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Abstract: By representing data in a unary way, the 
identity of the bits can be used as a printing pad to stain 
the data with the identity of its handlers. Passing data 
will identify its custodians, its pathway, and its bona 
fide. This technique will allow databases to recover from 
a massive breach as the thieves will be caught when 
trying to use this 'sticky data'. Heavily traveled data on 
networks will accumulate the 'fingerprints' of its 
holders, to allow for a forensic analysis of fraud 
attempts, or data abuse. Special applications for the 
financial industry, and for intellectual property 
management. Fingerprinting data may be used for new 
ways to balance between privacy concerns and public 
statistical interests. This technique might restore the 
identification power of the US Social Security Number, 
despite the fact that millions of them have been 
compromised. Another specific application regards 
credit card fraud. Once the credit card numbers are 
'sticky' they are safe. The most prolific application 
though, may be in conjunction with digital money 
technology. The BitMint protocol, for example, 
establishes its superior security on 'sticky digital coins'. 
Advanced fingerprinting applications require high 
quality randomization. The price paid for the 
fingerprinting advantage is a larger data footprint -- 
more bits per content. Impacting both storage and 
transmission. This price is reasonable relative to the 
gained benefit.  

I. INTRODUCTION 
Data normally is 'non-sticky', so its handlers don't leave a 
fingerprint on it. Data, normally, does not contain the 
information as to how many readers it had, and rarely who 
was its writer. This fact is so ruthlessly exploited in cyber 
crime. We all await the practical manifestation of quantum 
computing theories which promise to bring 'fingerprinting 
sensitivity' to data, but until then, and with much more 
simplicity, we propose here a conventional way to represent 
data so it is 'sticky' -- it bears the finger prints of its writer 
and readers.  

The fundamental principle is simple and straightforward: all 
data can be expressed as integers, all integers can be 

represented as a series of bits where the count of bits reflects 
the data carried by the string. Accordingly all 2n possible n-
bits strings will carry the same value, n. The range of 
2n possible strings all representing the same value n, may be 
used as meta data associated with the prime data (n), and 
this meta data may be regarded as 'fingerprinting' the 
primary data, n.  

Nomenclature. Fingerprinted data will be denoted with a 
right side underscore: data_. where:  

data_ = value_identity 

and write:  

value = data_v, identity = data_i 

Example: the value x=6, represented as 000001, will be also 
written as 6_1, and if represented as 011111 will be written 
as 6_31.  

While value ranges from 0 to ∞, identity ranges from 0 to 
2value -1: 0 ≤ value ≤ ∞; 0 ≤ identity ≤ 2value - 1  

We shall use the term 'identity', 'shadow', 'fingerprint' 
interchangeably.  

Data, d, not expressed in the fingerprinting mode will be 
regarded as 'naked data'. x=12 is naked, x=111000111000 is 
'dressed data' or 'fingerprinted data', 'shadowed data', 
'identified data'.  

Let TM be a Turing machine mapping some input_v to a 
certain output_v. TM will be associated with a shadow 
Turing Machine, TM_ which will map the input_i to 
output_i. TM_ data range is 0 to 2output_v, or say: output_i → 
output_i MOD 2output_v.  

For example: let TM be: c= a+b, and let TM_ be: c_i = (a_i 
+ b_i) mod 2c_v.  

Numerically: let a = 4_6 , and b = 7_107, expressed as: a = 
0110 and b=1101011 . We shall compute c_v = a_v + b_v = 
4+7 = 11, and compute c_i = a_i + b_i = 6 + 107 = 108 
MOD 211, = 00001101100. Or say:  

0110 + 1101011 = 00001101100 

We assume the algorithmic data in the Turing Machines to 
be naked. So for Turing Machine TM: b = a + 5, a and b 



 

 

may be 'shadowed' but the constant '5' will be naked. Hence 
TM_ may be defined as b_i = (a_i +325+ δ)/2, where δ=1 
for an even a_i, and δ=0 otherwise. Hence for a=110 
(a_v=3, a_i=6), we write: b_v = a_v + 5 = 3 + 5 = 8, and b_i 
= 6 + 325+1 = 332 mod 28 = 76. So we write:  

01001100 = TM(110) 

Since fingerprinting applies to data, it will not affect 
algebraic signs, operational marks, or imaginary numbers 
notation. Say then that x = -4 will be written as -0000, -
0001, -0010,.... -1111, and i5, will be written 
as i00000, i00001,...i11111.  

Irrational numbers cannot be 'fingerprinted' but they are 
never an output of a Turing Machine. Any rational 
approximation thereto will be written as a ratio of integers. 
Thus π may be approximated to 3.14, or 314/100. 20.5 may 
be approximated to 141/100 We assume the algorithmic data 
in the Turing Machines to be naked. So for Turing Machine 
TM: b = (a-7)0.5, we may define the associated Turing 
Machine TM_ : b_i = (a_i)2 mod 2b_v.  

Hence for a=11010 (a_v=5, a_i =26), we have b_v = ( a_v - 
7)0.5 = i*20.5. where i = (-1)0.5. The square root of 2 is 
computed by a Turing Machine with some finite resolution: 
20.5 = g/h, where g and h are integers. TM_ will determine 
g_i, and h_i. Say g_i =654321 mod 2g_v, and h_i = |a_i - 50| 
mod 2h_v. For economy of display we use a low resolution: 2 
0.5 = 1.4 = 14/10. Namely g_v = 14, h_v= 10. We have then 
g_i = 654321 mod 214 = 15345, and h_i = |26-50| = 24, and 
thus we write:  

i * 11101111110001/0000011000 = TM(11010) 

Resolution:  It would appear that the shadow Turing 
Machines are limited by the MOD limitation, so that when 
the output of the corresponding Prime Turing Machine is a 
small integer value x → 0, then the scope of the shadow 
machine, limited to 2x will severely limit its operation. In 
fact this resolution limitation is readily overcome. For value 
output x < 1, a corresponding fraction x = y/z will allow one 
to use sufficiently large values so that 2y, and 2z will satisfy 
any desired resolution. For integer output x such that 2x is 
too small, the shadow Turing machine could use: x = y-z, 
and, like before use any desired size for y and z. We 
conclude then that the shadow Turing machines are as 
general in practice as a general Turing machine.  

Multiplication: The simplest way to adjust resolution is by 
multiplication. Instead of reading the bit count as the 
represented data, one can carry the integer n by a bit string 
comprised of kn bits, k=1,2,.... where k is a user's choice 
allowing for any desired resolution.  

Count-to-Value Formula:   Mapping bit count (n) to value 
(v) may be carried out via some choice formula, f: v = f(n). 
For example: v = kn+b, which will expand on the 
multiplication option discussed above, and will add a base, 
b, to insure that the value of zero comes with a sufficient 
range of shadow values (2b).  

Complexity: A shadow Turing Machine may issue a 
constant output y_i, regardless of the input data. In this case 
the shadow Turing Machine (STM) will offer a fixed 
signature identifying the machine. It can compute its output 
y_i based on the value x_v of the input, or on the value x_i 
of the input, or on both parts of the x data.  

Basic machine tracking: We consider a Turing Machine 
TM1 and its shadow TM1_, and another Turing Machine 
TM2, and its shadow Turing Machine TM2_.  

cases:  

Case I: TM1 = TM2; TM1_ = TM2_ 

in which case, upon examination of the input and the output, 
it will be impossible to determine whether TM1 or 
TM2 processed the input.  

Case II: TM1 = TM2; TM1_ ≠ TM2_ 

In this case, an examination of both the input and the output 
will expose whether TM1, or TM2 has processed the data. 
We have here a basic tracking procedure.  

Case III: TM1 ≠ TM2; TM1_ ≠ TM2_ 

In this case, an examination of both input and output will 
identify which machine processed the data. However, 
examination of only the output data might, or might not 
determine which machine processed the data because there 
may be one possible input that would fit with the hypothesis 
that TM1 was working here, and another input 
corresponding to TM2.  

The general Tracking Case:  Given a 'computing 
environment' comprised of t Turing Machines: TM1, TM2,.... 
TMt, and their corresponding shadows: TM1_, TM2_, ..... 
TMt_, given input x to this environment, and a 
corresponding output y. We shall define the notion of a 
'computing sequence' as a data processing configuration 
leading from x to y. The configuration will identify input 
and output for all Turing Machines, any splits of data, and 
any combinations of data. A data item z may be split as 
input to two or more Turing Machines, and any Turing 
Machines may be operating on any number of input data 
items. We now ask what are the computing sequences that 
would satisfy this given set of parameters.  

{fingerprinting solutions} to satisfy {TM1, TM2,.... TMt, 
TM1_, TM2_, ..... TMt_, x_v, x_i, y_v, y_i }  

Every computing sequence that satisfies these terms will be 
regarded as a fingerprinting solution.  

There may be no solutions to a set of parameters, one 
solution, or several.  

The important observation here is that given a computation 
environment where there exists more than one computing 
sequence that would be compatible with a pair of input-
output, as analyzed per the prime set of t Turing Machines 
(TM1, TM2,....TMt) , with no knowledge of (or non 
existence) the corresponding t shadow Turing Machines, 



 

 

then this equivocation can be eliminated via a proper set of 
Shadow Turing Machines that for sufficient amount of 
processed data all but one computing sequence will be 
eliminated. This is the fundamental tracking idea of the 
fingerprinting concept.  

The Fundamental Theorem of Data Fingerprinting: Given a 
computing environment with t arbitrary Turing Machines, 
there exists a set to t corresponding Shadow Turing 
Machines that would eliminate any computing sequence 
equivocation which may arise, given the first set of t Turing 
Machines.  

Proof:   Consider two computing sequences, each taking a 
given input x_v to a given output y_v. The last Turing 
Machine in the first sequence is TM1, and the last Turing 
Machine in the second sequence is TM2. The first machine 
is activated with input x1_v, and the second with input x2_v. 
It may be that x1_v = x2_v, or that x1_v ≠ x2_v. But their 
output is the same: y1_i = y2_i. One will then set:  

y1_i = TM1_(x1_v, y1_v) ≠ y2_i = TM2_(x2_v, y2_v) 

And thereby will eliminate this equivocation.  

This procedure will continue over any two equivocated 
computing sequences. This may lead to a conflict where 
some Shadow Turing Machine i, which was adjusted once 
when it removed equivocation involving Turing Machine 1, 
has to change again to resolve an equivocation raised with 
respect to Turing Machine 2. Let the status of TMi_ have 
originally been defined as function fa, and to resolve the first 
conflict it changed to function fb. But fb is in conflict with 
another equivocation. This will only mean that TMi_ will 
have to change to a function fc which is fc ≠ fb, and fc ≠ fa. 
To insure that such a third function will be available, one 
has to insure that the resolution of the shadow functions is 
sufficiently large. We have seen that resolution can be 
adapted and increased at will. That means that no matter 
how many cases of double equivocation will be there, one 
will be able to construct a shadow Turing Machine that will 
eliminate all such equivocations.  

This universal ability to eliminate any a two pathway 
equivocation can be applied step by step to eliminate any 
three-some, four-some or n-some equivocation, which 
proves the theorem.  

Lemma: It is always possible to construct a set of Shadow 
Turing Machines that would reduce computing sequence 
equivocation to any desired degree. Proof: the proof of the 
fundamental theorem was constructed as elimination of  
equivocation pathways one at the time. One could simply 
stop such elimination when only some k > 1 computing 
sequences remain.  

This is quite an intuitive conclusion, which is of theoretical 
import, but of very little practical significance. From a 
computer engineering point of view, the question is how 
easy, how simple, how unburdensome is it to eliminate 

computing sequence equivocation with a set of Shadow 
Turing Machines.  

The straight forward use of this fingerprinting is 
deterministic, as will be illustrated ahead. Apart from it, 
fingerprinting may be applied via randomization and 
modulation.  

A.  Value-Identity Separation 
Obviously a network data flow can be analyzed per the 
value of the flow items (x_v, y_v), ignoring the shadows. 
Less obvious is the reverse, where one is tracking the flow 
through the shadow only, without being aware of the value.  

We have indicated the general case where the value of a bit 
string, y_v, is evaluated via some formula f with the bit 
count, b as argument: y_v = f(b). If f is unknown, then 
knowledge of b alone does not indicate the corresponding 
value. This implies that one could analyze a network data 
flow by checking value and identity (shadow) 
simultaneously, or each of them separately.  

The significance of this separation is in the fact that very 
commonly the people focused on the value part of the data 
are different than the people focusing on the identity part of 
the data. The value people don't wish to be burdened by the 
identity info, and those charged with forensic tasks to track 
data may not need to be exposed to the contents (the value) 
of the data they are tracking. 

 

II. RANDOMIZATION & MODULATION 
The purpose of the shadow is to fingerprint data, not to carry 
specific data values. This important distinction may be 
readily exploited through randomization.  

In a deterministic shadow environment the various 
computing machines will have to coordinate their shadow 
operation in order to insure the desired fingerprinting. This 
may be impractical in environments with a large number of 
computing machines. By contrast randomization allows for 
shadow operation without coordination.  

Uncoordinated Shadow Machines:  Let a computing 
environment be comprised of t Turing Machines TM1, 
TM2,.....TMt. Let the corresponding shadow machines 
TM1_, TM2_,.....TMt_ each be fully randomized. Namely 
given the primary value y_vj j=1,2,...t, they will specify the 
identities of the |y_vj| bits in a "purely randomized way" (or 
close enough to it) and keep a record of y_ij.  

Even if all the t y_v values are identical, for a sufficient bit 
size of the outputs, the chance for a collision can be set to be 
negligible. A collision here is a state where two Turing 
Machines will randomly select the same y_i so that it would 
not be clear which one of them processed the data. We have 
here a situation where probability calculus enables a 
computing environment to work without pre-
coordination. Suppose that the bit count of all the y_v 
values is n=17. Let the computing environment be 



 

 

comprised of t=1000 Turing Machines. The chance for a 
collision will then be:  

Pr[shadow collision] = 1 - (1-2-n)n = 1 - (1-2-17)1000 = 1% 

And that probability vanishes for n>17.  

Alternatively the machines will use a standard mapping 
algorithm to create the base shadow for their output, and 
then randomly flip 50% (or close to it) of these bits. The 
same calculus applies, the chance for a collision can be 
made as small as desired.  

Consider a reading situation involving t readers (t Turing 
Machines). Let an input x be distributed linearly among 
those readers, and the output is x_v = y_v. Using y_i one 
will be able to identify the exact sequence of readers of this 
information given that every reader flipped about 50% of 
the incoming bits. It is straight forward to compute the 
chance for any pathway equivocation, and reduce it as 
necessary by increasing the bit count. In particular consider 
the process of authentication. A network user offers his 
account number, PIN, or even password to prove her 
credentials.  

A host of powerful applications is being opened by adding 
modulation on such randomization. 

A. modulation 
Consider a computing environment comprised of t readers, 
each applying a randomization strategy for shadow setting. 
The expected Hamming distance between any two arbitrary 
outputs y_ik, y_ij, is 0.5n, where n is the value of y_vj (let's 
say, they are all the same). Alternatively stated, the 
probability for a Hamming distance of H much smaller than 
n/2 is small:  

Prcollision[H << n/2] → 0 for for some t readers, for n → ∞  

This fact implies that by flipping a sufficiently small 
number of bits in y_i, one will not harm her ability to track 
which reader read y_v recently. Such flipping is called 
modulation.  

It implies that a y_i may carry around secondary messages 
in the form of modulation.  

Modulation will allow one to authenticate a prover without 
having a copy of the authentication data. It offers a 
capability similar to more common zero-knowledge 
protocols. Only that it does not resort to the algorithmic 
complexity used in those protocols (and their 
vulnerabilities). It is based on simple combinatorics. 

B. Superposition of randomization over determination 
We have seen above that shadow randomization brings to 
bear specific advantages not present in a deterministic 
shadow formula. It bring about a much better resistance to 
hacking, and it opens the door for modulation. On the other 
hand a deterministic shadow sheds light on the inner 
working of the Turing Machine and allows for advanced 
forensic and tracking power of a given data flow. It is 

therefore of some advantage to combine the two varieties. 
One would associate a given Turing Machine with a 
deterministic shadow TM_, and then superimposed on it 
with a randomized operation, marked as TMρ_. We write:  

y_i = TMρ_(TM_(x)) where y_v = TM(x_v) 

Accordingly every Turing Machine, TM, will be associated 
with two shadow machines: one deterministic TM_, and one 
randomized TMρ_  

Superposition Illustration:Let a Turing Machine TM be 
defined as y=x2-64, or say y_v = (x_v)2-64.  

Let the associated deterministic Turing Machine TM_ be 
defined as follows: (i) let y* = 11(x_i)2  Let y'_i = {the y_v 
leftmost bits of y*, for y_v ≤ y*, padding with zeros 
otherwise}.  

Let the associated randomized Turing Machine, TMρ_ be 
defined as follows: a seed based randomization apparatus 
will generate a pseudo-random sequence, R. The generated 
bits will be taken y_v bits at a time, and associated by order 
to the bits in y*. This will build a series of y* bits, one after 
the other. Each bit in y* will be associated with the sum of 
the corresponding bits in the series of y* randomized bits. 
This process will stop when one of the bits in y* is 
associated with a greater sum than all others. The "winning 
bit" will flipped. This will be repeated q time.  

For example, let x=9 written as 100111011, namely x_v=9, 
and x_i = 315.  

TM: y_v = (x_v)2-64 = 17.  

TM_: y* = 11(x_i)2 = 11* 3152 = 1,091,475 = 
100001010011110010011binary. And y'_i = 1000 0101 0011 
1100 1 (the 17 rightmost bits in y*)  

Now we need to superimpose the randomized flipping: 
activating the randomizer, one gets the following first batch 
of |y_v|=17 bits: 1100 0001 0101 1111 0. There is no clear 
winner. So the next batch of 17 random bits is invoked: 
0011 0001 1100 1011 1. Adding the bits:  

 

1100 0001 0101 1111 0 
0011 0001 1100 1011 1 
---------------------------- 
1111 0002 1201 2022 1 

 There are four bits scoring 2, no clear winner, so another 
batch is invoked:  

1111 0002 1201 2022 1 
0011 0011 0111 0100 1 
- - - - - - - - - - - - - - - - 
1122 0013 1312 2111 1 

 There are 2 bits with a score of 3, so another batch is 
needed:  

 

1122 0013 1312 2111 1 
0111 0011 0011 1110 0 



 

 

- - - - - - - - - - - - - - - - 
1233 0024 1323 3221 1 

This time we have a winner, bit 8, counting from the left has 
a score of 4, more than all others. So bit 8 in y'_i is flipped. 
If TMρ_ prescribed only one bit to flip then the final 
superimposed output is:  

y_i = 1000 0100 0011 1100 1 

In summary: the illustrated node (Turing Machine) accepts: 
100111011 as input, and generates: 1000 0100 0011 1100 1 
as output.  

 

III. FLIPGUARD: DATABASE PROTECTION 
Databases holding private data of many users are a natural 
hacking target. Especially because users use the same 
private data in many databases. So a hacker can compromise 
the least protected database, and use the stolen data to fake 
credentials in many other databases. In the scope of so many 
databases today, there are bound to be some that are poorly 
protected and end up compromised.  

By applying the fingerprinting technique, it is possible to 
distinguish between private users' data held by the user, and 
the same data held by the database. Such that if a database is 
compromised, and a hacker turns around to use the stolen 
data to falsely claim credentials then, not only would he not 
be admitted, but the database will readily realize that the 
submitted data marked with the database fingerprinting is 
evidence of the database being compromised. The latter is 
quite important because successful hackers hide their 
success for many months at times.  

Here is how to carry out this fingerprinting protection of a 
database.  

We consider a database serving a large number of users. The 
database holds private information for each user. Let X 
represent such private information of an arbitrary user of an 
arbitrary database. Let X be fingerprinted so that:  

Xu_v = Xb_v   
and  

Xu_i ≠ Xb_i 

where Xb, and Xu are the values of X held by the database 
and the user respectively. The non-equality between Xu_i 
and Xb_i is due to modulation.  

This arrangement will allow the database to recognize an 
access applicant purporting to be the user with the X 
credentials. The recognition will be due to a minor 
difference in the bit compositions of the two values, 
consistent with the applied modulation. However, if the 
source of the credentials (X) is a successful hacking of the 
database, then the database will find: Xu_i = Xb_i, (no 
modulation present), and will be alert to this fact.  

Of course, if a hacker compromised the user he would be 
able to pose as the bona fide user, using the user's 

fingerprint: Xu_i, and be admitted. This FingerPrinting 
technique (code named FlipGuard) is designed solely to 
protect against a "wholesale" hacking risk, compromising 
the database. It provides no protection against "retail" hack, 
one user at a time.  

This is the basic idea, which has to be well built to make it 
stick. We call it the randomization fingerprinting protection 
level 0. An ignorant database hacker, unaware of the 
fingerprinting will be readily caught. Albeit, it is unrealistic 
to assume that this technique can be applied in secret. One 
must assume that a hacker smart enough to break into a 
database will be smart enough to realize that fingerprinting 
is in force, and strive to break it too.  

We shall therefore proceed with describing how to 
implement database protection against a the smartest hacker 
we can imagine. Before that we will describe hierarchical 
application of the database fingerprinting technique.  

A. Hierarchical Applications 
We consider a 'top database, B, and a secondary database B'. 
There are individuals who are logged as users both in B and 
in B'. A typical such user will use some private data X in 
both databases. For example: name, social security number, 
address, salary information, professional credentials, etc.  

We assume that the top database, also called the issuer 
database, is practicing fingerprinting operation with its user, 
hence each user has its X data marked as X_v and X_i.  

The issuer, B, can share its own version for each X (X&b_v, 
Xb_i) with the secondary database, B', namely:  

Xb_v = Xb'_v   
Xb_i = Xb'_i 

(b, and b' indices indicate the issuer database and the 
secondary database respectively). And in that case the 
secondary database will function with the same protection as 
the issuer database. This solution can be extended to any 
number m of secondary databases B'1, B'2,....B'm. The 
problem with this solution is that (i) if a compromise is 
detected, it is not clear which of the (m+1) databases was 
hacked, and (ii) the security of the most secure database is 
reduced to the security of the least secure database in the 
list.  

An alternative strategy would be for the issuer database to 
pass on to the secondary database, a different shadow:  

Xb_v = Xb'_v   
Xu_i ≠ Xb'_i ≠ Xb_i 

And if there are several secondary databases, then each will 
be given a unique shadow. All the shadows will be 
randomized so that they would be able to admit a user while 
being immunized against a breach into their database. And 
should any database in the strategy become compromised, 
then upon any attempt to use the compromised X data, the 
system will spot it, and recognize which database was 
breached.  



 

 

B. Advanced Finger Printing Protocol 
We consider a smart attacker who knows everything about 
the defense strategy except the actual values of the protected 
data. Such an attacker is assumed to have compromised the 
database. The attacker would know that the database 
shadow data is different than the user's shadow data and if 
he would try to log in, using the compromised X values, as 
copied from the database, then the database will not only not 
admit him, but will be alerted to the fact that the database 
was compromised. The attacker would further know that the 
database does not have the exact user shadow. It only knows 
that the user's shadow is similar to the database shadow. So 
all that the hacker has to do is to randomly affect some small 
changes in the stolen shadow data, and forward the altered 
data to gain access, and pass as the bona fide owner of that 
X data.  

If the changes induced by the attacker are such that the 
database would consider the difference between the attacker 
offered data, and the database respective data, as 'normal, or 
'acceptable' then the decision would be to admit the hacker, 
and the protection would fail. Note: similarity between 
strings is measured through the Hamming distance between 
them.  

To counter this eventuality one could opt for a 
countermeasure strategy based on "off line repository". The 
idea here is make an exact copy of the user shadow (Xu_i), 
and remove this copy from the active database, safekeeping 
it on an external system where it will have to be handled 
manually, locally, totally un-accessible to any online 
command. When a hacker forwards stolen X data, 
reasonably modified, then the hacker will be admitted, but 
the database will retain a copy of the X_i that was used to 
attain access, and every so often the database will take all 
the admitted users and compare their admission string to the 
one manually extracted from the off line repository. This 
comparison will readily reveal that the database was fooled 
by a hacker and would further disclose that a database was 
in effect compromised. That is because it is highly unlikely 
that the fraudster would have guessed a string of sufficient 
size n such that its Hamming distance from the copy held by 
the database would be so small.  

This counter measure, designated as fingerprinting 
randomization level 1, will alert a database on a breach as 
often as the off-line repository is consulted, which may be 
too infrequent.  

 

IV. DETERMINISTIC APPLICATIONS 
Let us now discuss some practical situations for which 
fingerprinting may be useful:   

Layered Application: Data issued by a top source to a client 
may be used between the client and a secondary agent per 
the nominal value, and only with the top source per the 
nominal and shadow value. Thereby the data itself which is 
shared with several secondary agents may be stolen from 

one of them, but that would not be enough for the thief to 
defraud the top source because the thief would not have the 
shadow information. 

A. Who Done It? Who Read It? 
The simplest and most straightforward application of 
fingerprinting of data is to associate t value identical Turing 
Machines, each with a unique shadow Turing Machine. 
Namely set up a computing environment comprised of t 
Turing Machines such that:  

TM1 = TM2 = ..... TMt   
and   

TMi_ ≠ TMj_ for i ≠ j i,j=1,2,...t 

For every input x to this computing set, one of the t Turing 
Machines will compute a corresponding y=f(x), such that 
y_v1 = y_v2 = .... y_vt, but y_ik ≠ y_vj for k ≠ j for 
k,j=1,2,...t . This configuration will allow one who knows 
the computing set to determine which of the t Turing 
Machines processed the input.  

In the case where each of the t primary Turing Machines are 
neutral, this will turn into 'who read it?' case. Namely if for 
any i=1,2,...t y_vi = x_v, then this configuration will identify 
which Turing Machine read the input.  

It will be easy to adjust the shadow Turing machines to 
handle the case where a given input x is read by some r ≤ t 
Turing Machines, the identity of which is readily 
ascertained. One simple way to accomplish this is to use any 
resolution extension discussed above to insure that y_v is 
comprised of at least tn bits: y_v ≥ nt, of some positive 
integer n, and define shadow Turing Machine, TM'i as 
flipping bits in+1, to in+n. By examining y_i, one will 
readily determine which are the r Turing Machines that read 
the input data x.  

Illustration let x=110011001100110011001100, Let x_v= 
(|x|-6)/2 = (24-6)/2 =9 , x_v =13421772. Let the computing 
environment be comprised of t=3 Turing Machines TM1, 
TM2, TM3 which are all neutral, namely the corresponding 
outputs are: y_v1 = y_v2 = y_v3 = x_v = 9. The 
corresponding three shadow Turing Machines will be: TM1_ 
= flip bits 1,2, TM2_: flip bits 3,4, and TM3_ : flip bits 5,6.  

Let's mark the 18 rightmost bits as R, so that we can write 
x=110011R. If the output will be 000011R. The table below 
lists all the possible combinations regarding who read the 
input. If the output is not one of these 8 options then it will 
indicate some error, or an unidentified reader.  

y TM-1 TM-2 TM-3 

110011R       

000011R x     

111111R   x   

110000R     x 

001111R x x   



 

 

000000R x   x 

111100R   x x 

001100R x x x 

 

B.  Sequencing 
A computing environment with t Turing Machines, takes an 
input x, and have r ≤ t machines read it, and then output it. 
One could define shadow Turing machines such that the 
output will not only identify which machine was exposed to 
the input but also in which order.  

One such configuration is as follows: set x_i = 
{o}n (000...0). TMi will count i bits in the the rightmost 
continuous string of zeros, and then flip the next i bits. The 
result (given that n > t(t+1)) is unique for each sequence.  

Illustration: let x = '0000000000000000' (x_v=16). Let the 
reading sequence be TM1, TM2, TM3. We will have then: 
y_i1 = 0100000000000000, y_i2 = 0100110000000000, 
y_i3 = 0100110001110000 (the final output).  

For a reading sequence TM2, TM3, TM1 we have y_i2 = 
0011000000000000, y_i3 = 0011000111000000 , y_i1 = 
0011000111010000 (the final output).  

For a reading sequence TM3, TM1, TM2 we have y_i3 = 
0001110000000000, y_i1 = 0001110100000000 , y_i2 = 
0001110100110000 (the final output).  

It is easy to see that every distinct sequence (complete or 
partial) will be mapped to a unique shadow value of the 
output, and therefore ascertained by it.  

C.  Reconstruction 
Reconstruction is a more complicated case but related to 
sequencing. It applies to a computing environment where an 
output y may have been computed via a relatively large 
number of pathways, and it its occasionally needed to find 
the exact path, to particular Turing Machines that worked on 
the input to generate the output.  

One practical situation is when an input x is processed 
through p rounds of distinct calculations, such that x is 
computed x → p1, and p1 is computed to p2, and in general 
pi → pi+1. and finally pg-1 → y. Each of the g calculations 
can be done via some q fitting Turing Machines. The 
selection among them is done based on some criteria, say, 
load. This configuration creates a pathway space comprised 
of qg options. The corresponding Shadow Turing Machines 
will have to record at least qg distinct values in order to 
determine from the output the exact computational history 
of the output. This of course is very important if one tries to 
chase a bug, or hunt for malware. 

D. External Intervention Detection 
If the shadow results do not fit any computational path 
within the computing environment then, apart from some 
coding error, the suspicion must be raised over the prospect 

of intrusion, and substitution of a proper Turing Machine 
with an improper one.  

Of course, if a hacker knows the nominal algorithm of the 
Turing Machine as well as its shadow algorithm then he is 
left undetected. And that is a good reason to change the 
shadow algorithms often enough. This should not impact the 
value calculation and does not have to be evident to anyone 
except the system operators.  

The output of a computing environment, once verified, can 
be erased, as the data is forwarded to the next computing 
environment. In other words, it may advisable to separate 
two consecutive computing environments so that one cannot 
take the end of the second and learn something about the 
first.  

Exposure: Nominally the system administrator is supposed 
to have the full set of Turing Machines in his environment 
as well as the details of the Shadow Turing Machines. 
However one can deem an architecture where the individual 
Turing Machines keep the corresponding Shadow machines 
private. An examiner, holding the output of the computing 
environment will inquire the last Turing Machine about its 
Shadow operation, and reverse the output with this 
information. Then the administrator will inquire about the 
shadow machine of the previous Turing Machine, and 
further reverse shadow. This reversal may continue towards 
the input to the computing environment to verify that the 
computing path is bona fide. This architecture will allow 
individual Turing machines to change the shadow machine 
as often as they please.  

V. SUMMARY 
We presented a host of applications emerging from the 
simple idea that bit identities, rather than carry the primary 
data, will be used for tracking, security, and general 
forensics. 
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