n/2, we can apply Lemma 1 and we get

2wn

(2n − p2 − wα1 − wi)w
≤ 1 + wp+ 3w2q

2n − wp− 3w2q
≤ 1 + 2wp+ 6w2q

2n .
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Similarly, one has

2wn

(2n − p1 − wα2 − wi)w
≤ 1 + 2wp+ 6w2q

2n .

Thus one has

∆i ≥ 1−
(

2wp+ 6w2q

2n

)2

.

Moreover, one has

(2wn)q
2q0wn(2n − p1)wα2(2n − p2)wα1

≥ (2wn − q)q

2qwn ≥
(

1− q

2wn
)q
≥ 1− q2

2wn .

Finally, we get

(2wn)qp(τ ′) ≥
(

1− q2

2wn

)(
1−

(
2wp+ 6w2q

2n

)2)q0

≥
(

1− q2

2wn

)(
1− q(2wp+ 6w2q)2

22n

)
≥ 1− q2

2wn −
q(2wp+ 6w2q)2

22n . ut

4 Asymptotically Optimal Security of SPNs

In this section, we will prove that if T is a super blockwise tweakable universal
permutation, then the security of SPT converges to 2n (in terms of the threshold
number of queries) as the number of rounds r increases.

Theorem 2. For an even integer r, let SPT be an r-round substitution-permutation
network based on a (δ, δ′)-super blockwise tweakable universal permutation T .
Then one has

Advmu
SPT (p, q) ≤ 4√q

(
2wpδ′ + 2w2q(δ′ + δ) + w2δ

) r
4 .

Hence, assuming δ, δ′ ' 2−n and p = q, an r-round SPT is secure up to 2
rn
r+2

queries.
Proof of Theorem 2. We assume that r = 2s for a positive integer s. Let
SPT [S] denote a variant of SPT [S] without the last permutation layer. Then one
has

SPT [S] =
(

SPT
−1

[S(2)]
)−1

◦ T ◦ SPT [S(1)]

for S(1) = (S1, . . . , Ss) and S(2) = (S−1
2s , . . . , S

−1
s+1). Our proof strategy is to first

prove NCPA-security of SP in the multi-user setting and lift it to CCA-security
by doubling the number of rounds.
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Suppose that a distinguisher D makes p primitive queries to each of the
underlying S-boxes and makes q construction queries in the multi-user setting,
obtaining an attainable transcript τ = (QC ,QS). We can partition QC and QS
as follows.

QC = QC1 ∪ · · · ∪ QC` ,
QS = QS1 ∪ · · · ∪ QSs ∪QSs+1 ∪ · · · ∪ QS2s ,

where we will write

Q(1)
S = QS1 ∪ · · · ∪ QSs ,

Q(2)
S = QSs+1 ∪ · · · ∪ QS2s .

Throughout the proof, we will write QCj = (tj,i, xj,i, yj,i)1≤i≤qj for j = 1, . . . , `.
So qj denotes the number of queries made to the j-th construction oracle Cj ,
and (tj,i, xj,i, yj,i) represents the evaluation obtained by the i-th query to Cj .
We will also write t = (tj)1≤j≤`, x = (xj)1≤j≤`, y = (yj)1≤j≤`, where

tj = (tj,1, . . . , tj,qj ),
xj = (xj,1, . . . , xj,qj ),
yj = (yj,1, . . . , yj,qj ),

for j = 1, . . . , `. Without loss of generality, we can assume that the indices (j, i)
have been grouped by their tweaks tj,i; suppose that tj consists of d different
tweaks, t∗1, . . . , t∗d ∈ T . Then by dropping j for simplicity (when it will be clear
from the context), we can write

xj = (x∗1, . . . ,x∗d),

so that x∗i = (x∗i,1, . . . , x∗i,q′
i
) corresponds to t∗i for i = 1, . . . , d, where q′i is the

multiplicity of t∗i in tj (satisfying q′1 + . . .+ q′d = qβ). Let

Ωtj =
{

(u1, . . . , uqj ) ∈ ({0, 1}n)qj : ∀i 6= i′, (tj,i, ui) 6= (tj,i′ , ui′)
}
,

Ωt = Ωt1 × . . .×Ωt` .

With these notations, we define probability distributions µ1 and µ2 on Ωt; for
each z = (z1, . . . , z`) ∈ Ωt,

µ1(z) def= Pr
[

k1, . . . ,k`
$← Ks,S $← Perm(n)s : ∀j, SPTkj [S] ` (tj,i, xj,i, zj,i)1≤i≤qj |S ` Q(1)

S

]
,

µ2(z) def= Pr
[

k1, . . . ,k`
$← Ks,S $← Perm(n)s : ∀j, SPTkj [S] ` (tj,i, yj,i, zj,i)1≤i≤qj |S ` Q(2)

S

]
,

where we write zj = (zj,i)1≤i≤qj for j = 1, . . . , `. Using the coupling technique, we
can upper bound the statistical distance between µc and the uniform probability
distribution for c = 1, 2. The proof of the following lemma will be given at
Appendix A.
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Lemma 10. For c = 1, 2, let µc be the probability distribution defined as above,
and let ν be the uniform probability distribution on Ωt. Then for c = 1, 2, one
has ‖µc − ν‖ ≤ ε, where

ε = ε(p, q) def= q
(
2wpδ′ + 2w2q(δ′ + δ) + w2δ

)s
.

By Lemma 6 and Lemma 10, we have a subset Z1 ⊂ Ωt such that |Z1| ≥
(1−

√
ε)|Ωt| and

µ1(z) ≥ (1−
√
ε)ν(z) = 1−

√
ε

|Ωt|
for every z ∈ Z1. Similarly, we also have a subset Z2 ⊂ Ωt such that |Z2| ≥
(1−

√
ε)|Ωt| and

µ2(z) ≥ (1−
√
ε)ν(z) = 1−

√
ε

|Ωt|
for every z ∈ Z2. For a fixed key (k1, . . . , k`) ∈ K`, let

Z ′2 = {(T−1
k1,t1

(z1), . . . , T−1
,k`,t`(z`)) : (z1, . . . , z`) ∈ Z2},

and let Z = Z1 ∩ Z ′2. Then it follows that

p2(QC |QS) = Pr
[
∀j,SPTkj [S] ` QCj |S ` QS

]
≥ 1
|K|`

∑
k1,...,k`∈K
z1,...,z`∈Z

Pr
[
∀j,SPTkj [S] ` (tj ,xj , zj) |S ` Q(1)

S

]

× Pr
[
∀j,SPT

−1

kj [S] ` (tj ,yj , Tkj ,tj (zj)) |S ` Q(2)
S

]
≥ (1− 2

√
ε)|Ωt| ·

(
1−
√
ε

|Ωt|

)2

≥ (1− 4
√
ε)p1(QC |QS)

since |Z| ≥ (1− 2
√
ε)|Ωt|. By Lemma 3, we complete the proof of Theorem 2.

References

[BDPA09] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Kec-
cak Sponge Function Family Main Document. Submission to NIST (Round
2), 2009. Available at http://keccak.noekeon.org/Keccak-main-2.0.
pdf.

[BKL+17] Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Mas-
solino, Florian Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe,
François-Xavier Standaert, Yusuke Todo, and Benoît Viguier. GIMLI: a
cross-platform permutation. In Wieland Fischer and Naofumi Homma,
editors, Cryptographic Hardware and Embedded Systems - CHES 2017,
volume 10529 of LNCS. Springer, 2017. To appear. Also available at
http://eprint.iacr.org/2017/630.

25

http://keccak.noekeon.org/Keccak-main-2.0.pdf
http://keccak.noekeon.org/Keccak-main-2.0.pdf
http://eprint.iacr.org/2017/630


[CDMS10] Jean-Sebastien Coron, Yevgeniy Dodis, Avradip Mandal, and Yannick
Seurin. A Domain Extender for the Ideal Cipher. In Daniele Micciancio,
editor, Theory of Cryptography, volume 5978 of LNCS, pages 273–289.
Springer, 2010.

[CHK+16] Jean-Sébastien Coron, Thomas Holenstein, Robin Künzler, Jacques Patarin,
Yannick Seurin, and Stefano Tessaro. How to Build an Ideal Cipher: The
Indifferentiability of the Feistel Construction. J. Cryptology, 29(1):61–114,
2016.

[CLL+14] Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and John P.
Steinberger. Minimizing the Two-Round Even-Mansour Cipher. In Juan A.
Garay and Rosario Gennaro, editors, Advances in Cryptology - CRYPTO
2014 (Proceedings, Part I), volume 8616 of LNCS, pages 39–56. Springer,
2014.

[CLS15] Benoît Cogliati, Rodolphe Lampe, and Yannick Seurin. Tweaking Even-
Mansour Ciphers. In Rosario Gennaro and Matthew Robshaw, editors,
Advances in Cryptology - CRYPTO 2015 (Proceedings, Part I), volume
9215 of LNCS, pages 189–208. Springer, 2015.

[CS06a] Debrup Chakraborty and Palash Sarka. HCH: A New Tweakable Encipher-
ing Scheme Using the Hash-Encrypt-Hash Approach. In Rana Barua and
Tanja Lange, editors, Progress in Cryptology - INDOCRYPT 2006, volume
4329 of LNCS, pages 287–302. Springer, 2006.

[CS06b] Debrup Chakraborty and Palash Sarkar. A New Mode of Encryption
Providing a Tweakable Strong Pseudo-random Permutation. In Matthew
Robshaw, editor, Fast Software Encryption - FSE 2006, volume 4047 of
LNCS, pages 293–309. Springer, 2006.

[CS14] Shan Chen and John Steinberger. Tight Security Bounds for Key-
Alternating Ciphers. In Phong Q. Nguyen and Elisabeth Oswald, editors,
Advances in Cryptology - EUROCRYPT 2014, volume 8441 of LNCS, pages
327–350. Springer, 2014.

[DKS+17] Yevgeniy Dodis, Jonathan Katz, John P. Steinberger, Aishwarya Thiru-
vengadam, and Zhe Zhang. Provable Security of Substitution-Permutation
Networks. IACR Cryptology ePrint Archive, Report 2017/016, 2017. Avail-
able at http://eprint.iacr.org/2017/016.

[DSSL16] Yevgeniy Dodis, Martijn Stam, John P. Steinberger, and Tianren Liu.
Indifferentiability of Confusion-Diffusion Networks. In Marc Fischlin and
Jean-Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT
2016 (Proceedings, Part II), volume 9666 of LNCS, pages 679–704. Springer,
2016.

[EM97] Shimon Even and Yishay Mansour. A Construction of a Cipher from a
Single Pseudorandom Permutation. J. Cryptology, 10(3):151–162, 1997.

[FM07] Scott R. Fluhrer and David A. McGrew. The Security of the Extended
Codebook (XCB) Mode of Operation. In Carlisle Adams, Ali Miri, and
Michael Wiener, editors, SAC 2007: Selected Areas in Cryptography, volume
4876 of LNCS, pages 311–327. Springer, 2007.

[GJMN16] Robert Granger, Philipp Jovanovic, Bart Mennink, and Samuel Neves.
Improved Masking for Tweakable Blockciphers with Applications to Au-
thenticated Encryption. In Marc Fischlin and Jean-Sebastien Coron, editors,
Advances in Cryptology - Eurocrypt 2016 (Proceedings, Part I), volume
9665 of LNCS, pages 263–293. Springer, 2016.

26

http://eprint.iacr.org/2017/016


[Hal04] Shai Halevi. EME*: Extending EME to Handle Arbitrary-Length Messages
with Associated Data. In Anne Canteaut and Kapaleeswaran Viswanathan,
editors, Progress in Cryptology - INDOCRYPT 2004, volume 3348 of LNCS,
pages 315–327. Springer, 2004.

[Hal07] Shai Halevi. Invertible Universal Hashing and the TET Encryption Mode.
In Alfred Menezes, editor, Advances in Cryptology - Crypto 2007, volume
4622 of LNCS, pages 412–429. Springer, 2007.

[HKT11] Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The Equivalence
of the Random Oracle Model and the Ideal Cipher Model, Revisited. In
Lance Fortnow and Salil P. Vadhan, editors, Symposium on Theory of
Computing - STOC 2011, pages 89–98. ACM, 2011.

[HR03] Shai Halevi and Phillip Rogaway. A Tweakable Enciphering Mode. In
Dan Boneh, editor, Advances in Cryptology - Crypto 2003, volume 2729 of
LNCS, pages 482–499. Springer, 2003.

[HR04] Shai Halevi and Phillip Rogaway. A Parallelizable Enciphering Mode. In
Tatsuaki Okamoto, editor, Topics in Cryptology - CT-RSA 2004, volume
2964 of LNCS, pages 292–304. Springer, 2004.

[HR10] Viet Tung Hoang and Phillip Rogaway. On Generalized Feistel Networks.
In Tal Rabin, editor, Advances in Cryptology - CRYPTO 2010, volume
6223 of LNCS, pages 613–630. Springer, 2010.

[HT16] Viet Tung Hoang and Stefano Tessaro. Key-Alternating Ciphers and Key-
Length Extension: Exact Bounds and Multi-user Security. In Matthew
Robshaw and Jonathan Katz, editors, Advances in Cryptology - CRYPTO
2016 (Proceedings, Part I), volume 9814 of LNCS, pages 3–32. Springer,
2016.

[IK00] Tetsu Iwata and Kaoru Kurosawa. On the Pseudorandomness of the AES
Finalists - RC6 and Serpent. In Bruce Schneier, editor, Fast Software
Encryption - FSE 2000, volume 1978 of LNCS, pages 231–243. Springer,
2000.

[LPS12] Rodolphe Lampe, Jacques Patarin, and Yannick Seurin. An Asymptotically
Tight Security Analysis of the Iterated Even-Mansour Cipher. In Xiaoyun
Wang and Kazue Sako, editors, Advances in Cryptology - ASIACRYPT
2012, volume 7658 of LNCS, pages 278–295. Springer, 2012.

[LR88] Michael Luby and Charles Rackoff. How to Construct Pseudorandom
Permutations from Pseudorandom Functions. SIAM Journal on Computing,
17(2):373–386, 1988.

[Men16] Bart Mennink. XPX: Generalized Tweakable Even-Mansour with Improved
Security Guarantees. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology - Crypto 2016 (Proceedings, Part I), volume 9814
of LNCS, pages 64–94. Springer, 2016.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability,
Impossibility Results on Reductions, and Applications to the Random Ora-
cle Methodology. In Moni Naor, editor, Theory of Cryptography Conference-
TCC 2004, volume 2951 of LNCS, pages 21–39. Springer, 2004.

[MRS09] Ben Morris, Phillip Rogaway, and Till Stegers. How to Encipher Messages
on a Small Domain. In Shai Halevi, editor, Advances in Cryptology -
CRYPTO 2009, volume 5677 of LNCS, pages 286–302. Springer, 2009.

[MV15] Eric Miles and Emanuele Viola. Substitution-Permutation Networks, Pseu-
dorandom Functions, and Natural Proofs. J. ACM, 62(6):46:1–46:29, De-
cember 2015.

27



[Pat03] Jacques Patarin. Luby-Rackoff: 7 Rounds Are Enough for 2n(1−ε) Security.
In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, volume
2729 of LNCS, pages 513–529. Springer, 2003.

[Pat04] Jacques Patarin. Security of Random Feistel Schemes with 5 or More
Rounds. In Matthew K. Franklin, editor, Advances in Cryptology -
CRYPTO 2004, volume 3152 of LNCS, pages 106–122. Springer, 2004.

[Pat08] Jacques Patarin. The “Coefficients H” Technique. In Roberto Maria Avanzi,
Liam Keliher, and Francesco Sica, editors, Selected Areas in Cryptography -
SAC 2008, volume 5381 of LNCS, pages 328–345. Springer, 2008.

[Pat10] Jacques Patarin. Security of Balanced and Unbalanced Feistel Schemes
with Linear Non Equalities. IACR Cryptology ePrint Archive, Report
2010/293, 2010. Available at http://eprint.iacr.org/2010/293.

[Tes14] Stefano Tessaro. Optimally Secure Block Ciphers from Ideal Primitives.
In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology -
ASIACRYPT 2014, volume 9453 of LNCS, pages 437–462. Springer, 2014.

[WFW05] Peng Wang, Dengguo Feng, and Wenling Wu. The Security of the Extended
Codebook (XCB) Mode of Operation. In Dengguo Feng, Dongdai Lin,
and Moti Yung, editors, CISC 2005: Information Security and Cryptology,
volume 3822 of LNCS, pages 175–188. Springer, 2005.

A Proof of Lemma 10

We will prove Lemma 10 when c = 1; the proof is similar when c = 2. We begin
by defining a lexicographical order on the set of indices (with an extra element
(0, 0) added)

I = {(j, i) : 1 ≤ j ≤ `, 1 ≤ i ≤ qj} ∪ {(0, 0)}

such that (j, i) < (j′, i′) if and only if either j < j′ or (j = j′ and i < i′). The index
immediately following (j, i) will be denoted (j, i)+, and the one immediately
followed by (j, i) will be denoted (j, i)−. For example, (1, 2)+ = (1, 3) and
(1, 3)− = (1, 2) if q1 > 2, and (1, 2)+ = (2, 1) and (2, 1)− = (1, 2) if q1 = 2.

For (β, α) ∈ I, we define probability distributions πβ,α as follows: for each
z = (zj)1≤j≤` = (zj,i)1≤j≤`,1≤i≤qj ∈ Ωt1 × · · · × Ωt` , πβ,α(z) is defined as the
conditional probability that

1.
(

SPTk1
[S](t1,x1), . . . ,SPTkβ−1

[S](tβ−1,xβ−1)
)

= (z1, . . . , zβ−1),

2.
(

SPTkβ [S](tβ,1, xβ,1), . . . ,SPTkβ [S](tβ,α, xβ,α)
)

= (zβ,1, . . . , zβ,α),

3.
(

SPTkβ [S](tβ,α+1, x
′
β,α+1), . . . ,SPTkβ [S](tβ,qβ , x′β,qβ )

)
=
(
zβ,α+1, . . . , zβ,qβ

)
,

4.
(

SPTkβ+1
[S](tβ+1,x′β+1), . . . ,SPTk` [S](t`,x′`)

)
= (zβ+1, . . . , z`),

subject to S ` Q(1)
S , when

1. (kj)1≤j≤`
$← (Ks)`,

2. S $← Perm(n)s,
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3. (x′β,α+1, . . . , x
′
β,qβ

) $← Ωtβ (xβ , α),

4. x′β+1
$← Ωtβ+1 , . . . ,x′`

$← Ωt` ,

where

Ωtβ (xβ , α) def=
{

(uα+1, . . . , uq) : (xβ,1, . . . , xβ,α, uα+1, . . . , uq) ∈ Ωtβ
}
.

Then we can check that π0,0 = ν and π`,q` = µ1 by definition. Since

‖µ1 − ν‖ ≤
∑

m∈I\{(0,0)}

‖πm − πm−‖, (12)

we will focus on upper bounding ‖πm − πm−‖ for each m = (β, α) ∈ I \ {(0, 0)}.
In order to couple πm and πm− , we define a sampling process that returns a

pair of random variables (A,B) ∈ Ω ×Ω, where we will write

A = (a1, . . . ,a`)
B = (b1, . . . ,b`).

First, we initialize sets D[h] and R[h], h = 1, . . . , s, as the domain and the
range of the evaluations of Sh that have been fixed by Q(1)

S . All the evaluations
of the S-boxes are also recorded in variables S[h, x]. This stage can be formally
described as follows.

Initialization
for l← 1 to s do

D[h]← {x ∈ {0, 1}n : (h, x, y) ∈ QSh for some y}
R[h]← {y ∈ {0, 1}n : (h, x, y) ∈ QSh for some x}
for x ∈ {0, 1}n do

if (h, x, y) ∈ QSh then
S[h, x]← y

else
S[h, x]← ⊥

The sampling process makes calls to a subroutine SB that faithfully simulates
independent random S-boxes by lazy sampling. Precisely, it works as follows.

Subroutine SB(h, z)
if S[h, z] = ⊥ then

S[h, z] $← {0, 1}n\R[h]
D[h]← D[h] ∪ {z}
R[h]← R[h] ∪ {S[h, z]}

return S[h, z]

In order to sample aj and bj for j = 1, . . . , β− 1, this process initializes variables
z[j, i] as xj,i for (j, i) ≤ (β − 1, qβ−1), and faithfully updates them as follows.
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for (j, i) ≤ (β − 1, qβ−1) do
z[j, i]← xj,i

for j ← 1 to β − 1 do
for h← 1 to s do

k
$← K

for i← 1 to qj do
z[j, i]← Tk,t[j,i](z[j, i])
Break z[j, i] = z[j, i]1|| . . . ||z[j, i]w into n-bit blocks
z[j, i]← SB(h, z[j, i]1)|| . . . ||SB(h, z[j, i]w)

aj ← (z[j, 1], . . . , z[j, qj ])
bj ← aj

Next, we focus on j = β; suppose that tβ consists of d different tweaks, t∗1, . . . , t∗d ∈
T , and let xβ = (x∗1, . . . ,x∗d), aβ = (a∗1, . . . ,a∗d), and bβ = (b∗1, . . . ,b∗d), where
x∗γ , a∗γ and b∗γ correspond to t∗γ for γ = 1, . . . , d. We will also write

x∗γ = (x∗γ,1, . . . , x∗γ,q′γ ),

for γ = 1, . . . , d, and define a lexicographical order on this set of new (double)
indices. Suppose that xβ,α corresponds to x∗γ,γ′ by the reindexing. Then the
sampling of aβ and bβ consists of initialization, update and finalization stages as
follows.

Initialization
for j ← 1 to γ − 1 do

for i← 1 to q′i do
z∗[j, i]← x∗j,i

for i← 1 to γ′ − 1 do
z∗[γ, i]← x∗γ,i

a
$← {0, 1}wn\{xγ,1, . . . , xγ,γ′−1}

b← xγ,γ′

Update
for h← 1 to s do

k
$← K

for j ← 1 to γ − 1 do
for i← 1 to q′i do

z∗[j, i]← Tk,t∗
j
(z∗[j, i])

Break z∗[j, i] = z∗[j, i]1|| . . . ||z∗[j, i]w into n-bit blocks
z∗[j, i]← SB(h, z∗[j, i]1)|| . . . ||SB(h, z∗[j, i]w)

for i← 1 to γ′ − 1 do
z∗[γ, i]← Tk,t∗γ (z∗[γ, i])
Break z∗[γ, i] = z∗[γ, i]1|| . . . ||z∗[γ, i]w into n-bit blocks
z∗[γ, i]← SB(h, z∗[γ, i]1)|| . . . ||SB(h, z∗[γ, i]w)

a← Tk,t∗γ (a)
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b← Tk,t∗γ (b)
Break a = a1|| . . . ||aw and b = b1|| . . . ||bw into n-bit blocks
for j ← 1 to w do

if aj ∈ D[h] or bj ∈ D[h] then bad[h]← true
for j ← 2 to w do

for j′ ← 1 to j − 1 do
if aj = aj′ or bj = bj′ then bad[h]← true

if bad[h] = true then
a← SB(h, a1)|| . . . ||SB(h, aw)
b← SB(h, b1)|| . . . ||SB(h, bw)

else
(a1, . . . , aw) $← ({0, 1}n\R[h])∗w
(b1, . . . , bw)← (a1, . . . , aw)

Finalization
for j ← 1 to γ − 1 do

a∗j ← (z∗[j, 1], . . . , z∗[j, q′j ])
b∗j ← a∗j

if a = b then
(a[γ, γ′ + 1], . . . , a[γ, q′γ ]) $← ({0, 1}wn\{z[γ, 1], . . . , z[γ, γ′ − 1], a})∗(q

′
γ−γ

′)

(b[γ, γ′ + 1], . . . , b[γ, q′γ ])← (a[γ, γ′ + 1], . . . , a[γ, q′γ ])
else

(a[γ, γ′ + 1], . . . , a[γ, q′γ ]) $← ({0, 1}wn\{z[γ, 1], . . . , z[γ, γ′ − 1], a})∗(q
′
γ−γ

′)

(b[γ, γ′ + 1], . . . , b[γ, q′γ ]) $← ({0, 1}wn\{z[γ, 1], . . . , z[γ, γ′ − 1], b})∗(q
′
γ−γ

′)

a∗γ ← (z[γ, 1], . . . , z[γ, γ′ − 1], a, a[γ, γ′ + 1], . . . , a[γ, q′γ ])
b∗γ ← (z[γ, 1], . . . , z[γ, γ′ − 1], b, b[γ, γ′ + 1], . . . , b[γ, q′γ ])
for j ← γ + 1 to d do

a∗j
$← ({0, 1}wn)∗q

′
j

b∗j
$← a∗j

For j = β + 1, . . . , `, variables aj and bj are coupled as follows.

for j ← β + 1 to ` do
aj

$← Ωtj
bj ← aj

The following properties are noteworthy.

1. Random variables A and B are distributed according to πm− and πm, respec-
tively.

2. If j 6= β, then aj = bj .
3. If j 6= γ, then a∗j = b∗j .
4. If bad[h] is not set to true for some h ∈ {1, . . . , s}, then a∗γ = b∗γ .
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5. For any pair of j ∈ {1, . . . , w} and h ∈ {1, . . . , s}, the event aj ∈ D[h] can be
fulfilled in three different ways:
(a) there exists (h, x, y) ∈ QSh such that aj = x,
(b) aj collides with a value z[j, i]w that is given as an input to S(h, ·, ·) for

j < β (i.e., where T is used with an independent key),
(c) aj collides with a value z[β, i]w that is given as an input to S(h, ·, ·) (i.e.,

where T is used with the same key).

Thus one has

Pr [aj ∈ D[h]] ≤ pδ′ + wqδ′ + wqδ,

Pr [bj ∈ D[h]] ≤ pδ′ + wqδ′ + wqδ,

by the blockwise universality of T , and hence

‖πm − πm−‖ ≤ Pr [A 6= B]
≤ Pr [bad[h] = true for every h = 1, . . . , s]

≤
(

2wpδ′ + 2w2q(δ′ + δ) + 2
(
w

2

)
δ

)s
by Lemma 5. Therefore, by (12), one has

‖µ1 − ν‖ ≤
∑

m∈I\{(0,0)}

‖πm − πm−‖ ≤ q
(

2wpδ′ + 2w2q(δ′ + δ) + 2
(
w

2

)
δ

)s
which completes the proof of Lemma 10.
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