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Abstract. Protocols for secure multiparty computation enable a set of
parties to compute a function of their inputs without revealing anything
but the output. The security properties of the protocol must be pre-
served in the presence of adversarial behavior. The two classic adversary
models considered are semi-honest (where the adversary follows the pro-
tocol specification but tries to learn more than allowed by examining
the protocol transcript) and malicious (where the adversary may follow
any arbitrary attack strategy). Protocols for semi-honest adversaries are
often far more efficient, but in many cases the security guarantees are
not strong enough.
In this paper, we present new protocols for securely computing any func-
tionality represented by an arithmetic circuit. We utilize a new method
for verifying that the adversary does not cheat, that yields a cost of
just twice that of semi-honest protocols in some settings. Our protocols
are information-theoretically secure in the presence of a malicious ad-
versaries, assuming an honest majority. We present protocol variants for
small and large fields, and show how to efficiently instantiate them based
on replicated secret sharing and Shamir sharing. As with previous works
in this area aiming to achieve high efficiency, our protocol is secure with
abort and does not achieve fairness, meaning that the adversary may
receive output while the honest parties do not.
We implemented our protocol and ran experiments for different numbers
of parties, different network configurations and different circuit depths.
Our protocol significantly outperforms the previous best for this setting
(Lindell and Nof, CCS 2017); for a large number of parties, our imple-
mentation runs almost an order of magnitude faster than theirs.

1 Introduction

1.1 Background

Protocols for secure computation enable a set of parties with private inputs to
compute a joint function of their inputs while revealing nothing but the output.
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The security properties typically required from secure computation protocols
include privacy (meaning that nothing but the output is revealed), correctness
(meaning that the output is correctly computed), independence of inputs (mean-
ing that a party cannot choose its input as a function of the other parties’ inputs),
fairness (meaning that if one party gets output then so do all), and guaranteed
output delivery (meaning that all parties always receive output). Formally, the
security of a protocol is proven by showing that it behaves like an ideal exe-
cution with an incorruptible trusted party who computes the function for the
parties [16, 17, 3, 7]. In some cases, fairness and guaranteed output delivery are
not required, in which case we say that the protocol is secure with abort. This is
standard in the case of no honest majority since not all functions can be com-
puted fairly without an honest majority [9], but security with abort can also in
order to aid the construction of highly efficient protocols (e.g., as in [2, 22]).

Despite the stringent requirements on secure computation protocols, in the
late 1980s it was shown that any probabilistic polynomial-time functionality can
be securely computed. This was demonstrated in the computational setting for
any t < n [26, 16, 19] (with security with abort for the case of t ≥ n/2), in the
information-theoretic setting with t < n/3 [5, 8], and in the information-theoretic
setting with t < n/2 assuming a broadcast channel [24]. These feasibility results
demonstrate that secure computation is possible. However, significant work is
needed to construct protocols that are efficient enough to use in practice.

1.2 Our Contributions

In this paper, we consider the problem of constructing highly efficient protocols
that are secure in the presence of static malicious adversaries who control at
most t < n/2 corrupted parties. Our protocol is fundamentally information-
theoretic, but some efficient instantiations are computational (e.g., in order to
generate correlated randomness). In the aim of achieving high efficiency, our
protocols do not achieve fairness (even though this is fundamentally possible in
our setting where t < n/2).

Our constructions work by securely computing an arithmetic circuit repre-
sentation of the functionality over a finite field F. This representation is very
efficient for computations where many additions and multiplications are needed,
like secure statistics. The starting point of our protocols utilizes the significant
observation made by [14, 15] that many protocols for semi-honest multiplication
are actual secure in the presence of malicious adversaries up to an additive at-
tack. This means that the only way an adversary can cheat is to make the result
of the multiplication of shares of x and y be shares of x · y+ d, where d is an ex-
plicit value that the adversary knows (in this paper, we formalize this property
via an ideal functionality definition). Since d is known by the adversary, it is
independent of the values being multiplied, unless the adversary has some prior
knowledge of these values. This property was utilized by [14, 15] by having the
multiplication be over randomized values, and making any cheating be detected
unless the adversary is lucky enough to make the additive attack value match
between different randomizations.
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Our protocol works by running multiple circuit computations in parallel: one
that computes the circuit over the real inputs and others which compute the
circuit over randomized inputs. The outputs of the randomized circuits are then
used to verify the correctness of the “original” circuit computation, thereby
constituting a SPDZ-like MAC [13]. Security is achieved by the fact that the
randomness is kept secret throughout the computation, and so any cheating by
the adversary will be detected. All multiplications of shares are carried out using
semi-honest protocols (that are actually secure for malicious adversaries up to
an additive attack). Since this dominates the cost of the secure computation
overall, the resulting protocol is highly-efficient. We present different protocols
for the case of small and large fields, where a field is “large” if it is bigger than
2σ where σ is the statistical security parameter. Our protocol for large fields
requires computing one randomized circuit only, and the protocol for small fields
requires δ randomized circuits where δ is such that (|F|/3)δ ≥ 2σ. We note that
our protocol for small fields can be run with δ = 1 in the case of a large field,
but in this case has about 10% more communication than the protocol that is
dedicated to large fields. Both protocols have overall communication complexity
that grows linearly with the number of parties (specifically, each party sends a
constant number of field elements for each multiplication gate).

Based on the above, the running time of our protocol over large fields is just
twice the cost of a semi-honest protocol, and the running time of our protocol
over small fields is just δ+ 1 times the cost of a semi-honest protocol. As we dis-
cuss in the related work below, this is far more efficient than the protocols of [14,
15] and the more recent protocol of [22]. The exact efficiency of our protocols
depends on the specific instantiations of the secret sharing method, multipli-
cation protocol and more. As in [22], we consider two main instantiations: one
based on Shamir secret sharing for any number of parties, and one based on
replicated secret sharing for the specific case of three parties. With our protocol
we show that it is possible to compute any arithmetic circuit over large fields
in the presence of malicious adversaries and an honest majority, at the cost of
each party sending only 12 field elements per multiplication gate. For 3-party
computation, we show that using replicated sharing, this cost can be reduced to
only 2 field elements sent by each party per multiplication gate.

1.3 Experimental Results

We implemented our protocol for large fields, using replicated secret sharing for
3 parties and Shamir sharing for any number of parties. We then ran our im-
plementation on AWS in two configurations: a LAN network configuration in a
single AWS region (specifically, North Virginia), and a WAN network configu-
ration with parties spread over three AWS regions (specifcally, North Virginia,
Germany and India). Each party was run in an independent AWS C4.large

instance (2-core Intel Xeon E5-2666 v3 with 2.9 GHz clock speed and 3.75 GB
RAM). We ran extensive experiments to analyze the efficiency of our protcols
for different numbers of parties on a series of circuits of different depths, each
with 1,000,000 multiplication gates, 1,000 inputs wires, and 50 output wires.
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The field we used for all our experiments was the 61-bit Mersenne field (and so
security is approximately 2−60). Our experiments show that our protocols have
very good performance for all ranges of numbers of parties, especially in the
LAN configuration (due to the protocol not being constant round). In particu-
lar, this 1 million gates large circuit with depth-20 can be computed in the LAN
configuration in about 300 milliseconds with three parties, 4 seconds with 50
parties, and 8 seconds with 110 parties. In the WAN configuration, the running
time for this circuit is about 20 seconds for 3 parties, and about 2 minutes for
50 parties (at depth 100, the running time ranges from 45 seconds for 3 parties
to 3.25 minutes for 50 parties). Thus, our protocols can be used in practice to
compute arithmetic computations (like joint statistics) between many parties,
while providing malicious security.

The previous best result in this setting was recently achieved in [22]. A circuit
of the same size and depth-20 was computed by them in half a second with three
parties, 29 seconds with 50 parties and 70 seconds with 100 parties. Our protocols
run much faster than theirs, from approximately twice as fast for a small number
of parties and up to 10 times faster for a large number of parties.

1.4 Related Work

There is a large body of research focused on improving the efficiency of se-
cure computation protocols. This work is roughly divided up into constructions
of concretely efficient and asymptotically efficient protocols. Concretely efficient
protocols are often implemented and aim to obtain the best overall running time,
even if the protocol is not asymptotically optimal (e.g., it may have quadratic
complexity and not linear complexity, but for a small number of parties the con-
stants are such that the quadratic protocol is faster). Asymptotically efficient
protocols aim to reduce the cost of certain parts of the protocols (rounds, commu-
nication complexity, etc.), and are often not concretely very efficient. However,
in many cases, asymptotically efficient protocols provide techniques that inform
the construction of concretely efficient protocols.

In the case of multiparty computation (with more than two parties) with
a dishonest majority, concretely efficient protocols were given in [13, 11, 6, 20].
This setting is much harder than that of an honest majority, and the results are
therefore orders of magnitude slower (the state-of-the art SPDZ protocol [21]
achieves a throughput of around 30,000 multiplication gates per second with 2
parties in some settings whereas we achieve a throughput of more than 1 million
gates per second). For the case of an honest majority and arithmetic circuits,
the previous best protocol is that of [22], and they include an in-depth com-
parison of their protocol to previous work, both concretely and asymptotically.
Our protocol is fundamentally different from [22]. In their protocol, they use
Beaver triples to verify correctness. Their main observation is that it is much
more efficient to replace expensive opening operations with multiplication oper-
ation, since multiplication can be done with constant communication cost per
party in the honest majority setting. We also use this observation but do not
use Beaver triples at all. Thus, in our protocol, the parties are not required to
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generate and store these triples. As a result, our protocol has half the communi-
cation cost of [22] for 3 parties using replicated secret sharing (with each party
sending 2 field elements here versus 4 field elements in [22] per multiplication
gate), and less than a third of the communication cost of [22] for many parties
using Shamir sharing (with each party sending 12 field elements here versus 42
field elements in [22] per multiplication gate). Experimentally, our protocol way
outperforms [22], as shown in Section 6.3, running up to almost 10 times faster
for a large number of parties.

The setting of t < n/2 and malicious adversaries was also studied in [2, 1,
23], including implementations. However, they consider only three parties and
Boolean circuits.

2 Preliminaries and Definitions

Notation. Let P1, ..., Pn denote the n parties participating in the computation,
and let t denote the number of corrupted parties. In this work, we assume an
honest majority, and thus t < n

2 . Throughout the paper, we use H to denote the
subset of honest parties and C to denote the subset of corrupted parties. Finally,
we denote by F a finite field and by |F| its size.

2.1 Threshold Secret Sharing

A t-out-of-n secret sharing scheme enables n parties to share a secret v ∈ F so
that no subset of t parties can learn any information about it, while any subset
of t + 1 parties can reconstruct it. We require that the secret sharing scheme
used in our protocol supports the following procedures:

– share(v): In this procedure, a dealer shares a value v ∈ F. For simplicity,
we consider non-interactive secret sharing, where there exists a probabilistic
dealer D that receives v (and some randomness) and outputs shares v1, . . . , vn,
where vi is the share intended for party Pi. We denote the sharing of a value v
by [v]. We use the notation [v]J to denote the shares held by a subset of parties
J ⊂ {P1, . . . , Pn}. We stress that if the dealer is corrupted, then the shares
received by the parties may not be correct. Nevertheless, we abuse notation
and say that the parties hold shares [v] even if these are not correct. We will
define correctness of a sharing formally below.

– share(v, [v]J): This non-interactive procedure is similar to the previous pro-
cedure, except that here the shares of a subset J of parties with |J | ≤ t are
fixed in advance. We assume that there exists a probabilistic algorithm D̃
that receives v, [v]J = {v′j}j|Pj∈J (and some randomness) and outputs shares
v1, . . . , vn where vi is party Pi’s share, and vj = v′j for every Pj ∈ J .

We also assume that if |J | = t, then [v]J together with v fully determine all
shares v1, . . . , vn. This also means that any t + 1 shares fully determine all
shares. (This follows since with t+1 shares one can always obtain v. However,
for the secret sharing schemes we use, this holds directly as well.)
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– reconstruct([v], i): Given a sharing of v and an index i held by the parties, this
interactive protocol guarantees that if [v] is not correct (see formal definition
below), then Pi will output ⊥ and abort. Otherwise, if [v] is correct, then Pi
will either output v or will abort.

– open([v]): Given a sharing of v held by the parties, this procedure guarantees
that at the end of the execution, if [v] is not correct, then all the honest parties
will abort. Otherwise, if [v] is correct, then each party will either output v or
will abort. Clearly, open can be run by any subset of t + 1 or more parties.
We require that if any subset J of t+ 1 honest parties output a value v, then
any superset of J will output either v or ⊥ (but no other value).

– local operations: Given correct sharings [u] and [v] and a scalar α ∈ F, the
parties can generate correct sharings of [u+v], [α ·v] and [v+α] using local op-
erations only (i.e., without any interaction). We denote these local operations
by [u] + [v], α · [v], and [v] + α, respectively.

Standard secret sharing schemes like Shamir and replicated secret sharing sup-
port all of these procedures (with their required properties). Throughout the
entire paper, we set the threshold for the secret sharing scheme to be bn−1

2 c,
and we denote by t the number of corrupted parties. Since we assume an honest
majority, it holds that t < n/2 and so the corrupted parties can learn nothing
about a shared secret.

We now define correctness for secret sharing. Let J be a subset of honest
parties of size t+ 1, and denote by val([v])J the value obtained by these parties
after running the open procedure, where no corrupted parties or additional hon-
est parties participate. Note that val([v])J may equal ⊥ if the shares held by the
honest parties are not valid. Informally, a secret sharing is correct if every subset
of t+ 1 honest parties reconstruct the same value (which is not ⊥). Formally:

Definition 2.1. Let H ⊆ {P1, . . . , Pn} denote the set of honest parties. A shar-
ing [v] is correct if there exists a value v′ ∈ F (v′ 6= ⊥) such that for every J ⊆ H
with |J | = t+ 1 it holds that val([v])J = v′.

In the full version of the paper we show how to efficiently verify that a series
of m shares are correct. Although not required in our general protocol, in some
of our instantiations it is needed to verify that sharing of secrets is carried out
correctly.

2.2 Security Definition

We use the standard definition of security based on the ideal/real model paradigm
[7, 19], with security formalized for non-unanimous abort. This means that the
adversary first receives the output, and then determines for each honest party
whether they will receive abort or receive their correct output.

3 Building Blocks and Sub-Protocols

In this section, we define a series of building blocks that we need for our proto-
col. The presentation here is general, and each basic protocol can be efficiently
realized using standard secret sharing schemes. We describe these instantiations
in Section 6.2.
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3.1 Generating Random shares

We define the ideal functionality Frand to generate a sharing of a random value
unknown to the parties. A formal description appears in Functionality 3.1. The
functionality lets the adversary choose the corrupted parties’ shares, which to-
gether with the random secret chosen by the functionality, are used to compute
the shares of the honest parties.

FUNCTIONALITY 3.1 (Frand- Generating Random Shares)

Upon receiving αi for each i with Pi ∈ C from the ideal adversary S, the ideal
functionality Frand chooses a random r ∈ F, sets [r]C = {αi}i|Pi∈C and runs
share(r, [r]C) to receive a share ri for each party Pi. Then, it hands each honest
party Pj its share rj .

As we have mentioned, the way we compute this functionality depends on
the specific secret sharing scheme that is being used, and will be described in
the instantiations in Section 6.2.

3.2 Generating Random Coins

Fcoin is an ideal functionality that chooses a random element from F and hands
it to all parties. A simple way to compute Fcoin is to use Frand to generate a
random sharing and then open it. We formally describe and prove this in the
full version of the paper.

3.3 Finput – Secure Sharing of Inputs

In this section, we present our protocol for secure sharing of the parties’ inputs.
The protocol is very simple: for each input x belonging to a party Pj , the parties
call Frand to generate a random sharing [r]; denote the share held by Pi by
ri. Then, r is reconstructed to Pj , who echo/broadcasts x − r to all parties.
Finally, each Pi outputs the share [r + (x− r)] = [x]. This is secure since Frand

guarantees that the sharing of r is correct, which in turn guarantees that the
sharing of x is correct (since adding x− r is a local operation only). In order to
ensure that Pj sends the same value x−r to all parties, a basic echo-broadcast is
used. This is efficient since all inputs can be shared in parallel, utilizing a single
echo broadcast. The formal definition of the ideal functionality for input sharing
appears in Functionality 3.2.

FUNCTIONALITY 3.2 (Finput- Sharing of Inputs)

1. Functionality Finput receives inputs v1, . . . , vM ∈ F from the parties. For ev-
ery i = 1, . . . ,M , Finput also receives from S the shares [vi] of the corrupted
parties for the ith input.

2. For every i = 1, . . . ,M , Finput computes all shares (v1i , . . . , v
n
i ) =

share(vi, [vi]C).
For every j = 1, . . . , n, Finput sends Pj its output shares (vj1, . . . , v

j
M ).
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A formal description appears in Protocol 3.3

PROTOCOL 3.3 (Secure Sharing of Inputs)

– Inputs: Let v1, . . . , vM ∈ F be the series of inputs; each vi is held by some Pj .
– The protocol:

1. The parties call Frand M times to obtain sharings [r1], . . . , [rM ].
2. For i = 1, . . . ,M , the parties run reconstruct([ri], j) for Pj to receive ri,

where Pj is the owner of the ith input. If Pj receives ⊥, then it sends ⊥ to
all parties, outputs abort and halts.

3. For i = 1, . . . ,M , party Pj sends wi = vi − ri to all parties.
4. All parties send ~w = (w1, . . . , wM ), or a collision-resistant hash of the vector,

to all other parties. If any party receives a different vector to its own, then
it outputs ⊥ and halts.

5. For each i = 1, . . . ,M , the parties compute [vi] = [ri] + wi.
– Outputs: The parties output [v1], . . . , [vM ].

We now prove that Protocol 3.3 securely computes Finput specified in Func-
tionality 3.2.

Proposition 3.4. Protocol 3.3 securely computes Functionality 3.2 with abort
in the presence of malicious adversaries controlling t < n/2 parties.

Proof: Let A be the real adversary. We construct a simulator S as follows:

1. S receives [ri]C (for i = 1, . . . ,M) that A sends to Frand in the protocol.
2. For every i ∈ {1, . . . ,M}, S chooses a random ri and computes (r1

i , . . . , r
n
i ) =

share(ri, [ri]C). (This computation may be probabilistic or deterministic, de-
pending on how many parties are corrupted.)

3. S simulates the honest parties in all reconstruct executions. If an honest
party Pj receives ⊥ in the reconstruction, then S simulates it sending ⊥ to
all parties. Then, S simulates all honest parties aborting.

4. S simulates the remainder of the execution, obtaining all wi values from A
associated with corrupted parties’ inputs, and sending random wj values for
inputs associated with honest parties’ inputs.

5. For every i for which the ith input is that of a corrupted party Pj , simulator
S sends the trusted party computing Finput the input value vi = wi + ri.

6. For every i = 1, . . . ,M , S defines the corrupted parties’ shares [vi]C to be
[ri+wi]C . (Observe that S has [vi]C and merely needs to add the scalar wi to
each corrupted party’s share.) Then, S sends [v1]C , . . . , [vM ]C to the trusted
party computing Finput.

7. For every honest party Pj , if it aborted in the simulation, then S sends abortj
to the trusted party computing Finput; else, it sends continuej .

8. S outputs whatever A outputs.

The only difference between the simulation by S and a real execution is that
S sends random values wj for inputs associated with honest parties’ inputs.
However, by the perfect secrecy of secret sharing, this is distributed identically
to a real execution.



9

3.4 Secure Multiplication up to Additive Attacks [14, 15]

Our construction works by running a multiplication protocol (for multiplying
two values that are shared among the parties) that is not fully secure in the
presence of a malicious adversary and then running a verification step that en-
ables the honest parties to detect cheating. In order to do this, we start with a
multiplication protocols with the property that the adversary’s ability to cheat
is limited to carrying a so-called “additive attack” on the output. Formally, we
say that a multiplication protocol is secure up to an additive attack if it realizes
Fmult defined in Functionality 3.5. This functionality receives input sharings [x]
and [y] from the honest parties and an additive value d from the adversary, and
outputs a sharing of x · y + d. (Since the corrupted parties can determine their
own shares in the protocol, the functionality allows the adversary to provide the
shares of the corrupted parties, but this reveals nothing about the shared value.)

FUNCTIONALITY 3.5 (Fmult - Secure Mult. Up To Additive Attack)

1. Upon receiving [x]H and [y]H from the honest parties, the ideal function-
ality Fmult computes x, y and the corrupted parties shares [x]C and [y]C .

2. Fmult hands [x]C and [y]C to the ideal-model adversary/simulator S.
3. Upon receiving d and {αi}i|Pi∈C from S, functionality Fmult defines z =

x ·y+d and [z]C = {αi}i|Pi∈C . Then, it runs share(z, [z]C) to obtain a share
zj for each party Pj .

4. The ideal functionality Fmult hands each honest party Pj its share zj .

As we will discuss in the instantiations section (Section 6.2), the requirements
defined by this functionality can be met by several semi-honest multiplication
protocols. This will allow us to compute this functionality in a very efficient way.

3.5 Checking Equality to 0

In this section, we present a protocol to check whether a given sharing is a
sharing of the value 0, without revealing any further information on the shared
value. The idea behind the protocol is simple. Holding a sharing [v], the parties
generate a random sharing [r] and multiply it with [v]. Then, the parties open
the obtained sharing and check equality to 0. This works since if v = 0, then
multiplying it with a random r will still yield 0. In contrast, if v 6= 0, then the
multiplication will result with 0 only when r = 0, which happens with probability
1
F only. The protocol is formally described in Protocol 3.7. For multiplying the
sharings, the parties use the Fmult functionality, which allows the adversary to
change the output value via an additive attack. However, since the actual value
is kept unknown, the adversary does not know which value should be added in
order to achieve a sharing of 0.

We prove that Protocol 3.7 realizes the ideal functionality FcheckZero, which
is defined in Functionality 3.6.
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FUNCTIONALITY 3.6 (FcheckZero – Checking Equality to 0)

The ideal functionality FcheckZero receives [v]H from the honest parties and
uses them to compute v. Then:

– If v = 0, then FcheckZero sends 0 to the simulator S. If S sends reject (resp.,
accept), then FcheckZero sends reject (resp., accept) to the honest parties.

– If v 6= 0, then FcheckZero proceeds as follows:
• With probability 1

|F| it sends accept to the honest parties and S.

• With probability 1− 1
|F| it sends reject to the honest parties and S.

FcheckZero receives the honest parties shares, and use them to reconstruct the
shared value. Then, if it is 0, then the simulator decides whether to send accept
to the honest parties or reject. Otherwise, FcheckZero tosses a coin to decide what
to send to the parties (i.e., in this case, the simulator is not given the opportunity
to modify the output). In particular, when the checked value does not equal to 0,
the output will still be accept with probability 1

|F| . This captures the event in

Protocol 3.7 where v 6= 0 but T = 0, which happens also with probability 1
F

since r is uniformly distributed over F.

PROTOCOL 3.7 (Checking Equality to 0 in the (Frand,Fmult)-Hybrid Model)

– Inputs: The parties hold a sharing [v].
– The protocol:

1. The parties call Frand to obtain a sharing [r].
2. The parties call Fmult on [r] and [v] to obtain [T ] = [r · v]
3. The parties run open([T ]). If a party receives ⊥, then it outputs ⊥. Else, it

continues.
4. Each party checks that T = 0. If yes, it outputs accept; else, it outputs reject.

Proposition 3.8. Protocol 3.7 securely computes FcheckZero with abort in the
(Frand,Fmult)-hybrid model in the presence of malicious adversaries who control
t < n/2 parties.

Proof: Let A be the real adversary. We construct the simulator S as follows.
The ideal execution begins with S receiving the value 0 or 1 from FcheckZero

(depending on if v = 0 or if v 6= 0, respectively). It then proceeds according to
the following cases:
Case 1 – v = 0: S plays the role of Frand by receiving the corrupted parties’
shares. Then, S plays the role of Fmult: it receives the corrupted parties’ shares
of T (i.e., [T ]C) and the value d to add to the output. Finally, S simulates
the opening of [T ] by playing the role of the honest parties. In this case, S can
simulate the real world execution precisely, since it knows that T = d (regardless
of the value of r), and thus it can define the honest parties’ shares of T by running
share(d, [T ]C). Then, if d = 0 and A sent the correct shares when opening, then it
sends accept to FcheckZero. Otherwise, the parties open to a value that is not 0, or
the opening fails (if A sends incorrect shares). In the first case, S sends reject to
FcheckZero, whereas in the latter it sends abort and simulates the honest parties
aborting in the protocol. Finally, S outputs whatever A outputs.
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Observe that in this case, S simulates the real world execution exactly, and
thus the view of A in the simulation is identical to its view in a real execution.
Therefore, the output of the honest parties, which is determined in this case by
A, is the same in both the real and simulated execution.

Case 2 – v 6= 0: In this case, S receives the final output from FcheckZero without
being able to influence it (beyond aborting). As in the previous case, S receives
from A the corrupted parties’ shares of r and T and the value d to add to T .
In this case, it holds that T = r · v + d, where r and v are unknown to A.
To simulate the opening of [T ], the simulator S either sets T = 0 (in the case
where accept was received from FcheckZero) or chooses a random T ∈ F \ {0}
(in the case where reject was received) and defines the honest parties’ shares
by running share(T, [T ]C). Then, S simulates the opening by playing the role of
the honest parties. If A sends incorrect shares, causing the opening to fail, then
S simulated the honest parties aborting in the real world execution and sends
abort to FcheckZero. Finally, S outputs whatever A outputs.

We claim that the view of A is identically distributed in the simulation and in
the real world execution. This holds since the only difference is in the opening of
T . In particular, in the real world, a random r is chosen and then the value of T
is set to be r ·v+d, whereas in the simulation T is chosen randomly from F (this
follows from the fact that T is set to be 0 with probability 1

|F| and to any value

other than 0 with probability 1
|F−1| ). In both cases, therefore, T is distributed

uniformly over F. Thus, the view of the adversary A is distributed identically in
both executions. We now proceed to show that the output of the honest parties
is also distributed identically in both executions. In the simulation, the output
is accept with probability 1

|F| , as determined by the trusted party. In the real

execution, the honest parties output accept when T = 0. This happens when
r · v + d = 0, i.e., when r = −d · v−1 (recall that v 6= 0 and so it has an
inverse). Since r is distributed uniformly over |F|, then T = 0 with probability
1
|F| , and so the honest parties’ output is accept with the same probability as in

the simulation. This concludes the proof.

4 The Protocol for Large Fields

With all the building blocks described in the previous section, we are now ready
to present our protocol that computes an arithmetic circuit over a large field
on the private inputs of the parties. We stress that by a large field, we mean
that 2/|F| ≤ 2−σ, where σ is the statistical security parameter determining the
allowed error. The protocol works by computing the circuit using Fmult (i.e., a
multiplication protocol that is secure up to additive attacks), and then running a
verification step where the computations of all multiplication gates are verified.

The idea behind the protocol is for the parties to generate a random sharing
[r], and then evaluate the arithmetic circuit while preserving the invariant that
on every wire, the parties hold shares of the value [x] on the wire and shares
of the randomized value [r · x]. This is achieved by generating [r] using Frand
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(Section 3.1) and then multiplying each shared input with [r] using Fmult (Sec-
tion 3.4). For addition and multiplication-by-a-constant gates, each party can
locally compute the sharings of both the output and the randomized output
(since [r · x] + [r · y] = [r · (x+ y)]). For multiplication gates, the parties interact
to compute shares of [x · y] and [r · x · y] (given shares of x, r · x, y, r · y). This
is achieving by running Fmult on [x] and [y] to obtain a sharing [z] = [x · y], and
running Fmult on [r · x] and [y] to obtain a sharing [r · z] = [r · x · y] (equiv-
alently, this latter sharing could be generated by multiplying [x] with [r · y]).
The randomized value [r] essentially plays the role of the MAC key in the SPDZ
approach [13], enabling the parties to validate that [x] is correct by utilizing the
computed MAC tag [r · x]. As we will see, we verify all MAC values via a single
random combination at the end of the computation as in the SPDZ protocol.

As we have described in Section 3.4, the multiplication subprotocol that we
use – and is modeled in Fmult – is only secure up to additive attacks. The circuit
randomization technique described above is aimed at preventing the adversary
from carrying out such an attack without getting caught. In order to see why,
consider an attacker who carries out an additive attack when multiplying [x] and
[y] so that the result is [x · y+d] for some d 6= 0. Then, in order for the invariant
to be maintained, the adversary needs to cheat in the other multiplication for
this gate so that the result is [r · (x · y + d)]. Now, since the adversary can only
carry out an additive attack, it must make the result be [r · x · y + d′], where
d′ = d·r. However, r is not known, and thus the attacker can only succeed in this
with probability 1/|F|. Thus, in order to prevent cheating in the multiplication
gates, it suffices to check that the invariant is preserved over all wires.

This verification is carried out as follows. After the entire circuit has been
evaluated, the parties compute a random linear combination of the sharings of
the values and the sharings of the randomized values on each multiplication
gate’s output wire; denote the former by [w] and the latter by [u]. Then, [r]
is opened, and the parties locally multiply it with [w]. Clearly, if there was no
cheating, then r·[w] equals [u], and thus [u]−r·[w] equals 0, which can be checked
using FcheckZero (Section 3.5). In contrast, if the adversary did cheat, then as we
have mentioned above, the invariant will not hold except with probability 1/|F|.
In this case, as we will show below, [u] = r · [w] with probability only 1/|F| (since
they are generated via a random linear combination). When [u− r ·w] 6= 0, then
FcheckZero outputs reject except with probability 1/|F|. Overall, we therefore
have that the adversary can cheat with probability at most 2/|F|. We prove this
formally in Lemma 4.2. A full specification appears in Protocol 4.1.

We will provide an exact complexity analysis below (in Section 6.2), but for
now observe that the cost is dominated by just 2 invocations of Fmult per multi-
plication gate. As we have mentioned in Section 3.4, Fmult is securely realized in
the presence of malicious adversaries by several semi-honest multiplication pro-
tocols. Thus, the overall cost of achieving malicious security here is very close
to the semi-honest cost.
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PROTOCOL 4.1 (Computing Arithmetic Circuits Over Large Fields)

Inputs: Each party Pj (j ∈ {1, . . . , n}) holds an input xj ∈ F`.
Auxiliary Input: The parties hold the description of a finite field F (with 3/|F| ≤
2−σ) and an arithmetic circuit C over F that computes f on inputs of length
M = ` · n. Let N be the number of multiplication gates in C.

The protocol (throughout, if any party receives ⊥ as output from a call to a
sub-functionality, then it sends ⊥ to all other parties, outputs ⊥ and halts):

1. Secret sharing the inputs:
(a) For each input vi held by party Pj , party Pj sends vi to Finput.
(b) Each party Pj records its vector of shares (vj1, . . . , v

j
M ) of all inputs, as

received from Finput. If a party received ⊥ from Finput, then it sends abort
to the other parties and halts.

2. Generate randomizing share: The parties call Frand to receive a sharing [r].
3. Randomization of inputs: For each input wire sharing [vm] (where m ∈
{1, . . . ,M}), the parties call Fmult on [r] and [vm] to receive [r · vm].

4. Circuit emulation: Let G1, ..., GN be a predetermined topological ordering of
the gates of the circuit. For k = 1, ..., N the parties work as follows:

– Gk is an addition gate: Given pairs ([x], [r · x]) and ([y], [r · y]) on
the left and right input wires respectively, the parties locally compute
([x+ y], [r · x] + [r · y]) = ([x+ y], [r · (x+ y)]).

– Gk is a multiplication-by-constant gate: Given ([x], [r · x]) on the input
wire and constant a ∈ F, the parties locally compute ([a · x], [r · (a · x)]).

– Gk is a multiplication gate: Given pair ([x], [r · x]) and ([y], [r · y]) on the
left and right input wires respectively:
(a) The parties call Fmult on [x] and [y] to receive [x · y].
(b) The parties call Fmult on [ri · x] and [y] to receive [ri · x · y].

5. Verification stage: Before the secrets on the output wires are reconstructed, the
parties verify that all the multiplications were carried out correctly, as follows.

Let
{(

[zk], [r · zk]
)}N
k=1

be the pairs on the output wires of all multiplication

gates and let
{(

[vm], [r · vm]
)}M
m=1

be the pairs on the input wires of the circuit.
(a) The parties call Fcoin to receive α1, . . . , αN , β1, . . . , βM ∈ F.
(b) The parties locally compute

[u] =

N∑
k=1

αk ·[r·zk]+

M∑
m=1

βm·[r·vm] and [w] =

N∑
k=1

αk ·[zk]+

M∑
m=1

βm·[vm].

(c) The parties run open([r]) to receive r.
(d) Each party locally computes [T ] = [u]− r · [w].
(e) The parties call FcheckZero on [T ]. If FcheckZero outputs reject, the parties

output ⊥ and abort. Else, if it outputs accept, the parties proceed to the
next step.

6. Output reconstruction: For each output wire of the circuit, the parties run
reconstruct([v], j), where [v] is the sharing of the value on the output wire, and
Pj is the party whose output is on the wire.
If a party received ⊥ in any call to the reconstruct procedure, then it sends ⊥
to the other parties, outputs ⊥ and halts.

Output: If a party has not output ⊥, then it outputs the values it received on its
output wires.
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We begin by proving that the verification step has the property that if the
adversary cheats in a multiplication gate, then the T = 0 with probability 2

|F| ≤
2−σ (where σ is the statistical security parameter). We call a multiplication triple
of a multiplication gate, the triple of values ([x], [y], [z]), where [x], [y] are the
shares on the inputs wires, and [z] is the shares on the output wire, after the
multiplication. (Note that z may not equal x · y, if the adversary cheated in the
multiplication.)
Lemma 4.2. If A sends an additive value d 6= 0 in any of the calls to Fmult

in the execution of Protocol 4.1, then the value [T ] computed in the verification
stage of Step 5 in Protocol 4.1 equals 0 with probability less than 2/|F|.
Proof: The intuition has been discussed above, and we therefore proceed
directly to the proof. Consider the multiplication triple ([xk], [yk], [zk]) for the
kth multiplication gate. We stress that the values on the input wires [xk], [yk] may
not actually be the appropriate values as when the circuit is computed by honest
parties. However, in order to prove the lemma, we consider each gate separately,
and all that is important is whether the invariant described above holds on the
output wire (i.e., the randomized result is [r ·zk] for whatever zk is here). By the
definition of Fmult, a malicious adversary is able to carry out an additive attack,
meaning that it can add a value to the output of each multiplication gate. Thus,
it holds that val([zk])H = xk ·yk+dk and val([r·zk])H = (r·xk+ek)·yk+fk, where
dk, ek, fk ∈ F are the added values in the additive attacks, as follows. The value
dk is the value added by the adversary when Fmult is called with [xk] and [yk].
The value ek is such that the input to Fmult for the randomized multiplication
is [yk] and [r · xk + ek]. This is an accumulated error on the randomized value
from previous gates. Finally, fk is the value added by the adversary when Fmult

is called with the shares [yk] and [r ·xk + ek]. Similarly, for each input wire with
sharing [vm], it holds that val([r · vm])H = r · vm+ gm, where gm ∈ F is the value
added by the adversary when Fmult is called with [r] and the shared input [vm].
Thus, we have that

val([u])H =

N∑
k=1

αk · ((r · xk + ek) · yk + fk) +

M∑
m=1

βm · (r · vm + gm)

val([w])H =

N∑
k=1

αk · (xk · yk + dk) +

M∑
m=1

βm · vm

and so

val([T ])H = val([u])H − r · val([w])H =

=

N∑
k=1

αk · ((r · xk + ek) · yk + fk) +

M∑
m=1

βm · (r · vm + gm)

− r ·

(
N∑
k=1

αk · (xk · yk + dk) +

M∑
m=1

βm · vm

)

=

N∑
k=1

αk · (ek · yk + fk − r · dk) +

M∑
m=1

βm · gm. (1)
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where the second equality holds because r is opened and so the multiplication
r · [w] always yields [r ·w]. Our aim is to show that val([T ])H , as shown in Eq. (1),
equals 0 with probability at most 1/|F|. We have the following cases.

– Case 1 – there exists some m ∈ {1, . . . ,M} such that gm 6= 0: Let m0 be the
smallest such m for which this holds. Then, val([T ])H = 0 if and only if

βm0
=

− N∑
k=1

αk · (ek · yk + fk − r · dk)−
M∑
m=1
m 6=m0

βm · gm

 · gm0

−1

which holds with probability 1
|F| since βm0

is distributed uniformly over F,

and chosen independently of all other values.
– Case 2 – all gm = 0: By the assumption in the lemma, some additive value
d 6= 0 was sent to Fmult. Since none was sent for the input randomization,
there exists some k ∈ {1, . . . , N} such that dk 6= 0 or fk 6= 0. Let k0 be the
smallest such k for which this holds. Note that since this is the first error
added, it holds that ek0 = 0. Thus, in this case, val([T ])H = 0 if and only if

αk0 · (fk0 − r · dk0) = −
N∑
k=1
k 6=k0

αk · (ek · yk + fk − r · dk) . (2)

If fk0−r ·dk0 6= 0, then the above equality holds with probability 1/|F| since
αk0 is distributed uniformly over F, and chosen independently of all other
values. However, if fk0 − r · dk0 = 0, then equality may hold. (Indeed, the
best strategy of an adversary is to cheat in both multiplications of a single
gate, and hope that the additive values cancel each other out.) Nevertheless,
the probability that fk0 − r ·dk0 = 0 is at most 1/|F|, since r is not known to
the adversary when the k0’th gate is computed (and by the security of the
secret sharing scheme, it is completely random). Thus, the probability that

Eq. (2) holds is at most 1
|F| +

(
1− 1

|F|

)
· 1
|F| <

2
|F| .

In both cases, the probability of equality is upper bounded by 2/|F| and this
completes the proof.

We are now ready to prove the security of Protocol 4.1.

Theorem 4.3. Let σ be a statistical security parameter, and let F be a finite field
such that 3/|F| ≤ 2−σ. Let f be an n-party functionality over F. Then, Proto-
col 4.1 securely computes f with abort in the (Finput,Fmult,Fcoin,Frand,FcheckZero)-
hybrid model with statistical error 2−σ, in the presence of a malicious adversary
controlling t < n

2 parties.

Proof: Intuitively, the protocol is secure since if the adversary cheats in any
multiplication, then the value T computed in the verification stage will equal
zero with probability at most 2/|F|, as shown in Lemma 4.2. Then, if indeed
T 6= 0, this will be detected in the call to FcheckZero, except with probability
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1/|F|. Thus, overall, the adversary can avoid detection with probability at most
3/|F| ≤ 2−σ.

Let A be the real adversary who controls the set of corrupted parties C; the
simulator S works as follows:

1. Secret sharing the inputs: S receives fromA the set of corrupted parties inputs
(values vj associated with parties Pi ∈ C) and the corrupted parties’ shares
{[vi]C}Mi=1 that A sends to Finput in the protocol. For each honest party’s
input vj , S computes (v1

j , . . . , v
n
j ) = share(0, [vi]C) (i.e., uses 0 as the input on

the wire). Then, S hands A the shares of the corrupted parties for all inputs.
2. Generate the randomizing share: Simulator S receives the share [r]C of the

corrupted parties that A sends to Frand.
3. Randomization of inputs: For every input wire m = 1, . . . ,M , simulator S

plays the role of Fmult in the multiplication of the mth input [vm] with r.
Specifically, S hands A the corrupted parties shares in [vm] and [r] (it has
these shares from the previous steps). Next, S receives the additive value
d = gm and the corrupted parties’ shares [z]C of the result that A sends to
Fmult. Simulator S stores all of these corrupted parties shares.

4. Circuit emulation: Throughout the emulation, S will use the fact that it knows
the corrupted parties’ shares on the input wires of the gate being computed.
This holds initially from the steps above, and we will show it computes the
output wires of each gate below. For each gate Gk in the circuit,

– If Gk is an addition gate: Given the shares of the corrupted parties on the
input wires, S locally adds them as specified by the protocol, and stores
them.

– If Gk is a multiplication-by-a-constant gate: Given the shares of the cor-
rupted parties on the input wire, S locally multiplies them by the con-
stant, them as specified by the protocol, and stores them.

– If Gk is a multiplication gate: S plays the role of Fmult in this step (as
in the randomization of inputs above). Specifically, simulator S hands A
the corrupted parties’ shares on the input wires as it expects to receive
from Fmult (it has these shares by the invariant), and receives from A
the additive value as well as the corrupted parties’ shares for the output.
These additive values are dk (for the multiplication of the actual values)
and fk (for the multiplication of the randomized value), as defined in the
proof of Lemma 4.2. S stores the corrupted parties’ shares.

5. Verification stage: Simulator S works as follows. S chooses random α1, . . . , αN ,
β1, . . . , βM ∈ F and hands them to A, as it expects to receive from Fcoin.
Then, S chooses a random r ∈ F and computes the shares of r by (r1, . . . , rn) =
share(r, [r]C), using the shares [r]C provided by A in the “generate random-
izing share” step above. Next, S simulates the honest parties sending their
shares in open([r]) to A, and receives the shares that A sends to the honest
parties in this open. If any honest party would abort (it knows whether this
would happen since it has all the honest parties’ shares), then S simulates
it sending ⊥ to all parties, externally sends abortj for every Pj ∈ H to the
trusted party computing f , and halts.
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Finally, S simulates FcheckZero, as follows. If any non-zero gm, dk, fk was pro-
vided to Fmult by A in the simulation, then S simulates FcheckZero sending
reject, and then all honest parties sending ⊥. Then, S externally sends abortj
for every Pj ∈ H to the trusted party computing f . Otherwise, S proceeds
to the next step.

6. Output reconstruction: If no abort had occurred, S externally sends the
trusted party computing f the corrupted parties’ inputs that it received in
the “secret sharing the inputs” step above. S receives back the output values
for each output wire associated with a corrupted party. Then, S simulates
the honest parties in the reconstruction of the corrupted parties’ outputs. It
does this by computing the shares of the honest parties on this wire using the
corrupted parties’ shares on the wire (which it has by the invariant) and the
actual output value it received from the trusted party.

In addition, S receives the messages from A for the reconstructions to the
honest parties. If any of the messages in the reconstruction of an output wire
associated with an honest Pj are incorrect (i.e., the shares sent by A are not
the correct shares it holds), then S sends abortj to instruct the trusted party
to not send the output to Pj . Otherwise, S sends continuej to the trusted
party, instructing it to send Pj its output.

We claim that the view of the adversary in the simulation is identical to its view
in the real execution, except with probability 3/|F|. In order to see this, observe
first that if all gm, dk, fk values equal 0, then the simulation is perfect. The only
difference is that the input shares of the honest parties are to 0. However, by
the perfect secrecy of secret sharing, this has the same distribution as in a real
execution.

Next, consider the case that some gm, dk, fk value does not equal 0. In this
case, the simulator S always simulates FcheckZero outputting reject. However,
in a real execution where some gm, dk, fk value does not equal 0, functionality
FcheckZero may return accept either if T = 0, or if T 6= 0 but it chose accept with
probability 1/|F in the computation of the functionality output. By Lemma 4.2,
the probability that T = 0 in such a real execution is less than 2/|F|, and thus

FcheckZero outputs accept with probability less than 2
|F| +

(
1− 2

|F|

)
· 1
|F| <

3
|F| .

Since this is the only difference between the real execution and the ideal-model
simulation, we have that the statistical difference between these distributions is
less than 3

|F| ≤ 2−σ, and so the protocol is secure with statistical error 2−σ.

Using pseudo-randomness to reduce the number of calls to Fcoin. Ob-
serve that in the verification phase, we need to call Fcoin many times; once for
each input wire and multiplication gate, to be exact. Instead of calling Fcoin for
every value (since this would be expensive), it suffices to call it once to obtain a
seed for a pseudorandom generator, and then each party locally uses the seed to
obtain as much randomness as needed. (Practically, the key would be an AES
key, and randomness is obtained by running AES in counter mode.) It is not dif-
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ficult to show that by the pseudorandomness assumption, the probability that
the adversary can cheat is only negligibly different.4

Concrete efficiency. We analyze the performance of our protocol. The func-
tionality Fmult is called once for every input wire and twice for every multipli-
cation gate (once for multiplying [x] and [y], and another time for multiplying
[r · x] with [y]). Thus, the overall number of multiplications is (M + 2N) · Fmult,
where M denotes the number of inputs and N the number of multiplication
gates. In addition, there are M calls to Finput, which by Protocol 3.3 reduces
to M invocations of Frand and M reconstructions. Furthermore, there is one
call to Frand for generating [r], one call to Fcoin for generating all the αk, βk
values (which reduces to one Frand and one open), one call to open for [r], and
one call to FcheckZero (which reduces to one call to Frand, one Fmult and one
opening). Finally, let L denote the number of output values, and so the number
of reconstruct operations equals L in order to obtain output. We have that the
overall exact cost of the protocol is

(M + 2N + 1) · Fmult + (M + 3) · Frand + (M + L) · reconstruct + 3 · open.

Clearly, amortizing over the size of the circuit, we have that the average cost is
2 · Fmult per multiplication gate.

Reducing memory. One issue that can arise in the implementation of Pro-
tocol 4.1 is due to the fact that the parties need to store all of the shares used
throughout the computation in order to run the verification stage. If the circuit
is huge (e.g., has billions of gates), then this can be problematic. However, in
such cases, it is possible to run the verification multiple times. For example, one
can determine that the verification is run after every million gates processed.
Since this involves opening the randomizing share [r], a new randomizing share
[r′] is chosen by running Frand, and the shares on all wires that are still “active”
(meaning that they are input into later gates) are randomized using [r′] (in the
same way that the input wires are randomized). The protocol then proceeds
as before. The additional cost is calling Frand and FcheckZero once every million
gates (or whatever is determined) instead of just once, and multiplying [r′] by
all of the active wires using Fmult at each such iteration instead of just for the
inputs. This will typically only be worthwhile for extremely large circuits.

Small fields. Protocol 4.1 works for fields that are large enough so that 3/|F|
is an acceptable probability of an adversary cheating. In cases where it is desired
to work in a smaller field, one could consider the following strategy. Instead of
having a single randomizing share [r], generate δ such random shares [r1], . . . , [rδ]
(where (3/|F|)δ is small enough). Then, run the same circuit emulation and
verification steps using each ri separately. Since each verification is independent,
this will yield a cheating probability of at most (3/|F|)δ, as required. The problem

4
Note that this is not as immediate as it seems since the adversary has the seed/key as well, and so
at this point the pseudorandom property is actually lost. However, the checks work by generating
the randomness after everything else is finished and then verifying that some equality holds, or
that the results are correct. These properties are actually determined before the key is revealed,
and thus security is maintained even after the key is revealed.
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with such a strategy is that the simulator must be able to simulate the [T ] values
for each verification. Unlike the case of a large field, in this case, there is a good
probability that some of the [T ] values will equal 0, even if the adversary cheated
(the only guarantee is that not all [T ] values will equal 0). Looking at Eq. (1),
observe that the value of [T ] is dependent on the values αk, ek, fk, r, dk, βm, gm
known to the simulator, and an unknown value yk (this is the actual value on
the wire). However, all of these values are known to the distinguisher (since
it knows the actual inputs, and also has the adversary’s view) and thus it can
know for certain which [T ] values should equal 0 and which should not. Thus,
a simulation strategy where the simulator determines whether [T ] equals 0 with
probability 1/|F| if the adversary cheated will fail (since the distinguisher can
verify if the value should actually be zero, depending on the given values). In
the next section, we present a different strategy that solves this problem. In
short, the strategy involves generating the linear combinations in Step 5b of
Protocol 4.1 using shared and secret αk and βm values. Since these values are
never revealed, the distinguisher cannot know if an actual [T ] should be 0 or
not, and it suffices to simulate by choosing [T ] to equal 0 with probability 1/|F|
in the case that the adversary cheats.

5 A Protocol for Small Fields

Motivation. As discussed at the end of Section 4, Protocol 4.1 only works for
large fields. In this section, we describe a protocol variant that works for any
field size. The protocol is similar to Protocol 4.1 except that multiple random-
izing shares and verifications are carried out. In particular, the parties generate
δ random shares [r1], . . . , [rδ] and then verify the correctness of all multiplica-
tions by generating δ independent random linear combinations as in Step 5b of
Protocol 4.1 (each with a different ri, and with independent αk, βm values). The
main difference is that instead of αk, βm being public values generated by calls
to Fcoin, they are random shares generated by calling Frand. Furthermore, they
are kept secret and not opened. We show that this yields a cheating probability
of at most (3/|F|)δ, which can be made arbitrarily small by increasing δ. Since
Frand is somewhat more expensive than Fcoin (see Section 6.2), Protocol 4.1 is
better for large fields.

Secure sum of products. In order to implement the verification step with
shared and secret αk, βm, it is necessary to compute the following linear combi-
nations efficiently:

[u] =

N∑
k=1

[αk] · [r · zk] +

M∑
m=1

[βm] · [r · vm] and [w] =
N∑
k=1

[αk] · [zk] +

M∑
m=1

[βm] · [vm].

This seems to require an additional four multiplications (e.g., calls to Fmult)
per multiplication gate. Given that Protocol 4.1 requires only two calls to Fmult

per multiplication gate overall, this seems to be considerably more expensive.
In Section 6.1, we show how to compute a sum of products, for any number of
terms, essentially at the cost of just a single multiplication. Our construction
works for Shamir and replicated secret sharing, as we use in this paper. This
subprotocol is of independent interest, and can be useful in many other scenarios.
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For example, in statistical computations, a sum-of-squares is often needed, and
our method can be used to compute the sum-of-square of millions of values
at the cost of just one multiplication. We formally define the sum-of-products
functionality, denoted Fproduct, in Functionality 5.1. It is very similar to Fmult,
with the exception that it receives two lists of values instead of a single pair. As
with Fmult, security is defined up to additive attacks.

FUNCTIONALITY 5.1 (Fproduct - Sum-of-Products Up To Additive Attacks)

1. Upon receiving {[xi]H}`i=1 and {[yi]H}`i=1 from the honest parties, the ideal
functionality Fproduct computes xi and yi and the corrupted parties shares
[xi]C and [yi]C , for each i ∈ {1, . . . , `}.

2. Fproduct hands {[xi]C}`i=1 and {[yi]C}`i=1 to the ideal-model adversary S.
3. Upon receiving d and {αi}i|Pi∈C from S, functionality Fproduct defines z =∑`

i=1 xi · yi + d and [z]C = {αi}i|Pi∈C . Then, it runs share(z, [z]C) to obtain
a share zj for each party Pj .

4. The ideal functionality Fproduct hands each honest party Pj its share zj .

The protocol. We now proceed to describe the protocol. As we have described
above, the protocol is very similar to Protocol 4.1 with the exception that the
share randomization and verification are run δ times, and the linear combinations
are computed using secret and shared αk, βm. The formal description of the
protocol appears in Protocol 5.3. Observe that the computation of [ui] and [wi]
in order to compute [Ti] in Steps 6(c)i–6(c)iv in Protocol 5.3 is exactly the same
as the computation of T in Step 5b Protocol 4.1. Namely, we obtain

[ui] =

N∑
k=1

[αk,i] · [ri ·zk]+

M∑
m=1

[βm,i] · [ri ·vm] and [wi] =

N∑
k=1

[αk,i] · [zk]+

M∑
m=1

[βm,i] · [vm].

Thus, the intuition as to why [Ti] = [ui]−ri · [wi] equals 0 with probability 3/|F|
is the same as in Protocol 4.1. Despite this, the proof is different since here 3/|F|
is noticeable, and this affects the simulation. As such, the proof of the protocol
is similar to that of Protocol 4.1 with the exception that the simulator needs to
compute the exact probability that each Ti = 0, depending on the different cases
of possible additive attacks. This is due to the fact that some Ti may equal 0 with
probability 1/|F| even when an additive attack does take place. Unlike the case
of large fields, 1/|F| may be noticeable and thus the simulation cannot afford to
just fail in such cases. As we will see in the proof, if the adversary cheats in a
multiplication gate, then each Ti = 0 with probability at most 3/|F, and so all
Ti = 0 with probability at most (3/|F|)δ ≤ 2−σ, as required. Thus, the adversary
cannot cheat undetected with probability greater than 2−σ. Nevertheless, the
simulation of when Ti = 0 and when Ti 6= 0 is needed to show that revealing
this fact does not leak any information about the real input.

Theorem 5.2. Let σ be a statistical security parameter, let F be a finite field,
and let f be a n-party functionality over F. Then, Protocol 5.3 securely computes
f with abort in the (Finput,Fmult,Fcoin,Frand,FcheckZero,Fproduct)-hybrid model
with statistical error 2−σ, in the presence of a malicious adversary controlling
t < n

2 parties.
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PROTOCOL 5.3 (Computing Arithmetic Circuits Over Any Finite F)

Inputs: Each party Pj (j ∈ {1, . . . , n}) holds an input xj ∈ F`.
Auxiliary Input: The parties hold the description of a finite field F and an
arithmetic circuit C over F that computes f on inputs of length M = ` · n. Let N
be the number of multiplication gates in C.

The protocol:

1. Parameter computation: Set δ to be the smallest value for which δ ≥ σ
log(|F|/3) .

2. Secret sharing the inputs:
(a) For each input vi held by party Pj , party Pj sends vi to Finput.
(b) Each party Pj records its vector of shares (vj1, . . . , v

j
M ) of all inputs, as

received from Finput. If a party received ⊥ from Finput, then it sends abort
to the other parties and halts.

3. Generate randomizing shares: For i = 1 to δ, the parties call Frand to receive
a sharing [ri].

4. Randomization of inputs: For each input wire sharing [vm] (where m ∈
{1, . . . ,M}) and for every i = 1, . . . , δ, the parties call Fmult on [ri] and [vm]
to receive [ri · vm].

5. Circuit emulation: Let G1, ..., GN be a predetermined topological ordering of
the gates of the circuit. For k = 1, ..., N the parties work as follows:

– Gk is an addition gate: Given tuples ([x], [r1 · x], . . . , [rδ · x]) and
([y], [r1 · y], . . . , [rδ · y]) on the left and right input wires respectively, the
parties locally compute ([x+ y], [r1 · (x+ y)], . . . , [rδ · (x+ y)]).

– Gk is a multiplication-by-a-constant gate: Given a constant a ∈ F and tu-
ple ([x], [r1 · x], . . . , [rδ · x]) on the input wire, the parties locally compute
([a · x], [r1 · (a · x)], . . . , [rδ · (a · x)]).

– Gk is a multiplication gate: Given tuples ([x], [r1 · x], . . . , [rδ · x]) and
([y], [r1 · y], . . . , [rδ · y]) on the left and right input wires respectively:
(a) The parties call Fmult on [x] and [y] to receive [x · y].
(b) For i = 1 to δ, the parties call Fmult on [ri ·x] and [y] to receive [ri ·x·y].

6. Verification stage: Let {([zk], [r1 · zk], . . . , [rδ · zk])}Nk=1 be the tuples on the

output wires of all multiplication gates and let {([βm,1], . . . , [βm,δ])}Mm=1 be
the tuples on the input wires of the circuit.
(a) For m = 1, . . . ,M , the parties call Frand to receive [βm,1], . . . , [βm,δ].
(b) For k = 1, . . . , N , the parties call Frand to receive [αk,1], . . . , [αk,δ].
(c) Compute linear combinations: For i = 1, . . . , δ:

i. The parties call Fproduct on vectors ([α1,i], . . . , [αN,i], [β1,i], . . . , [βM,i])
and ([ri · z1], . . . , [ri, ·zN ], [ri · v1], . . . , [ri · vM ]) to receive [ui].

ii. The parties call Fproduct on vectors ([α1,i], . . . , [αN,i], [β1,i], . . . , [βM,i])
and ([z1], . . . , [zN ], [v1], . . . , [vM ]) to receive [wi].

iii. The parties run open([ri]) to receive ri.
iv. Each party locally computes [Ti] = [ui]− ri · [wi].
v. The parties call FcheckZero on [Ti]. If FcheckZero outputs reject, the

parties output ⊥ and abort. Else, if it outputs accept, they proceed.
7. Output reconstruction: For each output wire of the circuit, the parties run

reconstruct([v], j), where [v] is the sharing of the value on the output wire, and
Pj is the party whose output is on the wire.
If a party received ⊥ in any call to the reconstruct procedure, then it sends ⊥
to the other parties, outputs ⊥ and halts.

Output: If a party has not aborted, it outputs the values received on its output
wires.
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Proof: We have already described the intuition behind the proof, and so
proceed directly. Let A be the real adversary; we construct the ideal adver-
sary/simulator S as follows. The simulation up to the verification stage is al-
most identical to the simulator in the proof of Theorem 4.3 for Protocol 4.1,
with appropriate differences for the fact that the randomization is carried out δ
times.

We now show how to simulate the verification step. As in the proof of The-
orem 4.3, the simulator S chooses r1, . . . , rδ ∈ F at random, and generates all
shares by computing (r1

i , . . . , r
n
i ) = share(ri, [ri]C), for every i = 1, . . . , δ. Next,

S simulates δ · (N + M) calls to Frand used to obtain all of the βm,i and αk,i
values. Now, for every i = 1, . . . , δ, S works as follows:

1. S simulates two invocations of Fproduct with A, receiving di,1 and di,2, re-
spectively, as the additive attack of A in these invocations.

2. S simulates the opening of ri by handing A all of the honest parties’ shares as
computed above. If any honest party would abort due to the opening values
sent by A (S knows whether this would happen since it has all the honest
parties’ shares), then S simulates the honest party sending ⊥ to all parties,
externally sends abortj for every Pj ∈ H to the trusted party computing f ,
and halts.

3. S simulates FcheckZero, determining the value of Ti to be equal or not equal
to zero, based on the process described below. If Ti 6= 0, then S simulates an
abort, as in the proof of Theorem 4.3. Else, S proceeds with the simulation.

If A carried out an additive attack when calling Fmult with [x] and [y] on a wire
(i.e., the actual value multiplication and not the randomization), and yet all
FcheckZero simulations return accept (either because Ti = 0 or because FcheckZero

returns accept with probability 1/|F| even when Ti 6= 0), then S outputs fail.
If S did not halt, then it concludes the output reconstruction as in the proof

of Theorem 4.3.
It remains to show how S determines the value of Ti as equal or not equal to

zero, for each i = 1, . . . , δ, and to show that this is the same distribution as in
a real execution. Fix i, and let dk, ek,i, fk,i, gmi

be as in the proof of Lemma 4.2
(the additional subscript of i for ek,i, fk,i, gm,i is due to the fact that there are
separate Fmult calls for each randomization multiplication; i.e., for each i =
1, . . . , δ and the associated ri). S determines the probability that Ti = 0 based
on the following mutually-exclusive cases:

1. Case 1 – there exists an m ∈ {1, . . . ,M} such that gm,i 6= 0: In this case, S
sets Ti = 0 with probability 1/|F| exactly.

2. Case 2 – gm,i = 0 for all m ∈ {1, . . . ,M} and dk = 0 for all k ∈ {1, . . . , N},
but there exists some k ∈ {1, . . . , N} for which fk,i 6= 0: As in the previous
case, in this case S sets Ti = 0 with probability 1/|F| exactly.

3. Case 3 – gm,i = 0 for all m ∈ {1, . . . ,M} and for all k ∈ {1, . . . , N} it
holds that fk,i − ri · dk = 0: In this case, S sets Ti = di,1 − ri · di,2 with
probability 1. (Note that this case includes cases that some dk, fk,i 6= 0 and
it happens that fk,i − ri · dk = 0, as well as the case that all dk, fk,i equal 0
and so A did not cheat.)
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4. Case 4 – gm,i = 0 for all m ∈ {1, . . . ,M} and there exists a k ∈ {1, . . . , N}
such that dk 6= 0 and fk,i − ri · dk 6= 0: In this case, S sets Ti = 0 with
probability 1/|F| exactly.

Observe that S knows all the additive values, and uses the random choice of ri
above, and so can determine all of the above cases. In addition, observe that this
covers all possible cases.

We now analyze all of the above cases and show that the distribution over the
zero/non-zero value of Ti generated by S is identical to that of a real execution.
As in Eq. (1) in the proof of Lemma 4.2, we have that

val([Ti])H =

N∑
k=1

αk,i ·(ek,i ·yk+fk,i−ri ·dk)+

M∑
m=1

βm,i ·gm,i+di,1−ri ·di,2. (3)

We use this to analyze the cases:

1. Case 1: Let m0 ∈ {1, . . . ,M} be such that gm0,i 6= 0. By Eq. (3) we have

val([Ti])H = 0 if and only if βm0,i =
(
−
∑N
k=1 αk,i · (ek,i · yk + fk,i − ri · dk)−∑M

m=1
m6=m0

βm,i · gm,i − di,1 + ri · di,2
)
·gm0,i

−1. By the uniform choice of βm0,i,

this holds in a real execution with probability 1/|F| exactly.
2. Case 2: Let k0 ∈ {1, . . . , N} be such that fk0,i 6= 0. As above, val([Ti])H = 0

if and only if αk0,i ·(fk0,i−ri ·dk0) = −
∑N

k=1
k 6=k0

αk,i ·(ek,i · yk + fk,i − ri · dk)−

di,1+ri·di,2, but since all dk = 0 we have αk0,i·(fk0,i−ri·dk0) = αk0,i·fk0,i and

so val([Ti])H = 0 if and only if αk0,i=

(
−
∑N

k=1
k 6=k0

αk,i · (ek,i · yk + fk,i − ri · dk)

−di,1 + ri · di,2) · fk0,i
−1. As in the previous case, by the uniform choice of

αk0,i, this holds in a real execution with probability 1/|F| exactly.
3. Case 3: In this case, all gm,i = 0, and all fk,i − ri · dk = 0. If this occurs

since all fk,i = 0 and all dk = 0, then clearly Ti = di,1 − ri · di,2 since A did
not cheat during the circuit emulation step. Otherwise, assume that for all
fk,i, dk 6= 0 it holds that fk,i−ri ·dk = 0. The computation of multiplication
gate Gk involves two calls to Fmult: one with xk and yk, and the other with
ri · xk and yk. By the definition of Fmult and the values dk, fk,i, the output
of the first call to Fmult is zk = xk · yk + dk, and the output of the second
call to Fmult is z′k = ri · xk · yk + fk,i. Writing xk · yk = zk − dk, we have
that z′k = ri · (zk − dk) + fk,i = ri · zk − ri · dk + fk,i. However, by this
case assumption, fk,i − ri · dk = 0 and so z′k = ri · zk. This means that the
invariant of the relation between the real and randomized values on the wires
is maintained, and formally that the kth term in the sum for Ti equals zero.
Since this holds for all k ∈ {1, . . . , N}, we have that Ti = di,1 − ri · di,2 with
probability 1, as determined by the simulator. (We remark that there is no
accumulated error ek,i in this case, since ek,i appears when the invariant on
the wires is not preserved.)

4. Case 4: Let k0 be the first k ∈ {1, . . . , N} for which fk,i−ri·dk 6= 0. Since this
is the first such k, it holds that ek0,i = 0 (note that some previous dk, fk,i may
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be non-zero, but as we saw in the previous case, if fk,i−ri ·dk = 0 then there
is no accumulated error). As in case 2, we have that val([Ti])H = 0 if and

only if αk0,i =

(
−
∑N

k=1
k 6=k0

αk,i · (ek,i · yk + fk,i − ri · dk)− di,1 + ri · di,2
)
·

(fk0,i−ri ·dk0)−1. where division by fk0,i−ri ·dk0 is possible since this value
is non-zero. As above, this equality holds with probability exactly 1/|F|, by
the uniform choice of αk0,i.

The above demonstrates that the simulation by S of the zero/non-zero value
of Ti is identical to a real execution. Furthermore, since the actual values of
αk,i, βm,i are never revealed in this protocol, the simulation only requires that
the probability that Ti is zero/non-zero be the same as in a real execution.5

It remains to show that S outputs fail with probability at most
(

3
|F|

)δ
, which

is at most 2−σ by the choice of δ in the protocol. Recall that S outputs fail if and
only if there exists some dk 6= 0 and yet all FcheckZero invocations return accept
in the simulation. This is indeed a fail, since the outputs received by the honest
parties in the real and ideal executions in this case would be different. Now,
assume that dk 6= 0 for some k ∈ {1, . . . , N}. Then, for every i, the simulation
case is either Case 3 or Case 4, where the actual case depends on the value
of ri chosen. FcheckZero returns accept in the ith invocation in the simulation
if either (a) case 3 occurs, meaning that fk,i − ri · dk = 0 which is equivalent
to ri = fk,i/dk, or (b) case 4 occurs and αk,i results in Ti = 0, or (c) Case 4
occurs and Ti 6= 0 but FcheckZero returns accept nevertheless. The probability
that accept is received from FcheckZero for any given i equals the probability that
one of (a), (b) or (c) occur. Each one independently occurs with probability
1/|F|: (a) because of the random choice of ri, (b) because of the random choice
of αk,i, and (c) because of the 1/|F| probability that FcheckZero returns accept
on non-zero input. By the union bound, the probability that one of these occur
is therefore upper bound by 3/|F|. We conclude by noting that the above holds
independently for each i ∈ {1, . . . , δ}, and thus the probability that FcheckZero

returns accept for all i ∈ {1, . . . , δ} is upper bound by (3/|F|)δ, as required.

Concrete efficiency. We analyze the performance of our protocol. The main
difference compared to Protocol 4.1 is that functionality Fmult is called δ times
for every input wire and 1+δ for every multiplication gate (once for multiplying
[x] and [y], and δ additional times for multiplying [ri · x] with [y]). Thus, the
overall number of multiplications is (δ·M+(1+δ)·N)·Fmult, where M denotes the
number of inputs and N the number of multiplication gates. Another difference
is that now there are δ calls to Frand for generating [ri], and δ · (M +N) calls for

5 If βm0,i were to be revealed, as in Protocol 4.1 for large fields, then the question
of whether the equation holds is something that the distinguisher could determine
(since it knows all of the yk values from the input, and it can receive all of the
dk, ek,i, fk,i, gm,i values from the adversary). Thus, it would not suffice to set Ti = 0
with the correct probability but as a function of the actual values. However, S does
not know the yk values and so could not determine this.
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generating all the αk,i, βm,i values (which are secret here, unlike in Protocol 4.1).
In addition, there are 2δ calls to Fproduct, δ calls to open for [ri], δ calls to
FcheckZero (each of which reduces to one call to Frand, one Fmult and one opening),
and M + L calls to reconstruct as part of Finput and obtaining output (where
L equals the number of output wires). Assuming that Fproduct is equivalent to
Fmult (as will be shown in Section 6.2), we have that the overall exact cost of
the protocol is

(δ·M+(1+δ)·N+3δ)·Fmult+(δ·(M+N)+2δ)·Frand+(M+L)·reconstruct+2δ·open.

Amortizing over the size of the circuit, we have that the average cost is (1 + δ) ·
Fmult + δ · Frand per multiplication gate.

We compare now the cost of running Protocol 5.3 with δ = 1 to the cost
of running Protocol 4.1 for large fields. The amortized cost of Protocol 4.1 is
2 · Fmult per multiplication gate, whereas the cost of Protocol 5.3 with δ = 1
is 2 · Fmult + 1 · Frand. Thus, the difference between these protocols depends on
the cost of Frand. As we will see in Section 6.2, the cost of Frand for our specific
instantiation for a not-small number of parties is about a third of the cost of
Fmult, making Protocol 5.3 about 17% slower.

It is also instructive to compare the cost of running Protocol 4.1 with a large
field versus running Protocol 5.3 with a smaller field. Concretely, assume that the
computation being carried out is over the integers, and that all values are smaller
than 230, and that security 2−60 is desired. Then, the question that may arise is
whether one should run Protocol 4.1 over a 60-bit field, or whether one should
run Protocol 5.3 with δ = 2 over a 30-bit field. The amortized cost is 2 ·Fmult for
Protocol 4.1 versus 3 ·Fmult +1 ·2 ·Frand ≈ 3.66 ·Fmult for Protocol 5.3 (assuming
the cost of Frand to be one-third of Fmult). Clearly, the communication cost is
double for a 60-bit field, and so the expected communication using Protocol 5.3
is lower in such a case. Regarding computation, empirical experimentation is
needed to make a comparison.

Reducing memory. As in Protocol 4.1, when the circuit is huge, it is highly
undesirable to store all values until completion in order to carry out the veri-
fication. Thus, in such cases, it is preferable to compute the verification while
evaluating the circuit. However, Protocol 4.1 required running a full verification
at intermediate steps to do this, and this incurred additional work to rerandom-
ize the active wires for the next phase, and so on (see the discussion at the end
of Section 4). In contrast, Protocol 5.3 is much more amenable to verification-
on-the-fly because the α, β values are never revealed. Thus, it is possible to call
Frand to obtain the [βm,i] shares at the input phase, and to call Frand to obtain
[αk,i] shares during multiplications. Then, the parties can locally store the par-
tial sums for ui and wi, and all previous shares that are no longer needed for
the circuit evaluation can be discarded. This method for verification-on-the-fly
is also very easy to implement.

Reactive computation. In Protocol 4.1 where the α, β values are public, it
is necessary to open [r] in order to compute [T ] = [u] − r · [w]. This is because
otherwise the adversary can input an additive value in the multiplication [r] · [w]
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that can cancel out a previous error (note that at this stage, α, β are already
known and so the adversary has enough information to make the errors cancel).
In contrast, in Protocol 5.3, the α, β values are never revealed. Thus, it is not
necessary to open the [ri] shares, and the parties can compute [Ti] = [ui]− [ri] ·
[wi], using Fmult with [ri] and [wi]. In a regular one-off computation, this makes
no real difference. However, in the case of reactive computation, where outputs
are revealed, and the computation continues, it is undesirable to open the [ri]
shares, since new randomization is necessary. Thus, in such cases, one can leave
the [ri] shares secret, and compute [Ti] using Fmult as described.

6 Instantiations and Experimental Results

Our protocol is generic and can be instantiated in many ways (with different
secret sharing schemes, multiplication protocols, and more). Clearly, the effi-
ciency of our protocol depends significantly on the instantiations. In order to
demonstrate the efficiency of our protocol, we plug in the instantiations pre-
sented in [22], which meet all of our requirements. We consider two secret sharing
schemes: replicated secret sharing for 3 parties, and Shamir sharing [25] for any
number of parties. Recall that our protocol requires instantiations for function-
alities Fmult and Frand, and for procedures open and reconstruct (Finput, Fcoin

and FcheckZero are constructed generically using these functionalities and proce-
dures). We also need to show how to securely realize Fproduct for Protocol 5.3; we
begin by showing this in Section 6.1. Then, in Section 6.2 we present the concrete
costs of the instantiations from [22] along with Fproduct from Section 6.1. Finally,
in Section 6.3, we present experimental results of the implementation of our pro-
tocol and compare it to prior work. In the full version of this paper, we describe
the protocols for the instantiation based on the Shamir sharing, including proofs
that the protocols securely compute Frand and Fmult.

6.1 Securely Realizing Functionality 5.1 – Fproduct

Fproduct with Shamir secret sharing. We begin by describing how to securely
realize Fproduct when Shamir sharing is used. Let [x1], . . . , [x`] and [y1], . . . , [y`]

be two vectors of inputs, where the parties wish to compute shares of
∑`
i=1 xi ·yi.

The key observation here is that most (if not all) protocols for multiplication
based on Shamir sharing have two phases:

1. Local multiplication: In this phase, each party locally multiplies its shares
on the two values. This yields a sharing of the product of the two values
on a degree-2t polynomial. Since t < n/2, there is enough “information” to
reconstruct the polynomial (since 2t < n).

2. Degree reduction: In the second phase, the parties run an interactive protocol
that reduces the degree of the polynomial generated in the previous step back
to degree-t, without changing its constant term.

Observe that the protocols of [5, 18, 12] and others all follow this framework.
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The crucial observation regarding how to compute Fproduct is that the parties
can begin by locally computing the sum of the products of their input shares.
Specifically, denote Pj share of xi and yi by xji and yji , respectively. Then, each

Pj can locally compute zj =
∑`
i=1 x

j
i · y

j
i , and the shares z1, . . . , zn constitute a

sharing of degree-2t polynomial with constant-term
∑`
i=1 xi·yi. All that therefore

remains is for the parties to run the degree reduction on these shares, and they
obtain a good Shamir sharing of the sum of products.

The above strategy securely computes Fproduct if the degree reduction phase
of the protocol has the property that the only attack possible by the adversary
is an additive attack. That is, if the input shares define a degree-2t polynomial
hiding the secret z, then the adversary can cause the parties to output a degree-t
sharing of z + d where d can be extracted by a simulator (exactly as in Fmult).
In the full version of this paper, we show that this property holds for the semi-
honest multiplication protocol of [12].

Fproduct with replicated secret sharing. In the multiplication protocol of [2]
which is also shown to be secure up to an additive attack in [22]), the parties first
locally compute a sum of 3 products of their local shares (given replicated shares
(si, si+1) and (ti, ti+1) of two values s and t held by Pi, each party computes
ui = si · ti+si+1 · ti+si · ti+1). Then, in the next step, each party sends its share
ui – randomized using correlated randomness – to party Pi+1, who defines the
pair (ui+1, ui) as its share of the output. The simple observation here is that if
each party computes many ui’s for each product in the vector and then sums
them all together, the result will be a replicated secret sharing of the entire sum
of products.

Efficiency. Using the above method, the cost of a sum of products for any
number of terms is local operations on the vector (similar to addition gates in
the circuit) and interaction equivalent to a single multiplication. Thus, Fproduct

essentially costs the same as Fmult.

Applications. Beyond the use of Fproduct in Protocol 5.3 for computing the
random linear combinations, this subprotocol can be used to significantly speed
up many secure statistical operations. For example, in order to securely com-
puted the standard deviation over a large list, the main cost is computing the
sum of squares (of the difference between each item and the mean), and then
dividing by the length of the vector. Using our method, this can be carried out
on millions of data items at the cost of a single multiplication followed by a
single division (and if the number of data items is known, then the division can
be carried out on the result).

6.2 Instantiations from [22] and their Cost

As we have discussed above, we present the cost of Fmult, Frand, open and
reconstruct for Shamir sharing (for any number of parties n) and for replicated
secret sharing (for 3 parties), as described in [22]. The communication costs are
presented in Table 1. In the two instantiations we consider for Shamir sharing,
Frand can be instantiated using PRSS [10] which has zero communication cost
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but has computation that is exponential in the number of parties and so is only
good for up to 7 or so parties (as shown in [22]). In addition, Frand can be
instantiated using VAN, which is the method of [4] that utilizes Vandermonde
matrices. In both cases, Shamir sharing uses the DN multiplication protocol
of [12].

Fmult Frand open reconstruct

Replicated secret sharing (three parties) 1 0 4 2

Shamir sharing (few parties), Frand with PRSS 6 0 n− 1 1

Shamir sharing (many parties), Frand with VAN 6 2 n− 1 1

Table 1. The communication cost per party for instantiations in [22], written as the
number of field elements sent.

Table 1 counts the communication costs of each protocol instantiation. The
computational costs are low overall (since we use secret-sharing based primi-
tives), except for PRSS which is exponential in the number of parties and thus
only suitable for a small number. In Section 6.3, we show concrete running times
for the replicated secret sharing and Shamir-sharing with VAN instantiations.

Overall protocol costs. As shown in Sections 4 and 5, the cost per multipli-
cation gate of Protocol 4.1 is 2 · Fmult, and the cost per multiplication gate of
Protocol 5.3 is (1 + δ) · Fmult + δ · Frand. Plugging these into the above instan-
tiations, we obtain a maliciously secured protcol for three-parties that requires
each party to send only 2 field elements per multiplication gate when the filed is
large. For the multi-party setting, we obtain a protocol with a communication
cost of only 12 field elements per multiplication gate for each party when the
field is large. This is shown in Table 2, including a comparison to the cost of the
protocol of [22].

Protocol of [22]
with δ = 1

Protocol 4.1
(large field)

Protocol 5.3
with δ = 1

Protocol 5.3
with δ = 2

Replicated secret sharing
(three parties)

4 2 2 3

Shamir (few parties),
Frand with PRSS

36 12 12 18

Shamir (many parties),
Frand with VAN

42 12 14 22

Table 2. The communication cost per party for the instantiations in Table 1 and the
protocol of [22], written as the number of field elements sent per multiplication gate.
(Note that Protocol 5.3 with δ = 2 has smaller field elements and thus more elements
sent could actually mean less bandwidth.)

6.3 Experimental Results

We implemented Protocol 4.1 with two instantiations: replicated secret sharing
for 3 parties and Shamir sharing using VAN for Frand and DN [12] for Fmult (see
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Section 6.2). The field we used for all our experiments was the 61-bit Mersenne
field (and so security is approximately 2−60). We ran our protocols for different
numbers of parties on a series of circuits of different depths, each with 1,000,000
multiplication gates, 1,000 inputs wires, 50 output wires. The circuits had 4
different depths: 20, 100, 1,000 and 10,000. The experiment was run on AWS
in two configurations: a LAN network configuration in a single AWS region
(specifically, North Virginia), and a WAN network configuration in three AWS
regions (specifcally, North Virginia, Germany and India). Each party was run in
an independent AWS C4.large instance (2-core Intel Xeon E5-2666 v3 with 2.9
GHz clock speed and 3.75 GB RAM). Each execution (configuration, number of
parties, circuit) was run 5 times, and the result reported is the average run-time.

Circuit
Depth

3
(replicated)

3 5 7 9 11 30 50 70 90 110

20 319 826 844 1,058 1,311 1,377 2,769 4,053 5,295 6,586 8,281
100 323 842 989 1,154 1,410 1,477 3,760 6,052 8,106 11,457 15,431
1,000 424 1,340 1,704 1,851 2,243 2,887 12,144 26,310 33,294 48,927 79,728
10,000 1,631 6,883 7,424 8,504 12,238 16,394 61,856 132,160 296,047 411,195 544,525

Table 3. LAN configuration execution times in milliseconds of a circuit with 1,000,000
multiplication gates, for different depths. The first column gives the running time for
the replicated secret sharing version; all other columns are the Shamir sharing for
different numbers of parties.

3
(replicated)

3 5 7 9 11 30 50 70 90 110

Protocol 4.1 319 826 844 1,058 1,311 1,377 2,769 4,053 5,295 6,586 8,281

Protocol of [22] 513 1,229 1,890 3,056 4,009 5,187 15,954 28,978 44,599 58,966 72,096

Speedup 161% 149% 224% 289% 306% 377% 576% 715% 842% 895% 871%

Table 4. LAN configuration execution times in milliseconds of a circuit with 1,000,000
multiplication gates and depth 20. The times for [22] are for the best protocol for the
number of parties.

In order to compare our protocol to that of [22], we compare the running
times in a LAN configuration for depth 20 (this is because that is the only
configuration run by them); see Table 4.

As can be seen, our protocol outperforms the best protocol of [22] signifi-
cantly, even for a small number of parties. However, as the number of parties
increases, the gap widens. Observe that the communication difference between
the protocols, as shown in Table 2 would only predict that our protocol would
run 3 times faster than that of [22], whereas experiment yield an almost 10
times faster result for a large number of parties. This may be due to additional
computational work involved in generating the Beaver triples in [22].

Finally, in Table 5, we present the experimental results of running our pro-
tocol in the WAN configuration. Due to the many rounds of communication, the
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results are significantly slower, but demonstrate that it is even possible to run
for quite a large number of parties (e.g., 50 parties) with reasonable time.

Circuit
Depth

3
(replicated)

3 5 7 9 11 30 50

20 3502 20,492 27,772 28,955 24,482 24,729 87,355 128,366
100 10,712 45,250 53,872 50,719 55,716 56,482 134,860 197,321

Table 5. WAN configuration (North Virginia, Germany and India) execution times in
milliseconds of a circuit with 1,000,000 multiplication gates, for different depths.
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