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Abstract Post-quantum cryptography has attracted much attention from worldwide cryptologists. How-
ever, most research works are related to public-key cryptosystem due to Shor’s attack on RSA and ECC
ciphers. At CRYPTO 2016, Kaplan et al. showed that many secret-key (symmetric) systems could be bro-
ken using a quantum period finding algorithm, which encouraged researchers to evaluate symmetric systems
against quantum attackers.

In this paper, we continue to study symmetric ciphers against quantum attackers. First, we convert the
classical advanced slide attacks (introduced by Biryukov and Wagner) to a quantum one, that gains an
exponential speed-up in time complexity. Thus, we could break 2/4K-Feistel and 2/4K-DES in polynomial
time. Second, we give a new quantum key-recovery attack on full-round GOST, which is a Russian standard,
with 2114.8 quantum queries of the encryption process, faster than a quantum brute-force search attack by
a factor of 213.2.
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1 Introduction

Post-quantum cryptography is about the security of cryptographic systems against quantum attackers.
In 1994, Peter Shor [1] invented the first notable and yet the most severe quantum attack, i.e., the Shor’s
algorithm, that breaks the most currently used public-key systems, such as RSA cryptosystem [2] and elliptic
curve cryptography. But since then quantum threats against secret-key (symmetric) systems are barely
known, and it was the common belief that quantum attacks on symmetric primitives are of minor concern,
as they mainly consist of employing Grover’s algorithm [3] to generically speed up search (sub-)problems.
However, at CRYPTO 2016, Kaplan et al. [4] break a series of symmetric-key systems in polynomial time
using quantum period finding algorithm, which stirs great interest of quantum cryptanalysis in symmetric-
key cryptographic community.

According to the notions for PRF security in a quantum setting given by Zhandry [5], there are two
different models for quantum cryptanalysis against symmetric ciphers:

– Standard security: a block cipher is standard secure against quantum adversaries if no efficient
quantum algorithm can distinguish the block cipher from PRP (or a PRF) by making only classical
queries (denoted as Q1 by Kaplan et al. [6]).

– Quantum security: a block cipher is quantum secure against quantum adversaries if no efficient
quantum algorithm can distinguish the block cipher from PRP (or a PRF) even by making quantum
queries (denoted as Q2 by Kaplan et al. [6]).
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Table 1: Summary of key-recovery attacks on Feistel schemes in classical setting and Q2 model

Ciphers Rounds Key bits Best Previous Classical Attacks Quantum Brute Ours
force Search‡

Data Time Memory Source Time

2K-Feistel ∞ n 20.25n 20.25n Negligible [24] 20.5n n+ 2 + 2
√
n/2 + 1

4K-Feistel ∞ 2n 20.25n 20.25n Negligible [24] 2n n+ 2 + 2
√
n/2 + 1

2K-DES ∞ 96 232 233 Negligible [24] 248 155§
4K-DES† ∞ 192 232 233 Negligible [24] 296 233§

GOST
32 256 232 2224 264 or 219 [37, 38] 2128 2114.8

30 256 232 2224 Negligible [36] 2128 2114.6

†: For 4K-DES, both Biryukov et al.’s attack [24] and our attack work for 1/216 of all keys. Note that the attacks
on 2K-DES work for all the keys.

‡: The quantum brute force search is just use Grover’s algorithm to find the key, which uses
√
n quantum queries

when the key size is n. It also works in Q1 model.
§: 155 or 233 quantum queries of the encryption process.

In Q1 model, the adversary collects data classically and processes them with quantum operations, while
in Q2, the adversary can directly query the cryptographic oracle with a quantum superposition of classical
inputs, and receives the superposition of the corresponding outputs. The adversary in Q1 model is more
realistic, many cryptanalysis results [7–9] are based on this model. The adversary in Q2 model is much
more powerful. Nevertheless, it is still meaningful to study ciphers in Q2 model, since it is possible to devise
protocols secure against Q2 adversary, such as quantum-secure signatures from CRYPTO 2013 [10] and
quantum-secure message authentication codes from EUROCRYPT 2013 [11], etc. Recently, the security of
many specific symmetric ciphers in Q2 model has been evaluated, which includes the key-recovery attacks
against Even-Mansour constructions [12], distinguishers against 3-round Feistel constructions [13], forgery
attacks against block cipher based MACs [4], key recovery attacks against FX constructions [14], and so
on. But more classical cryptographic schemes of greater importance are yet to be studied against quantum
attackers. At Asiacrypt 2017, Moody [15] on behalf of NIST reports the ongoing competition for post-
quantum cryptographic algorithms, including signatures, encryptions and key-establishment. The ship for
post-quantum crypto has sailed, cryptographic communities must get ready to welcome the post-quantum
age.

Feistel block ciphers [16] are observed to be important and constitute one of the extensively researched
cryptographic schemes. Several standard block ciphers, such as DES, Triple-DES, MISTY1, Camellia,
CAST-128 [17] and the Russian GOST [18], are based on the Feistel design. Classically, researchers only
consider the security of Feistel block ciphers against attackers who are only equipped with classical comput-
ers. In the quantum age to come, the adversaries can be more powerful. There are some attacks on Feistel
ciphers in quantum setting. Kuwakado and Morii [13] gave the first quantum distinguisher on 3-round
Feistel in Q2 model. Later combining with Leander and May’s algorithm [14], Hosoyamada et al. [19] and
Dong et al. [20,21] introduced some key-recovery attacks in Q2 model by appending several rounds to the
quantum distinguisher of Feistel construction. A meet-in-the-middle attack on Feistel cipher in Q1 model
was also discussed by Hosoyamada et al. [19]. More recently, Ito et al. [22] introduce the first 4-round quan-
tum distinguisher on Feistel cipher in the quantum chosen-ciphertext setting (Q2 model). In this paper, we
only study some Feistel ciphers in Q2 model, that the adversaries could make quantum queries on some
superposition quantum states of the relevant cryptosystem.

Our Contributions

In this paper, we focus on the study of the symmetric ciphers against Q2 adversary. Combining with Simon’s
algorithm [23], we convert the classical advanced slide attacks (introduced by Biryukov and Wagner [24])
to a quantum one, that gains an exponential speed-up of the time complexity. Thus, we could break 2K-
/4K-Feistel block ciphers and 2K-/4K-DES block ciphers in polynomial time. Concretely, we turn the
classical attacks on 2K-/4K-Feistel block ciphers with 20.25n encryptions into quantum attacks with about
n+2+2

√
n/2 + 1 quantum queries of the encryption process using about n+1 qubits. We turn the classical

attacks on 2K-/4K-DES block ciphers with 233 encryptions into quantum attacks with 155 or 233 quantum
queries of the encryption process with 65 qubits.

On the other hand, concerning the full-round GOST, a Russian block cipher standard, we give a new
quantum key-recovery attack, that breaks GOST in 2114.8 quantum queries of the encryption process, which
is faster than the quantum brute force search attack by a factor of 213.2. The attack needs 224 qubits. The
results are summarized in Table 1.
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Comparison with Bonnetain et al.’s work [25]

Shortly after our work is made public at ePrint in 24 May 2018 [26], there is a concurrent work on similar
topic by Bonnetain et al. [25], which appears at ePrint in 2 Nov 2018. Now Bonnetain et al.’s work has
been accepted to SAC 2019. Both of the two works include the quantum advanced slide attack. But we
want to list the differences in our paper from Bonnetain et al.’s. In our paper, we not only give the attacks
on 1K-/2K-/4K-Feistel ciphers (also given by Bonnetain et al.), but also give non-trivial applications on
1K-/2K-/4K-DES. In the attack on 1K-/2K-/4K-DES, we give a new reformulation of the DES-like ciphers
e.g. Fig. 7 in Sect. 3.2.1 in order to construct a sound period function. After we derive the period, we
have to deal with the irreversible property of DES’s s-box to recover the keys. The quantum circuits of
the quantum advanced slide attacks are presented in our work, which is not given by Bonnetain et al. In
addition, our paper also includes the new quantum key-recovery attacks on 30-/32-round GOST.

2 Preliminaries

2.1 Attack Model

In this paper, we focus on the powerful Q2 model. In this model, the adversary is not only equipped
with local quantum computation resource, but also granted an access with superposition inputs to the
remote cryptographic oracle, and obtains the corresponding superposition of outputs. Concretely, suppose
the encryption oracle is Ok : {0, 1}n → {0, 1}n, then the Q2 adversary can make quantum queries |x〉|y〉 7→
|x〉|Ok(x)⊕y〉, where x and y are arbitrary n-bit strings and |x〉 and |y〉 are the corresponding n-qubit states
expressed in the computation basis. Moreover, any superposition

∑
x,y λx,y|x〉|y〉 is a valid input to the

quantum oracle, whose corresponding output is
∑
x,y λx,y|x〉|y ⊕Ok(x)〉. In previous works, the Q2 model

is also called superposition attacks [27], quantum chosen message attacks [10] or quantum security [5].
For symmetric cryptanalysis, Q2 model is important and rational to some extent, as we have already
mentioned the protocol of Boneh and Zhandry [11] for MACs that remains secure against superposition
attacks. Moreover, as stated by Ito et al. [22]: “the threat of this attack model becomes significant if an
adversary has access to its white-box implementation. Because arbitrary classical circuit can be converted
into quantum one, the adversary can construct a quantum circuit from the classical source code given by
the white-box implementation.”

2.2 Quantum Algorithms

Our quantum attacks are based on two of the most popular quantum algorithms, namely Simon’s algorithm
[23] and Grover’s algorithm [3].

Black-box period finding: given a function, f : {0, 1}n → {0, 1}n, that is observed to be invariant
under some n-bit XOR period a, find a. In other words, find a 6= 0 such that x⊕ y = a⇒ f(x) = f(y).

The optimal classical time to solve the problem is O(2n/2). However, Simon [23] presents a quantum
algorithm that provides exponential speedup and requires only O(n) quantum queries to find a.

Simon’s Algorithm [23]: the algorithm includes five quantum steps that are as follows:

I. Initialization of two n-bit quantum registers to state |0〉⊗n|0〉⊗n. Then apply the Hadamard transform
to the first register to attain an equal superposition in the following manner:

H⊗n|0〉|0〉 =
1√
2n

∑

x∈{0,1}n
|x〉|0〉. (1)

II. A quantum query to the function f maps this to

1√
2n

∑

x∈{0,1}n
|x〉|f(x)〉.

III. While measuring the second register, the first register collapses to the following state:

1√
2

(|z〉+ |z ⊕ a〉).

IV. Applying the Hadamard transform to the first register, we obtain:

1√
2

1√
2n

∑

y∈{0,1}n
(−1)y·z(1 + (−1)y·a)|y〉.
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V. The vectors y, that y · a = 1, depict an amplitude of zero. Hence, measuring the state yields a value
of y, which meets that y · a = 0.

Intuitively, after repeating the above algorithm n times, we may obtain a by solving a system of linear
equations if the system is of rank n − 1. However, Kaplan et al. [4] and Santoli [28] showed that in the
cryptanalysis scenario, the period function f(x) constructed may have many so-called “unwanted collisions”,
which means there might be other collisions in addition to those of the form f(x) = f(x⊕ a). For example,
there might exist a pair (x′, a′), such that f(x′) = f(x′ ⊕ a′), where a′ 6= a. Hence, one may need more
repetitions of the above algorithms to obtain a full rank linear system of equations to get a. At Asiacrypt
2017, Leander and May [14] assume that f(x) behaves as a random periodic function with period a, and
show that any function value f(x) has only two preimages with probability at least 1

2 . Moreover, they
show that l = 2(n+

√
n) repetitions of the Simon’s algorithm are sufficient to compute a. The probability

is greater than 4
5 that it contains at least n − 1 linearly independent vectors y that are orthogonal to a

(Lemma 4, [14]). In this paper, we follow Leander and May’s assumption, that all the periodic functions
used in our attacks behave as random periodic functions. Therefore we use Lemma 4 of [14] to evaluate the
complexity of our attacks.

Simon’s algorithm has been used to attack many primitives, such as the key-recovery attacks against
Even-Mansour constructions [12], distinguishers against 3-round Feistel constructions [13], forgery attacks
against block cipher based MACs [4], key recovery attacks against FX constructions [14], and so on.

Quantum search: given an unordered set of N = 2n items, quantum search problem is to find the
unique element that satisfies some condition. In other words, given f(x), f(x) = 0 for all 0 6 x < 2n except
x0, for which f(x0) = 1, find x0. The best classical algorithm for a search over unordered data requires O(N)
time, but Grover’s algorithm [3] performs the search on a quantum computer in only O(

√
N) operations,

a quadratic speedup.
Grover’s Algorithm [3]: define a black box oracle O as O|x〉|q〉 = |x〉|q ⊕ f(x)〉. The steps of the

algorithm are as follows:

1. Initialization of an (n+ 1)-bit register |0〉⊗n|1〉. Apply the Hadamard transform to attain an superpo-
sition that can be given as follows:

H⊗(n+1)|0〉⊗n|1〉 =
1√
2n

∑

x∈{0,1}n
|x〉[(|0〉 − |1〉)/

√
2] = |Φ〉. (2)

2. Define |ϕ〉 = 1√
2n

∑
x∈{0,1}n

|x〉 and define the Grover iteration as (2|ϕ〉〈ϕ|−I)O, and apply it R ≈ π
4

√
2n

times to the state |Φ〉:
[(2|ϕ〉〈ϕ| − I)O]R|Φ〉 ≈ |x0〉[(|0〉 − |1〉)/

√
2].

3. Measure the final state and return x0.

We give some brief explanations on step 2, and for more details, we refer the readers to [29]. As shown
in Figure 1, Grover denotes (2|ϕ〉〈ϕ| − I) as diffusion transform. It includes two Hadamard transforms
H⊗n and a conditional phase shift operation, which is represented by the unitary operator 2|0〉〈0| − I, and
satisfies (2|0〉〈0| − I)|0〉 = |0〉 and (2|0〉〈0| − I)|x〉 = −|x〉, where x 6= 0. Therefore, the entire diffusion
transform using the notation |ϕ〉 is:

H⊗n[2|0〉〈0| − I]H⊗n = 2H⊗n|0〉〈0|H⊗n − I = 2|ϕ〉〈ϕ| − I. (3)

Hereafter, we get the Grover iteration: (2|ϕ〉〈ϕ| − I)O.
For the oracle O, when applying it to |x〉[(|0〉−|1〉)/

√
2], we get O|x〉[(|0〉−|1〉)/

√
2] = 1√

2
(|x〉|0⊕f(x)〉−

|x〉|1⊕ f(x)〉). Since f(x0) = 1, then O|x0〉[(|0〉 − |1〉)/
√

2] = 1√
2
(|x0〉|0⊕ 1〉 − |x0〉|1⊕ 1〉) = 1√

2
(|x0〉|1〉 −

|x0〉|0〉) = (−1)|x0〉[(|0〉 − |1〉)/
√

2]. When x 6= x0, O|x〉[(|0〉 − |1〉)/
√

2] = 1√
2
(|x〉|0 ⊕ 0〉 − |x〉|1 ⊕ 0〉) =

1√
2
(|x〉|0〉 − |x〉|1〉) = |x〉[(|0〉 − |1〉)/

√
2]. So O|x〉[(|0〉 − |1〉)/

√
2] = (−1)f(x)|x〉[(|0〉 − |1〉)/

√
2].

Further, Brassard et al. [31] generalized the Grover search as an amplitude amplification method.

Theorem 1 (Brassard, Hoyer, Mosca and Tapp [31]). Let A be any quantum algorithm on q qubits
that performs no measurement. Let B : Fq2 → {0, 1} be a function that classifies the outcomes of A as either
good or bad state. Let p > 0 be the initial success probability that the measurement of A|0〉 is good. Set
t = b π4θ c, where θ is defined using sin2(θ) = p. Furthermore, define the unitary operator Q = −AS0A−1SB,
where the operator SB changes the sign of the good state,

|x〉 7→
{
−|x〉 if B(x) = 1,
|x〉 if B(x) = 0.

Further, S0 changes the sign of the amplitude only in case of the zero state |0〉. Finally, after performing
the computation of QtA|0〉, the measurement yields a good state with probability at least max{1-p, p}.
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An Introduction to Quantum Algorithms 3.2 Grover’s algorithm: How it works

represented by the unitary operator 2 |0〉 〈0| − I:

[2 |0〉 〈0| − I] |0〉 = 2 |0〉 〈0|0〉 − I = |0〉 (4a)

[2 |0〉 〈0| − I] |x〉 = 2 |0〉 〈0|x〉 − I = − |x〉 (4b)

Giving the entire diffusion transform, using the notation |ψ〉 from equation 2:

H⊗n [2 |0〉 〈0| − I]H⊗n = 2H⊗n |0〉 〈0|H⊗n − I = 2 |ψ〉 〈ψ| − I (5)

And the entire Grover iteration:

[2 |ψ〉 〈ψ| − I]O (6)

In considering the runtime of the Grover iteration, the exact runtime of the oracle
depends on the specific problem and implementation, so a call to O is viewed as one
elementary operation. The total runtime, then, of a single Grover iteration is Θ(2n),
from the two Hadamard transforms, plus the cost of applying O(n) gates to perform
the conditional phase shift [12], is O(n). It follows that the runtime of Grover’s entire
algorithm, performing O(

√
N) = O(

√
2n) = O(2

n
2 ) iterations each with a runtime of O(n),

is O(2
n
2 ).

diffusion transform

|0〉 /n H⊗n

O
H⊗n 2 |0〉 〈0| − In H⊗n · · · NM






|1〉 H · · ·

repeat O(
√
N) ≈ π

4

√
N times

︷ ︸︸ ︷

︸ ︷︷ ︸

Figure 5: Circuit diagram for Grover’s algorithm, with a scratch qubit for the oracle [25].

Once the Grover iteration has been performed an adequate number of times, a classical
measurement is performed to determine the result, which will be correct with probability
O(1) completing the execution of the algorithm.

Grover’s algorithm is summarized nicely in [12] as follows:
Input:

• A quantum oracle O which performs the operation O |x〉 = (−1)f(x) |x〉, where
f(x) = 0 for all 0 ≤ x < 2n except x0, for which f(x0) = 1.

• n qubits initialized to the state |0〉

Page 23 of 35

Fig. 1: Circuit diagram for Grover’s algorithm [30]

Assume that |ϕ〉 = A|0〉 is the initial vector, whose projections on the good and the bad subspace are
denoted by |ϕ1〉 and |ϕ0〉, respectively. The state |ϕ〉 = A|0〉 exhibits an θ with a bad subspace, where
sin2(θ) = p. Each Q iteration increases the angle by 2θ. Hence, after t ≈ π

4θ , the angle is observed to be
approximately equal to π/2. Therefore, the state after t iterations is almost orthogonal to that of the bad
subspace. After measurement, it produces a good vector with high probability.

2.3 Hosoyamada and Sasaki’s Method to Truncate Outputs of Quantum Oracles

At ISIT 2010, Kuwakado and Morii [13] introduced a quantum distinguish attack on 3-round Feistel scheme
by using Simon’s algorithm. As shown in Figure 2:

F : {0, 1} × {0, 1}n/2 → {0, 1}n/2
b, x 7→ αb ⊕X3, where (X3, Y3) = EK(x, αb),

F (b, x) = f1(k1, f0(k0, αb)⊕ x).

F is periodic function that F (b, x) = F (b⊕1, x⊕f0(k0, α0)⊕f0(k0, α1)), α0 and α1 are arbitrary constants.
Then using Simon’s algorithm, one can get the period s = 1||f0(k0, α0)⊕ f0(k0, α1) in polynomial time.

Note that, in the above attack, one has to truncate the output n bits of EK to obtain the left half
n/2 bits, namely X3. However, Kaplan et al. [4] and Hosoyamada et al. [19] pointed out that in quantum
setting it is not trivial to truncated the entangled n qubits to n/2 qubits, since the usual truncation destroys
entanglements.

At SCN 2018, Hosoyamada and Sasaki [19] introduced a method to simulate truncation of outputs of
quantum oracles without destroying quantum entanglements. LetO : |x〉|y〉|z〉|w〉 7→ |x〉|y〉|z⊕OL(x, y)〉|w⊕
OR(x, y)〉 be the encryption oracle EK , where OL, OR denote the left and right n/2 bits of the complete
encryption, respectively. The goal is to simulate oracle OL : |x〉|y〉|z〉 7→ |x〉|y〉|z⊕OL(x, y)〉 by using some
ancilla qubits.

Let |+〉 := Hn/2|0n/2〉 = 1√
2n/2

∑
w |w〉, whereHn/2 is an n/2-qubit Hadamard gate. Then,O|x〉|y〉|z〉|+〉 =

O(|x〉|y〉|z〉[ 1√
2n/2

∑
w |w〉]) = |x〉|y〉|z ⊕ OL(x, y)〉[ 1√

2n/2

∑
w |w ⊕ OR(x, y)〉] holds. In addition, let w′ =

w⊕OR(x, y). Then, |x〉|y〉|z⊕OL(x, y)〉[ 1√
2n/2

∑
w |w⊕OR(x, y)〉] = |x〉|y〉|z⊕OL(x, y)〉[ 1√

2n/2

∑
w |w

′〉] =

|x〉|y〉|z ⊕OL(x, y)〉[ 1√
2n/2

∑
w′ |w

′〉] = |x〉|y〉|z ⊕OL(x, y)〉|+〉 holds. Therefore, O|x〉|y〉|z〉|+〉 = |x〉|y〉|z ⊕
OL(x, y)〉|+〉 holds.

Based on this observation, Hosoyamada and Sasaki defined O′L := (I ⊗Hn/2) ◦ O ◦ (I ⊗Hn/2). Since
O′L|x〉|y〉|z〉|0n/2〉 = |x〉|y〉|z ⊕ OL(x, y)〉|0n/2〉 holds, O′L completely simulates OL. Hence, OL can be
simulated given the complete encryption oracle O using ancilla qubits.

3 New Advanced Quantum Slide Attacks

3.1 Slide Attack and Advanced Slide Attack

Slide attack and advanced slide attack were proposed by Biryukov and Wagner [24, 32]. They are a set of
powerful cryptanalysis tools. Classically, slide attack and advanced slide attack are launched against block
ciphers with exponential time complexity. At CRYPTO 2016, Kaplan et al. [4] converted the slide attack
on iterated Even-Mansour cipher into a quantum one by applying the slide attack and Simon’s algorithm,
shown in Figure 3. They define F : {0, 1}n+1 → {0, 1}n as

F (b‖x) =

{
P (EPk (x))⊕ x if b = 0,

EPk (P (x))⊕ x if b = 1,
(4)
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f0

f1

f2

bx 0X 0Y

1X
1Y

2X 2Y

3Y
3X

0k

1k

2k

Fig. 2: 3-round quantum distinguisher
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where b ∈ {0, 1}, x ∈ {0, 1}n. The function f can be implemented on efficient
quantum circuits [5]. For arbitrary x ∈ {0, 1}n, we have

f(0‖x) = P (EP
k (x)) ⊕ x

= P (EP
k (x)) ⊕ k ⊕ (x ⊕ k)

= EP
k (P (x ⊕ k)) ⊕ (x ⊕ k)

= f(1‖(x ⊕ k))

= f((0‖x) ⊕ (1‖k)),

thus f has a period 1‖k. Hence we can recover k with Simon’s algorithm (Fig. 7).

Fig. 7. Slide attack against iterated Even-Mansour cipher round keys of which are all
the same.

Remark 4.1. The argument in Sect. 4.1 is not actually complete. Strictly speak-
ing, we should evaluate ε(f ; k1) and apply Proposition 3.1 for calculating the
period k1 of f . Kaplan et al. strictly argued these problems in their paper [5]
and showed that ε(f ; k1) < 1/2 holds for P without any second-order differential
with probability greater than 1/2. Similarly, they strictly argued these problems
also for the quantum slide attack in Sect. 4.2.

5 Quantum Related-Key Attack

Let Ek be a symmetric key block cipher. Assume an adversary is allowed to
access (classical or quantum) oracles Ek, Ek′ , where k and k′ are different secret
keys. A related-key attack is an attack in which the adversary does not know k
and k′ themselves, but knows a relationship that k and k′ satisfy. Denote P an
n-bit public random permutation. Iterated Even-Mansour EP (x; k1, k2, . . . , ki)
is defined as

EP (x; k1, k2, . . . , ki) = (Pki−1
◦ · · · ◦ Pk2

◦ Pk1
)(x) ⊕ ki,

where k1, k2, . . . , ki ∈ {0, 1}n are the secret keys and Pk = P (x ⊕ k). In the
following, we assume that two keys k = (k1, k2, . . . , ki), k

′ = (k′
1, k

′
2, . . . , k

′
i)

satisfy the relationship k′
l = kl+1 (1 ≤ l ≤ i − 1). For i = 2, an iterated Even-

Mansour cipher corresponds to an original Even-Mansour cipher and we can
perform the polynomial time attack described above, so we assume i ≥ 3 in the
following. We also assume that an adversary can query a superposition of inputs
to quantum oracles.

Fig. 3: Slide attack against iterated Even-Mansour cipher of which round keys are all the same

where b ∈ {0, 1}, x ∈ {0, 1}n. For arbitrary x ∈ {0, 1}n, we have

F (0‖x) = P (EPk (x))⊕ x = EPk (P (x⊕ k))⊕ (x⊕ k) = F (1‖(x⊕ k)). (5)

Thus, s = 1‖k is the period of F . Finally, they could retrieve the secret key by applying Simon’s algorithm
with polynomial time complexity.

Feistel ciphers form an important special case for applying slide attacks. Kaplan et al.’s quantum slide
attack against iterated Even-Mansour cipher could not be applied to Feistel ciphers trivially. Thus, we will
give some new quantum attacks on some Feistel ciphers.

In this paper, we focus on the 1K-/2K-/4K-Feistel and 1K-/2K-/4K-DES block ciphers, which were
introduced and studied by Biryukov and Wagner [24, 32]. They designed a novel advanced slide attack on
these ciphers with exponential time complexities in classical computers. 2K-/4K-DES block ciphers are
the modified DES examples which use two or four independent 48-bit keys and the key arrangements are
the same as 2K-/4K-Feistel block ciphers. The total number of rounds of 2K-/4K-DES are 64 or more,
thus they resist to the conventional differential [33] and linear attacks [34]. In this paper, we give some
advanced quantum slide attacks on 1K-/2K-/4K-Feistel block ciphers and extend them to attacks on 1K-
/2K-/4K-DES block ciphers by looking into the concrete round function of DES. Our attacks work on
m-round 1K-Feistel/1K-DES block cipher, or on 2m-round 2K-Feistel/2K-DES block cipher, or 4m-round
4K-Feistel/4K-DES block cipher, where m is any positive integer. For simplicity, in the following sections,
we only list example attacks on 4-round 1K-Feistel/1K-DES block cipher, 4-round 2K-Feistel/2K-DES block
cipher and 8-round 4K-Feistel/4K-DES block cipher, respectively.

3.2 Advanced Quantum Slide Attack on 1K-Feistel

As shown in Figure 4, 1K-Feistel block cipher adopts repeating round subkey and identical round function
f .

We first define the following function using given random constant α:

F : {0, 1} × {0, 1}n/2 → {0, 1}n/2

b, x 7→
{
EK(x, α)R if b = 0,
EK(α, f(α)⊕ x)L if b = 1,

(6)

where n is the block size of 1K-Feistel block cipher EK , EK(·)L and EK(·)R are the left branch (n2 -bit) or
right branch (n2 -bit) of EK(·).
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Fig. 4: Quantum Attacks on 1K-Feistel Block Cipher
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Fig. 5: A quantum circuit that computes the function F for the attack on 1K-Feistel. Please refer to [35]
for the relevant quantum gates and circuit symbols

As shown in Figure 4, EK(x, α)R = Y4, EK(X1, Y1)L = X5 = Y4, X1 = α and Y1 = f(k ⊕ α)⊕ x hold.
Thus, from EK(x, α)R = EK(X1, Y1)L = Y4, we deduce

F (0, x) = EK(x, α)R = EK(α, f(k ⊕ α)⊕ x)L = F (1, x⊕ f(α)⊕ f(k ⊕ α)). (7)

So F (b, x) is a function with period s = 1‖f(α)⊕f(k⊕α) and the period could be retrieved by applying
Simon’s algorithm. According to Sect. 2.2, the time complexity is about l = 2(n/2+1+

√
n/2 + 1) repetitions

of Simon’s algorithm to recover s, which is equivalent to l = 2(n/2 + 1 +
√
n/2 + 1) quantum queries of

the encryption process, using about n+ 1 qubits.
In order to simulate F (b, x), we have to truncate the output of EK to get the right half or left half

n/2 bits. Thanks to Hosoyamada and Sasaki’s work [19] shown in Sect. 2.3, we can truncate outputs of
quantum oracles with ease. The quantum circuit of F (b, x) is shown in Figure 5. If f is reversible, such as
GOST [18], Camellia [17] etc., it is easy to get k with the knowledge s. If f is irreversible, such as for DES
and its variants, it is possible to recover the key by studying the detailed structure of their round function
as shown in Sect. 3.2.1. Note that, the attack works for any number of rounds of 1K-Feistel, we only give
a 4-round example attack in this section.

3.2.1 The application to 1K-DES

The round function of DES is shown in Figure 6. We define that 1K-DES uses only one 48-bit key in every
round. The 32-bit right branch, i.e., R branch word is expanded by EX function to 48-bit, then it is XORed
by 48-bit k. The f function is applied to the 48-bit state, and outputs 32-bit word. The s-boxes map 6-bit
input into 4-bit output. We only give S1 s-box in Table 2 as an example. The quantum advanced slide
attack on 1K-DES is shown in Figure 7. The period function is therefore defined as follows:

F : {0, 1} × {0, 1}n/2 → {0, 1}n/2

b, x 7→
{
EK(x, α)R if b = 0,
EK(α, f(EX(α))⊕ x)L if b = 1,

(8)
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R (32 bits)

48 bits k (48 bits)

EX

S1 S2 S3 S4 S5 S6 S7 S8

P

( ( ) )f EX R k , 32 bits
f   Function

Fig. 6: DES Round Function

S1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Table 2: DES s-box: S1
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Fig. 7: Quantum Attack on 1K-DES Block Cipher

Then,

F (0, x) = EK(x, α)R = EK(α, f(k ⊕ EX(α))⊕ x)L = F (1, x⊕ f(EX(α))⊕ f(k ⊕ EX(α))). (9)

Thus, s = 1‖f(EX(α)) ⊕ f(k ⊕ EX(α)) is the period of F function. Suppose we have recovered s by
Simon’s algorithm, and then f(k ⊕ EX(α)) is known. Note that, Si(i = 1, 2, ..., 8) is mapping 6-bit input
to 4-bit output. Thus, given a 4-bit output, we could recover 4 possible 6-bit inputs, then get 4 candidate
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Fig. 8: Quantum Attack on 2K-Feistel Block Cipher to Recover k0

6-bit keys for each s-box. For example, suppose that the output of S1 is 14, we could get 4 different 6-bit
inputs as shown in Table 2.

Note that, we could use a different α, to construct a different period function F . We select α so that in
each s-box, the 6-bit inputs are different for each α. For example, the 6-bit inputs of S1 for all selected α
should be different. Hence, we could get different f(k ⊕ EX(α)) with different α. It is expected that with
2 different α, we could uniquely determine one correct 48-bit k by uniquely determining each 6-bit key
separately for each s-box. According to Sect. 2.2, the time complexity is 2l = 2 × 2 × (33 +

√
33) ≈ 155

repetitions of Simon’s algorithm, which is equivalent to 155 quantum queries of the encryption process,
using 65 qubits.

3.3 Quantum Slide Attack on 2K-Feistel

As shown in Figure 8, 2K-Feistel block cipher adopts round subkeys (k0, k1) iteratively and identical round
function f .

We first define the following function using given random constant α:

F : {0, 1} × {0, 1}n/2 → {0, 1}n/2

b, x 7→
{
EK(x, α)R if b = 0,
DK(f(α)⊕ x, α)R if b = 1.

(10)

As shown in Figure 8, EK(x, α)R = Y4, DK(Y1, X1)R = X5 = Y4, Y1 = f(k0 ⊕ α) ⊕ x, X1 = α hold.
Thus, from EK(x, α)R = DK(Y1, X1)R = Y4, we deduce

F (0, x) = EK(x, α)R = DK(f(k0 ⊕ α)⊕ x, α)R = F (1, x⊕ f(α)⊕ f(k0 ⊕ α)). (11)

So F (b, x) is a function with period s = 1‖f(α)⊕f(k0⊕α). According to Sect. 2.2, the time complexity
is about l = 2(n/2 + 1 +

√
n/2 + 1) repetitions of Simon’s algorithm to recover s, which is equivalent to

l = 2(n/2 + 1 +
√
n/2 + 1) quantum queries of the encryption process, using about n + 1 qubits. The

quantum circuit of F (b, x) is shown in Figure 9, and please refer to [35] for the relevant quantum gates
and circuit symbols. If f is reversible, such as GOST [18], Camellia [17], etc., it is easy to get k0 with s.
If f is irreversible, such as 2K-DES, it is easy to recover k0 with the same strategy as Sect. 3.2.1 and the
same complexity. Note that, the attack works for any even number of rounds of 2K-Feistel, we only give a
4-round example attack in this section.

To get k1, we design a similar quantum period function in Equation (12).

F : {0, 1} × {0, 1}n/2 → {0, 1}n/2

b, x 7→
{
DK(α, x)L if b = 0,
EK(α, f(α)⊕ x)L if b = 1.

(12)
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Fig. 10: Quantum Attacks on 2K-Feistel Block Cipher to Recover k1

As shown in Figure 10, DK(α, x)L = Y4, EK(X1, Y1)L = X5 = Y4, Y1 = f(k1 ⊕ α) ⊕ x, X1 = α hold.
Thus, from DK(α, x)L = EK(X1, Y1)L = Y4, we deduce

F (0, x) = DK(α, x)L = EK(α, f(k1 ⊕ α)⊕ x)L = F (1, x⊕ f(α)⊕ f(k1 ⊕ α)). (13)

So F (b, x) is a function with period s = 1‖f(α)⊕ f(k1 ⊕ α), and k1 is got consequently.

3.4 Quantum Slide Attack on 4K-Feistel

As shown in Figure 11, 4K-Feistel block cipher adopts round subkeys (k0, k1, k2, k3) iteratively and identical

round function f . Given arbitrary constant α ∈ Fn/22 , define:

F : {0, 1} × {0, 1}n/2 → {0, 1}n/2

b, x 7→
{
EK(x, α)R if b = 0,
DK(f(α)⊕ x, α)R if b = 1.

(14)

As shown in Figure 11, EK(x, α)R = Y8, DK(Y1 ⊕∆,X1)R = X9 = Y8, Y1 = f(k0 ⊕ α) ⊕ x, X1 = α
hold, where ∆ = k1 ⊕ k3. Thus, from EK(x, α)R = DK(Y1 ⊕∆,X1)R = Y8, we deduce

F (0, x) = EK(x, α)R = DK(f(k0 ⊕ α)⊕ x⊕∆,α)R = F (1, x⊕ f(α)⊕ f(k0 ⊕ α)⊕∆). (15)

So, F (b, x) is a function with period s = 1‖f(α) ⊕ f(k0 ⊕ α) ⊕ ∆. According to Sect. 2.2, the time
complexity is about l = 2(n/2 + 1 +

√
n/2 + 1) repetitions of Simon’s algorithm to recover s, which is

equivalent to l = 2(n/2 + 1 +
√
n/2 + 1) quantum queries of the encryption process, using about n + 1

qubits.
Similar to the attack on 2K-Feistel, we could also design a similar period function, with period s′ =

1‖f(α) ⊕ f(k3 ⊕ α) ⊕∆′, where ∆′ = k0 ⊕ k2. Note that, the attack works for any 4m-round 4K-Feistel,
where m is any positive integer, we only give an 8-round example attack in this section.
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Fig. 11: Quantum Attacks on 4K-Feistel Block Cipher

We follow the the assumption made by the 2K-/4K-Feistel’s designers, i.e., Biryukov and Wagner, that
the round function f is simple, just like the round function of GOST [18], Camellia [17], DES [17], etc.
Hence, it is easy to get the secret keys by the knowledge of s and s′, when looking into the details of the
round function. We give an example attack on 4K-DES in Sect. 3.4.1.

3.4.1 Application to 4K-DES

As shown in Figure 12, 4K-DES block cipher adopts four 48-bit round subkeys (k0, k1, k2, k3) iteratively.

Given arbitrary constant α ∈ Fn/22 , the period function is defined as follows:

F : {0, 1} × {0, 1}n/2 → {0, 1}n/2

b, x 7→
{
EK(x, α)R if b = 0,
DK(f(EX(α))⊕ x, α)R if b = 1.

(16)

As defined in Sect. 3.2.1, EX is the expand function. Let ∆ = EX−1(k1 ⊕ k3), our attack works only
when EX(∆) = k1 ⊕ k3. Since EX−1 maps 48-bit word k1 ⊕ k3 to a 32-bit word, EX(∆) = k1 ⊕ k3 holds
with probability 2−16. Thus, our attack on 4K-DES only works for 1/216 of all keys, which is the same as
Biryukov and Wagner’s attack [24].

Since EK(x, α)R = Y4, DK(Y1 ⊕∆,X1)R = X5 = Y4, Y1 = f(k0 ⊕EX(α))⊕ x, X1 = α hold, we could
deduce the following equation from EK(x, α)R = DK(Y1 ⊕∆,X1)R = Y4.

F (0, x) = EK(x, α)R = DK(f(k0 ⊕ EX(α))⊕ x⊕∆,α)R
= F (1, x⊕ f(EX(α))⊕ f(k0 ⊕ EX(α))⊕∆).

(17)

So, F (b, x) is a function with period s = 1‖f(EX(α)) ⊕ f(k0 ⊕ EX(α)) ⊕ ∆. When given the value
of f(k0 ⊕ EX(α)) ⊕ ∆, we could look into the f function and study the s-box one by one in Figure 6.
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6-  bit in 4-  bit out

Fig. 13: Input and output of s-box S1

For example, as shown in Figure 13, if we use three different α to run Simon’s algorithm1, we could get
three valid input-output pairs of s-box S1, i.e., (in1, out1), (in2, out2) and (in3, out3). We guess the 6-bit
kin, we could get 3 candidate kout by the three pairs, which are equal with probability 2−8. Thus, at
last only one (kout, kin) pair is expected to remain. After calculate (kout, kin) for each of the 8 s-boxes
respectively, we find the right key (k0, EX

−1(k1⊕k3)). According to Lemma 4 of [14], the time complexity
is 3l = 3 × 2 × (33 +

√
33) ≈ 233 repetitions of Simon’s algorithm, which is equivalent to 233 quantum

queries of the encryption process, using 65 qubits.

4 Quantum Key-recovery Attack on GOST Block Cipher

4.1 GOST Block Cipher

GOST [18] is a block cipher designed during the 1970’s by the Soviet Union as an alternative to the
American DES. Similar to DES, it has a 64-bit Feistel structure, employing 8 s-boxes and is intended for
civilian use. Unlike DES, it has a significantly larger key (256 bits instead of just 56), more rounds (32
compared with DES’s 16), and uses different sets of s-boxes. After the USSR had been dissolved, GOST
was accepted as a Russian standard.

Suppose the input state of i-th round function is (Xi−1, Yi−1), where Xi−1 and Yi−1 are the left and
right branches of the i-th round function for i = 1, 2, ..., 32. The first round of GOST is given in Figure 14,
the only difference for each round is the subkeys. The symbols used are

1 The way to select α is the same as Sect. 3.2.1.



Quantum Attacks on Some Feistel Block Ciphers 13

 
 

0X 0Y

11

1X 1Y

0k
0s

1s

2s

3s

4s

5s

6s

7s

Fig. 14: The first round of GOST block cipher.

 

 

0X 0Y

11 S

 

 

1X 1Y

11 S

2X 2Y

 

0k

 
 

1k

Fig. 15: 2-round of GOST block cipher

+ modular addition,
− modular subtraction,
⊕ bitwise addition,
≪ j cyclic left rotation by j bits ,
≫ j cyclic right rotation by j bits.
X[i1, .., ij ] the i1, .., ijth least significant bits of

the 32-bit word X.

In the round function, the round key is (modular) added with 32-bit right branch; then the 32-bit state
is substituted by S, which is composed of 8 4× 4 s-boxes in parallel; then rotating left the 32-bit state by
11 bits. It has a simple key schedule: 256-bit key is divided into eight 32-bit words k0, k1 · · · , k7 and the
sequence of round keys is given as k0, · · · , k7, k0, · · · , k7, k0, · · · , k7, k7, k6, · · · , k1, k0.

4.2 Quantum Attack on 30-round GOST Block Cipher

We first give some properties of GOST.

Property 1 As shown in Figure 15, for a two round GOST, if we know (X0, Y0) and (X2, Y2), then k0 =
S−1((X0 ⊕X2) ≫ 11)− Y0, k1 = S−1((Y0 ⊕ Y2) ≫ 11)−X2.

Property 2 (Reflection Property [36]) If the input state of the 25th round meets condition X24 = Y24,
then the last 16-round of 32-round GOST acts as an identity by ignoring the last swap function, i.e., the
input of 17th round is (X16, Y16), and the output of 32th round is (X32, Y32) = (Y16, X16).

Proof As shown in Figure 16, it is easy to see that, X23 = fk7
(Y23)⊕Y24, Y25 = fk7

(Y24)⊕X24. Since X24 =
Y24 and Y23 = X24, we get X23 = Y25. While Y23 = X24 = X25 holds. Thus, we get (X23, Y23)=(Y25, X25).

X22 = fk6
(Y22) ⊕ Y23, Y26 = fk6

(Y25) ⊕ X25. Since (X23, Y23)=(Y25, X25) and Y22 = X23, we get
X22 = Y26. While Y22 = X23 = Y25 = X26 holds. Thus, we get (X22, Y22)=(Y26, X26). Iterating the above
procedures, finally, we get the conclusion of Property 2, i.e., (X32, Y32) = (Y16, X16).

In this section, we only consider the last 30-round reduced GOST block cipher (from 3th to 32th round),
against quantum attackers from Q2 model. Since the key size of the 30-round GOST block cipher is 256-bit,
if we trivially use quantum brute-force search (Grover’s algorithm [3]) to find the key, it needs 2128 Grover
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Fig. 17: Attack on 30-round reduced GOST

iterations. In the following, we combine the reflection property and Grover’s algorithm to attack 30-round
GOST block cipher in 2112 Grover iterations.

Note that the input and output are (X2, Y2) and (X32, Y32). We first construct the following quantum
algorithm A: Preparing the initial 32× 7-bit register |0〉⊗224. Apply Hadamard transform H⊗224 to the
register to attain an equal superposition (omitting the amplitudes):

∑

X2,k2,k3,...,k7∈{0,1}32
|X2〉|k2, k3, ..., k7〉 = |ϕ〉, (18)

where X2 is the left half of the input of the 30-round GOST; the right half Y2 is a constant.
According to the Reflection Property 2, when X24 = Y24, the last 16-round is an identical transformation

by ignoring the last swap function. Thus, given 232 inputs (X2, Y2), it is expected that there is one (X2, Y2)
pair that satisfies the condition X24 = Y24, then (X16‖Y16) = (Y32‖X32).

Once we get the right (X2, Y2) somehow, we guess k2, k3, ..., k7, then encrypt for round 3-8 to get the
internal state (X8, Y8), decrypt (X16‖Y16) for round 11-16 to get (X10, Y10). According to Property 1, we
could deduce k0 and k1 from (X8, Y8) and (X10, Y10).

Considering the superposition |ϕ〉, assume that we had a classifier B : {0, 1}32×7 → {0, 1}, which
partitions |ϕ〉 into a good subspace and a bad subspace: |ϕ〉 = |ϕ1〉 + |ϕ0〉, where |ϕ1〉 and |ϕ0〉 denote
the projection onto the good subspace and bad subspace, respectively. In the good subspace |ϕ1〉, (X2, Y2)
meets the Reflection Property and k2, k3, ..., k7 are the right subkeys. For the good state |x〉, B(x) = 1.

We construct the quantum classifier B. Define B : {0, 1}32×7 → {0, 1} that maps (X2, k2, k3, ..., k7) to
0 or 1:
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1. For (X2, Y2), derive (X32, Y32) from the 30-round encryption oracle, note that Y2 is a random given
constant.

2. Use (k2, k3, ..., k7), (X2, Y2) and (X32, Y32) to derive k0, k1 from Property 1.
3. Check the derived (k0, k1, k2, ..., k7) by 5 plaintext-ciphertext pairs using the 30-round encryption oracle.

If the check is right, output 1. Else output 0.

We classify a state |X2〉|k2, k3, ..., k7〉 is a good state if and only if B(X2, k2, k3, ..., k7) = 1. The classifier
B outputs good under two conditions:

a) Condition 1. (X2, Y2) meets the Reflection Property. According to the above cryptanalysis, it is right
with a probability of 2−32.

b) Condition 2. k2, k3, ..., k7 are the right subkeys. It is right with a probability 2−192.

If we measure |φ〉, it produces the good state with probability p:

p = Pr[|X2〉|k2, k3, ..., k7〉 is good]
= Pr[B(X2, k2, k3, ..., k7) = 1]
= Pr[Condition 1] · Pr[Condition 2]
≈ 2−32 × 2−32×6 = 2−224.

(19)

Our classifier B defines a unitary operator SB that conditionally change the sign of the quantum state
|X2〉|k2, k3, ..., k7〉:

{
− |X2〉|k2, .., k7〉 if B(X2, k2, .., k7) = 1
|X2〉|k2, .., k7〉 if B(X2, k2, .., k7) = 0

(20)

The complete amplification process is realized by repeatedly for t times applying the unitary operator
Q = −AS0A−1SB to the state |ϕ〉 = A|0〉, i.e. QtA|0〉.

Initially, the angle between |ϕ〉 = A|0〉 and the bad subspace |ϕ0〉 is θ, where sin2(θ) = p = 〈ϕ1|ϕ1〉.
When p is smaller enough, θ ≈ arcsin(

√
p) ≈ 2−

224
2 . According to Theorem 1, after t = b π4θ c = b π

4×2−
224
2
c ≈

2112 Grover iterations Q, the angle between resulting state and the bad subspace is roughly π/2. The
probability Pgood that the measurement yields a good state is about sin2(π/2) = 1.

The whole attack needs 224 qubits and 2112 Grover iterations, where each Grover iteration needs about
6 quantum queries of 30-round GOST. Hence, it costs about 2114.6 quantum queries of the encryption
process, which is more efficient than the trivial quantum search (256 qubits and 2128 Grover iterations).

4.3 Quantum Attack on Full-round GOST Block Cipher

Property 3 (Fixed Point Property [37]) As shown in Figure 18, assume that when we encrypt a 64-bit
plaintext P =(X0, Y0), we obtain (X8, Y8)=(X0, Y0) after 8 encryption rounds. Since rounds 9-16 and
17-24 are identical to rounds 1-8, we obtain P after 16 and 24 encryption rounds as well. In rounds 25-
32, the round keys k0, ..., k7 are applied in the reverse order, and we obtain some arbitrary ciphertext
C = (X32, Y32). The knowledge of P and C immediately gives us the two input-output pairs of the first
8-round, i.e., (P, P ) = (X0‖Y0, X0‖Y0) and (C̄, P̄ ) = (Y32‖X32, Y0‖X0). The probability to get a fix point
of the first 8 rounds is 2−64.

Proof As shown in Figure 18, once we get an input-output pair (P, P ) = (X0‖Y0, X0‖Y0) for the rounds
1-8, we get the input-output pair (P,C) for rounds 25-32. We focus on rounds 25-32 shown in Figure 16,
different from rounds 1-8, the subkeys are in inverse order. If we consider rounds 25-32 in inverse direction,
i.e., from 32th round to 25th round, the only difference from rounds 1-8 is that there is an additional swap
function in the first round but not in the last round. So, (C̄, P̄ ) = (Y32‖X32, Y0‖X0) is also an input-output
pair for rounds 1-8.

Property 4 As shown in Figure 19, if we know two valid input-output pairs of the 3-round GOST, i.e.,
(X5‖Y5, X8‖Y8) and (X ′5‖Y ′5 , X ′8‖Y ′8), then we can easily determine the three subkeys k5, k6, k7.

Proof As shown in Figure 19, we get

(S(Y5 + k5) ≪ 11)⊕X5 = (S(X8 + k7) ≪ 11)⊕ Y8, (21)

(S(Y ′5 + k5) ≪ 11)⊕X′5 = (S(X′8 + k7) ≪ 11)⊕ Y ′8 . (22)

We rewrite Equation (21), as S(Y5 + k5) ⊕ S(X8 + k7) = (X5 ⊕ Y8) ≫ 11. Note that S is composed of
8 4×4 s-boxes in parallel, we first guess the 4 least significant bits of k5, i.e., k5[3, 2, 1, 0], then compute
s0(Y5[3, .., 0] + k5[3, .., 0]), where s0 is the s-box applied to the 4 least significant bits of Y5 + k5, thus we
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Fig. 18: Attack on the Full-round GOST
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Fig. 19: 3-round GOST.

could determine X8[3, .., 0] + k7[3, .., 0] and get k7[3, .., 0] by (modular 24) subtracting X8[3, .., 0]. Similarly,
by Equation (22), we could also derive another value of k7[3, .., 0], if they are not equal, then the guessing of
k5[3, 2, 1, 0] is wrong. After we determine a right candidate k5[3, 2, 1, 0] and k7[3, 2, 1, 0], we could continue
to guess and determine k5[7, 6, 5, 4] and k7[7, 6, 5, 4] with the known carry bits of the previous nibbles.
Finally, we are expected to get the right candidate k5, k7. Then we compute Y6 = (S(Y5 +k5) ≪ 11)⊕X5.
Thus we get k6 = S−1((Y5 ⊕ X8) ≫ 11) − Y6. Totally, we only use 8 × 24 × 2 + 2 × 8 = 272 s-boxes
operations without any memory cost, which approximate one encryption of GOST (it needs 8× 32 = 256
s-boxes operations).

A Classical Attack:

Using Property 3 and 4, we could devise a classical attack without any memory complexity. We list the
brief steps of the classical attack here:

1) For each of 264 plaintexts, and for each of 2160 key guessing k0, k1, ..., k4:
(a) Construct two input-output pairs of rounds 1-8 according to Property 3, i.e., (P, P ) and (C̄, P̄ ). Use

Property 4 to compute k5, k6, k7.
(b) Use 5 additional plaintext-ciphertext pairs to check k0, k1, ..., k6, k7, if it is right, return the key.

The time complexity of the above classical attack is 264+160 = 2224. The data complexity is 264, while
the best previous attack only use 232 data complexity with similar time complexity as shown in Table 1.
However, our attack do not use any memory cost, which is very important to devise an efficient quantum
algorithm. Since quantum memory is equivalent to the number of qubits in the circuit, which is very
expensive.

The Quantum Attack:

In our quantum attack on full-round GOST, we first construct the following quantum algorithm A: Prepar-
ing the initial 32× 7-bit register |0〉⊗224. Apply Hadamard transform H⊗224 to the register to attain an
equal superposition (omitting the amplitudes):

∑

X0,Y0,k0,k1,...,k4∈{0,1}32
|X0, Y0〉|k0, k1, ..., k4〉 = |ϕ〉. (23)

According to Property 3, once we get the right P =(X0, Y0) that meets the fix point property, we get
two input-output pairs of the first 8 rounds.

Considering the superposition |ϕ〉, assume that we had a classifier B : {0, 1}32×7 → {0, 1}, which
partitions |ϕ〉 into a good subspace and a bad subspace: |ϕ〉 = |ϕ1〉+ |ϕ0〉, where |ϕ1〉 and |ϕ0〉 denotes the
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projection onto the good subspace and bad subspace, respectively. In the good subspace |ϕ1〉, P = (X0, Y0)
meets the fixed point property and k0, k1, ..., k4 are the right subkeys. For the state |x〉 in the good subspace,
B(x) = 1.

We construct the quantum classifier B. Define B : {0, 1}32×7 → {0, 1} that maps (X0, Y0, k0, k1, ..., k4)
to 0 and 1:

1. For (X0, Y0), derive (X32, Y32) from the encryption oracle of GOST.
2. Suppose (X0, Y0) meets the fix point property, use (k0, k1, ..., k4) to derive k5, k6, k7 from Property 4.
3. Check the derived (k0, k1, k2, ..., k7) by 5 plaintext-ciphertext pairs using the GOST encryption oracle.

If the check is right, output 1. Else output 0.

We classify a state |X0, Y0〉|k0, k1, ..., k4〉 is a good if and only if B(X0, Y0, k0, k1, ..., k4) = 1. The classifier
B outputs good under two conditions:

a) Condition 1. (X0, Y0) meets the Property 3. It is right with a probability of 2−64.
b) Condition 2. k0, k1, ..., k4 are the right subkeys. It is right with a probability 2−160.

If we measure |φ〉, it produces the good state with probability p:

p = Pr[|X0, Y0〉|k0, k1, ..., k4〉 is good]
= Pr[B(X0, Y0, k0, k1, ..., k4) = 1]
= Pr[Condition 1] · Pr[Condition 2]
≈ 2−64 × 2−32×5 = 2−224.

(24)

Our classifier B defines a unitary operator SB that conditionally change the sign of the quantum state
|X0, Y0〉|k0, k1, ..., k4〉:

{
−|X0, Y0〉|k0, k1, ..., k4〉 if B(X0, Y0, k0, k1, ..., k4) = 1
|X0, Y0〉|k0, k1, ..., k4〉 if B(X0, Y0, k0, k1, ..., k4) = 0

(25)

The complete amplification process is realized by repeatedly for t times applying the unitary operator
Q = −AS0A−1SB to the state |ϕ〉 = A|0〉, i.e. QtA|0〉.

Initially, the angle between |ϕ〉 = A|0〉 and the bad subspace |ϕ0〉 is θ, where sin2(θ) = p = 〈ϕ1|ϕ1〉.
When p is smaller enough, θ ≈ arcsin(

√
p) ≈ 2−

224
2 . According to Theorem 1, after t = b π4θ c = b π

4×2−
224
2
c ≈

2112 Grover iterations Q, the angle between resulting state and the bad subspace is roughly π/2. The
probability Pgood that the measurement yields a good state is about sin2(π/2) = 1. The whole attack
needs 224 qubits and 2112 Grover iterations where each Grover iteration needs about 7 quantum queries of
GOST encryption. Hence, it costs about 2114.8 quantum queries of the encryption process.

5 Conclusion

In this paper, we have studied several Feistel block ciphers against quantum attackers, including the attacks
on 1K-/2K-/4K-Feistel and 1K-/2K-/4K-DES in polynomial time and the attacks on GOST which are faster
than the quantum brute force search attack by a factor of 213.2. Through this study, we believe that the
communities should continue to deepen the understanding of quantum security of symmetric cryptographic
schemes, as more plausible attacks might be found following quantum strategies.

6 Acknowledgements

We would like to thank the anonymous reviewers for their important comments on this paper. This work
is supported by National Key Research and Development Program of China (No. 2017YFA0303903), the
National Natural Science Foundation of China (No. 61902207), the National Cryptography Development
Fund (No. MMJJ20180101, MMJJ20170121).

References

[1] Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM
Journal on Computing, 1997, 26(5): 1484–1509.

[2] Rivest R L, Shamir A, Adleman L. A Method for obtaining digital signatures and public-key cryptosystems. Commun.
ACM, 1978, 21(2): 120–126.

[3] Grover L K. A fast quantum mechanical algorithm for database search. In: Miller G L, eds. Proceedings of STOC 1996.
ACM, 1996. 212–219.



18 Xiaoyang Dong1 et al.

[4] Kaplan M, Leurent G, Leverrier A, Naya-Plasencia M. Breaking symmetric cryptosystems using quantum period
finding. In: Robshaw M, Katz J, eds. Advances in Cryptology - CRYPTO 2016. Lecture Notes in Computer Science,
Vol 9815. Berlin: Springer-Verlag, 2016. 207–237.

[5] Zhandry M. How to construct quantum random functions. In: 53rd Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 679–687. IEEE Computer Society,
2012.

[6] Kaplan M, Leurent G, Leverrier A, Naya-Plasencia M. Quantum Differential and Linear Cryptanalysis. IACR Trans.
Symmetric Cryptol., 2016(1):71–94.

[7] Hosoyamada A, Sasaki Y, Xagawa K. Quantum multicollision-finding algorithm. IACR Cryptology ePrint Archive 2017,
864 (2017)

[8] Hosoyamada A, Sasaki Y: Cryptanalysis against symmetric-key schemes with online classical queries and offline quantum
computations. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 198–218. Springer, Cham (2018).

[9] Chailloux A, Naya-Plasencia M, Schrottenloher A. An efficient quantum collision search algorithm and implications on
symmetric cryptography. Cryptology ePrint Archive, Report 2017/847 (2017)

[10] Boneh D, Zhandry M. Secure signatures and chosen ciphertext security in a quantum computing world. In: Canetti
R, Garay J A, eds. Advances in Cryptology - CRYPTO 2013. Lecture Notes in Computer Science, Vol 8043. Berlin:
Springer-Verlag, 2013. 361–379.

[11] Boneh D, Zhandry M. Quantum-secure message authentication codes. In: Thomas Johansson and Phong Q. Nguyen,
editors, Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, volume 7881 of Lecture
Notes in Computer Science, pages 592–608. Springer, 2013.

[12] Kuwakado H, Morii M. Security on the quantum-type even-mansour cipher. In: International symposium on informa-
tion theory and its applications, ISITA 2012. IEEE, 2012. 312–316.

[13] Kuwakado H, Morii M. Quantum distinguisher between the 3-round feistel cipher and the random permutation. In:
International symposium on information theory, ISIT 2010. IEEE, 2010. 2682–2685.

[14] Leander G, May A. Grover meets simon - quantumly attacking the FX-construction. In: Takagi T, Peyrin T, eds.
Advances in Cryptology - ASIACRYPT 2017, Part II. Lecture Notes in Computer Science, Vol 10625. Cham: Springer,
2017. 161–178.

[15] Moody D. The Ship Has Sailed: the NIST Post-quantum Cryptography ”Competition”(Invited talk). In: Advances in
Cryptology - ASIACRYPT 2017. Berlin: Springer, 2017.

[16] Feistel H, Notz W A, Smith J L. Some cryptographic techniques for machine-to-machine data communications. In:
Proceedings of the IEEE, 1975, 63(11): 1545–1554.

[17] International Organization for Standardization(ISO). International Standard- ISO/IEC 18033-3, Information
technology-Security techniques-Encryption algorithms -Part 3: Block ciphers. 2010.

[18] National Soviet Bureau of Standards. Information Processing System - Cryptographic Protection - Cryptographic
Algorithm GOST 28147-89 (1989)
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