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Abstract

A searchable symmetric encryption (SSE) scheme enables a client to store data on an un-
trusted server while supporting keyword searches in a secure manner. Recent experiments have
indicated that the practical relevance of such schemes heavily relies on the tradeo� between
their space overhead, locality (the number of non-contiguous memory locations that the server
accesses with each query), and read e�ciency (the ratio between the number of bits the server
reads with each query and the actual size of the answer). These experiments motivated Cash and
Tessaro (EUROCRYPT '14) and Asharov et al. (STOC '16) to construct SSE schemes o�ering
various such tradeo�s, and to prove lower bounds for natural SSE frameworks. Unfortunately,
the best-possible tradeo� has not been identi�ed, and there are substantial gaps between the
existing schemes and lower bounds, indicating that a better understanding of SSE is needed.

We establish tight bounds on the tradeo� between the space overhead, locality and read
e�ciency of SSE schemes within two general frameworks that capture the memory access pattern
underlying all existing schemes. First, we introduce the �pad-and-split� framework, re�ning that
of Cash and Tessaro while still capturing the same existing schemes. Within our framework
we signi�cantly strengthen their lower bound, proving that any scheme with locality L must
use space Ω(N logN/ logL) for databases of size N . This is a tight lower bound, matching
the tradeo� provided by the scheme of Demertzis and Papamanthou (SIGMOD '17) which is
captured by our pad-and-split framework.

Then, within the �statistical-independence� framework of Asharov et al. we show that their
lower bound is essentially tight: We construct a scheme whose tradeo� matches their lower
bound within an additive O(log log logN) factor in its read e�ciency, once again improving
upon the existing schemes. Our scheme o�ers optimal space and locality, and nearly-optimal
read e�ciency that depends on the frequency of the queried keywords: For a keyword that
is associated with n = N1−ε(n) document identi�ers, the read e�ciency is ω(1) · ε(n)−1 +
O(log log logN) when retrieving its identi�ers (where the ω(1) term may be arbitrarily small,
and ω(1) · ε(n)−1 is the lower bound proved by Asharov et al.). In particular, for any keyword
that is associated with at most N1−1/o(log log logN) document identi�ers (i.e., for any keyword
that is not exceptionally common), we provide read e�ciency O(log log logN) when retrieving
its identi�ers.
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1 Introduction

A searchable symmetric encryption (SSE) scheme [SWP00, CGK+06] enables a client to store data
on an untrusted server and later perform keyword searches: Given a keyword w, the client should
be able to retrieve all data items that are associated with w (e.g., all document identi�ers that
contain w). This typically consists of a two-stage process: First, the client encrypts her database
and uploads it to the server, and then the client repeatedly queries the server with various keywords
by providing the server with keyword-speci�c search tokens. Informally, the security requirement
of SSE schemes asks that the server does not learn any information about keywords for which the
client did not issue any queries.

The practical relevance of SSE schemes. Motivated by the increasingly-growing technological
interest in outsourcing data to remote (and thus potentially untrusted) servers, a very fruitful line
of research in the cryptography community focused on the design of SSE schemes (e.g., [SWP00,
CM05, CGK+06, CK10, vLSD+10, CGK+11, KO12, KPR12, CJJ+13, KO13, KP13, CJJ+14, CT14,
CGP+15, ANS+16, DP17]). Most of the proposed schemes o�er strong and meaningful notions of
security, and some even extend the basic keyword search functionality to more expressive ones.

Despite these promising developments, Cash et al. [CJJ+13] showed via experiments with real-
world databases that the practical performance of the known schemes is quite disappointing, and
scales badly to large databases. Somewhat surprisingly, they observed that performance issues
resulting from impractical memory layouts may be signi�cantly more crucial compared to perfor-
mance issues resulting from the cryptographic processing of the data. More speci�cally, Cash et al.
observed that schemes with poor locality (i.e., schemes in which the server has to access a rather
large number of non-contiguous memory locations with each query) have poor practical performance
when dealing with large databases that require the usage of disk-storage mechanisms.

Practical locality, however, is obviously insu�cient: Any practically-relevant SSE scheme should
(at least) not su�er from either a signi�cant space overhead (i.e., encrypted databases should not
be much larger than the original databases), or from a poor read e�ciency (i.e., servers should not
read much more data than needed for answering each query)1.

E�ciency tradeo�s and existing lower bounds. This state of a�airs naturally poses the
challenge of constructing an SSE scheme that simultaneously enjoys asymptotically-optimal space
overhead, locality, and read e�ciency � but unfortunately no such scheme is currently known.
This has motivated Cash and Tessaro [CT14] to initiate the study of understanding the tradeo�
between these central measures of e�ciency. They proved a lower bound showing that, for a large
and natural class of SSE schemes, it is in fact impossible to simultaneously enjoy asymptotically-
optimal space overhead, locality, and read e�ciency. Speci�cally, they considered the class of SSE
schemes with �non-overlapping reads�: Schemes in which distinct keywords induce non-overlapping
memory regions which the server may access upon their respective queries (we refer the reader to the
work of Cash and Tessaro [CT14] for a formal de�nition of their notion of non-overlapping reads).

The class of SSE schemes with non-overlapping reads captures the basic techniques underlying
all existing SSE schemes other than two schemes proposed by Asharov et al. [ANS+16]. These
two schemes may have arbitrary overlapping reads, and o�er an improved tradeo� between their
space overhead, locality, and read e�ciency compared to the previously suggested schemes. This

1We consider the notions of locality and read e�ciency as formalized by Cash and Tessaro [CT14]: The locality of
a scheme is the number of non-contiguous memory accesses that the server performs with each query, and the read
e�ciency of a scheme is the ratio between the number of bits the server reads with each query and the actual size of
the answer. We refer the reader to Section 2.1 for the formal de�nitions.
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tradeo�, however, is still non-optimal, and Asharov et al. showed that this is in fact inherent to their
approach. Similarly to Cash and Tessaro, they proved that also for a di�erent class of SSE schemes,
it is impossible to simultaneously enjoy asymptotically-optimal space overhead, locality, and read
e�ciency. Speci�cally, they considered the class of SSE scheme with �statistically-independent
reads�: Schemes in which distinct keywords induce statistically-independent memory regions which
the server accesses upon their respective queries.

The lower bounds proved by Cash and Tessaro and by Asharov et al. capture all of the existing
SSE schemes (except for various schemes with non-standard leakage or functionality that we do not
consider in this work). That is, the basic techniques underlying each of the known SSE schemes
belong either to the class of �non-overlapping reads� or to the class of �statistically-independent
reads�. In both cases, however, the existing lower bounds are not tight, as there are still noticeable
gaps between the lower bounds and the performance guarantees of the existing schemes (as we detail
in the next section). This unsatisfying situation calls for obtaining a better understanding of SSE
techniques: Either by strengthening the known lower bounds, or by designing new schemes with
better performance guarantees.

1.1 Our Contributions

We prove tight bounds on the tradeo� between the space overhead, locality, and read e�ciency of
SSE schemes within the following two general frameworks:

The pad-and-split framework: We formalize a framework that re�nes the non-overlapping reads
framework of Cash and Tessaro [CT14] while still capturing the same existing SSE schemes
(i.e., all existing schemes other than those of Asharov et al. [ANS+16])2. We refer to this
framework as the �pad-and-split� framework given the structure of the SSE schemes that it
captures.

Within this framework we signi�cantly strengthen the lower bound of Cash and Tessaro: We
show that any pad-and-split scheme with locality L must use space Ω (N · logN/ logL) for
databases of size N . For example, for any constant locality (i.e., L = O(1)) and for any
logarithmic locality (i.e., L = O(logN)) our lower bound shows that any such scheme must
use space Ω(N logN) and Ω(N logN/ log logN), respectively, and is thus not likely to be of
substantial practical relevance (whereas the lower bound of Cash and Tessaro would only yield
space ω(N) when the locality is constant).

Then, we observe that our lower bound is in fact tight, as it is matched by a recent scheme
proposed by Demertzis and Papamanthou [DP17] that is captured by our framework (i.e., their
scheme is an optimal instantiation of our framework). We refer the reader to Sections 1.2 and
3 for a high-level overview and for a detailed description of this framework, its instantiations,
and of our lower bound, respectively.

The statistical-independence framework: We consider the statistical-independence framework
of Asharov et al. [ANS+16], and show that their lower bound for SSE schemes in this framework
is essentially tight: Based on the existence of any one-way function, we construct a scheme
whose e�ciency guarantees match their lower bound for constant locality within an additive
O(log log logN) factor in the read e�ciency, and improve upon those of their two schemes.

2Each of the schemes that are captured by our framework o�ers other important implementation details, improve-
ments and optimizations that we do not intend to capture, since these are not directly related to the tradeo� between
space, locality, and read e�ciency.
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Speci�cally, for databases of size N , our scheme o�ers both optimal space and optimal locality
(i.e., space O(N) and locality O(1)), and comes very close to o�ering optimal read e�ciency as
well. The read e�ciency of our scheme when querying for a keyword w depends on the length of
the list DB(w) that is associated with w (that is, the read e�ciency depends on the number of
identi�ers that are associated with w).3 When querying for a keyword that is associated with
n = N1−ε(n) identi�ers, the read e�ciency of our scheme is f(N) · ε(n)−1 + O(log log logN),
where f(N) = ω(1) may be any pre-determined function, and ω(1) ·ε(n)−1 is a lower bound as
proved by Asharov et al. [ANS+16]. In particular, for any keyword that is associated with at
most N1−1/o(log log logN) identi�ers (i.e., for any keyword that is not exceptionally common),
the read e�ciency of our scheme when retrieving its identi�ers is O(log log logN). We refer
the reader to Sections 1.2 and 4 for a high-level overview and for a detailed description of this
framework and of our new scheme, respectively.

Our results in the pad-and-split and statistical-independence frameworks, which are summa-
rized in Table 1 and presented in more detail in Section 1.2, show a signi�cant gap between the
performance guarantees that can be o�ered within these two frameworks. In both frameworks we
establish tight bounds that capture the basic techniques underlying all of the existing SSE schemes.
Thus, any attempt to further improve upon the tradeo� between the space overhead, locality and
read e�ciency of our schemes must be based on new techniques that deviate from all known SSE
schemes.

Space Locality Read E�ciency

This work (Thm. 1.1):

Pad-and-split lower bound
Ω(N logN/ logL) L O(1)

[DP17]: Pad-and-split scheme O(N logN/ logL) L O(1)

[ANS+16]: Statistical-independence
lower bound

O(N) O(1) ω(1) · ε(n)−1

[ANS+16]: Statistical-independence
scheme

O(N) O(1) Õ(log logN)

This work (Thm. 1.2):

Statistical-independence scheme
O(N) O(1)

ω(1) · ε(n)−1+

O(log log logN)

Table 1: A summary of our contributions. We denote by N the size of the database. The read e�ciency in the
lower bound of Asharov et al. [ANS+16] and in our statistical-independence scheme (Thm. 1.2) when querying for a
keyword w depends on the number n = N1−ε(n) of identi�ers that are associated with w.
In addition, our statistical-independence scheme is based on the modest assumption that no keyword is associated
with more than N/ log3 N identi�ers, whereas the scheme of Asharov et al. [ANS+16] is based on the stronger
assumption that no keyword is associated with more than N1−1/ log logN identi�ers (thus, the read e�ciency of their
scheme does not contradict their lower bound, and our scheme has better read e�ciency compared to their scheme).
Finally, we note that the ω(1) term in the read e�ciency of our scheme can be set to any super-constant function
(e.g., log log log logN).

1.2 Overview of Our Contributions

In this section we provide an overview of the two frameworks that we consider in this work, and
present our results within each framework. As standard in the line of research on searchable sym-

3We emphasize that this does not hurt the security of SSE schemes, and still results in minimal leakage as required.
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metric encryption, we represent a database as a collection DB = {DB(w1), . . . ,DB(wnW
)}, where

w1, . . . , wnW
are distinct keywords, and DB(w) is the list of all identi�ers that are associated with

each keyword w. We denote by N =
∑nW

i=1 |DB(wi)| the size of the database.

Our pad-and-split framework. Our pad-and-split framework considers schemes that are char-
acterized by an algorithm denoted SplitList and consist of two phases. In the �rst phase, given
a database DB = {DB(w1), . . . ,DB(wnW

)} of size N , for each keyword wi the scheme invokes the

SplitList algorithm on the length ni of its corresponding list DB(wi), to obtain a vector (x
(1)
i , . . . , x

(m)
i )

of integers. The scheme then potentially pads the list DB(wi) by adding �dummy� elements, and

splits the padded list into sublists of lengths len(1), . . . , len(m), where x
(j)
i denotes the number of

sublists of each length len(j). Then, in the second phase, for each possible length len(j), the scheme
groups together all sublists of length len(j), and independently processes each such group to produce
an encrypted database EDB.

We consider any possible instantiation of the SplitList algorithm (satisfying the necessary re-
quirement that no list is longer than the sum of lengths of its sublists), and this enables us to
describe a general template for constructing an SSE scheme based on any such algorithm given
any one-way function. Our template yields schemes whose space usage and locality are essentially
inherited from similar properties of their underlying SplitList algorithm, and whose read e�ciency
is always constant. We then demonstrate that this template captures the memory access patterns
underlying essentially all existing schemes other than those of Asharov et al. [ANS+16]. Speci�cally,
we show that each of these schemes can be obtained as an instantiation of our template using a
suitable SplitList algorithm.

A tight lower bound for pad-and-split schemes. Equipped with our general notion of pad-
and-split schemes, we prove a lower bound on the asymptotic e�ciency guarantees of such schemes.
Whereas the lower bound of Cash and Tessaro [CT14] states that SSE schemes with non-overlapping
reads cannot simultaneously o�er asymptotically-optimal space overhead and locality, we prove the
following lower bound (capturing the same existing schemes) stating that the e�ciency guarantees
of pad-and-split schemes must in fact be very far from optimal:

Theorem 1.1. Any pad-and-split SSE scheme for databases of size N with locality L = L(N) uses
space Ω (N logN/ logL).

We show that this lower bound is tight, as it matches the tradeo� o�ered by the scheme of De-
mertzis and Papamanthou [DP17] (i.e., their scheme is an optimal instantiation of our framework).
We refer the reader to Section 3 for a detailed and more formal presentation of our results, including
an in-depth discussion of the existing pad-and-split instantiations.

The statistical-independence framework. The statistical-independence framework of Asharov
et al. [ANS+16] considers symmetric searchable encryption schemes that are characterized by a pair
of algorithms, denoted RangesGen and Allocation, and consist of two phases. In the �rst phase, given
a database DB = {DB(w1), . . . ,DB(wnW

)} of size N , for each keyword wi the scheme invokes the
RangesGen algorithm on the length ni of its corresponding list DB(wi), to obtain a set of possible
locations in which the scheme may place the elements of the list DB(wi).

4 Then, in the second phase,
given the sets of possible locations for all keywords, the scheme invokes the Allocation algorithm on

4Looking ahead, when supplied with a token corresponding to a keyword wi, the server will return to the client
all data stored in the possible locations of the list DB(wi) (the server will not actually know in which of the possible
locations the elements of the list are actually placed).
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these sets to obtain the actual locations for the corresponding lists. A key property of this framework
is that the RangesGen algorithm, which determines the set of possible locations for each list DB(wi),
is applied separately and independently to the length of each list. Thus, the possible locations of
each list are independent of the possible locations of all other lists (in contrast, the actual locations
of the lists are naturally correlated).

Asharov et al. referred to a pair (RangesGen,Allocation) of such algorithms as an allocation
scheme, and showed that any such allocation scheme can be used to construct an SSE scheme.
Then, by constructing two allocation schemes they obtained two SSE schemes with space O(N) and
locality O(1). Without making any assumptions on the structure of the database, their �rst scheme
has read e�ciency Õ(logN), and under the assumption that no keyword is associated with more
than N1−1/ log logN identi�ers, their second scheme has read e�ciency Õ(log logN).

Our leveled two-choice scheme. Within the statistical-independence framework, as discussed
above, we construct a scheme whose tradeo� between space, locality, and read e�ciency matches
the lower bound proved by Asharov et al. for scheme in this framework to within an additive
O(log log logN) factor in its read e�ciency (see Section 4 for a formal statement of their lower
bound).

Speci�cally, we construct a scheme whose read e�ciency when querying for a keyword w depends
on the length of the list DB(w) that is associated with w (that is, the read e�ciency depends on
the number of identi�ers that are associated with w). For any n ≤ N we denote by r(N,n) the read
e�ciency when retrieving a list of length n, and prove the following theorem:

Theorem 1.2. Assuming the existence of any one-way function, for any function f(N) = ω(1)
there exists an adaptively-secure symmetric searchable encryption scheme for databases of size N in

which no keyword is associated with more than N/ log3N identi�ers, with the following guarantees:

� Space O(N).

� Locality O(1).

� Read e�ciency r(N,n) = f(N) · ε(n)−1 +O(log log logN), where n = N1−ε(n).

� Token size O(1).

Our construction applies to databases of size N under the modest assumption that no key-
word is associated with more than N/ log3N identi�ers (note that the construction of Asharov et
al. [ANS+16] is based on the stronger assumption that no keyword is associated with more than
N1−1/ log logN identi�ers). One can always generically deal (in a secure manner) with such extremely-
common keywords by �rst excluding them from the database and applying our proposed scheme,
and then applying in addition any other scheme for these extremely-common keywords (e.g., the
�one-choice scheme� of Asharov et al. [ANS+16] or the recent scheme of Demertzis, Papadopoulos
and Papamanthou [DPP17] � see Section 1.3 for more details).

When comparing our scheme to the scheme of Asharov et al. (see Table 1), both schemes o�er
space O(N) and locality O(1), where the read e�ciency of our scheme is strictly better than the read
e�ciency of their scheme � see Figure 1. In particular, for any keyword that is not exceptionally
frequent (speci�cally, associated with at most N1−1/o(log log logN) identi�ers), our scheme provides
read e�ciency O(log log logN) whereas their scheme provides read e�ciency Õ(log logN).

The structure of our scheme. Our scheme is a leveled generalization of the �two-choice� scheme
of Asharov et al. and consists of three levels for storing the elements of a given database. The �rst
level consists of the two-choice SSE scheme of Asharov et al. but with an exponentially improved read
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e�ciency. Our key observation is that when viewing the �rst level as a collection of �bins�, then by
allowing a few elements to �over�ow� we can reduce the maximal load of each bin from Õ(log logN)
(as in [ANS+16]) to O(log log logN) and also handle much longer lists (i.e., much more frequent
keywords). This then translates into improving the read e�ciency in this level from Õ(log logN)
to O(log log logN), while still using space O(N) and locality O(1).

At this point, however, we have to store the over�owing elements. We store the vast majority
of these elements in our second level, which consists of roughly logN cuckoo hashing tables [PR04],
where the j hash table is designed to store at most N̂/2j values each of which of size 2j . Our speci�c
choice of cuckoo hashing as a static dictionary (i.e., a hash table) is due to its speci�c properties that
guarantee the security of our scheme (see Section 2.4 for a discussion of these speci�c properties).
In particular, our third level consists of a cuckoo hashing stash for each of the second-level cuckoo
hashing tables. The goal of introducing this level is to reduce the failure probably of cuckoo hashing
from noticeable to negligible, which is essential for the security of our resulting SSE scheme. We
refer the reader to Section 4 for a detailed description of our scheme.

Number of
identi�ers

Read e�ciency

N1−1/o(log log logN)

O(log log logN)

N1−1/ log logN

Õ(log logN)

N/ log3N

ω(1) · logN

log logN
[ANS+16]

Our scheme Low
er b

oun
d

Figure 1: The read e�ciency of our statistical-independence scheme compared to that of Asharov
et al. [ANS+16] and to the lower bound. The read e�ciency of our scheme is depicted by the blue line, and
the read e�ciency of the scheme of Asharov et al. is depicted by the yellow line (recall that our scheme supports
keywords that are associated with up to N/ log3 N identi�ers, whereas the scheme of Asharov et al. only supports
keywords that are associated with at most N1−1/ log logN identi�ers). The read e�ciency lower bound of Asharov et
al. is depicted by the red triangle (note that it coincides with our blue line for keywords that are associated with at
least N1−1/o(log log logN) and at most N/ log3 N identi�ers). In all three cases the read e�ciency is presented as a
function of the number of identi�ers that are associated with the queried keyword.

Directions for future research. In this work we establish tight bounds on the tradeo� between
the space overhead, locality and read e�ciency of SSE schemes within two general frameworks.
Although these two frameworks capture the memory access pattern underlying all existing schemes,
there is clearly no guarantee that our lower bounds cannot be circumvented by following other
approaches. Thus, the main open problem that arises from our work is to prove tight bounds for all
SSE schemes. Additional natural open problems are to prove such tight bounds for dynamic SSE
schemes, and to study the above tradeo� for searchable encryption in the public-key setting.

1.3 Related Work

The notion of searchable symmetric encryption was put forward by Song, Wagner and Perrig
[SWP00] who suggested several practical constructions. Formal notions of security and function-
ality for SSE, as well as the �rst constructions satisfying them, were later provided by Curtmola,
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Garay, Kamara, and Ostrovsky [CGK+06, CGK+11]. Additional work in this line of research de-
veloped searchable symmetric encryption schemes with various e�ciency properties, support for
data updates, authenticity, support for more advanced searches, and more (see [SWP00, Goh03,
CM05, CGK+06, CK10, vLSD+10, CGK+11, KO12, KPR12, CJJ+13, KO13, KP13, CJJ+14, CT14,
CGP+15, ANS+16, DP17] and the references therein). The two frameworks that we consider in this
work capture schemes that satisfy that standard notions of SSE introduced by Curtmola et al.
[CGK+06, CGK+11]. These schemes are discussed in Section 3.2 as instantiations of our pad-and-
split framework, and in Section 4.2 as instantiations of the statistical-independence framework of
Asharov et al. [ANS+16].

Our statistical-independence scheme can be applied to any database in which no keyword is
associated with more than N/ log3N identi�ers. As discussed above, one can always generically
deal (in a secure manner) with such extremely-frequent keywords by �rst excluding them from the
database and applying our proposed scheme, and then applying in addition any other scheme for
these extremely-common keywords. For example, for these keywords one can apply the �one-choice
scheme� of Asharov et al. or the recent scheme of Demertzis, Papadopoulos and Papamanthou
[DPP17] that provides a sub-logarithmic read e�ciency when searching for extremely frequent
keywords5. Speci�cally, Demertzis et al. proposed a scheme that handles such extremely frequent
keywords and improves their read e�ciency from Õ(logN) as guaranteed by the �one-choice scheme�
of Asharov et al. to O(log2/3+δN) for any �xed constant δ > 0 (for all other keywords they use the
two schemes of Asharov et al., which can now be replaced by our new scheme in its appropriate
range of parameters).

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we review the standard notion of
symmetric searchable encryption schemes, as well as various tools that are used in our constructions.
Then, in Section 3 we put forward our pad-and-split framework and then present our lower bound
and new scheme in this framework. In Section 4 we review the statistical-independence framework
and then present our new scheme in this framework.

2 Preliminaries

In this section we present the notation, de�nitions, and basic tools that are used in this work. We
denote by λ ∈ N the security parameter. For a distribution X we denote by x← X the process of
sampling a value x from the distribution X. Similarly, for a set X we denote by x← X the process
of sampling a value x from the uniform distribution over X . For an integer n ∈ N we denote by [n]
the set {1, . . . , n}. A function negl : N→ R+ is negligible if for every constant c > 0 there exists an
integer Nc such that negl(n) < n−c for all n > Nc. All logarithms in this paper are to the base of
2. For a probabilistic algorithm Alg, we denote its output when using fresh uniform random tape
by output ← Alg(input). Additionally, we denote its (deterministic) output when using an explicit
random tape r by Alg(input; r).

5The scheme of Demertzis, Papadopoulos and Papamanthou [DPP17] is not captured by the two frameworks we
consider in this work, as it requires the server to modify its stored data (i.e., the encrypted database) and the user
to update her local state whenever a search query is issued.

7



2.1 Searchable Symmetric Encryption

Let W = {w1, . . . , wnW
} denote a set of keywords, where each keyword wi is associated with a list

DB(wi) = {id1, . . . , idni} of document identi�ers (these may correspond, for example, to documents
in which the keyword wi appears). A database DB = {DB(w1), . . . ,DB(wnW

)} consists of several
such lists. We assume that each keyword and document identi�er can be represented using a
constant number of machine words, each of length O(λ) bits, in the unit-cost RAM model6. There
are various di�erent syntaxes for SSE schemes in the literature, where the main di�erences are in
the �avor of interaction between the server and the client with each query. In this work we consider
both a setting where the server decrypts the set of identi�ers by itself, and a setting where the server
does not decrypt this but rather sends encrypted data back to the client (who can then decrypt and
learn the set of identi�ers).

2.1.1 Functionality

A searchable symmetric encryption scheme is a 5-tuple (KeyGen,EDBSetup,TokGen,Search,Resolve)
of probabilistic polynomial-time algorithms satisfying the following requirements:

� The key-generation algorithm KeyGen takes as input the security parameter λ ∈ N in unary
representation and outputs a secret key K.

� The database setup EDBSetup algorithm takes as input a secret key K and a database DB,
and outputs an encrypted database EDB.

� The token-generation algorithm TokGen takes as input a secret key K and a keyword w, and
outputs a token τ and some internal state ρ.

� The search algorithm Search takes as input a token τ and an encrypted database EDB, and
outputs a list R of results.

� The resolve algorithm Resolve takes as input a list R of results and an internal state ρ, and
outputs a list M of document identi�ers.

An SSE scheme for databases of size N = N(λ) is correct if for any database DB of size N and
for any keyword w, with an overwhelming probability in the security parameter λ ∈ N, it holds that
M = DB(w) at the end of the following experiment:

1. K ← KeyGen(1λ).

2. EDB← EDBSetup(K,DB).

3. (τ, ρ)← TokGen(K,w).

4. R← Search(τ,EDB).

5. M = Resolve(ρ,R).

We note that one can also consider a more adversarially-�avored notion of correctness, where an
adversary adaptively interacts with a server with the goal of producing a query that results in an
incorrect output. We refer the reader to [ANS+16] for more details, and here we only point out that
our schemes in this paper satisfy such a notion as well.

2.1.2 E�ciency Measures

Our notions of space usage, locality and read e�ciency follow those introduced by Cash and Tessaro
[CT14].

6The unit cost word-RAM model is considered the standard model for analyzing the e�ciency of data structures
(see, for example, [DP08, Hag98, HMP01, Mil99, PP08] and the references therein).

8



Space. A symmetric searchable encryption scheme (KeyGen,EDBSetup,TokGen,Search,Resolve)
uses space s = s(λ,N) if for any λ,N ∈ N, for any database DB of size N , and for any key K
produced by KeyGen(1λ), the algorithm EDBSetup(K,DB) produces encrypted databases that can
be represented using s machine words.

Locality. The search procedure of any SSE scheme can be decomposed into a sequence of contigu-
ous reads from the encrypted database EDB, and the locality is de�ned as the number of such reads.
Speci�cally, locality is de�ned by viewing the Search algorithm of an SSE scheme as an algorithm
that does not obtain as input the actual encrypted database, but rather only obtains oracle access
to it. Each query to this oracle consists of an interval [ai, bi], and the oracle replies with the machine
words that are stored in this interval of EDB. At �rst, the Search algorithm is invoked on a token
τ and queries its oracle with some interval [a1, b1]. Then, it iteratively continues to compute the
next interval to read based on τ and all previously read intervals. We denote these intervals by
ReadPat(EDB, τ).

De�nition 2.1 (Locality). An SSE scheme Π is d-local (or has locality d) if for every λ, DB
and w ∈ W, K ← KeyGen(1λ), EDB ← EDBSetup(K,DB) and τ ← TokGen(K,w) we have that
ReadPat(EDB, τ) consists of at most d intervals.

Read e�ciency. The notion of read e�ciency compares the overall size of the portion of EDB
that is read on each query to the size of the actual answer to the query. For a given DB and w, we
let ||DB(w)|| denote the number of words in the encoding of DB(w).

De�nition 2.2 (Read e�ciency). An SSE scheme Π is r-read e�cient (or has read e�ciency r) if
for any λ, DB, and w ∈ W, we have that ReadPat(τ,EDB) consists of intervals of total length at
most r · ||DB(w)|| words.

2.1.3 Security Notions

The standard security de�nition for SSE schemes follows the ideal/real simulation paradigm. We
consider both static and adaptive security, where the di�erence is whether the adversary chooses
its queries statically (i.e., before seeing any token), or in an adaptive manner (i.e., the next query
may be a function of the previous tokens). In both cases, some information is leaked to the server,
which is formalized by letting the simulator receive the evaluation of some �leakage function� on the
database itself and the real tokens. We start with the static case.

The real execution. The real execution is parameterized by the scheme Π, the adversary A,
and the security parameter λ. In the real execution the adversary is invoked on 1λ, and outputs
a database DB and a list of queries w = {wi}i. Then, the experiment invokes the key-generation
algorithm and the database setup algorithms, K ← KeyGen(1λ) and EDB ← EDBSetup(K,DB).
Then, for each query w = {wi}i that the adversary has outputted, the token generator algorithm
is run to obtain τi = TokGen(wi). The adversary is given the encrypted database EDB and the
resulting tokens τ = {τi}wi∈w, and outputs a bit b.

The ideal execution. The ideal execution is parameterized by the scheme Π, a leakage
function L, the adversary A, a simulator S and the security parameter λ. In this execution, the
adversary A is invoked on 1λ, and outputs (DB,w) similarly to the real execution. However, this
time the simulator S is given the evaluation of the leakage function on (DB,w) and should output
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EDB, τ (i.e., (EDB, τ )← S(L(DB,w))). The execution follows by giving (EDB, τ ) to the adversary
A, which outputs a bit b.

Let SSE-RealΠ,A(λ) denote the output of the real execution, and let SSE-IdealΠ,L,A,S(λ)
denote the output of the ideal execution, with the adversary A, simulator S and leakage function
L. We now ready to de�ne security of SSE:

De�nition 2.3 (Static L-secure SSE). Let Π = (KeyGen,EDBSetup,TokGen, Search) be an SSE
scheme and let L be a leakage function. We say that the scheme Π is static L-secure searchable

encryption if for every ppt adversary A, there exists a ppt simulator S and a negligible function
negl(·) such that

|Pr [SSE-RealΠ,A(λ) = 1]− Pr [SSE-IdealΠ,L,A,S(λ) = 1]| < negl(λ)

Adaptive setting. In the adaptive setting, the adversary is not restricted to specifying all of its
queries w in advance, but can instead choose its queries during the execution in an adaptive manner,
depending on the encrypted database EDB and on the tokens that it sees. Let SSE-RealadaptΠ,A (λ)
denote the output of the real execution in this adaptive setting. In the ideal execution, the simulator
S is now an interactive Turing machine, which interacts with the experiment by responding to
queries. First, the simulator S is invoked on L(DB) and outputs EDB. Then, for every query wi
that A may output, the function L is invoked on DB and all previously queries {wj}j<i and the
new query wi, outputs some new leakage information which is given to the simulator S. The latter
outputs some ti, which is given back to A, who may then issue a new query. At the end of the
execution, A outputs a bit b. Let SSE-IdealadaptΠ,L,A,S(λ) be the output of the ideal execution. The
adaptive security of SSE is de�ned as follows:

De�nition 2.4 (Adaptive L-secure SSE). Let Π = (KeyGen,EDBSetup,TokGen,Search) be an SSE
scheme and let L be a leakage function. We say that the scheme Π is adaptive L-secure searchable

encryption if for every ppt adversary A, there exists a ppt simulator S and a negligible function
negl(·) such that∣∣∣Pr

[
SSE-Real

adapt
Π,A (λ) = 1

]
− Pr

[
SSE-Ideal

adapt
Π,L,A,S(λ) = 1

]∣∣∣ < negl(λ)

The leakage function. Following the standard notions of security for SSE we consider the leakage
function Lmin for one-round protocols and the leakage function Lsizes for two-round protocols, where

Lmin (DB,w) =
(
N, {DB(w)}w∈w

)
,

Lsizes(DB,w) = (N, {|DB(w)|}w∈w) ,

and N =
∑

w∈W |DB(w)| is the size of the database. That is, both functions return the size of the
database, and the di�erence between them is that the function Lmin returns the actual documents
that contain each keyword w ∈ w that the adversary has queried, whereas the function Lsizes returns
only the number of such documents.

The leakage functions in the adaptive setting are de�ned analogously. That is, for a database
DB, a set of �previous� queries {wj}j<i, and a new query wi, we de�ne

Ladapmin (DB, {wj}j<i, wi) =

{
N if ({wj}j<i, wi) = (⊥,⊥)
DB(wi) otherwise

Ladapsize (DB, {wj}j<i, wi) =

{
N if ({wj}j<i, wi) = (⊥,⊥)
|DB(wi)| otherwise

.
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2.2 Private-Key Encryption

We rely on the standard notion of a private-key encryption scheme with pseudorandom ciphertexts,
which is easily realized based on the minimal assumption that a one-way function exists [Gol04]. For
simplicity, and without loss of generality, we consider private-key encryption schemes in which the
key-generation algorithm produces a λ-bit uniformly-distributed key, where λ ∈ N is the security
parameter. Thus, such an encryption scheme is fully speci�ed via its encryption and decryption
algorithms, which we denote by Enc and Dec, respectively.

De�nition 2.5. Let Π = (Enc,Dec) be a private-key encryption scheme. Then Π has pseudorandom
ciphertexts if for every probabilistic polynomial-time algorithm A there exists a negligible function
negl(·) such that ∣∣∣Pr

[
AEncK(·)(1λ) = 1

]
− Pr

[
AR(·)(1λ) = 1

]∣∣∣ ≤ negl(λ),

where R is a probabilistic oracle that given any input outputs a freshly-sampled uniform value of
the appropriate length (i.e., as the output length of EncK(·)), and the above probabilities are taken
over the choice of K ← {0, 1}λ, the internal randomness of the algorithm Enc and the oracle R.

2.3 Static Hash Tables

In our schemes we rely on static hash tables (also known as static dictionaries). These are data
structures that given a set S can support lookup operations in constant time in the standard unit-
cost word-RAM model. Speci�cally, a static hash table consists of a pair of algorithms denoted
(HTSetup,HTLookup). The algorithm HTSetup gets as input a set S = {(`i, di)}ki=1 of pairs (`i, di)
of strings, where `i ∈ {0, 1}s is the label and di ∈ {0, 1}r is the data. The output of this algorithm
is a hash table HT(S). The lookup algorithm HTLookup on input (HT(S), `) returns d if (`, d) ∈ S,
and ⊥ otherwise.

There exist many constructions of static hash tables that use linear space (i.e., O(k(r+ s)) bits)
and answer lookup queries by reading a constant number of contiguous s-bit blocks and r-bit blocks
(see, for example, [PR04, ANS10], and the many references therein).

2.4 Cuckoo Hashing with a Stash

Cuckoo hashing is an e�cient and practical hash table designed by Pagh and Rodler [PR04], pro-
viding worst-case constant lookup time and uses linear space. An important property of cuckoo
hashing is that by storing a few elements in a secondary (small) data structure, referred to as a
�stash�, it is possible to decrease its failure probability from noticeable to negligible [KMW09]. For
our purposes in this work, it su�ces to consider the following abstraction of cuckoo hashing with a
stash:

� The memory is an abstract array [m], where each cell may contain a single element or NULL.

� The potential locations of any element are randomly sampled (instead of being determined by
hash functions).

We now summarize the abstract properties of cuckoo hashing with a stash in which we are
interested for our construction in Section 4:

1. For storing n lists, where each list consists of ` elements, an array of size O(n · `) is used. The
array is partitioned into two segments � a cuckoo hashing segment of size O(n · `) and a stash
segment of size s · `.
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2. Fetching a list requires accessing two random locations (of size ` each) in the cuckoo hashing
segment and accessing the entire stash segment.

3. When using a stash of size s = no(1), the probability that n lists can be successfully stored is
1−O(ns/2) [ADW14, Thm. 2].7

3 The Pad-and-Split Framework: A Stronger Lower Bound

In this section we �rst formalize our pad-and-split framework for the design of symmetric searchable
encryption schemes (Section 3.1). Then, we show that it captures the memory access patterns
underlying essentially all of the existing symmetric searchable encryption schemes other than the
schemes of Asharov et al. [ANS+16] (Section 3.2), and discuss the instantiation of Demertzis and
Papamanthou (Section 3.3) whose tradeo� matches our lower bound (Section 3.4).

3.1 The Pad-and-Split Framework

Our framework considers symmetric searchable encryption schemes that are characterized by a
deterministic algorithm denoted SplitList, and consist of the following two phases:

� Given a database DB = {DB(w1), . . . ,DB(wnW
)} of size N , for each keyword wi the scheme

invokes the SplitList algorithm on the length ni of its corresponding list DB(wi), to obtain a

vector (x
(1)
i , . . . , x

(m)
i ) of integers. The scheme then potentially pads the list DB(wi) by adding

�dummy� elements, and splits the padded list into sublists of lengths len(1), . . . , len(m), where

x
(j)
i denotes the number of sublists of each length len(j).

� For each possible length len(j), the scheme groups together all sublists of length len(j), and
independently processes each such group to produce an encrypted database EDB.

A key property of our framework is that the SplitList algorithm, which determines the number
of sublists of each length, does not take as input an actual list DB(wi) but only its length ni =
|DB(wi)|. This algorithm is parameterized by the possible lengths len(1), . . . , len(m) of sublists, and
also by upper bounds s(1), . . . , s(m) on the total number of sublists of lengths len(1), . . . , len(m),
respectively. We allow the parameters m, len(1), . . . , len(m) and s(1), . . . , s(m) to depend on the total
length N =

∑nW
i=1 |DB(wi)| of the database, but do not explicitly denote this for ease of notation.

We consider any possible instantiation of the SplitList algorithm subject to satisfying two natural
requirements. First, we require that each list DB(wi) is split into sublists whose total length is at
least the length of DB(wi). Second, we require that for every possible sublist length len(j) there are
at most s(j) sublists of length len(j) in the worst-case over all possible databases of size N . Formally:

De�nition 3.1. We say that a SplitList algorithm, parameterized by (len(1), . . . , len(m)) and (s1, . . . ,
sm) is valid if for every integer N and for every vector of lengths (n1, . . . , nk) with

∑k
i=1 ni = N , it

holds that:

� Each list is not longer than the sum of lengths of its sublists: For every ni it holds

that x
(1)
i · len

(1) + · · ·+ x
(m)
i · len(m) ≥ ni, where (x

(1)
i , . . . , x

(m)
i ) = SplitList(N,ni).

� Each s(j) upper bounds the number of sublists of length len(j): For every j ∈ [m] it

holds that
∑k

i=1 x
(j)
i ≤ s(j), where (x

(1)
i , . . . , x

(m)
i ) = SplitList(N,ni) for every i ∈ [k].

7Note that in the original work of Kirsch et al. [KMW09] they considered a constant-sized stash, whereas in this
work we are interested in a stash whose size is not necessarily constant, and thus we rely on [ADW14].

12



In addition, we say that SplitList has locality L if each list DB(wi) is split into at most L sublists.
Formally:

De�nition 3.2. We say that a SplitList algorithm has locality L = L(N) if for every ni it holds

that x
(1)
i + · · ·+ x

(m)
i ≤ L, where (x

(1)
i , . . . , x

(m)
i ) = SplitList(N,ni).

Equipped with our notion of a valid SplitList algorithm, we describe a general template (see
Construction 3.5) for constructing symmetric searchable encryption schemes given any such algo-
rithm. We rely, in addition, on a pseudorandom function PRF and a private-key encryption scheme
(Enc,Dec) with pseudorandom ciphertexts � both of which can be constructed based on any one-way
function as discussed in Section 2.2. This yields the following theorem:

Theorem 3.3. Given a valid SplitList algorithm with parameters (len(1), . . . , len(m)) and (s(1), . . . ,
s(m)), a pseudorandom function PRF, and a private-key encryption scheme (Enc,Dec) with pseu-

dorandom ciphertexts, Construction 3.5 is a static Lmin -secure symmetric searchable encryption

scheme for databases of size N with the following parameters:

� Space O
(∑m

j=1 s
(j) · len(j)

)
.

� Locality O(L(N)), where SplitList has locality L(N).

� Read e�ciency O(1).

� Token size O(1).

Moreover, Construction 3.5 is an adaptive Ladapmin -secure symmetric searchable encryption scheme in

the random-oracle model, when instantiating PRF and (Enc,Dec) appropriately.

Note that Theorem 3.3 guarantees that Construction 3.5 is statically-secure in the standard
model (although, we do prove it can be made adaptively secure in the random-oracle model). The
next theorem shows that a simple modi�cation of the scheme (described as Construction 3.6), based
on an idea sketched by Stefanov et al. [SPS14], is in fact adaptively secure in the standard model.
This comes at the cost of increasing the token size from tokens of size O(1) to tokens of size O(L),
where L is the locality of the SplitList algorithm.8 In this scheme, the client decrypts the results
sent by the server (using the Resolve algorithm), and thus the scheme leaks only the size of the
results. This is in contrast to the scheme described in Construction 3.5, where the server decrypts
the results, and thus the scheme leaks the results themselves9.

Theorem 3.4. Given a valid SplitList algorithm with parameters (len(1), . . . , len(m)) and (s(1), . . . ,
s(m)), a pseudorandom function PRF, and a private-key encryption scheme (Enc,Dec) with pseudo-

random ciphertexts, Construction 3.6 is an adaptive Ladapsize -secure symmetric searchable encryption

scheme for databases of size N with the following parameters:

� Space O
(∑m

j=1 s
(j) · len(j)

)
.

� Locality O(L(N)), where SplitList has locality L(N).

� Read e�ciency O(1).

� Token size O(L(N)).

In the remainder of this section we �rst provide a high-level overview of these schemes, and then
formally prove Theorems 3.3 and 3.4.

8We refer the reader to the work of Chase and Kamara [CK10] for a discussion on the necessity of using a random
oracle for adaptive security with succinct search tokens.

9Note that any scheme in which the server decrypts the results can be easily transformed into a scheme where
only the client decrypts the results by adding an additional encryption layer � but this does not necessarily hold in
the other direction.
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Overview of the schemes. In both schemes each list of document identi�ers DB(wi) is padded

and split as dictated by the output (x
(1)
i , . . . , x

(m)
i ) = SplitList(N, |DB(wi)|). That is, DB(wi) is

padded to length x
(1)
i · len

(1) + · · ·+x
(m)
i · len(m), and split into sublists, where for each j ∈ [m] there

are x
(j)
i sublists of length len(j). Then, we construct an encrypted database which consists of the

following hash tables:

� A hash table that stores (in encrypted manner) the lengths of all lists, and is padded to contain
exactly N elements.

� For every j ∈ [m] a hash table that stores (in an encrypted manner) all sublists of length
len(j), and is padded to contain exactly s(j) sublists of this length.

In all hash tables we store the various elements according to pseudorandom labels that are derived
from each corresponding keyword w via a pseudorandom function whose key is known only to the
client. Intuitively speaking, the scheme is secure for any valid SplitList algorithm due to the following
three reasons: (1) The number of padded elements and the number of sublists each list is split into
depend only on the length of each list, (2) each hash table consists of encrypted elements with
pseudorandom labels, and (3) the size of each hash table depends only on the size of the database.

The main di�erences between Construction 3.5 (providing static security) and Construction 3.6
(providing adaptive security) are as follows:

1. The lengths of the lists in Construction 3.6 are encrypted using one-time pads. This is required
in order to allow �explaining� a random value as the encryption of any particular length on
the �y (given that adversaries may be adaptive).

2. In Construction 3.5, for each searched keyword the server is given keys derived from that
keyword, allowing it to compute the labels and decrypt the document identi�ers associated
with that keyword. In Construction 3.6 the server is given the labels themselves (thus, the
token size is O(L)), and can only locate the encrypted document identi�ers, but not to decrypt
them.

Proof of Theorem 3.3. It is easy to see that the scheme is correct unless the same label appears
more than once, which happens with at most a negligible probability. Also, it is easy to verify the
space overhead, locality, read e�ciency and token size of the construction.

For proving the security of the scheme, recall that in the real execution the adversary A outputs
DB and w, and is given the encrypted database EDB and the tokens τi = TokGen(K,wi) for every
wi ∈ w. In the ideal execution, the simulator S is given only Lmin (EDB,w) and should output
both EDB and τ = {τi}wi∈w in such a way that the adversary cannot distinguish between these two
executions. Consider the following simulator S:

� Input: L(DB,w) = (N, {DB(wi)}wi∈w).

� The simulator:

1. The simulator S samples uniform random keys τi = (labeli,Ki, K̂i) for every wi ∈ w.

2. S initializes the sets T1, . . . , Tm and T to be empty sets. For every wi ∈ w and given
DB(wi), it computes ni, invokes (x1, . . . , xm) ← SplitList(N,ni), follows Step 2d in the
construction, and adds the pairs (labelj,x, dj,x) to the corresponding sets Tj . It also
encrypts n̂i = EncKi(ni) and adds the pair (labeli, n̂i) to the set T .

3. S pads the set T to contain exactly N elements by adding dummy elements, and pads
each set Tj to contain exactly s(j) elements by adding dummy elements.
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CONSTRUCTION 3.5 (One-Round Pad-and-Split Symmetric Searchable Encryption).

A pad-and-split SSE scheme is parameterized by a SplitList algorithm, and by the following values (all
values are functions of the size N of the database):

1. Locality parameter L.

2. Possible lengths len(1), . . . , len(m) of sublists.

3. Upper bounds s(1), . . . , s(m) on the total number of sublists of lengths len(1), . . . , len(m), respec-
tively.

Key generator. The algorithm KeyGen on input 1λ samples and outputs a key K ← {0, 1}λ for PRF.
Setup. The algorithm EDBSetup on input (K,DB) is de�ned as follows:

1. Initialize t+ 1 empty sets T, T1, . . . , Tm, where T will consist of the lengths of the lists, and each
set Tj will consist of all sublists of length len(j).

2. For every keyword wi ∈W with an associated list DB(wi) = {id1, . . . , idni
}:

(a) Compute (labeli,Ki, K̂i) = PRFK(wi).

(b) Compute n̂i = EncKi(ni) and add the pair (labeli, n̂i) to the set T .

(c) Compute (x
(1)
i , . . . , x

(m)
i ) = SplitList(N,ni).

(d) For every j = 1, . . . ,m:

i. For every x = 1, . . . , x
(j)
i :

A. Take the next len(j) elements from the list DB(wi) and create a block

{id′1, . . . , id
′
len(j)}. If there are less than len(j) elements left in DB(wi), then pad

with dummy elements.

B. Compute a label: labelj,x = PRF
K̂i

(j, x).

C. Encrypt dj,x =
(
EncKi

(id′1), . . . ,EncKi
(id′len(j))

)
.

D. Insert the pair (labelj,x, dj,x) into the set Tj .

3. Pad the set T to contain exactly N elements by adding dummy elements, and pad each set Tj to
contain exactly s(j) elements by adding dummy elements.

4. For each set T, T1, . . . , Tm, uniformly shu�e the set, and generate a hash table by invoking the
HTSetup algorithm for obtaining hash tables HT(T ),HT(T1), . . . ,HT(Tm).

5. Output EDB = (HT(T ), (HT(T1), . . . ,HT(Tm))).

Token generator. The algorithm TokGen on input (K,wi) computes and outputs the token τi =

(labeli,Ki, K̂i) = PRFK(wi).

Search. The algorithm Search on input (τi,EDB), where τi = (labeli,Ki, K̂i) and EDB =
(HT(T ),HT(T1), . . . ,HT(Tm)), is de�ned as follows:

1. Initialize a list of document identi�ers R = ∅.
2. Invoke HTLookup on the hash table HT(T ) and label labeli to retrieve n̂i = EncKi

(ni). Decrypt

n̂i using the key Ki, and compute (x
(1)
i , . . . , x

(m)
i ) = SplitList(N,ni).

3. For every j ∈ [m] and for every x ∈
[
x
(j)
i

]
compute labelj,x = PRF

K̂i
(j, x). Invoke HTLookup on

the hash table HT(Tj) for the label labelj,x, and obtain the block dj,x. Decrypt the block using
the key Ki and add the elements to the list R. For a block that contains dummy elements, obtain
and decrypt only the part that does not contain dummy elements.
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CONSTRUCTION 3.6 (Two-Round Pad-and-Split Symmetric Searchable Encryption).

A pad-and-split SSE scheme is parameterized by a SplitList algorithm, and the following values (all
values are functions of the size N of the database):

1. Locality parameter L.

2. Possible lengths len(1), . . . , len(m) of sublists.

3. Upper bounds s(1), . . . , s(m) on the total number of sublists of lengths len(1), . . . , len(m), respec-
tively.

Key generator. The algorithm KeyGen on input 1λ samples a key K ← {0, 1}λ for PRF, samples a

key K̂ ← {0, 1}λ for (Enc,Dec), and outputs (K, K̂).

Setup. The algorithm EDBSetup on input ((K, K̂),DB) is de�ned as follows:

1. Initialize t+ 1 empty sets T, T1, . . . , Tm, where T will consist of the lengths of the lists, and each
set Tj will consist of all sublists of length len(j).

2. For every keyword wi ∈W with an associated list DB(wi) = {id1, . . . , idni}:
(a) Compute ((labeli,Ki), (labeli,1, . . . , labeli,L)) = PRFK(wi).

(b) Compute n̂i = Ki ⊕ ni and add the pair (labeli, n̂i) to the set T .

(c) Compute (x
(1)
i , . . . , x

(m)
i ) = SplitList(N,ni).

(d) For every j = 1, . . . ,m:

i. For every x = 1, . . . , x
(j)
i :

A. Take the next len(j) elements from the list DB(wi) and create a block

{id′1, . . . , id
′
len(j)}. If there are less than len(j) elements left in DB(wi), then pad

with dummy elements.

B. Let label be the �rst unused label from (labeli,1, . . . , labeli,L).

C. Encrypt dj,x =
(
EncK̂(id′1), . . . ,EncK̂(id′len(j))

)
.

D. Insert the pair (label, dj,x) into the set Tj .

3. Pad the set T to contain exactly N elements by adding dummy elements, and pad each set Tj to
contain exactly s(j) elements by adding dummy elements.

4. For each set T, T1, . . . , Tm, uniformly shu�e the set, and generate a hash table by invoking the
HTSetup algorithm for obtaining hash tables HT(T ),HT(T1), . . . ,HT(Tm).

5. Output EDB = (HT(T ), (HT(T1), . . . ,HT(Tm))).

Token generator. The algorithm TokGen on input ((K, K̂), wi) computes and outputs the token
τi = ((labeli,Ki), (labeli,1, . . . , labeli,L)) = PRFK(wi).
Search. The algorithm Search on input (τi,EDB), where τi = ((labeli,Ki), (labeli,1, . . . , labeli,L)) and
EDB = (HT(T ),HT(T1), . . . ,HT(Tm)), is de�ned as follows:

1. Initialize a list of results R = ∅.
2. Invoke HTLookup on the hash table HT(T ) and label labeli to retrieve n̂i = Ki ⊕ ni. Decrypt

ni = Ki ⊕ n̂i and compute (x
(1)
i , . . . , x

(m)
i ) = SplitList(N,ni).

3. For every j ∈ [m] and for every x ∈
[
x
(j)
i

]
, let label be the �rst unused label from

(labeli,1, . . . , labeli,L). Invoke HTLookup on the hash table HT(Tj) for the label labelj,x, obtain the
block dj,x, and add its elements to the list R. For a block that contains dummy elements, obtain
only the part that does not contain dummy elements.

Resolve. The algorithm Resolve on input ((K, K̂), R) computes and outputs the identi�ers M =
{DecK̂(c) : c ∈ R}.
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4. S uniformly shu�es each of the sets T, T1, . . . , Tm. It then generates a hash table from
each of these sets using the algorithm HTSetup, and de�nes EDB = (HT(T ), (HT(T1), . . . ,
HT(Tm))).

5. S outputs EDB and τ = {τi}wi∈w.

We now claim that the adversary cannot distinguish between the pair (EDB, τ ) that it receives
in the real execution and the same pair in the ideal execution with a non-negligible advantage.
Consider the following sequence of hybrid experiments:

� Hyb0. This is the real execution, where the adversary A receives EDB and τi = PRFK(wi) for
every wi ∈ w.

� Hyb1. This experiment is obtained from Hyb1 by replacing the pseudorandom function
PRFK(·) with a truly random function. Observe that, as a result, the key K that is produced

by KeyGen is redundant and the elements τi = (labeli,Ki, K̂i) are uniformly distributed.

� Hyb2. This experiment is obtained from Hyb1 by considering the set of keywords consisting
of all wi ∈ W \ w, and replacing each one of the corresponding functions PRF

K̂i
(·) with

independent truly random functions. Observe that, as a result, that the elements labelj,x =
PRF

K̂i
(j, x) derived in Step 2(d)iB are distributed uniformly.

� Hyb3. This experiment is obtained from Hyb2 as follows: For every wi ∈ W \w, we replace
the values n̂i (in Step 2b of EDBSetup) with independent and uniformly-distributed values of

the appropriate length. In addition, for every wi ∈ W \ w, j ∈ [m] and x ∈ [x
(j)
i ] (where

(x
(1)
i , . . . , x

(m)
i ) = SplitList(N,ni)) we replace the encrypted values dj,x (from Step 2(d)iC)

with uniformly-distributed values of the appropriate length.

� Hyb4. This is the ideal execution, where we run the simulator S de�ned above.

We observe that Hyb0 and Hyb1, as well as Hyb1 and Hyb2, are computationally indistinguishable
based on the security of the pseudorandom function PRF. In addition, Hyb2 and Hyb3 are com-
putationally indistinguishable based on the pseudorandom ciphertexts property of the encryption
scheme Enc. Finally, the experiments Hyb3 and Hyb4 are identical by the de�nition of the simulator
S.

To prove adaptive security in the random oracle model, we use similar technique as in [CT14]
and [ANS+16]. We instantiate PRFK(x) = H(K||x) and EncK(x; r) = (r,H(K||r) ⊕ x), where H

is the random oracle. Then, for any derived PRF key K̂i, label label, and indices j and x, we can
program the random oracle such that Enc

K̂i
(x, j) = label, by �xing H(K̂i||(j, x)) = c⊕ label. Also,

for any derived encryption key Ki, random (r, c), and a message m, we can program the random
oracle such that EncKi(x; r) = (r, c), by �xing H(Ki||r) = c⊕m.

For the security proof, the simulator in the �rst step outputs EDB = (HT(T ), (HT(T1), . . . ,
HT(Tm))), where T and each Ti contains an appropriate amount of random pairs of the appropriate
length. Later, upon each query wi from the adversary, the simulator learns DB(wi) = {id1, . . . , idni}.
It then samples keys Ki and K̂i, computes (x

(1)
i , . . . , x

(m)
i ) = SplitList(N,ni). It choose a random

unused pair (labeli, (c, r)) from T , and programs the oracle such that DecKi(r, c) = ni. Similarly, for

each j ∈ [m], the simulator chooses x
(j)
i random unused pairs fromHj , denoted by (labelj,1, dj,1), . . . ,

(label
j,x

(j)
i

, d
j,x

(j)
i

), and programs the oracle such that for each x ∈ [x
(j)
i ] it holds that PRF

K̂i
(j, x) =

labelj,x, and that decrypting d
j,x

(j)
i

using Ki results in the next len(j) identi�ers in DB(wi). If at any

point in time the programming cannot succeed (because the corresponding values are already set

for H) then the simulator aborts. Otherwise, it outputs τi = (labeli,Ki, K̂i). We omit the formal
analysis as it follows standard techniques.

17



Proof of Theorem 3.4. It is easy to see that the scheme is correct unless the same label appears
more than once, which happens with at most a negligible probability. Also, it is easy to verify the
space overhead, locality, read e�ciency and token size of the construction.

For proving the adaptive security of the scheme, recall that in the real execution the adversary A
outputs DB, and is given the encrypted database EDB. Then, it adaptively issues keyword queries,
where a query wi is answered by τi = TokGen(K,wi). In the ideal execution, the simulator S is
given only N and should output EDB, and upon each query wi the simulator is given |DB(wi)| and
should output a token τi, in such a way that the adversary cannot distinguish between these two
executions. Consider the following simulator S:

� Initialization phase. The simulator receives the leakage Ladapsize (DB) = N .

1. S initializes the set T to contain N random pairs of the appropriate length.

2. S initializes the sets T1, . . . , Tm, where each set Tj contains exactly s
(j) random pairs of

the appropriate length.

3. S generates a hash table from each set using the algorithm HTSetup, and outputs EDB =
(HT(T ), (HT(T1), . . . ,HT(Tm))).

4. S stores the tables T1, . . . , Tm and T in an internal state.

� Query. With each query that occurs, the simulator receives the leakage ni = |DB(wi)|.
1. S computes (x

(1)
i , . . . , x

(m)
i ) = SplitList(N,ni).

2. S chooses a random pair (labeli, ri) from T and removes the pair.

3. It computes Ki = ni ⊕ ri.
4. For each j ∈ [m], S chooses x

(j)
i random pairs from Ti, remembers their labels, and

removes the pairs.

5. Let labeli,1, . . . , labeli,` be the labels of the removed pairs from the last step. It holds
that ` ≤ L, so S samples L− ` additional labels labeli,`+1, . . . , labeli,L.

6. S outputs ((labeli,Ki), (labeli,1, . . . , labeli,L)).

We now claim that the adversary cannot distinguish between the the real execution and ideal
execution with a non-negligible advantage. Consider the following sequence of hybrid experiments:

� Hyb0. This is the real execution, where the adversary A initially receives EDB, and upon each
query wi it receives τi = PRFK(wi) = ((labeli,Ki), (labeli,1, . . . , labeli,L)) for every queried wi.

� Hyb1. This experiment is obtained from Hyb1 by replacing the pseudorandom function
PRFK(·) with a truly random function. Observe that, as a result, the key K that is pro-
duced by KeyGen is redundant and the elements τi = ((labeli,Ki), (labeli,1, . . . , labeli,L) are
uniformly distributed.

� Hyb2. This experiment is obtained from Hyb1 as follows: For every wi ∈ W , we replace the
values n̂i (in Step 2b of EDBSetup) with independent and uniformly-distributed values ri of
the appropriate length. In addition, upon each query wi we replace Ki in τi with ri ⊕ ni.

� Hyb3. This experiment is obtained from Hyb2 as follows: For every wi ∈ W , j ∈ [m] and

x ∈ [x
(j)
i ] (where (x

(1)
i , . . . , x

(m)
i ) = SplitList(N,ni)), we replace the encrypted values di,x (from

Step 2(d)iC) with uniformly-distributed values of the appropriate length. Observe that, as a
result, the key K̂ that is produced by KeyGen is redundant.

� Hyb4. This is the ideal execution, where we run the simulator S de�ned above.

We observe that Hyb0 and Hyb1, are computationally indistinguishable based on the security of
the pseudorandom function PRF. In addition, Hyb1 and Hyb2 are identically distributed. Next, Hyb2
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and Hyb3 are computationally indistinguishable based on the pseudorandom ciphertexts property of
the encryption scheme Enc. Finally, the experiments Hyb3 and Hyb4 are identical by the de�nition
of the simulator S.

3.2 The Generality of the Pad-and-Split Framework

We now demonstrate that our pad-and-split framework captures the memory access patterns under-
lying the vast majority of existing symmetric searchable encryption schemes for supporting keywords
search (i.e., we show that these schemes can be obtained as instantiations of our framework). We
note that each of these schemes o�ers other important implementation details, improvements and
optimizations that we do not intend to capture using our framework (since these are not directly
related to the tradeo� between space, locality, and read e�ciency), and we refer to the relevant
papers for further details.

The scheme of Curtmola et al. [CGK+06]. This is the most common technique underlying
the vast majority of existing schemes (in particular, [CK10, vLSD+10, CGK+11, KPR12, CJJ+13,
KO13]). In this scheme each list is split into single elements (i.e., sublists of length 1), and those are
stored in the same hash table. This is captured by our framework when setting m = 1, len(1) = 1,
s(1) = N , and SplitList(N,ni) = (ni). This results in a scheme with space O(N), locality O(N),
and read e�ciency O(1).

The 2lev scheme of Cash et al. [CJJ+14]. This scheme can be viewed as a pad-and-split
scheme with two possible lengths, b and B, where b < B. A list of length at most b is padded
to length b, and a list of length greater than b is padded to a length that is a multiple of B and
then split into sublists of length B (in order to reduce space overhead, this scheme does not add
dummy lists, thus resulting in a non-standard leakage function). This results in a scheme with space
O(N · (b+ B

b+1)), locality O(N/B), and read e�ciency O(1).

A simple scheme with O(N2) space. In this scheme each list is padded to the maximal
possible length (i.e., to length N , where N =

∑nW
i=1 |DB(wi)|), and all lists are stored in the same

hash table. This is captured by our framework when setting m = 1, len(1) = N , s(1) = N and
SplitList(N,ni) = (1). This results in a scheme with space O(N2), locality O(1), and read e�ciency
O(1).

The scheme of Cash and Tessaro [CT14]. This scheme splits a list of length ni into at most
log ni sublists of lengths that are powers of 2 according to the binary representation of ni. Then,
for each possible power of 2, the scheme stores sublists of that length in a separate hash table. This
is captured by our framework when setting m = blogNc+ 1, len(j) = 2j−1, s(j) = N/2j−1, and the
SplitList algorithm on input ni outputs a binary vector of length m which corresponds to the binary
representation of ni. This results in a scheme with space O(

∑m
j=1 len

(j)s(j)) = O(N logN), locality
O(logN), and read e�ciency O(1).

The scheme of Asharov et al. [ANS+16, Sec. 5]. This scheme improves the one of Cash
and Tessaro [CT14]. In this scheme, a list of length 2pi−1 < ni ≤ 2pi is padded to length 2pi and
stored as a whole. This is captured by our framework when setting m = dlogNe+ 1, len(j) = 2j−1,
s(j) = 2N/2j−1, and the SplitList algorithm, on input ni, outputs a vector of length m where all the

19



entries are zeros except for a one that appears in the location dlog nie+ 1. This results in a scheme
with space O(

∑m
j=1 len

(j)s(j)) = O(N logN), locality O(1), and read e�ciency O(1).

3.3 An Optimal Instantiation for any Locality

As discussed in Section 1.1, the lower bound that we prove for schemes in the pad-and-split frame-
work matches the tradeo� provided by the scheme of Demertzis and Papamanthou [DP17] (which is
captured by our framework). Speci�cally, when setting the read e�ciency of their scheme to O(1),
one obtains a statically-secure scheme with space O(N logN/ logL), locality L, and read e�ciency
O(1). It should be noted that their scheme supports also non-constant read e�ciency, but in that
case it is not captured by our framework as it leaks additional information (in particular, the random
choices made by the setup algorithm).

In what follows we describe their instantiation within our above-described template. Their
scheme is obtained by splitting each list to sublists of lengths that are a power of the locality L.
In our notation, we set m = blogN/ logLc+ 1 = blogLNc+ 1, len(j) = Lj−1, and s(j) = 2N/len(j)

for every j ∈ [m]. As for the splitting algorithm, a list of length Lj−1 ≤ ni < Lj is padded to a
length that is a multiple of Lj−1, and split into at most L sublists of length Lj−1. More formally,
SplitList(N,ni) outputs a vector of length m, where all the entries are zeros except for the entry in
the position j = blogL(ni)c+ 1, which is set to the value

⌈
ni/L

j−1
⌉
∈ {1, . . . , L}.

This is indeed a valid SplitList algorithm, and its locality is L. Speci�cally, for each ni and j it
holds that dni/Lj−1e · Lj−1 ≥ ni, that is, each list is not longer than the sum of the lengths of its
sublists. Moreover, for j = blogL(ni)c+ 1 it also holds that dni/Lj−1e ≤ L and dni/Lj−1e · Lj−1 <
2 ·ni. This means that the locality is L, and that the padding at most doubles the length of the list.
Therefore, it is su�ces to set s(j) = 2N/len(j), and thus it holds that

∑m
j=1 len

(j) · s(j) = m · 2N =
O(N · logN/ logL).

According to Theorem 3.3 and Theorem 3.4, the above splitting algorithm results in a searchable
symmetric encryption schemes with space O(N · logN/ logL), locality O(L), and read e�ciency
O(1). This yields the following corollaries:

Corollary 3.7 ([DP17]). Assuming the existence of any one-way function, for any L = L(N) > c
(where c is an absolute constant) there exists a static Lmin -secure symmetric searchable encryption

scheme for databases of size N with the following parameters:

� Space O(N · logN/ logL).

� Locality L(N).

� Read e�ciency O(1).

� Token size O(1).

Moreover, the scheme is adaptively Ladapmin -secure in the random-oracle model, when instantiating its

building blocks appropriately.

Corollary 3.8. Assuming the existence of any one-way function, for any L = L(N) > c (where c is

an absolute constant) there exists an adaptive Ladapsize -secure symmetric searchable encryption scheme

for databases of size N with the following parameters:

� Space O(N · logN/ logL).

� Locality L(N).

� Read e�ciency O(1).

� Token size O(L(N)).
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Better e�ciency for super-constant sub-polynomial locality. For locality L(N) satisfying
ω(1) ≤ L(N) ≤ No(1) we can in fact instantiate our framework in a manner that reduces the
expression

∑m
j=1 len

(j)s(j) to (1 + o(1))(N · logN/ logL). This matches our lower bound, which is
shown to be (1− o(1))(N · logN/ logL), to within an additive lower-order term.

This is done as follows. Let L̂ = bL/ logLc, and for a list of length ni let j such that L̂j ≤
ni < L̂j+1. Represent ni = a · L̂j + b · L̂j−1 + c, where a ∈ {1, . . . , L̂ − 1}, b ∈ {0, . . . , L̂ − 1}, and
c ∈ {0, . . . , L̂j−1 − 1}. If a ≥ logL, then pad and split the list into at most L̂ sublists of length
L̂j . Otherwise, pad and split the list into at most L̂ · logL ≤ L sublists of length L̂j−1. This way,
we never pad a list more than (1 + 1/ logL) times its length, since if a ≥ logL then the resulting
padded length is upper bounded by

(a+ 1) · L̂j =

(
1 +

1

a

)
· a · L̂j ≤

(
1 +

1

a

)
· ni ≤

(
1 +

1

logL

)
· ni,

and if a < logL then the resulting padded length is upper bounded by

a · L̂j + (b+ 1) · L̂j−1 =

(
1 +

1

a · L̂+ b

)
·
(
a · L̂j + b · L̂j−1

)
≤
(

1 +
1

a · L̂+ b

)
· ni

≤
(

1 +
1

logL

)
ni,

where in the last inequality we used the fact that a · L̂ + b ≥ L̂ ≥ logL holds for su�ciently
large L. Since we never pad a list more than (1 + 1/ logL) times its length, for any j we can set
s(j) = (1 + 1/ logL)N/len(j), and obtain

m∑
j=1

len(j)s(j) =

(
1 +

1

logL

)
N ·

(⌊
logN

log L̂

⌋
+ 1

)
=
(
1 + o(1)

)
N · logN

logL
,

where the last equality holds since ω(1) ≤ L ≤ No(1).

3.4 Our Lower Bound for Pad-and-Split Schemes

In this section we present our lower bound on the trade-o� between the space and the locality of any
pad-and-split scheme. Recall that each such a scheme is characterized by a SplitList algorithm that
satis�es a modest validity requirement (recall De�nition 3.1), and is associated with the following
parameters (all of which may be functions of the size N of the database):

� The possible lengths len(1), . . . , len(m) of sublists to which the SplitList algorithm splits the list
associated with each keyword, as described in Section 3.1.

� Upper bounds s(1), . . . , s(m) on the total number of sublists of lengths len(1), . . . , len(m), re-
spectively, that are produced by the SplitList algorithm when processing an entire database.

Equipped with the above parameters, recall from Theorems 3.3 and 3.4 that the space usage of

a pad-and-split scheme is O
(∑m

j=1 s
(j) · len(j)

)
, and the locality of such a scheme is O(L) where

L = L(N) is the locality of its SplitList algorithm (i.e., each list is split into at most L sublists). Thus,
proving a lower bound on the trade-o� between the space and the locality of pad-and-split schemes
translates to proving such a lower bound on the corresponding parameters of their underlying
SplitList algorithm. We prove the following theorem from which Theorem 1.1 follows as an immediate
corollary:
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Theorem 3.9. Let SplitList be a valid splitting algorithm with parameters len(1), . . . , len(m) and

s(1), . . . , s(m), and with locality L = L(N). Then, for any 0 < c < 1 it holds that

m∑
j=1

len(j) · s(j) ≥ (1− c) ·N ·
(

logN

logL− log c+ C1
− C2

)
,

where C1 and C2 are small absolute constants.

In particular, by setting c = 1/2 we obtain the lower bound
∑m

j=1 len
(j)·s(j) = Ω(N ·logN/ logL),

which implies Theorem 1.1. In addition, if ω(1) ≤ L(N) ≤ No(1) then by setting c = 1/ logL we
obtain the tighter lower bound

∑m
j=1 len

(j) · s(j) ≥ (1− o(1))N · logN/ logL.
The proof of Theorem 3.9 relies on two main observations that we formalize in Claims 3.10 and

3.11. First, in Claim 3.10 we prove that for every possible length 1 ≤ ni ≤ N of a list DB(wi)

in the database, when computing (x
(1)
i , . . . , x

(m)
i ) = SplitList(N,ni) it holds that the contribution,

in terms of space usage, of the sublists of lengths at least roughly ni/L (where L is the locality)
to which DB(wi) is split must be linear in ni. In other words, the SplitList algorithm must assign
roughly ni elements of the list DB(wi) to sublists of length at least ni/L.

For stating Claim 3.10 we introduce the following notation. Recall that len(1), . . . , len(m) are the
possible lengths of sublists to which the SplitList algorithm splits the list DB(wi) associated with
each keyword wi. For any a < b ≤ ∞ we let

lengths[a, b]
def
= {j ∈ [m] | a < len(j) ≤ b}.

That is, these are the indices of the possible lengths in the interval (a, b].

Claim 3.10. For any 1 ≤ ni ≤ N and 0 < c < 1 it holds that∑
j∈lengths[cni/L,∞]

len(j) · x(j)
i > (1− c) · ni,

where (x
(1)
i , . . . , x

(m)
i ) = SplitList(N,ni).

Proof. Let (x
(1)
i , . . . , x

(m)
i ) = SplitList(N,ni) and �x 0 < c < 1. We show that there always exists

a subset J ⊆ lengths[cni/L,∞] of indices for which
∑

j∈J len
(j) ·x(j)

i > (1− c) ·ni. This implies that∑
j∈lengths[cni/L,∞]

len(j) · x(j)
i ≥

∑
j∈J

len(j) · x(j)
i > (1− c) · ni

and thus the claim follows.
We construct the set J as follows, when initially setting J = ∅. Since SplitList is valid and has

locality L, then it holds that
∑m

j=1 len
(j) ·x(j)

i ≥ ni and
∑m

i=1 x
(j)
i ≤ L. Therefore, there must exists

some j1 ∈ [m] for which x
(j1)
i > 0 and len(j1) ≥ ni/L. Otherwise, if for all j ∈ [m] such that x

(j)
i > 0

it holds that len(j) < ni/L, we obtain the following contradictory inequality:

ni ≤
m∑
j=1

len(j) · x(j)
i <

m∑
j=1

ni
L
· x(j)

i ≤ ni.
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We add this index j1 into the set J that we are constructing, pointing out that len(j1) ≥ ni/L > cni/L

and thus j1 ∈ lengths[cni/L,∞] as required. Now, if
∑

j∈J len
(j) ·x(j)

i > (1− c) ·ni then we are done
with constructing the set J . Otherwise, it holds that∑

j∈[m]\J

len(j) · x(j)
i ≥ ni − (1− c) · ni ≥ c · ni

In addition, it holds that
∑

j∈[m]\J x
(j)
i < L, and from similar reasoning as before there must exist

an index j2 ∈ [m] \ J for which x
(j2)
i > 0 and len(j2) > c · ni/L. Therefore, we again conclude that

j2 ∈ lengths[cni/L,∞], and add the index j2 into the set J . We iteratively repeat this process,

where in the k-th iteration either
∑

j∈J len
(j) · x(j)

i > (1 − c) · ni or there exists jk ∈ [m] \ J such
that jk ∈ lengths[cni/L,∞], and we add jk to J . Since [m] is �nite, this process will eventually

terminate with either some iteration in which
∑

j∈J len
(j) ·x(j)

i > (1−c) ·ni, or with J = [m]. When

J = [m], then
∑

j∈J len
(j) ·x(j)

i > (1− c)ni must hold. To see that, recall that
∑m

j=1 len
(j) ·x(j)

i ≥ ni
and therefore if

∑
j∈J len

(j) · x(j)
i ≤ (1− c)ni we get a contradiction. In conclusion, we obtain∑

j∈lengths[cni/L,∞]

len(j) · x(j)
i ≥

∑
j∈J

len(j) · x(j)
i > (1− c) · ni

as claimed.

Recall that a SplitList algorithm is parameterized by the possible lengths len(1), . . . , len(m) of
sublists, and also by upper bounds s(1), . . . , s(m) on the total number of sublists of lengths len(1), . . . ,
len(m), respectively. Our next claim establishes lower bounds on the values s(1), . . . , s(m).

Claim 3.11. For all 1 ≤ ni ≤ N and 1 ≤ j ≤ m, it holds that

s(j) ≥ x(j)
i ·

⌊
N

ni

⌋
where (x

(1)
i , . . . , x

(m)
i ) = SplitList(N,ni).

Proof. Consider a database that consists of bN/nic lists of length ni, and one additional list of
length N − ni · bN/nic in case that N/ni is not an integer. Recall that for SplitList to be valid, it
must be that s(j) upper bounds the number of sublists of length len(j). In our case, there are at

least x
(j)
i · bN/nic such sublists, so the claim follows.

Equipped with Claims 3.10 and 3.11, we are now ready to prove Theorem 3.9.

Proof of Theorem 3.9. We �rst prove the theorem under the assumption that each list DB(wi)
of length ni is split into sublists of length at most 3ni. Formally, for every 1 ≤ ni ≤ N when

computing (x
(1)
i , . . . , x

(m)
i ) = SplitList(N,ni) it holds that x

(j)
i = 0 for all j ∈ lengths[3ni,∞]. Claim

3.10 guarantees that for every 1 ≤ ni ≤ N it holds that∑
j∈lengths[cni/L,3ni]

x
(j)
i · len

(j) > (1− c)ni , (3.1)
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where (x
(1)
i , . . . , x

(m)
i ) = SplitList(N,ni). Note that in the sum above we omitted lengths greater

than 3ni due to our assumption. Claim 3.11 and Eq. (3.1) now imply that for every 1 ≤ ni ≤ N it
holds that ∑

j∈lengths[cni/L,3ni]

s(j) · len(j) >
∑

j∈lengths[cni/L,3ni]

x
(j)
i ·

⌊
N

ni

⌋
· len(j)

>
∑

j∈lengths[cni/L,3ni]

x
(j)
i ·

N − ni
ni

· len(j)

> (1− c)(N − ni) .

Let T (r) =
∑

j∈lengths[c·r/L,3·r] s
(j) · len(j) and z = d3L/ce. When considering two ranges [c/L ·

r1, 3 ·r1] and [c/L ·r2, 3 ·r2], note that these two ranges do not intersect if r2 ≥ (3L/c) ·r1. Therefore,
we conclude that

m∑
j=1

s(j) · len(j) ≥ T (1) + T (z) + T (z2) + · · ·+ T (zblogN/ log zc−1)

≥ (1− c)
(

(N − 1) + (N − z) + · · ·+ (N − zblogN/ log zc−1)
)

(3.2)

= (1− c)

(
N ·

⌊
logN

log z

⌋
− zblogN/ log zc − 1

z − 1

)

≥ (1− c)
(
N ·

⌊
logN

log z

⌋
− N

z − 1

)
≥ (1− c)N ·

(
logN

log z
− 2

)
.

For our choice of z = d3L/ce it holds that log z ≤ logL− log c+ 2, and thus the theorem follows.
We now remove the assumption that each list DB(wi) of length ni is split into sublists of

length at most 3ni (i.e., the assumption that x
(j)
i = 0 for all j ∈ lengths[3ni,∞]). Recall that

our above calculation followed from the fact that for each 0 ≤ k ≤ blogN/ log zc − 1 it holds that
T (zk) ≥ (1 − c)(N − zk), but without the above assumption this inequality is not guaranteed.
Instead, we prove the following claim:

Claim 3.12. For x ∈ R denote (x)+
def
= max{x, 0}. Then, for every integer 0 ≤ k ≤ blogN/ log zc−1

there exists some integer k′ ≥ k such that

T (zk) + T (zk+1) + · · ·+ T (zk
′
)

≥ (1− c)
(

(N − zk)+ + (N − zk+1)+ + · · ·+ (N − zk′)+

)
.

Intuitively, Claim 3.12 guarantees that each T (zk) is at least (1− c)(N − zk)+ in an amortized
manner. Equipped with Claim 3.12, starting with k0 = 0 there exists some k1 ≥ 0 for which

T (1) + T (z) + · · ·+ T (zk1) ≥ (1− c)
(

(N − 1)+ + (N − z)+ + · · ·+ (N − zk1)+

)
.

Next, as long as k1 + 1 ≤ blogN/ log zc − 1, then again there exists some k2 ≥ k1 + 1 for which it
holds that

T (zk1+1) + · · ·+ T (zk2) ≥ (1− c)
(

(N − zk1+1)+ + · · ·+ (N − zk2)+

)
.
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Continuing this way, we de�ne a sequence k0 < k1 < · · · < ku such that ku ≥ blogN/ log zc − 1.
Summing all those up, we obtain that

m∑
j=1

s(j) · len(j) ≥ T (1) + T (z) + T (z2) + · · ·+ T (zku)

≥ (1− c)
(

(N − 1)+ + (N − z)+ + · · ·+ (N − zku)+

)
≥ (1− c)

(
(N − 1)+ + (N − z)+ + · · ·+ (N − zblogN/ log zc−1)+

)
= (1− c)

(
(N − 1) + (N − z) + · · ·+ (N − zblogN/ log zc−1)

)
,

and following the same calculation as in Equation (3.2) above, we obtain that
∑m

j=1 s
(j) · len(j) ≥

(1 − c)N (logN/ log z − 2) as before, and thus the theorem follows. We conclude the proof of the
theorem by proving Claim 3.12.

Proof of Claim 3.12. Let ni = zk and (x
(1)
i , . . . , x

(m)
i ) = SplitList(N,ni). If for every j ∈

lengths[3ni,∞] it holds that x
(j)
i = 0, then we already showed that T (zk) ≥ (1 − c)(N − zk),

and the claim holds for k′ = k. Otherwise, let j ∈ [m] be any index such that len(j) > 3ni and

x
(j)
i > 0, and let k′ > k such that len(j) ∈ lengths[c · zk′/L, 3 · zk′ ]. Claim 3.11 implies that

T (zk
′
) ≥ s(j) · len(j)

≥ x
(j)
i ·

N − ni
ni

· 3 · zk′−1

= 2 · zk′−k−1 · 3

2
· (N − zk).

Since k ≤ blogN/ log zc − 1 and z ≥ 4, it holds that zk ≤ N/z ≤ N/3. Since k′ > k, it holds that
2 · zk′−k−1 ≥ (k′ − k + 1). Therefore, it holds that T (zk

′
) ≥ (k′ − k + 1) ·N . We conclude that

T (zk) + T (zk+1) + · · ·+ T (zk
′
)

≥ T (zk
′
)

≥ (k′ − k + 1) ·N

≥ (1− c)
(

(N − zk)+ + (N − zk+1)+ + · · ·+ (N − zk′)+

)
as claimed.

4 The Statistical-Independence Framework: A Leveled Two-Choice Scheme

In this section we consider the statistical-independence framework introduced by Asharov et al.
[ANS+16] for the design of symmetric searchable encryption schemes. As discussed in Section 1.2,
within this framework we construct a scheme whose read e�ciency when querying for a keyword w
may depend on the length of the list DB(w) that is associated with w, and for any n ≤ N we denote
by r(N,n) the read e�ciency when retrieving a list of length n.10 We prove the following theorem:

10We emphasize that having the read e�ciency depend on the length of the retrieved list does not hurt the security
of SSE schemes, and our scheme still results in minimal leakage as required.
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Theorem 4.1. Assuming the existence of any one-way function, for any function f(N) = ω(1) there

exists an adaptive Ladapsize -secure symmetric searchable encryption scheme for databases of size N in

which no keyword is associated with more than N/ log3N identi�ers, with the following parameters:

� Space O(N).

� Locality O(1).

� Read e�ciency r(N,n) = f(N) · ε(n)−1 +O(log log logN), where n = N1−ε(n).

� Token size O(1).

Comparing the performance of our new scheme with the lower bound of Asharov et al. in the
statistical-independence framework, Theorem 4.1 matches their lower bound to within an additive
O(log log logN) factor in the read e�ciency. Speci�cally, Asharov et al. proved the following lower
bound for schemes in the statistical-independence framework (restated to consider read e�ciency
r(N,n) that may depend on the length n of each list, and to consider constant locality):

Theorem 4.2 ([ANS+16]). For any searchable symmetric encryption scheme in the statistical-

independence framework with space O(N logN), locality O(1), and read e�ciency r(N,n), there
exists a function f(N) = ω(1) such that r(N,n) = f(N) · ε(n)−1 for every 1 ≤ n ≤ N/ logN , where

n = N1−ε(n).

In the remainder of this section we �rst overview the statistical independence framework for the
design of symmetric searchable encryption schemes (Section 4.1), and then present our new scheme
within this framework (Section 4.2).

4.1 The Statistical-Independence Framework

The statistical-independence framework of Asharov et al. [ANS+16] considers symmetric searchable
encryption schemes that are characterized by a pair of algorithms, denoted RangesGen and Allocation,
and consist of the following two phases:

� Given a database DB = {DB(w1), . . . ,DB(wnW
)} of size N , for each keyword wi the scheme

invokes the RangesGen algorithm on the length ni of its corresponding list DB(wi), to obtain
a set of possible locations in which the scheme may place the elements of the list DB(wi).
This set consists of several intervals and we denote it by Ri = {[a1, b1], . . . , [ad, bd]} ←
RangesGen(N,ni).
Looking ahead, when supplied with a token corresponding to a keyword wi, the server will
return to the client all data stored in the possible locations of the list DB(wi) (the server
will not actually know in which of the possible locations the elements of the list are actually
placed).

� Given the sets of possible locations R1, . . . , RnW
of the lists corresponding to all keywords

w1, . . . , wnW
, respectively, the scheme invokes the Allocation algorithm on these sets (and on

the respective lengths of the lists) to obtain the actual locations for the elements of all lists.
We denote the actual locations as an array map← Allocation ((n1, R1), . . . , (nnW

, RnW
)), where

each of its entries is either a pair (i, j) (representing that this entry is the actual location of
the jth element from the list DB(wi)) or NULL (representing an empty entry).

A key property of this framework is that the RangesGen algorithm, which determines the set
of possible locations for each list DB(wi), is applied separately and independently to the length of
each list. Thus, the possible locations of each list are independent of the possible locations of all
other lists (in contrast, the actual locations of the lists are naturally allowed to be correlated).
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Asharov et al. referred to a pair (RangesGen,Allocation) of such algorithms as an allocation
scheme, and showed that any such allocation scheme satisfying a natural correctness requirement
can be used to construct a searchable symmetric encryption scheme. The correctness requirement
asks that for any database, with all but a negligible probability, these algorithms produce an actual
allocation map in which each element has exactly one actual placement (where the probability is
taken over the internal coin tosses of the algorithms RangesGen and Allocation).

The resulting scheme of Asharov et al. inherits its space, locality and read e�ciency from those
of its underlying allocation scheme, de�ned as follows:

De�nition 4.3. A pair (RangesGen,Allocation) of algorithms satisfying the above correctness re-
quirement is an (s, d, r)-allocation scheme, for some functions s(·), d(·) and r(·, ·), if the following
properties hold:

� Space: For any input (n1, . . . , nk), the array map← Allocation((n1, R1), . . . , (nk, Rk)), where
Ri = {[a1, b1], . . . , [ad, bd]} ← RangesGen(N,ni) for every i ∈ [k], is of size at most s(N), where
N =

∑k
i=1 ni.

� Locality: For any input (N,ni), the algorithm RangesGen outputs at most d(N) ranges.

� Read e�ciency: For any input (N,ni) for the algorithm RangesGen it holds that:∑d
j=1 (bj − aj + 1)

ni
≤ r(N,ni) ,

where {[a1, b1], . . . , [ad, bd]} ← RangesGen(N,ni).

Equipped with the above notation, Asharov et al. proved the following:

Theorem 4.4 ([ANS+16]). Given any (s, d, r)-allocation scheme and any one-way function, there

exists an Ladapsize -secure searchable symmetric encryption scheme for databases of size N with space

O(s(N), locality O(d(N)), and read e�ciency O(r(N, ·)).

From allocation algorithms to SSE schemes. We conclude our high-level description of the
statistical-independence framework by brie�y overviewing the generic transformation from allocation
schemes to SSE scheme. The reader is referred to [ANS+16] for the complete formal description of
this transformation.

In a nutshell, the client runs the RangesGen and the Allocation procedures as described above to
obtain the actual allocation map of all elements. Then, the client encrypts each identi�er from each
list DB(w) in map with a key that is derived from the keyword w using a pseudorandom function.
In addition, any unused entry in the array is �lled with a uniform string of the appropriate length.

When issuing a query corresponding to a keyword w, the client asks the server to retrieve the
encrypted content of all possible locations of the list DB(w).11 Since these locations are chosen
independently at random, this does not reveal any additional information on the structure of the
database except for the length of the queried list. The client then identi�es the actual locations and
decrypts the data by itself.

11The details here are quite subtle. The server obtains the pseudorandom key that was used to produce randomness
for the relevant invocation of RangesGen. In addition, the server stores the lengths of the lists in an encrypted manner,
and can only reveal the lengths of the already-queried lists. Knowing both the pseudorandom key and the list length
allows the server to compute the possible locations of the list DB(w).
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4.2 Our Leveled Two-Choice Scheme

In this section we present our new allocation scheme from which Theorem 4.4 provides the searchable
symmetric encryption schemes guaranteed by Theorem 4.1. Our scheme consists of the following
three levels for storing the elements of any given database DB of size N :

� The �rst level, named the �two-choice array�, consists of the two-choice SSE scheme of Asharov
et al. [ANS+16] but with an exponentially improved read e�ciency. In this array, each list
DB(wi) can be stored in one out of two possible intervals of consecutive locations, in a manner
that we describe below as part of our Allocation algorithm. However, unlike the scheme of
Asharov et al. we do not store all of the N elements of the database in this array. Instead,
the key observation underlying our new scheme is that when viewing this array as a collection
of bins, then by allowing a few lists to �over�ow� from this level to the second level (overall
at most N̂ = N/ logN elements will over�ow with all but a negligible probability), we can
reduce the maximal load of each bin from Õ(log logN) (as in [ANS+16]) to O(log log logN).
This then translates into improving the read e�ciency in this level from Õ(log logN) to
O(log log logN).

� The second level, named the �cuckoo hashing level�, stores the vast majority of the elements
that over�ow from the �rst level. This level consists of roughly logN cuckoo hashing tables
(see Section 2.4), where the j hash table is designed to store at most N̂/2j values each of
which of size 2j . These values are the lists that over�ow from the �rst level (the jth table will
store over�owing lists of length roughly 2j).

� The third level, named the �stash level�, consists of a cuckoo hashing stash for each of the
second-level cuckoo hashing tables. The goal of introducing this level is to reduce the failure
probably of cuckoo hashing from noticeable to negligible (see Section 2.4), which is essential
for the security of the resulting SSE scheme.

This leveled structure of our allocation scheme, and thus of our SSE scheme, guarantees that the
possible locations for a list DB(w) of length n are its two possible intervals in the two-choice array,
its two locations in the jth cuckoo hashing table for j = log n, and anywhere in the stash of the jth
cuckoo hashing table. In what follows we formally describe our allocation scheme (see Algorithm
4.6), which we prove to have spaceO(N), locality 5, and read e�ciency ω(1)·ε(n)−1+O(log log logN)
when retrieving lists of length n = N1−ε(n).

Theorem 4.5. For any function f(N) = ω(1), Algorithm 4.6 describes an (O(N), 5, r(N,n))-
allocation scheme for databases of size N in which no keyword is associated with more than N/ log3N
identi�ers, where r(N,n) = f(N) · ε(n)−1 +O(log log logN) and n = N1−ε(n).

Proof of Theorem 4.5. We assume without loss of generality that f(N) = o(log logN) (since
otherwise, we may take f̃(N) = min(f(N), o(log logN)) instead). For the two-choice part of the
algorithm, we make use of the following theorem from [ANS+16].

Theorem 4.7 ([ANS+16] Theorem 3.5 Part 1). Let S ≥ n1 be a bound on the maximal length, and

let m be the number of bins. Consider the two-choice allocation algorithm. Then, with probability

1 − N−Ω(logN) − e−Ω(m3/(N2·S)), there are at most S log2N elements at level greater than 8N
m +

log log N
S + 2, where the level of an element is the load of its bin right after inserting the element

(e.g., the �rst element that is interested to the bin has level 1).
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ALGORITHM 4.6 (Our Allocation Scheme (RangesGen,Allocation)).

Input: A vector of integers (n1, . . . , nk) representing the lengths of the lists L1, . . . , Lk in the database.

We let N =
∑k
i=1 ni, N̂ = N/ logN , and assume for concreteness that the ni's are powers of 2, and that

n1 ≥ n2 ≥ · · · ≥ nk.

Parameters:

� A bound S = N/ log3N on the length of the longest list in the database.

� The number m = N/ log log logN of bins in the two-choice array (it is chosen as a power of 2 and
such that m ≥ n1).

� A bound BinSize = O(log log logN) on the size of each bin in the two-choice array.

� Stash sizes s0, . . . , st where t = logS and sj = f(N) · εj for every j ∈ [t], where 2j = N1−εj and
ω(1) ≤ f(N) ≤ o(log logN) may be any pre-speci�ed function.

The memory layout. The memory is partitioned into the following segments:

1. m bins B0, . . . , Bm−1, each of size BinSize.

2. Hash tables H0, . . . ,Ht, where each hash table Hj is implemented as a cuckoo hash table for N̂/2j

data items of size 2j each with a stash of size sj .

The RangesGen algorithm. On input N and ni:

1. Uniformly sample αi,1, αi,2 ← {0, . . . , mni
− 1}.

Consider the two super bins B̃αi,1
= (Bni·α1+j)

ni−1
j=0 and B̃αi,2

= (Bni·α2+j)
ni−1
j=0 .

2. Sample two hash table locations βi,1, βi,2 for the cuckoo hash table Hlogni .

3. The possible rangesRi are (1) The above two super-bins; (2) The two cells βi,1, βi,2 in the hashtable
Hlogni

; (3) The stash of the table Hlogni
.

The Allocation algorithm.

1. Initialize m empty bins B0, . . . , Bm−1, and an empty set LeftOvers.

2. Initialize hash tables H0, . . . ,Ht, where each hash table Hj is implemented as a cuckoo hash table

for N̂/2j entries of size 2j with a stash of size sj .

3. For every list Li with size ni and ranges Ri, reconstruct (αi,1, αi,2) and (βi,1, βi2) from Ri, and
place the list Li as follows:

(a) Consider the two super bins B̃αi,1
=
(
Bni·αi,1+j

)ni−1
j=0

and B̃αi,2
=
(
Bni·αi,2+j

)ni−1
j=0

. Let

β ∈ {αi,1, αi,2} be the index of the least loaded super bin among B̃αi,1
and B̃αi,2

, where the
load of a super bin is de�ned as the sum of loads of the bins that constitutes that super bin.
If the load of the bins in B̃β is BinSize, then add Li to LeftOvers. Otherwise, place the list

Li in the super bin B̃β . That is, for every j = 0, . . . , ni− 1, place the jth element of the list
Li in the bin Bni·β+j .

(b) If the list was not placed, then insert Li into the cuckoo hash table Hlogni
using the locations

βi,1 and βi,2. Note that the list might be placed in the stash. If the insertion fails, then
output ⊥ and abort.
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In Algorithm 4.6, we set S = N/ log3N , m = N/ log log logN , and BinSize = O(log log logN).
Therefore, with an overwhelming probability there are at most N̂ = N/ logN over�owing elements,
and in this case, we place at most N̂ elements in the cuckoo hashing tables with the stashes.

Now we analyze the placement of the elements in the hash tables, assuming that the number
of elements in LeftOvers is at most N̂ . For each 0 ≤ j ≤ t, we set the stash size sj = f(N) · ε−1

j

where εj is chosen such that 2j = N1−εj . We obtain that the algorithm fails to insert the lists into

the cuckoo hash table Hj with its stash with probability at most O((N̂/2j)−sj/2) (see Section 2.4).
Note that N εj ≥ log3N , so it holds that

(N̂/2j)−si/2 = (N εj/ logN)−sj/2

≤ (N
2
3
εj )−sj/2

= N−f(N)/3.

Thus, the insertion of over�owing elements fails with a negligible probability, and we conclude that
Algorithm 4.6 ful�lls the correctness requirement. Regarding read e�ciency, the overhead of the
2-choice is O(log log logN), the overhead of the cuckoo hash table is 2, and the overhead of the stash
is f(N) ·ε(n)−1, where n = N1−ε(n), so in total we get an overhead of f(N) ·ε−1

i +O(log log logN) as
claimed. Locality of 5 easily follows from the description of SplitList. Regarding the space overhead,
the bins require space of m · BinSize = O(N), each cuckoo hash table with stash requires space of
O(N̂) = O(N/ logN), and there are less than logN tables. So in total, the space overhead is O(N).
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