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Abstract. In this paper, we study the condition of finding small solu-
tions (x, y, z) = (x0, y0, z0) of the equation Bx−Ay = z. The framework
is derived from Wiener’s small private exponent attack on RSA and
May-Ritzenhofen’s investigation about the implicit factorization prob-
lem, both of which can be generalized to solve the above equation. We
show that these two methods, together with Coppersmith’s method, are
equivalent for solving Bx − Ay = z in the general case. Then based
on Coppersmith’s method, we present two improvements for solving
Bx − Ay = z in some special cases. The first improvement pays at-
tention to the case where either gcd(x0, z0, A) or gcd(y0, z0, B) is large
enough. As the applications of this improvement, we propose some new
cryptanalysis of RSA, such as new results about the generalized implic-
it factorization problem, attacks with known bits of the prime factor,
and so on. The motivation of these applications comes from oracle based
complexity of factorization problems. The second improvement assumes
that the value of C ≡ z0 (mod x0) is known. We present two attacks on
RSA as its applications. One focuses on the case with known bits of the
private exponent together with the prime factor, and the other considers
the case with a small difference of the two prime factors. Our new attacks
on RSA improve the previous corresponding results respectively, and the
correctness of the approach is verified by experiments.
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1 Introduction

Background Since RSA was proposed by Rivest, Shamir, and Adleman [33],
much effort has been made to evaluate the security of this public key cryptosys-
tem due to its wide variety of applications. For example, RSA is vulnerable in
the case of either a small public exponent [5, 7] or a small private exponent [3,
40]. Some attacks were also presented when a portion of the private exponent is
exposed [1, 2, 4, 11, 34, 35, 38, 39], or some bits of the prime factor are known [6,
7, 16]. From the work of [9, 24], it was proved that recovering the private expo-
nent and factoring the modulus are determinately equivalent in polynomial time.
In addition, there were also some investigations about the implicit factorization
problem (IFP) [12, 20, 21, 25, 31, 32, 37], which aims to factor two (or more) RSA
moduli if unknown prime factors of these moduli share a certain number of bits.

In this paper, we show that some of the above cryptanalysis of RSA can
be summarized into one framework, namely, finding small solutions (x, y, z) =
(x0, y0, z0) of the equation Bx − Ay = z, where A,B, x0, y0, z0 are integers
and Bx0, Ay0 have the same bit size. Without loss of generality, we assume
A,B, x0, y0, z0 ∈ Z+ and gcd(A,B) = 1, gcd(x0, y0) = 1.

In 1990, based on approximations using continued fractions, Wiener [40] p-
resented the first small private exponent attack. For an RSA modulus N = pq,
suppose p, q are of the same bit size, and the public exponent e ≈ N . Wiener
showed that one can factor N = pq if the private exponent d < N0.25. Since
e · d ≡ 1(mod ϕ(N)), there exists a positive integer k such that kϕ(N) = ed− 1,
which is equivalent to Nk − ed = k(p + q − 1) − 1. After taking B = N, x0 =
k,A = e, y0 = d, z0 = k(p+ q− 1)− 1, we obtain Bx0−Ay0 = z0. And the RSA
modulus N = pq can be factored according to the knowledge of x0, y0, z0. There-
fore, Wiener’s attack is essentially finding the solution (x, y, z) = (x0, y0, z0) of
the equation Bx−Ay = z if x0, y0, z0 are small enough. The best small private
exponent attack was later given by Boneh and Durfee [3] in 1999, which showed
that it is possible to factor N = pq if d < N0.292. And the proof was simplified
by Herrmann and May [14] in 2010.

In 2009, May and Ritzenhofen [25] firstly introduced the IFP, namely, the
implicit factorization problem. The motivation of this problem comes from oracle
based complexity of factorization problems. Namely, it allows for an oracle that
on input an RSA modulus N1 = p1q1 outputs another different RSA modulus
N2 = p2q2 such that p1, p2 share some bits. Note that the oracle only gives an
implicit information about p1, p2, since the actual values of the shared bits are
not known. Denote “most significant bits” by MSBs, and “least significant bits”
by LSBs. Let N1 = p1q1, N2 = p2q2 be n-bit RSA moduli, and p1, p2 be αn-bit
prime integers. Then suppose that p1, p2 share tn LSBs. By finding the shortest
non-zero vector in a two-dimensional lattice, May and Ritzenhofen [25] claimed
that N1, N2 can be factored if t > 2(1 − α). Later in 2010, Faugère et al. [12]
analyzed the case where αn-bit p1, p2 share tn MSBs, and they got the same
bound t > 2(1−α). For simplicity, here we only consider the latter case, namely,
we have p1 − p2 = p̃, 0 < p̃ < 2αn−tn, where p̃ > 0 is assumed without loss
of generality. It is easy to obtain N1q2 − N2q1 = p̃q1q2. Similarly, after taking
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B = N1, x0 = q2, A = N2, y0 = q1, z0 = p̃q1q2, one can also get Bx0 −Ay0 = z0.
And the knowledge of x0, y0, z0 is sufficient to factor N1 = p1q1, N2 = p2q2.
Therefore, the above IFP can be also regarded as finding the solution (x, y, z) =
(x0, y0, z0) of the equation Bx−Ay = z if x0, y0, z0 are small enough. Since the
methods in [25] and [12] are similar, in this paper we only consider the method
in [25] for simplicity. Besides the work in [25] and [12], later the bounds for the
cases of shared MSBs and shared LSBs were simultaneously improved several
times [20, 21, 32, 37] by means of lattice-based methods. And the optimal bound
was given by Lu et al. [20] in 2015, which claimed that N1, N2 can be factored
if t > 2α(1− α).

Both Wiener’s attack in [40] and May-Ritzenhofen’s attack in [25], can be
generalized to solve the equation Bx−Ay = z. Besides, there is another lattice-
based method, called Coppersmith’s method, which is widely adopted by re-
searchers for cryptanalysis of RSA. Coppersmith’s method is used to find small
roots of v-variate modular polynomial equations or (v + 1)-variate integer poly-
nomial equations in polynomial time based on lattice basis reduction. Initially
in 1996, Coppersmith [5, 6] obtained results for the case of v = 1. Later the
methods of [5] and [6] were reformulated by Howgrave-Graham[15] and Coron[8]
respectively in simpler ways. The aforementioned two reformulations can also be
extended to the case of v > 2. In general, the reformulations are used when we
refer to Coppersmith’s method.

Our Contributions In this paper, we are devoted to making improvements for
solving the equation Bx−Ay = z in some special cases, together with obtaining
some new applications to cryptanalysis of RSA.

First of all, we present the condition for solving the equation Bx−Ay = z in
the general case as Result 1 in Section 2. We regard it as a known result, which
can be obtained by generalizing either Wiener’s small private exponent attack
in [40] or May-Ritzenhofen’s investigation about implicit factorization problem
in [25]. Besides, Coppersmith’s method can also be used to prove Result 1. As a
conclusion, these three methods are equivalent for solving Bx − Ay = z in the
general case.

Moreover, Coppersmith’s method is much powerful. It can not only obtain
the same result in the general case, but also perform better than the two methods
in [40] and [25] under some circumstance. The optimal bound for the IFP [20]
and the best small private exponent attack [3], are both obtained according
to Coppersmith’s method. Based on Coppersmith’s method, this paper then
presents two improvements for solving the equation Bx−Ay = z in some special
cases.

(1) The first improvement considers the case where either gcd(x0, z0, A) or
gcd(y0, z0, B) is large enough. It is stated as our Theorem 1 together with Theo-
rem 2 in Section 4. Based on the first improvement, we present some applications
to cryptanalysis of RSA as follows.

(1.1) In 2015, Nitaj and Ariffin [28] proposed a generalization of the IFP,
which is also related to oracle based complexity of factorization problems. The

3



generalization allows for an oracle that on input an RSA modulus N1 = p1q1
outputs another different RSA modulus N2 = p2q2 such that some unknown
multiples a1p1 and a2p2 of the prime factors p1 and p2 share an amount of
MSBs or LSBs. When a1 = a2 = 1, it is exactly the case of the IFP introduced
by May and Ritzenhofen in [25]. Moreover, since gcd(p1, p2) = 1, there must
exist unknown a∗1, a

∗
2 ∈ Z+ such that a∗1p1 − a∗2p2 = 1 (or a∗2p2 − a∗1p1 = 1).

It implies that a∗1p1 and a∗2p2 share nearly all of their bits beginning from the
most significant bit, which may apply for the generalized IFP. Applying our
Theorem 1 to this generalized IFP for the case of shared MSBs, we can get a
better result than [28]. While our Theorem 2 can be used to improve the attack
in [28] for the case of shared LSBs.

(1.2) In 1996, Coppersmith [6] claimed that given 0.25n MSBs of p, one can
factor n-bit N = pq for 0.5n-bit p and q. Later [7, 16] showed that N can also be
factored if one knows 0.25n LSBs of p. The motivation of their attacks is exactly
from the original oracle based complexity of factorization problems. As opposed
to the (generalized) IFP where the oracle only gives an implicit information,
their attacks [6, 7, 16] allow for an oracle that explicitly outputs the bits of the
prime factor p. Considering implementations in practice, the bits of p may be
obtained via side channel attacks. As an application of the theorems in Section 4,
our new attacks improve the results in [6, 7, 16] if some greatest common divisor
is large enough, and we also consider the case of unbalanced p, q.

(1.3) Similarly, according to Theorem 1, we can improve the result of partial-
ly approximate common divisor problem (PACDP) in [16] under some circum-
stance. And the same improvement also applies to the attacks in [29, 22], which
focus on solving ex+ y ≡ 0 (mod p) to factor the RSA modulus N = pq.

(2) The second improvement assumes that the value of C ≡ z0 (mod x0)
is known. It is stated as our Theorem 3 in Section 5. And its applications to
cryptanalysis of RSA are as follows.

(2.1) In 2005, Ernst et al. [11] proposed the attack on RSA when a portion
of the private exponent d is exposed due to side channel attacks. Their result is
the first one that works up to full size public or private exponent. Later in 2008,
Sarkar and Maitra [36] improved the result of [11] by guessing a few MSBs of
the prime factor p of the RSA modulus N . The total amount of bits of d, p to be
known as presented in [36], is less than the number of bits of d to be known as
reported in [11]. According to our Theorem 3, we present a new attack on RSA
when some LSBs of d together with some MSBs of p are exposed. Similar to the
motivation of [36], we may obtain only a few bits of p by exhaustive search to
reduce the requirement of more bits of d to be known. Our attack combines the
results in [30] and [39], and is better than Sarkar and Maitra [36] under some
circumstance.

(2.2) In 2002, Weger [10] showed that choosing an RSA modulus with a small
difference of its prime factors yields improvements on the small private exponent
attacks of Wiener [40] and Boneh, Durfee [3]. Among the results presented in
[10], one is obtained by generalizing the best small private exponent attack
result d < N0.292 [3]. Another proof of this result can also be found in [18].
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As the application of our second improvement, our new attack needs a weaker
condition, which implies that our result is better than that in [10, 18].

Organization The rest of this paper is organized as follows. In Section 2, the
condition of solving the equation Bx− Ay = z in the general case is given as a
known result. Section 3 introduces Coppersmith’s method for finding the small
roots of modular polynomial equations, which is used to prove the results in
this paper. In Section 4, we present our first improvement. And based on this
improvement, we obtain many applications to cryptanalysis of RSA, such as new
results about the generalized IFP, attacks with known bits of the prime factor,
analysis of the PACDP, and so on. Section 5 is our second improvement. And
in this section, we propose two attacks on RSA, which consider either the case
with known bits of the private exponent together with the prime factor, or the
case with a small difference of the two prime factors. In Section 6, we implement
several experiments to examine the justification of our approach and thus verify
the correctness of our results. Finally we conclude this paper in Section 7.

2 Known Result for Solving Bx − Ay = z

In this section, we show the condition of finding the small solutions (x, y, z) =
(x0, y0, z0) of the equation Bx − Ay = z in the general case. We present it
as the following Result 1, and regard it as a known result. It can be obtained
by generalizing either Wiener’s attack in [40] or May-Ritzenhofen’s attack in
[25]. We briefly present the proof using Wiener’s method [40] in Appendix A,
and the proof using May-Ritzenhofen’s method [25] in Appendix B. Section 3
will introduce Coppersmith’s method by showing another proof of Result 1 as
an example. As a conclusion, these three methods are equivalent for solving
Bx−Ay = z in the general case.

Result 1 Suppose there exists unknown (x0, y0, z0) ∈ (Z+)3 satisfying

Bx0 −Ay0 = z0, |x0| < X, |y0| < Y, |z0| < Z,

where gcd(A,B) = 1, gcd(x0, y0) = 1. Here A,B,X, Y, Z are known large posi-
tive integers, and for some known large positive integer M we have

X = Mα1 , A = Mα2 , Y = Mβ1 , B = Mβ2 , Z = Mγ .

X, Y, Z are usually selected to satisfy x0 ≈ X, y0 ≈ Y, z0 ≈ Z, thus we also
assume β2 +α1 ≈ α2 +β1 holds such that z0 � Bx0, Ay0. Then one can find all
such solutions (x, y, z) = (x0, y0, z0) of the equation Bx−Ay = z in polynomial
time if

γ + α1 − α2 (≈ γ + β1 − β2) < 0. (1)

We note that there should be a term “ε” with ε > 0 in the left-hand side
of Inequality (1). This term is negligible, since A,B,X, Y, Z,M are large posi-
tive integers and ε usually equals to a small value such as logM 2. Considering
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applications to cryptanalysis of RSA, these large positive integers may have the
magnitudes such as that of an RSA modulus. We usually have known the rough
bit sizes of desired x0, y0, z0 ∈ Z+, thus we are able to select X,Y, Z satisfying
x0 ≈ X, y0 ≈ Y, z0 ≈ Z. Besides, β2 + α1 ≈ α2 + β1 implies that Bx0 and
Ay0 have the same bit size. And one can check that Inequality (1) also implies
z0 � Bx0, Ay0. Finally, we assume x0, y0, z0 ∈ Z+ just for simplicity, and the
result also holds for the case of x0, y0, z0 ∈ Z. This is why we use |x0|, |y0|, |z0|
instead of x0, y0, z0 in Result 1. The same applies to our two improvements in
Sections 4, 5.

3 Coppersmith’s Method

In this section, we introduce Coppersmith’s method for finding the small roots
of modular polynomial equations, which will be used in the proofs of our two
improvements in Sections 4, 5 in this paper. We will first give some preliminaries
about lattice in Section 3.1, and then present Coppersmith’s method by showing
a new proof of Result 1 as an example in Section 3.2. The proof can be regarded
as a preparation for our proofs of the two improvements in Sections 4, 5.

3.1 Preliminaries about Lattice

First of all, let us recall the definition of (integer) lattice.

Definition 1. Let b1, b2, · · · , bω ∈ Zs be linearly independent (row) vectors for
ω 6 s. A lattice Λ generated by b1, b2, · · · , bω is the set of all integral linear
combinations of these vectors:

Λ = spanZ(b1, b2, · · · , bω) =

{
ω∑
i=1

xibi

∣∣∣ x1, x2, · · · , xω ∈ Z

}
.

We call s the dimension of Λ and ω its rank. Row vectors b1, b2, · · · , bω are a
basis of Λ, and we denote the basis as a matrix, called the basis matrix of Λ:

B =


b1
b2
...
bω

 ∈ Zω×s.

The determinant of Λ is defined as det(Λ) =
√

det(BBT ), which is independent of
the choice of the basis and only determined by Λ. In this paper, we only consider
lattices for the case of ω = s. Thus B is a square matrix and det(Λ) = |detB|.

In 1982, Lenstra et al. [19] proposed the famous LLL algorithm for lattice
basis reduction, which allows one to find short vectors in polynomial time. The
proof of the following lemma can be found in [23]. The norm of a vector vi =
(vi1, vi2, · · · , vis) is defined as ‖vi‖ =

√
v2i1 + v2i2 + · · ·+ v2is.
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Lemma 1. (LLL) Let s be the dimension (and the rank) of the lattice Λ. Given
a basis (square) matrix B of Λ, the LLL algorithm outputs a LLL-reduced basis
v1,v2, · · · ,vs satisfying

‖v1‖, ‖v2‖, · · · , ‖vi‖ 6 2s(s−1)/4(s−i+1) det(Λ)1/(s−i+1), 1 6 i 6 s

in polynomial time in s and in the bit size of the entries of the basis matrix B.

Finally we introduce the following useful lemma due to Howgrave-Graham [15].
The norm of a polynomial h(x1, · · · , xn) =

∑
at1,···,tnx

t1
1 · · ·xtnn is defined as

‖h(x1, · · · , xn)‖ =
√∑

|at1,···,tn |2.

Lemma 2. (Howgrave-Graham) Let h(x1, · · · , xv) ∈ Z[x1, · · · , xv] be a poly-

nomial that consists of at most s monomials. Suppose that there exists (x
(0)
1 , · · · ,

x
(0)
v ) ∈ Zv satisfying

h(x
(0)
1 , · · · , x(0)v ) ≡ 0 (mod V ), |x(0)1 | < X1, · · · , |x(0)v | < Xv,

‖h(X1x1, · · · , Xvxv)‖ < V/
√
s.

Then h(x
(0)
1 , · · · , x(0)v ) = 0 holds over the integers.

3.2 Coppersmith’s Method to Prove Result 1

Here we present Coppersmith’s method by showing a new proof of Result 1,
which is a preparation for our proofs of the two improvements in Sections 4, 5.

Recall the notations in Result 1. Define f(x, z) := −Bx+ z, and from Bx0−
Ay0 = z0 we obtain

f(x0, z0) ≡ 0 (mod A).

Let m be a positive integer, and then define

gk(x, z) := xm−k[f(x, z)]kAm−k, k = 0, 1, · · · ,m,
Λ∗ :=

{ ∑m
k=0 lkgk(x, z)

∣∣∣ l0, l1, · · · , lm ∈ Z
}
.

For two monomials xm−k1zk1 and xm−k2zk2 , the monomial order “≺” is defined
such that xm−k1zk1 ≺ xm−k2zk2 if and only if k1 < k2. Then there is a one-
to-one correspondence between a polynomial g(x, z) in Λ∗ and a vector g in a
subset Λ of Zm+1, where the components of g are the coefficients of g(Xx,Zz)
in the order of “≺”. Denote the corresponding vector of gk(x, z) by gk, and we
have

Λ =
{ ∑m

k=0 lkgk

∣∣∣ l0, l1, · · · , lm ∈ Z
}
.

One can check that g0, g1, · · · , gm are linearly independent, thus Λ is indeed a
lattice, whose dimension is s := m+ 1. And g0, g1, · · · , gm form a basis matrix
B of the lattice Λ. For example, when m = 2, we have

g0(x, z) = A2x2, g1(x, z) = −ABx2 +Axz, g2(x, z) = B2x2 − 2Bxz + z2.
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Then one can obtain the basis vectors g0, g1, g2, which form the basis matrix

B =

 A2X2 0 0
−ABX2 AXZ 0
B2X2 −2BXZ Z2

 .

From f(x0, z0) ≡ 0 (mod A), we know gk(x0, z0) ≡ 0 (mod Am), and thus
g(x0, z0) ≡ 0 (mod Am) holds for any g(x, z) ∈ Λ∗. According to Lemma 2, if
‖g(Xx,Zz)‖ < Am/

√
s holds, we have g(x0, z0) = 0 holds over the integers.

Suppose such a polynomial g(x, z) ∈ Λ∗ with g(x0, z0) = 0 is obtained.
Since g(x, z) is homogeneous, let ζ := x/z and one gets h(ζ) := g(x, z)/zm with
h(x0/z0) = 0. Then x0/z0 can be easily found by extracting the rational roots of
h(ζ) with classical methods (the discussions about extracting the small rational
roots can be found on page 413 of Joux’s book [17]). Let u0 := gcd(x0, z0), x′0 :=
x0/u0, z

′
0 := z0/u0, and we have u0/y0 = A/(Bx′0 − z′0). From the value of

x′0/z
′
0 = x0/z0, we know the values of x′0, z

′
0 since gcd(x′0, z

′
0) = 1. Thus Bx′0−z′0

is known, and so is the value of u0/y0 = A/(Bx′0 − z′0). Since u0 | x0 and
gcd(x0, y0) = 1, we know gcd(u0, y0) = 1. Hence the values of u0, y0 are known,
together with the known x′0, z

′
0, we obtain (x0, y0, z0).

As a conclusion, in order to find (x0, y0, z0), we only need to find a polynomial
g(x, z) in Λ∗ with the condition ‖g(Xx,Zz)‖ < Am/

√
s. This is equivalent to

finding a vector g in Λ with the condition ‖g‖ < Am/
√
s. According to Lemma 1

(take i = 1), by running LLL algorithm one can find a vector g in Λ with ‖g‖ 6
2(s−1)/4 det(Λ)1/s. From the above, to find (x0, y0, z0), the following condition is
sufficient:

2(s−1)/4 det(Λ)1/s < Am/
√
s.

It is equivalent to 2s(s−1)/4ss/2 det(Λ) < (Am)
s
. Note that researchers often

ignore terms that do not depend on the large integer A. Thus, we obtain

det(Λ) < (Am)
s
.

The basis matrix B of the lattice Λ is a lower triangular square matrix, thus we
can compute

det(Λ) = detB =
∏m
k=0X

m−kZkAm−k = (AXZ)
m(m+1)/2

.

Substitute the value of det(Λ) and s = m+ 1 in det(Λ) < (Am)
s
, and we have

(AXZ)
m(m+1)/2

< Am(m+1) ⇔ XZ < A ⇔ γ + α1 < α2,

which completes the proof of Result 1.

4 First Improvement for Solving Bx − Ay = z

In this section, we present the first improvement for solving the equation Bx−
Ay = z. The main result is stated as Theorem 1 together with Theorem 2
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in Section 4.1. Then based on the first improvement, Section 4.2 shows some
applications to cryptanalysis of RSA, such as the generalized IFP with shared
MSBs or LSBs, attacks with known MSBs or LSBs of the prime factor, and so on.
Similar to the previous results, the motivation of our applications in Section 4.2
comes from oracle based complexity of factorization problems.

4.1 Our Main Result

Our first improvement pays attention to gcd(x0, z0, A), gcd(y0, z0, B). And it
can improve Result 1 when either of these two great common divisors is large
enough. We present it as follows.

Theorem 1. Suppose there exists unknown (x0, y0, z0) ∈ (Z+)3 and unknown
u0, v0 ∈ Z+ satisfying

Bx0 −Ay0 = z0, |x0| < X, |y0| < Y, |z0| < Z,
u0 = gcd(x0, z0, A), v0 = gcd(y0, z0, B), |u0| > U, |v0| > V,

where gcd(A,B) = 1, gcd(x0, y0) = 1. Here A,B,X, Y, Z, U, V are known large
positive integers, and for some known large positive integer M we have

X = Mα1 , A = Mα2 , U = Mα, Y = Mβ1 , B = Mβ2 , V = Mβ , Z = Mγ .

X, Y, Z, U, V are usually selected to satisfy x0 ≈ X, y0 ≈ Y, z0 ≈ Z, u0 ≈
U, v0 ≈ V , thus we also assume β2 + α1 ≈ α2 + β1 holds such that z0 �
Bx0, Ay0. Then one can find all such solutions (x, y, z) = (x0, y0, z0) of the
equation Bx−Ay = z in polynomial time if

γ + α1 − α2 (≈ γ + β1 − β2) <
α2

α2
+
β2

β2
. (2)

In Theorem 1, we emphasize that u0 = gcd(x0, z0, A) = gcd(x0, z0) =
gcd(x0, A) = gcd(z0, A) and v0 = gcd(y0, z0, B) = gcd(y0, z0) = gcd(y0, B) =
gcd(z0, B) according to Bx0 − Ay0 = z0 and gcd(A,B) = 1, gcd(x0, y0) = 1.
Besides, in consideration of the applications to cryptanalysis of RSA, we may
also need to deal with the equation Bx0−Ay0 = Cz0. The corresponding result
is described as follows.

Theorem 2. For Theorem 1, suppose unknown (x0, y0, z0) ∈ (Z+)3 satisfies
Bx0−Ay0 = Cz0 instead of Bx0−Ay0 = z0, where C is a known positive integer
satisfying gcd(C,A) = 1 or gcd(C,B) = 1. Here we still assume β2+α1 ≈ α2+β1
together with z0 � Bx0, Ay0, while Cz0 � Bx0, Ay0 is unnecessary. Then the
condition to find (x, y, z) = (x0, y0, z0) in Theorem 1, namely, Inequality (2),
remains unchanged.
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The Sketch of Proof Here we use Coppersmith’s method to construct the
desired lattice and thus give the sketch proof of Theorem 1. Theorem 2 can be
proved in a similar manner. The detailed proofs of Theorem 1, 2 are given in
Appendix C.

Set x′0 := x0/u0, a
′
0 := A/u0, y

′
0 := y0/v0, b

′
0 := B/v0, z

∗
0 := z0/(u0v0)

and define f(b′, x′, z∗) := −b′x′ + z∗ ∈ Z[b′, x′, z∗]. Let m be a positive integer,
and set τ := dα2−α

α2
me, i := dβ2−β

β2
me. Then for k = 0, 1, · · · ,m, we define the

following polynomials in Z[b′, x′, z∗, v]:

gk(b′, x′, z∗, v) := Emin{i,m−k}vi(b′x′)
m−k

[f(b′, x′, z∗)]kAmax{τ−k,0},

where E is the inverse of B modulo Aτ (such E must exit since gcd(A,B) = 1).
From Bx0 − Ay0 = z0 one can check f(b′0, x

′
0, z
∗
0) ≡ 0 (mod a′0). Then together

with A ≡ 0 (mod a′0), we obtain

gk(b′0, x
′
0, z
∗
0 , v0) ≡ 0 (mod (a′0)

τ
), k = 0, 1, · · · ,m. (3)

Besides, for every polynomial gk(b′, x′, z∗, v), we replace each occurrence of the
monomial b′v by B and each occurrence of EB by 1, according to the relation
b′0v0 = B and the fact EB ≡ 1 (mod (a′0)

τ
).

Next we define Λ∗ :=
{ ∑m

k=0 lkgk(b′, x′, z∗, v)
∣∣∣ l0, l1, · · · , lm ∈ Z

}
. Simi-

lar to Section 3.2, Λ∗ corresponds to an lattice Λ, whose dimension is s := m+1.
And according to Lemmas 1, 2, one can check that the condition det(Λ) <
[(a′0)τ ]

s
is sufficient to obtain the desired (x0, y0, z0). Finally, after some calcula-

tion with m→∞, we know that det(Λ) < [(a′0)τ ]
s

is equivalent to Inequality (2),
which completes the proof of Theorem 1.

4.2 Applications to Cryptanalysis of RSA

Generalized IFP with Shared MSBs or LSBs Since finding small so-
lutions of the equation Bx − Ay = z can be derived from the IFP introduced
in [25], one important application of our first improvement is the generalized
IFP proposed in [28]. We present our result for the generalized IFP with shared
MSBs as follows.

Proposition 1. Suppose that there are two RSA moduli N1 = p1q1 and N2 =
p2q2, where a1p1 and a2p2 share t most significant bits for some unknown positive
integers a1 and a2. And for some large positive integer M (one can take M =
max{N1, N2} for example), we have

2t = M t∗ , p1 = Mα∗1 , p2 = Mα∗2 , q1 = Mβ∗1 , q2 = Mβ∗2 , a1 = M δ∗1 , a2 = Mδ∗2 ,

where α∗1 + δ∗1 ≈ α∗2 + δ∗2 . For simplicity, we also assume gcd(a1, a2) = 1 and
gcd(ai, pj) = gcd(ai, qj) = 1 for i, j = 1, 2. Then N1 and N2 can be factored in
polynomial time if

t∗ >
α∗1β

∗
1

α∗1 + β∗1
+

α∗2β
∗
2

α∗2 + β∗2
+ δ∗1 + δ∗2 . (4)

10



Proof. Since a1p1 and a2p2 share t MSBs, we have a1p1 − a2p2 = p̃, |p̃| <
Mα∗1+δ

∗
1−t

∗
. Without loss of generality, we can assume p̃ > 0 here, otherwise we

can take p̃ = a2p2 − a1p1. It is easy to obtain

N1 · a1q2 −N2 · a2q1 = p̃q1q2.

Take B = N1, x0 = a1q2, A = N2, y0 = a2q1, z0 = p̃q1q2 in Theorem 1.
Then we have gcd(A,B) = 1, gcd(x0, y0) = 1, u0 = gcd(x0, z0, A) = q2, v0 =
gcd(y0, z0, B) = q1 and α1 ≈ δ∗1 +β∗2 , α2 = α∗2 +β∗2 , α ≈ β∗2 , β1 ≈ δ∗2 +β∗1 , β2 =
α∗1 + β∗1 , β ≈ β∗1 , γ ≈ α∗1 + δ∗1 − t∗+ β∗1 + β∗2 . Next from Inequality (2), one gets

(α∗1 + δ∗1 − t∗+ β∗1 + β∗2) + (δ∗1 + β∗2)− (α∗2 + β∗2) <
(β∗2 )

2

α∗2+β
∗
2

+
(β∗1 )

2

α∗1+β
∗
1
, which finally

reduces to Inequality (4) according to α∗1 + δ∗1 ≈ α∗2 + δ∗2 . Thus if Inequality (4)
holds, one can obtain the values of x0 = a1q2, y0 = a2q1, z0 = p̃q1q2 efficiently.
Then q1 = v0 = gcd(y0, z0, N1), q2 = u0 = gcd(x0, z0, N2) are computed and
N1, N2 are easily factored. And thus Proposition 1 follows.

In Proposition 1, the condition gcd(a1, a2) = 1 is natural. Otherwise, one can
suppose a := gcd(a1, a2) = gcd(a1, a2, p̃) = Mθ∗ , and get (a1/a)p1 − (a2/a)p2 =
p̃/a, which reduces to N1 · (a1/a)q2 − N2 · (a2/a)q1 = (p̃/a)q1q2. And the final

corresponding result is changed to t∗ >
α∗1β

∗
1

α∗1+β
∗
1

+
α∗2β

∗
2

α∗2+β
∗
2

+ (δ∗1 − θ∗) + (δ∗2 − θ∗).
As for the condition gcd(ai, pj) = gcd(ai, qj) = 1 (i, j = 1, 2), it is used to
make gcd(x0, y0) = 1, gcd(x0, z0, A) = q2, gcd(y0, z0, B) = q1 hold in the proof
of Proposition 1. In fact the condition gcd(a1, p2) = gcd(a1, q1) = gcd(a2, p1) =
gcd(a2, q2) = 1 is sufficient. Besides, we should assume gcd(A,B) = gcd(N2, N1) =
1, otherwise N1, N2 have already been factored.

As is known to all, there must exist unknown a∗1, a
∗
2 ∈ Z+ such that a∗1p1 −

a∗2p2 = 1 (or a∗2p2 − a∗1p1 = 1) due to gcd(p1, p2) = 1. And a∗1p1 − a∗2p2 = 1
means that a∗1p1 and a∗2p2 share nearly all of their bits beginning from the most
significant bit. Therefore, our attack of Proposition 1 may apply to the case
when unknown a∗1, a

∗
2 are small enough for a∗1p1 − a∗2p2 = 1.

Proposition 1 is obtained according to Theorem 1. Similarly, from Theorem 2
we have the following result for the generalized IFP with shared LSBs.

Proposition 2. For Proposition 1, suppose a1p1 and a2p2 share t least signifi-
cant bits, instead of t most significant bits. Then the condition to factor N1 and
N2 in polynomial time, namely, Inequality (4), remains unchanged.

Proof. Since a1p1 and a2p2 share t LSBs, we have a1p1 − a2p2 = 2tp̃, |p̃| <
Mα∗1+δ

∗
1−t

∗
. Then one obtains N1 · a1q2 −N2 · a2q1 = 2t · p̃q1q2. Similarly, take

B = N1, x0 = a1q2, A = N2, y0 = a2q1, C = 2t, z0 = p̃q1q2 in Theorem 2, and
finally we know Inequality (4) is sufficient to factor N1 and N2 efficiently. And
thus Proposition 2 follows.

Table 1 summarizes related works in [12, 20, 25, 28] and our contribution.
Among them, [25] considers the case of shared LSBs, and [12] is for the case of
shared MSBs, while other results apply to the both two cases. From Table 1, we
know the IFP is exactly the circumstance of α∗1 ≈ α∗2, β

∗
1 ≈ β∗2 , δ

∗
1 = δ∗2 = 0 in
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Table 1. Results for IFP and generalized IFP

IFP with shared MSBs or LSBs Generalized IFP with shared MSBs or LSBs
(For α∗1 ≈ α∗2, β∗1 ≈ β∗2 , δ∗1 = δ∗2 = 0) (For any α∗1, α

∗
2, β
∗
1 , β
∗
2 , δ
∗
1 , δ
∗
2)

Results in [25] and [12]: t∗ > 2β∗1 Results in [28]: t∗ > β∗1 + β∗2 + δ∗1 + δ∗2

Results in [20]: t∗ >
2α∗1β

∗
1

α∗1+β
∗
1

Our results: t∗ >
α∗1β
∗
1

α∗1+β
∗
1

+
α∗2β
∗
2

α∗2+β
∗
2

+ δ∗1 + δ∗2

Fig. 1. Comparison between our results and those in [28] for generalized IFP with
shared MSBs or LSBs when α∗1 ≈ α∗2 ≈ α∗, β∗1 ≈ β∗2 ≈ 1− α∗, δ∗1 ≈ δ∗2 ≈ 0.1

the generalized IFP. And just as [20] improves the results of [12, 25], our results
are also better than those in [28].

Let N1 ≈ N2 ≈ M and α∗1 ≈ α∗2 ≈ α∗, β∗1 ≈ β∗2 ≈ 1 − α∗, δ∗1 ≈ δ∗2 ≈ 0.1
in Proposition 1 and Proposition 2. Then Inequality (4) turns out to be t∗ >
2α∗(1−α∗) + 0.2, while results given in [28] imply t∗ > 2(1−α∗) + 0.2. Besides,
there is another condition t∗ < α∗1 + δ∗1 ≈ α∗ + 0.1 since a1p1 and a2p2 share t
bits. For this example, Figure 1 illustrates the comparison between our results
and those in [28]. And our new improvement is denoted by the Red Area in
Figure 1.

Given MSBs or LSBs of the Prime Factor An n-bit RSA modulus N = pq
with balanced p, q can be factored, if 0.25n MSBs or LSBs of p are exposed. This
important result was proposed in [6, 7, 16] and is state-of-the-art up to now. Our
new attacks, stated as the following two propositions, will improve the results in
[6, 7, 16] if some greatest common divisor is large enough. We also consider the
general case where p, q are not necessarily balanced.

Proposition 3. For RSA modulus N = pq with p = Nα∗ , suppose we have
known t most significant bits of p with 2t = N t∗ . Namely, pm is exposed for
p = pm ·W + pl with W ≈ Nα∗−t∗ . Besides, we set gcd(pl, kq + 1) = Nθ∗ for

12



some known small positive integer k (one can take k = 1 for example). Then N
can be factored in polynomial time if

t∗ > α∗(1− α∗)− (θ∗)2. (5)

Proof. From p = pm ·W + pl, we obtain N = Wpmq + plq, which is equivalent
to

N · (kq + 1)− (kN +Wpm) · q = plq,

with known N, pm,W, k. Take B = N, x0 = kq + 1, A = kN + Wpm, y0 =
q, z0 = plq in Theorem 1, and one can get gcd(A,B) = 1, gcd(x0, y0) = 1, u0 =
gcd(x0, z0, A) = gcd(pl, kq + 1), v0 = gcd(y0, z0, B) = q. Since the positive
integer k is small enough, we obtain α1 ≈ 1 − α∗, α2 ≈ 1, α ≈ θ∗, β1 ≈
1 − α∗, β2 = 1, β ≈ 1 − α∗, γ ≈ 1 − t∗. Next from Inequality (2), one gets
(1− t∗)+(1−α∗)−1 < (θ∗)2 +(1−α∗)2, which finally reduces to Inequality (5).
ThenN is factored after we obtain the values of x0, y0, z0. And thus Proposition 3
follows.

Proposition 4. For RSA modulus N = pq with p = Nα∗ , suppose we have
known t least significant bits of p with 2t = N t∗ . Namely, pl is exposed for
p = pm · 2t + pl. Besides, we set gcd(pm, kq + 1) = Nθ∗ for some known small
positive integer k (one can take k = 1 for example). Then N can be factored in
polynomial time if

t∗ > α∗(1− α∗)− (θ∗)2. (6)

Proof. From p = pm · 2t + pl, we obtain N = 2tpmq + plq, which is equivalent
to N · (kq + 1) − (kN + pl) · q = 2tpmq with known N, pl, t, k. Similarly, take
B = N, x0 = kq + 1, A = kN + pl, y0 = q, C = 2t, z0 = pmq in Theorem 2,
and finally we know Inequality (6) is sufficient to factor N efficiently. And thus
Proposition 4 follows.

For the case of α∗ = 0.5, we obtain t∗ > 0.25−(θ∗)2 from both Inequality (5)
in Proposition 3 and Inequality (6) in Proposition 4. As mentioned before, the
best known result is t∗ > 0.25 for exposed MSBs of p (due to [6, 7, 16]) or exposed
LSBs of p (due to [7, 16]). Thus we make improvement if θ∗ > 0.

Actually, we first generalize the result t∗ > 0.25 in [6, 7, 16] to t∗ > α∗(1−α∗)
for 0 < α∗ < 1, then present an improvement t∗ > α∗(1− α∗)− (θ∗)2 if θ∗ > 0.
Besides, there is another condition t∗ < α∗ since t bits of p are exposed. In
Figure 2, we use the Green Area to denote our generalized result t∗ > α∗(1−α∗),
and the Red Area to illustrate the possible improvement t∗ > α∗(1 − α∗) −
(min{α∗ − t∗, 1− α∗})2 for the extreme case of θ∗ = min{α∗ − t∗, 1− α∗}. One
can check that t∗ > α∗(1 − α∗) − (min{α∗ − t∗, 1 − α∗})2 is equivalent to t∗ >
α∗(1−α∗)−(α∗−t∗)2, 0 < α∗ 6 0.5 or t∗ > α∗(1−α∗)−(1−α∗)2, 0.5 < α∗ < 1.

In fact, in Figure 2 the area of actual improvement is much smaller than
the Red Area since θ∗ is very small at random. However, our attacks are also
useful for the area of malicious generation of RSA moduli, i.e. the construction
of backdoor RSA moduli. Here we take Proposition 4 with α∗ = 0.5 for example.
After q is generated, one can choose a large enough factor of q+1 as pm to make

13



Fig. 2. Our generalized result and possible improvement for the attack on RSA with
known MSBs or LSBs of the prime factor

gcd(pm, q + 1) = pm hold, and it implies θ∗ ≈ 0.5 − t∗. Then p = pm · 2t + pl
is generated, where pl is randomly selected until p is a prime integer. Let θ∗

approximate 0.5, and one can make t∗ ≈ 0.5 − θ∗ small enough such that the
bits of pl can be easily obtained by side channel attacks together with exhaustive
search. Notice that Inequality (6) in Proposition 4 turns out to be t∗ ≈ 0.5−θ∗ >
0.25− (θ∗)2, which always holds if θ∗ 6= 0.5. As a conclusion, this circumstance
satisfies the condition to implement our attack and then factor N = pq.

Other Cryptanalysis of RSA We present some other cryptanalysis as the
applications of our improvement to solve Bx − Ay = z. These results, together
with the proofs, are similar to Proposition 3, which is obtained based on our
Theorem 1.

First let us consider the partially approximate common divisor problem
(PACDP), which was proposed by Howgrave-Graham [16] in 2001. And this
problem plays an important role in the area of cryptanalysis of RSA.

Suppose there exist known A,B ∈ Z+ and unknown d0 ∈ Z+, a0 ∈ Z, sat-
isfying gcd((A + a0), B) = d0, gcd(A,B) = 1 and A = Mα∗ , B = Mβ∗ , d0 >
Mδ∗ , |a0| < Mγ∗ � Mα∗ for some known M ∈ Z+. Howgrave-Graham [16]
claimed that one can obtain such a0, d0 in polynomial time under the condi-
tion γ∗ < (δ∗)2/β∗. Based on our Theorem 1, we can obtain a new condition
γ∗ < (δ∗)2/β∗ + (θ∗)2/α∗, where θ∗ := logM [gcd(A, |a0|)]. Thus our result is
better if θ∗ > 0.

Next we focus on the result of factoring the RSA modulus by solving the
equation ex+y ≡ 0 (mod p), which was first presented by Nitaj [29] in 2012 and
then improved by Lu et al. [22] in 2015.
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For RSA modulus N = pq with p, q ≈ N0.5 and public exponent e = Nα∗ ,
suppose there exist x0, y0 ∈ Z with gcd(x0, y0) = 1 such that ex0 + y0 ≡
0 (mod p), ex0+y0 6≡ 0 (mod N) and |x0| < Nγ∗1 , |y0| < Nγ∗2 . Nitaj [29] claimed
that N can be factored in polynomial time if γ∗1 + γ∗2 < (

√
2 − 1)/2 ≈ 0.207

holds. Later Lu et al. [22] gave a better result γ∗1 + γ∗2 < 0.25. Based on our
Theorem 1, we can obtain a new condition γ∗1 + γ∗2 < 0.25 + (θ∗)2/α∗, where
θ∗ := logN [gcd(e, |y0|)]. In the same way, we can make improvement for the case
of θ∗ > 0. And if one supposes p = Nδ∗ instead of p, q ≈ N0.5, our new condition
can be generalized to γ∗1 + γ∗2 < (δ∗)2 + (θ∗)2/α∗.

Besides, Nitaj also presented a similar attack on CRT-RSA in [29], which is
again improved by Lu et al. in [22]. And we note that from our Theorem 1, one
can also get a better result if some greatest common divisor is large enough.

5 Second Improvement for Solving Bx − Ay = z

In this section, we present the second improvement for solving the equation
Bx − Ay = z. The main result is stated as Theorem 3 in Section 5.1. Then
as an application of the second improvement, Section 5.2 shows an attack on
RSA when some LSBs of the private exponent together with some MSBs of
the prime factor are exposed. Subsequently, another attack aimed to factor an
RSA modulus with a small difference of its prime factors is also proposed in
Section 5.2.

5.1 Our Main Result

Our second improvement relies on another condition. Namely, it assumes that
we have known the integer C satisfying z0 ≡ C (mod x0), z0 ' z0−C. Here z0 '
z0−C means that z0 and z0−C have the same bit size. Different from Theorem 1,
this improvement does not need the condition gcd(A,B) = 1, gcd(x0, y0) = 1
in the proof. We present the second improvement as Theorem 3 below, together
with an assumption on which Theorem 3 relies.

Assumption 1 The resultant computations for the polynomials obtained by Cop-
persmith’s method yield non-zero polynomials.

Theorem 3. Suppose there exists unknown (x0, y0, z0) ∈ (Z+)3 satisfying

Bx0 −Ay0 = z0, |x0| < X, |y0| < Y, |z0| < Z,
z0 ≡ C (mod x0), z0 ' z0 − C.

Here the integer C is known, and A,B,X, Y, Z are known large positive integers,
and for some known large positive integer M we have

X = Mα1 , A = Mα2 , Y = Mβ1 , B = Mβ2 , Z = Mγ .
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X,Y, Z are usually selected to satisfy x0 ≈ X, y0 ≈ Y, z0 ≈ Z, thus we also
assume β2 + α1 ≈ α2 + β1 holds such that z0 � Bx0, Ay0. Then under As-
sumption 1, one can find all such solutions (x, y, z) = (x0, y0, z0) of the equation
Bx−Ay = z in polynomial time if α1 < α2, 4α1 + α2 6 4γ and

γ + α1 − α2 (≈ γ + β1 − β2) <
α2
1

α2
. (7)

Since Assumption 1 is heuristic, we need to perform experiments to examine
it, which is done in Section 6. And the successful experimental results in Section 6
justify the validity of Theorem 3 and its applications to cryptanalysis of RSA.

The Sketch of Proof Based on Coppersmith’s method, here we present the
construction of the desired lattice and thus give the sketch proof of Theorem 3.
And one can refer to Appendix D for the detailed proof.

From z0 ≡ C (mod x0) we know that there exists an integer w0 satisfying
x0w0 = z0−C. Define f(x, z) := −Bx+ z ∈ Z[x, z], and let m, τ be two positive
integers. Then we define the following polynomials in Z[x, z, w]:

gt,j(x, z) := xt−j [f(x, z)]jAm−j , j = 0, 1, · · · , t, t = 0, 1, · · · ,m,
hi,j(x, z, w) := wi[f(x, z)]jAm−j , j = θi, θi + 1, · · · ,m, i = 1, 2, · · · , τ,

where θi := dηie for an undetermined parameter η. From Bx0 − Ay0 = z0 one
gets f(x0, z0) ≡ 0 (mod A). Thus we obtain

gt,j(x0, z0) ≡ 0 (mod Am), j = 0, 1, · · · , t, t = 0, 1, · · · ,m,
hi,j(x0, z0, w0) ≡ 0 (mod Am), j = θi, θi + 1, · · · ,m, i = 1, 2, · · · , τ.

Besides, for every polynomial hi,j(x, z, w), we replace each occurrence of the
monomial xw by z − C according to the relation x0w0 = z0 − C.

Next we define Λ∗ as the set of all integral linear combinations of these
gt,j(x, z) and hi,j(x, z, w). Similar to Section 3.2, Λ∗ corresponds to an lattice
Λ, and we denote its dimension by s. According to Lemmas 1, 2 and under
Assumption 1, one can check that the condition det(Λ) < (Am)s−1 is sufficient

to obtain the desired (x0, y0, z0). Then take η = m
τ =

√
γ−α1√

α2−
√
γ−α1

and m→∞,

and after some calculation we know that det(Λ) < (Am)s−1 is equivalent to
Inequality (7).

For the proof of Theorem 3, we also have to make the basis matrix of Λ a
square matrix and a lower triangular matrix. And for this purpose the condition
θi+1 > θi + 1 is sufficient. Finally in order to make θi+1 > θi + 1 hold, we also
need another two conditions α1 < α2, 4α1 + α2 6 4γ besides Inequality (7).

5.2 Applications to Cryptanalysis of RSA

According to Theorem 3, we propose an attack on RSA when some LSBs of the
private exponent together with some MSBs of the prime factor are exposed.

16



Proposition 5. Given the RSA modulus N = pq with p, q ≈ N0.5, the public
exponent e ≈ N , and the private exponent d = Nβ∗ . Suppose we have known t1
most significant bits of p with 2t1 = N t∗1 , and t2 least significant bits of d with
2t2 = N t∗2 . Namely, pm is exposed for p = pm ·W + pl with W ≈ N0.5−t∗1 , and
dl is exposed for d = dm · 2t2 + dl. Then under Assumption 1, one can factor N
in polynomial time if dl < Nβ∗−t∗1−0.5, 4t∗1 + t∗2 6 1 and

β∗ < 1 + t∗2 −
√

(1 + t∗2)(0.5− t∗1). (8)

Proof. Since pm is exposed for p = pm ·W + pl, one can get the value of qm for
q = qm ·W +ql. According to e ·d ≡ 1 (mod ϕ(N)), we know there exists k ∈ Z+

with k ≈ Nβ∗ such that 1 = ed− kϕ(N) = e · (dm · 2t2 + dl)− k · [N − (pm ·W +
pl)− (qmW + ql) + 1], which is equivalent to

(N −Wpm −Wqm + 1) · k − 2t2e · dm = (pl + ql)k + edl − 1,

where only (pl + ql), dm, k are unknown. Take B = N −Wpm −Wqm + 1, x0 =
k, A = 2t2e, y0 = dm, z0 = (pl + ql)k + edl − 1 in Theorem 3, and one can get
C = edl − 1 satisfies z0 ≡ C (mod x0) and z0 ' z0 − C due to dl < Nβ∗−t∗1−0.5.
Besides, we have α1 ≈ β∗, α2 ≈ 1 + t∗2, β1 ≈ β∗− t∗2, β2 ≈ 1, γ ≈ β∗+ 0.5− t∗1,
where α1 < α2 already holds, and 4α1 + α2 6 4γ ⇔ 4t∗1 + t∗2 6 1. Then

from Inequality (7), we obtain (β∗ + 0.5 − t∗1) + β∗ − (1 + t∗2) < (β∗)2

1+t∗2
, which

finally reduces to Inequality (8). Then N is factored after we obtain the values
of x0, y0, z0. And thus Proposition 5 follows.

In 2008, Sarkar and Maitra [36] obtained the result t∗2 > g(β∗, t∗1) := 1
3 (0.5−

t∗1) + 2
3

√
(0.5− t∗1)2 + 3β∗(0.5− t∗1) + β∗ − 1, with the notations β∗, t∗1, t

∗
2 de-

fined in Proposition 5. On the other hand, Inequality (8) is equivalent to t∗2 >
h(β∗, t∗1) := 1

2 (0.5− t∗1) + 1
2

√
(0.5− t∗1)2 + 4β∗(0.5− t∗1) +β∗− 1. One can check

that g(β∗, t∗1) > h(β∗, t∗1) always holds for β∗ > 0. Thus the result of our Propo-
sition 5 is better than that of Sarkar and Maitra [36] under the extra condition
dl < Nβ∗−t∗1−0.5, 4t∗1 + t∗2 6 1.

The comparison between the two results of Proposition 5 and [36] for β∗ =
0.700, 0.650, 0.600 is illustrated by Table 2. For example, suppose that log2N ≈
1000 and β∗ = 0.600, the result of Sarkar and Maitra [36] shows that if 20

Table 2. Comparison between the result of our Proposition 5 (i.e. t∗2 > h(β∗, t∗1)) and
that in [36] (i.e. t∗2 > g(β∗, t∗1)) for β∗ = 0.700, 0.650, 0.600

t∗1 0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080

g(0.700, t∗1) 0.627 0.614 0.602 0.589 0.577 0.564 0.551 0.539 0.526
h(0.700, t∗1) 0.592 0.580 0.567 0.555 0.542 0.530 0.517 0.504 0.491

g(0.650, t∗1) 0.555 0.542 0.530 0.518 0.505 0.493 0.480 0.468 0.455
h(0.650, t∗1) 0.522 0.510 0.498 0.486 0.473 0.461 0.448 0.436 0.423

g(0.600, t∗1) 0.482 0.470 0.457 0.445 0.433 0.421 0.409 0.396 0.384
h(0.600, t∗1) 0.452 0.440 0.428 0.416 0.403 0.391 0.379 0.367 0.354

17



Table 3. Attacks on RSA related to Proposition 5

t∗1 = 0 t∗1 > 0

t∗2 = 0
Result in [3, 14]: Result in [30]:

β∗ < 1−
√

0.5 ≈ 0.292 β∗ < 1−
√

0.5− t∗1
(No extra conditions) (t∗1 6 0.25)

t∗2 > 0
Result in [39]: Our result:

β∗ < 1 + t∗2 −
√

0.5(1 + t∗2) β∗ < 1 + t∗2 −
√

(1 + t∗2)(0.5− t∗1)

(dl < Nβ∗−0.5) (dl < Nβ∗−t∗1−0.5, 4t∗1 + t∗2 6 1)

bits (the MSBs) of p are obtained (i.e. t∗1 = 0.020) by exhaustive search (or
side channel attacks), one needs more than 457 known bits (the LSBs) of d
to factor the RSA modulus N = pq. While according to our Proposition 5,
more than 428 known bits (the LSBs) of d are sufficient for the case of dl <
Nβ∗−t∗1−0.5, 4t∗1 + t∗2 6 1.

Note that usually one has dl ≈ N t∗2 at random, thus the condition dl <
Nβ∗−t∗1−0.5 implies that we assume some MSBs of the exposed dl are all 0 bits.
When it comes to implementation of RSA, one may choose a private exponent
d consisting of many 0 bits in order to improve the performance by lowering the
Hamming weight of d and thus reducing the total number of multiplications.
And the condition dl < Nβ∗−t∗1−0.5 may hold for this case.

Besides, let us consider several special cases for Proposition 5. (I) For the
case of t∗1 = 0, the condition 4t∗1 + t∗2 6 1 naturally holds. Thus to factor N
we only need dl < Nβ∗−0.5 and β∗ < 1 + t∗2 −

√
0.5(1 + t∗2). This is exactly

the result in [39]. (II) For the case of t∗2 = 0, we know there are no exposed
bits in d. Therefore, we should take dl = 0 and the condition dl < Nβ∗−t∗1−0.5

also naturally holds. In order to factor N , now we only need t∗1 6 0.25 and
β∗ < 1 −

√
0.5− t∗1, which is presented in [30]. Here we note that if t∗1 > 0.25,

one can also successfully factor N according to Proposition 3 for p, q ≈ N0.5.
(III) As for the case of t∗1 = t∗2 = 0, from above analysis we know both the
condition dl < Nβ∗−t∗1−0.5 and the condition 4t∗1 + t∗2 6 1 already hold. And one
can obtain the best small private exponent attack result β∗ < 1−

√
0.5 ≈ 0.292

shown in [3] and [14]. All the above cases have been summarized in Table 3.
Finally, we present another attack based on Theorem 3. It considers an RSA

modulus with a small difference of its prime factors.

Proposition 6. Given the RSA modulus N = pq with p, q ≈ N0.5, the public
exponent e ≈ N , and the private exponent d = Nβ∗ . Suppose p, q share t most
significant bits with 2t = N t∗ , namely, we have |p − q| < N0.5−t∗ . Then under
Assumption 1, one can factor N in polynomial time if

t∗ 6 0.125, β∗ < 1−
√

0.5− 2t∗. (9)

Proof. From |p−q| < N0.5−t∗ and (p−q)2 = (p+q)2−4N = (p+q+2N0.5)(p+
q − 2N0.5), one obtains 0 < p + q − 2N0.5 = (p − q)2/(p + q + 2N0.5) < (p −

18



Fig. 3. Comparison between the result of our Proposition 6 and that in [10, 18] for the
attack on RSA with a small difference of prime factors

q)2/4N0.5 < (1/4) ·N0.5−2t∗ . Take D := d2N0.5e, and omit the constant factor
1/4. Then roughly we have |p+ q −D| < N0.5−2t∗ . From e · d ≡ 1 (mod ϕ(N)),
we know there exists k ∈ Z+ with k ≈ Nβ∗ such that 1 = ed − kϕ(N) =
e · d− k · [(N −D+ 1)− (p+ q−D)]. It is equivalent to Bx0 −Ay0 = z0, where
B := N − D + 1 ≈ N, x0 := k ≈ Nβ∗ , A := e ≈ N, y0 := d = Nβ∗ , z0 :=
(p + q − D)k − 1 < Nβ∗+0.5−2t∗ with z0 ≡ −1 (mod x0). According to the
conditions α1 < α2, 4α1 +α2 6 4γ, γ+α1−α2 < α2

1/α2 in Theorem 3, we can
obtain Inequality (9) and complete the proof of Proposition 6 as before.

In 2002, by generalizing the best small private exponent attack result d <
N0.292 [3], Weger [10] obtained the condition 4t∗ 6 β∗, β∗ < 1−

√
0.5− 2t∗ for

factoring an RSA modulus with a small difference of its prime factors. Another
proof of Weger’s result can also be found in [18]. Since 4t∗ 6 β∗, β∗ < 1 −√

0.5− 2t∗ ⇒ 4t∗ < 1 −
√

0.5− 2t∗, β∗ < 1 −
√

0.5− 2t∗ ⇒ t∗ 6 0.125, β∗ <
1−
√

0.5− 2t∗, the condition of our Proposition 6 is weaker than that in [10, 18],
which implies that our result is better. It is also illustrated by Figure 3, where
the Red Area denotes our new improvement.

6 Experiments

In order to examine the justification of our approach based on Coppersmith’s
method, we have implemented several experiments in SAGE 5.0 over Linux Fe-
dora 16 on a laptop with 2.80GHz Intel Core2 CPU and 4GB RAM. All the
experiments are successful, and thus they verify the correctness of our results.
Some experimental examples are given in Tables 4, 5 and 6 below.
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6.1 Experimental Examples for Our First Improvement

Table 4 shows experiments for our results of generalized IFP with shared MSBs
or LSBs. The notations M,N1, N2, t

∗, α∗1, α
∗
2, β
∗
1 , β
∗
2 , δ
∗
1 , δ
∗
2 are already defined in

Proposition 1 or 2. And in Section 4.1 (or Appendix C) we have defined the nota-
tions m, τ, i, which are used for the construction of the lattice Λ and the proof of
Theorem 1 or 2. Besides, dim(Λ) denotes the dimension of Λ, and “Time(LLL)”
denotes the time used for LLL algorithm for each experimental example. As for
“Bit size”, we just means log2{[det(Λ)]1/ dim(Λ)}. Let B denote the basis matrix
of Λ and we know B is a lower triangular matrix from Appendix C. Note that
det(Λ) =

√
det(BBT ) = |detB| = detB. Thus [det(Λ)]1/ dim(Λ) is the geometric

mean of the diagonal entries of the basis matrix B, and one can roughly regard
log2{[det(Λ)]1/ dim(Λ)} as the bit size of the entries of B. According to Lemma 1,
the time for the LLL algorithm is related to both dim(Λ) and the bit size of the
entries of B.

The experimental examples of Table 5 are about our results when some
MSBs or LSBs of the prime factor are given. The definition of the notations
N, k, t∗, α∗, θ∗ can be found in Proposition 3 or 4. And again Section 4.1 (or
Appendix C) defines the notations m, τ, i for the construction of the lattice Λ.
The experimental examples for other cryptanalysis of RSA in Section 4.2 are
similar to those for Proposition 3.

Table 4. Some experimental examples for Proposition 1 (the case of MSBs) and Propo-
sition 2 (the case of LSBs) with β∗1 ≈ 1 − α∗1, β∗2 ≈ 1 − α∗2 and log2M ≈ log2N1 ≈
log2N2 ≈ 1500

Case t∗ α∗1 α∗2 δ∗1 δ∗2 m τ i dim(Λ) Bit size Time(LLL)

MSBs 0.606 0.679 0.684 0.066 0.061 15 10 10 16 1.008× 104 6.596 seconds
MSBs 0.533 0.666 0.799 0.133 0.000 15 11 9 16 1.198× 104 7.649 seconds
MSBs 0.687 0.733 0.500 0.000 0.233 23 16 11 24 1.725× 104 116.3 seconds
LSBs 0.529 0.580 0.579 0.000 0.000 23 13 13 24 1.093× 104 27.73 seconds
LSBs 0.433 0.752 0.805 0.053 0.000 19 15 14 20 1.782× 104 35.12 seconds
LSBs 0.756 0.803 0.479 0.000 0.324 19 15 9 20 1.802× 104 88.97 seconds

Table 5. Some experimental examples for Proposition 3 (the case of MSBs) and Propo-
sition 4 (the case of LSBs) with k = 1 and log2N ≈ 1000

Case t∗ α∗ θ∗ m τ i dim(Λ) Bit size Time(LLL)

MSBs 0.240 0.500 0.165 27 13 22 28 6.474× 103 23.14 seconds
MSBs 0.203 0.603 0.247 27 16 20 28 9.531× 103 48.51 seconds
MSBs 0.260 0.400 0.000 42 16 42 43 6.101× 103 102.1 seconds
LSBs 0.156 0.501 0.332 42 21 28 43 1.043× 104 756.2 seconds
LSBs 0.255 0.473 0.071 34 16 31 35 7.582× 103 65.23 seconds
LSBs 0.220 0.720 0.000 34 24 34 35 1.709× 104 117.4 seconds
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Table 6. Some experimental examples for Proposition 5 (under the extra condition
dl < Nβ∗−t∗1−0.5, 4t∗1 + t∗2 6 1) with log2N ≈ 2000

β∗ t∗1 t∗2 m τ θ1, θ2, · · · , θτ dim(Λ) Bit size Time(LLL)

0.650 0.100 0.500 5 4 2, 3, 4, 5 31 1.480× 104 40.83 seconds
0.656 0.141 0.435 5 4 2, 3, 4, 5 31 1.426× 104 36.50 seconds
0.580 0.049 0.480 7 5 2, 3, 4, 5, 7 55 2.024× 104 1282 seconds
0.543 0.012 0.440 7 5 2, 3, 5, 6, 7 53 1.989× 104 680.9 seconds
0.784 0.072 0.692 6 5 2, 3, 4, 5, 6 43 2.022× 104 238.9 seconds
0.708 0.118 0.525 6 5 2, 3, 4, 5, 6 43 1.820× 104 225.9 seconds

6.2 Experimental Examples for Our Second Improvement

As for our results obtained by the second improvement for solving the equation
Bx − Ay = z, they all rely on Assumption 1. Here we point out that in all
of our experiments for Propositions 5, 6, Assumption 1 always holds and RSA
modulus N can always be successfully factored. Table 6 gives some experimental
examples for Proposition 5. Similar to Tables 4, 5, the notations N, dl, β

∗, t∗1, t
∗
2

are defined in Proposition 5, while in Section 5.1 (or Appendix D) one can find
the definition of the notations m, τ, θ1, θ2, · · · , θτ , which are used to construct Λ
and prove Theorem 3. The experimental examples for Proposition 6 are similar
to those for Proposition 5.

7 Conclusion

In this paper, we revisit some cryptanalysis of RSA, which are summarized
into one framework, namely, finding small solutions (x, y, z) = (x0, y0, z0) of the
equation Bx−Ay = z. For the general case of solving this equation, we show that
Wiener’s method, May-Ritzenhofen’s method and Coppersmith’s method are
equivalent, and they give the same result after omitting some negligible terms.
For some special cases, we present two improvements for solving Bx − Ay = z
based on Coppersmith’s method. And according to these two improvements,
we obtain some new applications to cryptanalysis of RSA, such as new results
about the generalized IFP, attacks with known bits of the prime factor, an
attack on RSA when some bits of the private exponent together with the prime
factor are exposed, and so on. The justification of our approach is also examined
through experiments. Moreover, we believe that our two improvements to solve
Bx−Ay = z may find other new applications to cryptanalysis of RSA.
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Appendix A: Wiener’s Method to Prove Result 1

Wiener’s method is based on approximations using continued fractions. Thus at
first we need to briefly introduce continued fraction and a related lemma, and
one can see [13] for details.
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Let η = η0 be a positive rational number. For i = 0, 1, 2 · · ·, define ai = bηic
and ηi+1 = 1/(ηi − ai) unless ηn is an integer for some n > 0 (there must exists
such an n since η is a rational number). Then η can be expressed as a continued
fraction, namely,

η =< a0, a1, · · · , an−1, an >:= a0 + 1/(a1 + 1/(· · ·+ 1/(an−1 + 1/an) · · ·)).

For i > 0, Ai/Bi :=< a0, a1, · · · , ai > are called the convergents of η = An/Bn,
where gcd(An, Bn) = 1. And we note that the total number of convergents is
polynomial in log(Bn). The related lemma [13, Theorem 184] is stated as follows:

Lemma 3. (Legendre) Let η be a positive rational number. Suppose∣∣∣∣η − x0
y0

∣∣∣∣ < 1

2y20

and gcd(x0, y0) = 1. Then x0

y0
is one of the convergents of η.

One can generalize the original method of Wiener’s attack in [40] to get the
proof of Result 1. For simplicity, here we use Lemma 3 to directly prove it. And
the method is almost the same as Wiener’s original method.

From Bx0 − Ay0 = z0 we have
∣∣∣AB − x0

y0

∣∣∣ = x0

y0
− A

B = z0
By0

. According to

Lemma 3, if z0
By0

< 1
2y20

holds, x0

y0
is one of the convergents of A

B . The total

number of convergents is polynomial in logB. Thus we try every convergent of
A
B as the value of x0

y0
and compute z0. Then from them we will obtain small

solutions (x0, y0, z0) satisfying |x0| < X, |y0| < Y, |z0| < Z. As a conclusion,
the only condition to find (x0, y0, z0) is

z0
By0

< 1
2y20
⇔ 2y0z0 < B ⇔ logM 2 + logM y0 + logM z0 < logM B.

Omitting logM 2, we know the condition γ + β1 − β2 < 0 is sufficient, which
completes the proof of Result 1.

If one considers Wiener’s original method, the final condition obtained is
3
2y0z0 < B, instead of 2y0z0 < B. At last, we note that Wiener’s result d < N0.25

for small private exponent attack, can be directly obtained from Result 1.

Appendix B: May-Ritzenhofen’s Method to Prove Result 1

Similar to Appendix A, at first we need to introduce some preliminaries used for
May-Ritzenhofen’s method. It includes the following three lemmas about lattice.

Recall that in Section 3.1 we have already introduced some basic knowledge
about lattice, including the basis of a lattice, the determinant of a lattice and
the norm of a vector. Hadamard’s inequality [26] relates the norm of the basis
vectors to the determinant for a lattice.
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Lemma 4. (Hadamard) Let B =


b1
b2
...
bs

 ∈ Zs×s be an arbitrary non-singular

matrix. Then

det(B) 6
n∏
i=1

‖bi‖.

The successive minima λi(Λ) of the lattice Λ are defined as the minimal radius
of a ball containing i linearly independent lattice vectors of Λ. The shortest non-
zero vector v of a lattice Λ must have the norm ‖v‖ = λ1(Λ), and it also satisfies
the Minkowski bound [27].

Lemma 5. (Minkowski) Let s be the dimension (and the rank) of the lattice
Λ. Then Λ contains a non-zero vector v satisfying

‖v‖ = λ1(Λ) 6
√
s[det(Λ)]1/s.

For a two-dimensional lattice Λ, the basis vectors v1,v2 with norms ‖v1‖ =
λ1(Λ), ‖v2‖ = λ2(Λ) can be efficiently computable by means of Gaussian reduc-
tion. Namely, we have the following lemma [26].

Lemma 6. (Gauss) Given a basis (square) matrix B of a two-dimensional
lattice Λ, the Gauss-reduced lattice basis vectors v1,v2, where

‖v1‖ = λ1(Λ), ‖v2‖ = λ2(Λ),

can be determined in time O(log2(max{‖v1‖, ‖v2‖})).

Now we can generalize May and Ritzenhofen’s attack in [25] to get another
proof of Result 1. It includes two cases, namely, γ > α1 and γ < α1.

(I) Suppose γ > α1, and select a positive integer C satisfying C ≈ Mγ−α1 .
We construct a two-dimensional lattice Λ whose basis (square) matrix B is(

C B
0 A

)
.

From Bx0−Ay0 = z0 we know that u := (Cx0, z0) ∈ Λ. Then according to Lem-
ma 6, we can obtain the basis vectors v1,v2 with norms ‖v1‖ = λ1(Λ), ‖v2‖ =
λ2(Λ). And there exist a1, a2 ∈ Z, such that u = a1v1 + a2v2.

If ‖u‖ < λ2(Λ) holds, from the definition of λ2(Λ) one can obtain a2 = 0
and u = a1v1 ⇔ v1 = u/a1 = (C · x0/a1, z0/a1). From B · x0/a1 − A · y0/a1 =
z0/a1 and the fact that v1 is generated from the basis matrix B, we have v1 =
(C · x0/a1, z0/a1) = x0/a1 · (C,B) − y0/a1 · (0, A). Thus x0/a1,−y0/a1 ∈ Z,
and we have a1|x0, a1|y0. Since gcd(x0, y0) = 1, finally one gets a1 = ±1 and
v1 = ±u = ±(Cx0, z0). The vector v1 is already obtained, thus we can easily
get the values of x0, z0 and then the value of y0.

As a conclusion, the only condition to find (x0, y0, z0) is ‖u‖ < λ2(Λ). Lem-
ma 5 tells λ1(Λ) 6

√
2[det(Λ)]1/2, while Lemma 4 implies det(Λ) = det(B) 6
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‖v1‖‖v2‖ = λ1(Λ)λ2(Λ). Thus we obtain λ2(Λ) > det(Λ)
λ1(Λ)

> det(Λ)√
2[det(Λ)]1/2

=
1√
2
(AC)1/2 ≈ M (γ−α1+α2)/2. Roughly we have ‖u‖ 6 max{

√
2Cx0,

√
2z0} <

max{
√

2CX,
√

2Z} ≈Mγ . Hence to make ‖u‖ < λ2(Λ) hold, it is sufficient that

Mγ < M (γ−α1+α2)/2 ⇔ γ < (γ − α1 + α2)/2 ⇔ γ + α1 − α2 < 0.

(II) For the case of γ < α1, we will select a positive integer D satisfying
D ≈Mα1−γ , and the basis (square) matrix B is changed to(

1 D ·B
0 D ·A

)
.

The rest of the proof is almost the same as the former case and we omit it.
From the above, we know Result 1 follows. Finally, we note that May and

Ritzenhofen’s result for the IFP, can be directly obtained from Result 1.

Appendix C: Detailed Proofs of Theorems 1, 2

Firstly, based on Coppersmith’s method we present the detailed proof of The-
orem 1. We may again give the same definitions for some notations which are
already introduced in the sketch of proof in Section 4.1. That allows us to show
an integrated proof, which makes it unnecessary to review the sketch of proof a-
gain. Secondly, we mainly introduce the polynomials for the lattice construction
to prove a lemma which is similar to Theorem 1. Finally, the proof of Theorem 2
is given directly as a consequence of this lemma.

(I) Set x′0 := x0/u0, a
′
0 := A/u0, y

′
0 := y0/v0, b

′
0 := B/v0, z

∗
0 := z0/(u0v0)

and B′ := dB/V e, X ′ := dX/Ue, Z∗ := dZ/(UV )e. Then we have |b′0| <
B′, |x′0| < X ′, |z∗0 | < Z∗.

Define f(b′, x′, z∗) := −b′x′ + z∗ ∈ Z[b′, x′, z∗]. From

Bx0 −Ay0 = z0 ⇔ b′0v0x
′
0u0 − a′0u0y′0v0 = z∗0u0v0 ⇔ b′0x

′
0 − a′0y′0 = z∗0 ,

we obtain
f(b′0, x

′
0, z
∗
0) ≡ 0 (mod a′0).

Besides the above three variables b′, x′, z∗, we also introduce another variable v
for v0.

Let the positive integers m, τ and the non-negative integer i be undetermined
parameters. Then for k = 0, 1, · · · ,m, we define

gk(b′, x′, z∗, v) := Emin{i,m−k}vi(b′x′)
m−k

[f(b′, x′, z∗)]kAmax{τ−k,0},

where E is the inverse of B modulo Aτ , namely, EB ≡ 1 (mod Aτ ). Such
E must exit since gcd(A,B) = 1. Recall that f(b′0, x

′
0, z
∗
0) ≡ 0 (mod a′0) and

A ≡ 0 (mod a′0), thus we obtain

gk(b′0, x
′
0, z
∗
0 , v0) ≡ 0 (mod (a′0)

τ
), k = 0, 1, · · · ,m. (10)
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For every polynomial gk(b′, x′, z∗, v), we replace each occurrence of the monomial
b′v by B according to the relation b′0v0 = B. Then we replace each occurrence
of EB by 1 in every gk(b′, x′, z∗, v), which does not contradict the correctness of
Equation (10) since one can check EB ≡ 1 (mod (a′0)

τ
).

Next we need to define the monomial order “≺”. For convenience, we use
vi(b′)m−k(x′)m−k(z∗)k to denote (b′)(m−k)−i(x′)m−k(z∗)k if i 6 m − k and
denote vi−(m−k)(x′)m−k(z∗)k if i > m − k. Then, “≺” is defined such that
vi(b′)m−k1(x′)m−k1(z∗)k1 ≺ vi(b′)m−k2(x′)m−k2(z∗)k2 if and only if k1 < k2.
Let Λ∗ be the set of all integral linear combinations of gk(b′, x′, z∗, v) (k =
0, 1, 2, · · · ,m). Similar to Section 3.2, there is a one-to-one correspondence be-
tween a polynomial g(b′, x′, z∗, v) in Λ∗ and a vector g in a subset Λ of Zm+1,
where the components of g are the coefficients of g(B′b′, X ′x′, Z∗z∗, V v) in the
order of “≺”. Here Λ is exactly the lattice we want to construct, and the corre-
sponding vectors of gk(b′, x′, z∗, v) (k = 0, 1, 2, · · · ,m) form the basis matrix B
of our lattice Λ.

A simple example of B form = 5, τ = 4, i = 3 is shown in Table 7, where other
non-zero off-diagonal entries are denoted by “∗”. Here we use the polynomial
g3(b′, x′, z∗, v) in Table 7 to illustrate the above two replacements and the one-
to-one correspondence between a polynomial and a row vector. According to the
definition, we know

g3(b′, x′, z∗, v) = Emin{3,5−3}v3(b′x′)
5−3

[f(b′, x′, z∗)]3Amax{4−3,0}

= E2v3(b′)2(x′)2(−b′x′ + z∗)3A

= (Eb′v)2v(x′)2[−(b′x′)3 + 3(b′x′)2z∗ − 3b′x′(z∗)2 + (z∗)3]A

= (Eb′v)2[−(b′v)(b′)2(x′)5 + 3(b′v)b′(x′)4z∗ − 3(b′v)(x′)3(z∗)2

+v(x′)2(z∗)3]A.

Replace each occurrence of the monomial b′v by B, and each occurrence of EB
by 1. Then we obtain

g3(b′, x′, z∗, v) = 12 · [−B(b′)2(x′)5 + 3Bb′(x′)4z∗ − 3B(x′)3(z∗)2 + v(x′)2(z∗)3]A

= −AB(b′)2(x′)5 + 3ABb′(x′)4z∗ − 3AB(x′)3(z∗)2 +Av(x′)2(z∗)3.

Finally, according to the definition of the monomial order “≺”, the corresponding
coefficient vector of g3(B′b′, X ′x′, Z∗z∗, V v) is

(−AB(B′)2(X ′)5, 3ABB′(X ′)4Z∗, −3AB(X ′)3(Z∗)2, AV (X ′)2(Z∗)3, 0, 0).

Table 7. The basis matrix B when m = 5, τ = 4, i = 3

(b′)2(x′)5 b′(x′)4z∗ (x′)3(z∗)2 v(x′)2(z∗)3 v2x′(z∗)4 v3(z∗)5

g0 A4(B′)2(X ′)5

g1 ∗ A3B′(X ′)4Z∗

g2 ∗ ∗ A2(X ′)3(Z∗)2

g3 ∗ ∗ ∗ AV (X ′)2(Z∗)3

g4 ∗ ∗ ∗ ∗ V 2X ′(Z∗)4

g5 ∗ ∗ ∗ ∗ ∗ V 3(Z∗)5
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Let s denote the dimension of Λ, and we have s = m+1. From Equation (10)
and the definition of Λ∗, one obtains g(b′0, x

′
0, z
∗
0 , v0) ≡ 0 (mod (a′0)

τ
) holds for

any g(b′, x′, z∗, v) ∈ Λ∗. According to Lemma 2, if ‖g(B′b′, X ′x′, Z∗z∗, V v)‖ <
(a′0)

τ
/
√
s holds, we have g(b′0, x

′
0, z
∗
0 , v0) = 0 holds over the integers.

Suppose such a polynomial g(b′, x′, z∗, v) ∈ Λ∗ with g(b′0, x
′
0, z
∗
0 , v0) = 0 is ob-

tained. Then we set g̃(b′, x′, z∗) := (b′)ig(b′, x′, z∗, B/b′), where i is the parameter
given before. One can check that every monomial (neglect the corresponding co-
efficient) of g̃(b′, x′, z∗) must have the form of (b′x′)m−j(z∗)j . Let ω := (b′x′)/z∗

and we obtain h(ω) := g̃(b′, x′, z∗)/(z∗)m with h((b′0x
′
0)/z∗0) = 0. Then (b′0x

′
0)/z∗0

can be found by extracting the rational roots of h(ω) with classical method-
s. The values of b′0x

′
0, z
∗
0 are obtained since one can check gcd(b′0x

′
0, z
∗
0) = 1.

Thus b′0x
′
0 − z∗0 is known, and so is the value of u0/y

′
0 = A/(b′0x

′
0 − z∗0). Then

we get the values of u0, y
′
0 due to gcd(u0, y

′
0) = 1. Similarly, one can also ob-

tain the values of v0, x
′
0 according to v0/x

′
0 = B/(b′0x

′
0) and gcd(v0, x

′
0) = 1.

Hence the values of z∗0 , u0, y
′
0, v0, x

′
0 are known, and finally we successfully ob-

tain (x0, y0, z0) = (x′0u0, y
′
0v0, z

∗
0u0v0).

As a conclusion, in order to find (x0, y0, z0), we only need to find a polynomial
g(b′, x′, z∗, v) in Λ∗ with the condition ‖g(B′b′, X ′x′, Z∗z∗, V v)‖ < (a′0)

τ
/
√
s.

This is equivalent to finding a vector g in Λ with the condition ‖g‖ < (a′0)
τ
/
√
s.

According to Lemma 1 (take i = 1), by running LLL algorithm one can find a
vector g in Λ with ‖g‖ 6 2(s−1)/4 det(Λ)1/s. From the above, to find (x0, y0, z0),
the following condition is sufficient:

2(s−1)/4 det(Λ)1/s < (a′0)
τ
/
√
s.

It is equivalent to 2s(s−1)/4ss/2 det(Λ) < [(a′0)τ ]
s
. Note that researchers often

ignore terms 2s(s−1)/4ss/2. Thus, we obtain

det(Λ) < [(a′0)τ ]
s
.

Define ξ := τ
m , σ := i

m , and we only consider the case of 0 < ξ 6 1, 0 6
σ 6 1. Now one gets τ = ξm, i = σm, which is used in the following calculation
of det(Λ). As seen in Table 7, it is easy to make B a lower triangular square
matrix; thus, we can easily compute the value of det(Λ) = |detB|. Let det(Λ) =
AsA(B′)

sB′V sV (X ′)
sX′ (Z∗)

sZ∗ , and then we have

sA =
∑τ
k=0(τ − k) = 1

2τ(τ + 1) = 1
2ξ

2m2 + o(m2),

sB′ =
∑m−i
k=0 [(m− k)− i] = 1

2 (m− i)(m− i+ 1) = 1
2 (1− σ)

2
m2 + o(m2),

sV =
∑m
k=m−i[i− (m− k)] = 1

2 i(i+ 1) = 1
2σ

2m2 + o(m2),
sX′ =

∑m
k=0(m− k) = 1

2m(m+ 1) = 1
2m

2 + o(m2),
sZ∗ =

∑m
k=0 k = 1

2m(m+ 1) = 1
2m

2 + o(m2).

Substitute the value of det(Λ) and s = m+ 1 in det(Λ) < [(a′0)τ ]
s
, and we have

A
1
2 ξ

2+
o(m2)

m2 (B′)
1
2 (1−σ)

2+
o(m2)

m2 V
1
2σ

2+
o(m2)

m2 (X ′)
1
2+

o(m2)

m2 (Z∗)
1
2+

o(m2)

m2 < (a′0)ξ+
o(m2)

m2 .
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Together with A = Mα2 , B′ = dB/V e ≈ Mβ2−β , V = Mβ , X ′ = dX/Ue ≈
Mα1−α, Z∗ = dZ/(UV )e ≈Mγ−α−β , a′0 = A/u0 ≈Mα2−α, it is obtained that

α2·
1

2
ξ2+(β2−β)·1

2
(1− σ)

2
+β·1

2
σ2+(α1−α)·1

2
+(γ−α−β)·1

2
< (α2−α)·ξ+o(m2)

m2
.

Take m→∞ and omit the term o(m2)
m2 , then we have

[
1

2
α2ξ

2− (α2−α)ξ] + [
1

2
β2σ

2− (β2−β)σ] +
1

2
(γ+α1 +β2)− (α+β) < 0. (11)

In order to minimize the left-hand side of Inequality (11), the optimized values
of ξ and σ are given by ξ = (α2 − α)/α2, σ = (β2 − β)/β2. After substituting
ξ = (α2 − α)/α2, σ = (β2 − β)/β2 in Inequality (11), we acquire

−1

2
· (α2 − α)2

α2
− 1

2
· (β2 − β)2

β2
+

1

2
(γ + α1 + β2)− (α+ β) < 0,

which finally ends up with Inequality (2). And thus we complete the proof of
Theorem 1.

(II) In order to present the proof of Theorem 2, we need to prove the following
lemma at first.

Lemma 7. For Theorem 1, suppose A = A1A2, B = B1B2, where A1, A2, B1,
B2 are known positive integers with A1 = Mα21 , A2 = Mα22 , B1 = Mβ21 , B2 =
Mβ22 . And redefine u0 = gcd(x0, z0, A2) ≈ U = Mα, v0 = gcd(y0, z0, B2) ≈ V =
Mβ. Then the condition to find (x, y, z) = (x0, y0, z0) in Theorem 1, namely,
Inequality (2), is changed to

γ + α1 − α2 (≈ γ + β1 − β2) <
α2

α22
+
β2

β22
. (12)

Let us reset x′0 := x0/u0, a
′
0 := A2/u0, y

′
0 := y0/v0, b

′
0 := B2/v0, z

∗
0 :=

z0/(u0v0) and f(b′, x′, z∗) := −B1b
′x′ + z∗ ∈ Z[b′, x′, z∗]. From

Bx0−Ay0 = z0 ⇔ B1b
′
0v0x

′
0u0−A1a

′
0u0y

′
0v0 = z∗0u0v0 ⇔ B1b

′
0x
′
0−A1a

′
0y
′
0 = z∗0 ,

one obtains
f(b′0, x

′
0, z
∗
0) ≡ 0 (mod A1a

′
0).

Again we also introduce another variable v for v0. For k = 0, 1, · · · ,m, we redefine

gk(b′, x′, z∗, v) := Emin{i,m−k}vi(b′x′)
m−k

[f(b′, x′, z∗)]kAm−k1 A
max{τ−k,0}
2 ,

where m, τ, i are still three undetermined parameters, and E is the inverse of B2

modulo Am1 A
τ
2 . Then we obtain

gk(b′0, x
′
0, z
∗
0 , v0) ≡ 0 (mod Am1 (a′0)

τ
), k = 0, 1, · · · ,m.

Just as before, for every polynomial gk(b′, x′, z∗, v), we replace each occurrence
of the monomial b′v by B2, and replace each occurrence of EB2 by 1. Now
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the coefficient vectors of these gk(b′0, x
′
0, z
∗
0 , v0) form a basis matrix B of the

lattice Λ which we want to construct. Similar to the proof of Theorem 1, to
find (x0, y0, z0), we only need the condition det(Λ) < [Am1 (a′0)

τ
)]
s
, where s is

the dimension of Λ. After substituting the calculation of det(Λ) and s = m+ 1
in det(Λ) < [Am1 (a′0)

τ
)]
s
, and taking the optimized values of τ/m and i/m as

m→∞, finally we can get Inequality (12) and thus Lemma 7 follows.
(III) At last, we complete the proof of Theorem 2 as follows. Without loss of

generality, one can assume gcd(C,A) = 1. Thus there exist two integers D1, D2,
such thatD1C = 1+D2A and 0 < D1 < A, 0 < D2 < C. Then fromBx0−Ay0 =
Cz0, we obtain D1Bx0 −D1Ay0 = D1Cz0 = (1 +D2A)z0 = z0 +D2Az0, which
reduces to

B∗x0 −Ay∗0 = z0, B∗ := D1B, y
∗
0 := D1y0 +D2z0.

Set d := gcd(x0, y
∗
0). Then we have d | z0, which implies d | gcd(x0, z0) =

gcd(x0, z0, A) and d | (y∗0 − D2z0) = D1y0. Together with gcd(x0, y0) = 1 and
gcd(A,D1) = 1, we obtain gcd(x0, y

∗
0) = d = 1. One can also get gcd(A,B∗) =

1 due to gcd(A,D1) = gcd(A,B) = 1. Similarly, we have gcd(y∗0 , z0, B) =
gcd(z0, B) = gcd(y0, z0, B) = v0 and gcd(x0, z0, A) = u0. Finally, let us set
B∗ = B∗1B

∗
2 , B

∗
1 = D1, B

∗
2 = B and A = A1A2, A1 = 1, A2 = A for

B∗x0 −Ay∗0 = z0, and Theorem 2 follows according to Lemma 7.

Appendix D: Detailed Proof of Theorem 3

Firstly, let us suppose the conditions α1 < γ < α2 and α1 +α2 6 2γ hold. Then
under Assumption 1, we use Coppersmith’s method to prove that Inequality (7)
is sufficient to find the desired (x0, y0, z0). Secondly, we prove that the condition
α1 + α2 6 2γ can be changed to the condition 4α1 + α2 6 4γ. Finally, we note
that α1 < γ < α2 is equivalent to α1 < α2 under the condition 4α1+α2 6 4γ and
Inequality (7). Similar to Appendix C, we may again give the same definitions
for some notations introduced in the sketch of proof in Section 5.1.

(I) According to z0 ≡ C (mod x0) and z0 ' z0 −C, we know there exists an
integer w0 such that x0w0 = z0 − C, and roughly we have |w0| < W := dZ/Xe
since x0 ≈ X. Here we introduce the variable w for w0.

Define f(x, z) := −Bx+ z. From Bx0 −Ay0 = z0 we obtain

f(x0, z0) ≡ 0 (mod A).

Let m, τ be positive integers, and then define

gt,j(x, z) := xt−j [f(x, z)]jAm−j , j = 0, 1, · · · , t, t = 0, 1, · · · ,m,
hi,j(x, z, w) := wi[f(x, z)]jAm−j , j = θi, θi + 1, · · · ,m, i = 1, 2, · · · , τ,

where θi := dηie, η := γ−α1

α2−γ . The choice of θi is similar to [39], with the purpose
of optimizing the lattice construction. It is obvious that

gt,j(x0, z0) ≡ 0 (mod Am), j = 0, 1, · · · , t, t = 0, 1, · · · ,m,
hi,j(x0, z0, w0) ≡ 0 (mod Am), j = θi, θi + 1, · · · ,m, i = 1, 2, · · · , τ.
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Besides, for every polynomial hi,j(x, z, w), we replace each occurrence of the
monomial xw by z − C according to the relation x0w0 = z0 − C.

The monomial order “≺” is defined such that (1) xt1−j1zj1 ≺ wi2zj2 always
holds; (2) xt1−j1zj1 ≺ xt2−j2zj2 if and only if t1 < t2 or t1 = t2, j1 < j2; (3)
wi1zj1 ≺ wi2zj2 if and only if i1 < i2 or i1 = i2, j1 < j2. Similarly, we can
define the polynomial order “≺∗” for all the gt,j(x, z) and hi,j(x, z, w). Just as
Section 3.2, the coefficient vectors of these gt,j(Xx,Zz) and hi,j(Xx,Zz,Ww)
are determined according to “≺”, and these coefficient vectors form a basis
matrix B of the lattice Λ according to “≺∗”.

From the conditions α1 < γ < α2 and α1 + α2 6 2γ, one can obtain η =
γ−α1

α2−γ > 1, which implies the condition θi+1 > θi + 1. Here we note that it is the
condition θi+1 > θi + 1 that makes B a square matrix and a lower triangular
matrix. One can refer to [39, Proposition 4.1] and its proof for details.

Let s denote the dimension of Λ. Similar to Section 3.2, combining Lemma 1
(take i = 2) and Lemma 2, if

2s/4 det(Λ)1/(s−1) < Am/
√
s

holds, after running LLL algorithm one can obtain two polynomials g1(x, z, w),
g2(x, z, w) satisfying g1(x0, z0, w0) = 0, g2(x0, z0, w0) = 0. According to the
relation z0 = x0w0 + C, we then set g̃1(x,w) = g1(x, xw + C,w), g̃2(x,w) =
g2(x, xw + C,w). Next by computing resultants we can eliminate the variable
w, namely, we obtain h(x) = Resw[g̃1(x,w), g̃2(x,w)] satisfying h(x0) = 0. If
Assumption 1 holds, h(x) 6≡ 0. Thus one can use any standard root-finding
algorithm to recover x0 ∈ Z+ from h(x). Similarly, w0 ∈ Z+ is also computed
from g̃1(x0, w) or g̃2(x0, w). Then we get the values of z0 = x0w0 + C and
y0 = (Bx0 − z0)/A. As a conclusion, under Assumption 1, in order to find
(x0, y0, z0), we only need the condition 2s/4 det(Λ)1/(s−1) < Am/

√
s, or roughly

we only need the condition det(Λ) < (Am)s−1 as most researchers do.

Define ξ := τ
m , and we have τ = ξm. Together with θi = dηie, we can

compute

s =
∑m
t=0(t+ 1) +

∑ξm
i=1(m− dηie+ 1)

= [ 12m
2 + o(m2)] + [(ξ − 1

2ηξ
2)m2 + o(m2)]

= (− 1
2ηξ

2 + ξ + 1
2 )m2 + o(m2),

det(Λ) =
∏m
t=0

∏t
j=0X

t−jZjAm−j ·
∏ξm
i=1

∏m
j=dηieW

iZjAm−j

=
∏m
t=0(XZA−1)

1
2 t(t+1)Am(t+1) ·∏ξm

i=1W
i(m−dηie+1)(ZA−1)

1
2 (m+dηie)(m−dηie+1)Am(m−dηie+1)

= (XZA−1)
1
6m

3+o(m3)A
1
2m

3+o(m3) ·
W ( 1

2 ξ
2− 1

3ηξ
3)m3+o(m3)(ZA−1)(

1
2 ξ−

1
6η

2ξ3)m3+o(m3)A(ξ− 1
2ηξ

2)m3+o(m3)

= X
1
6m

3+o(m3)Z(− 1
6η

2ξ3+ 1
2 ξ+

1
6 )m

3+o(m3)W (− 1
3ηξ

3+ 1
2 ξ

2)m3+o(m3) ·
A( 1

6η
2ξ3− 1

2ηξ
2+ 1

2 ξ+
1
3 )m

3+o(m3).
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Substitute the calculation of s,det(Λ) in det(Λ) < (Am)s−1, and we have

X
1
6+

o(m3)

m3 Z−
1
6η

2ξ3+ 1
2 ξ+

1
6+

o(m3)

m3 W−
1
3ηξ

3+ 1
2 ξ

2+
o(m3)

m3 A
1
6η

2ξ3− 1
2ηξ

2+ 1
2 ξ+

1
3+

o(m3)

m3

< A−
1
2ηξ

2+ξ+ 1
2+

o(m3)

m3 .

Together with X = Mα1 , Z = Mγ , W = dZ/Xe ≈ Mγ−α1 , A = Mα2 , it is
obtained that

α1 · 16 + γ · (− 1
6η

2ξ3 + 1
2ξ + 1

6 ) + (γ − α1) · (− 1
3ηξ

3 + 1
2ξ

2)

< −α2 · ( 1
6η

2ξ3 − 1
2ηξ

2 + 1
2ξ + 1

3 ) + α2 · (− 1
2ηξ

2 + ξ + 1
2 ) + o(m3)

m3 .

Take m→∞ and omit the term o(m3)
m3 , then we have

[
1

6
(α2−γ)η2− 1

3
(γ−α1)η]ξ3+

1

2
(γ−α1)ξ2− 1

2
(α2−γ)ξ+

1

6
(γ+α1−α2) < 0. (13)

According to the definition of hi,j(x, z, w), we can obtain θτ 6 m. Recall that m
is an integer, thus θτ 6 m ⇔ dητe 6 m ⇔ ητ 6 m ⇔ η · ξm 6 m ⇔ ξ 6 1

η .

One can check that the left-hand side of Inequality (13) is a decreasing function
of ξ for ξ ∈ (0, 1η ]. In order to minimize the left-hand side of Inequality (13), we

set ξ = 1
η in Inequality (13) and get

(γ − α1)
1

η2
− 2(α2 − γ)

1

η
+ (γ + α1 − α2) < 0,

which finally ends up with Inequality (7) after we substitute η = γ−α1

α2−γ . Thus we

have proved that Inequality (7) is sufficient to find the desired (x0, y0, z0) under
the conditions α1 < γ < α2 and α1 + α2 6 2γ.

(II) Now let us change the condition α1+α2 6 2γ to the condition 4α1+α2 6
4γ. We redefine θi := d 1ξ ie = dmτ ie instead of θi := dηie. Then Inequality (13) is
changed to

[
1

6
(α2−γ)

1

ξ2
− 1

3
(γ−α1)

1

ξ
]ξ3 +

1

2
(γ−α1)ξ2− 1

2
(α2−γ)ξ+

1

6
(γ+α1−α2) < 0,

which is equivalent to

(γ − α1)ξ2 − 2(α2 − γ)ξ + (γ + α1 − α2) < 0. (14)

This time we reset ξ =
√
α2−
√
γ−α1√

γ−α1
in Inequality (14), and finally under the

condition α1 < γ < α2, one can also obtain Inequality (7) after some reduction.
We still need the condition θi+1 > θi + 1 which makes B a square matrix

and a lower triangular matrix. And the condition 1
ξ > 1 is sufficient. Under the

condition α1 < γ < α2, one can check that 1
ξ =

√
γ−α1√

α2−
√
γ−α1

> 1 is equivalent to

4α1 + α2 6 4γ, which replaces the previous condition α1 + α2 6 2γ.
Originally, we set ξ = 1

η = α2−γ
γ−α1

. Note that Inequality (7) is equivalent to

α2 > α1 +
√
α2(γ − α1) under the condition α1 < γ < α2. Then one knows
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α2−γ
γ−α1

>
α1+
√
α2(γ−α1)−γ
γ−α1

=
√
α2−
√
γ−α1√

γ−α1
. After we reset ξ =

√
α2−
√
γ−α1√

γ−α1
, the

condition 1
ξ > 1 will hold more easily.

(III) At last, we note that α1 < γ < α2 is equivalent to α1 < α2 under
the condition 4α1 + α2 6 4γ and Inequality (7). This is because one can obtain
α1 < γ from 4α1 +α2 6 4γ, and obtain γ < α2 from α1 < α2 and Inequality (7).

From the above, we know Theorem 3 follows.
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