
XS-circuits in Block Ciphers ∗

Sergey Agievich

Research Institute for Applied Problems of Mathematics and Informatics

Belarusian State University

agievich@{bsu.by,gmail.com}

Abstract

XS-circuits describe block ciphers that utilize 2 operations: X) bitwise modulo 2 ad-

dition of binary words and S) substitution of words using key-dependent S-boxes with

possibly complicated internal structure. We propose a model of XS-circuits which, de-

spite the simplicity, covers a rather wide range of block ciphers. In our model, several

instances of a simple round circuit, which contains only one S operation, are linked

together and form a compound circuit called a cascade. S operations of a cascade are

interpreted as independent round oracles. We deal with diffusion characteristics of cas-

cades. These characteristics are related to the cryptographic strength of corresponding

block ciphers. We obtain results on invertibility, transitivity and 2-transitivity of map-

pings induced by round circuits and their cascades. We provide estimates on the first

and second activation times where the ith activation time is the minimum number of

rounds which guarantees that at least i round oracles get different queries while pro-

cessing two different cascade’s inputs. The activation times are related to differential

cryptanalysis. We introduce the similarity and duality relations between round circuits.

Cascades of related circuits have the same or dual diffusion characteristics. We find

canonical representatives of classes of similar circuits and show that the duality between

circuits is related to duality between differential and linear attacks against correspond-

ing block ciphers. We discuss families of circuits with growing number of inputs. Such

families can be used to build wide-block ciphers.

Keywords: block cipher, round permutation, S-box, circuit, diffusion, transitivity, 2-transitivity.

1 Introduction

A circuit is a directed acyclic graph that describes an algorithm. Leaves of the circuit are
inputs of the algorithm, non-leaves are either intermediate results or outputs. Non-leaves are
labeled by symbols of operations. The configuration when a vertex v with a label O receives
arcs from vertices u1, u2, . . . means that v = O(u1, u2, . . .).

Many symmetric cryptographic algorithms may be described by circuits in which vertices
are binary words of particular length m and operations belong to the following set:

R) cyclic shift (rotation);

X) bitwise modulo 2 addition;

∗Related programs and materials can be found at https://github.com/agievich/xs.
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A) addition of words as integers modulo 2m;

L) bitwise logical AND and OR;

M) multiplication of words as elements of the field of order 2m;

S) substitution of words with preservation of their length m.

Here R and S are unary operations, they are parametrized by a shift value and a substitu-
tion rule respectively. All other operations are binary. For small m, the operation S is usually
implemented using so-called table S-boxes through table lookup.

Different combinations of operations give different types of circuits. Some of them, for
example, circuits of types ARX and LRX, have gained much attention in the last decade.
In the circuits mentioned, the operation S is intentionally not used to avoid table lookup.
That is because in modern processors the time of lookup may depend on the sequence of
lookup queries and this dependence forms the basis for mounting timing attacks. But S
should not only mean table S-boxes. The operation S may represent a complex cryptographic
transformation, possibly constructed using another circuit with a smaller length of processing
words. The internal circuit of S can be of type ARX or LRX and, therefore, be protected
against timing attacks.

The simplest nontrivial circuits with the operation S are the circuits of type XS. They
describe, for example, Feistel ciphers or encryption modes like CBC. In the first case, S is
instantiated by round functions with (in general) different round keys. In the second case, S
is itself a block cipher with some fixed key.

The examples above are typical. In these examples, S describes a key-dependent and
therefore a priori secret transformation. Following the cryptographic tradition, we say that S
is instantiated by an oracle S: its response v = S(u) to a query u can be determined only by
querying.

In most cases below we require that S is bijective. Responses of such an oracle are weakly
connected with each other: S returns different v when processing different u. That is the only
a priori information on responses. For bijective S, we allow access to the inverse oracle S−1

which on a query v gives a response u.
If a circuit contains several operations S, then they may be instantiated by independent

oracles S1, S2, . . . or by multiple identical instances of a single oracle S. Feistel ciphers are
described by circuits of the first type (call them inhomogeneous), encryptions modes by circuits
of the second type (homogeneous).

A circuit of a block cipher usually contains multiple identical parts connected consecu-
tively. These parts represent round permutations of the cipher. Further we consider the
simplest round circuits which contain only one S operation. In Section 2 we provide a matrix
model of such circuits. Similar models were proposed in [1, 3, 4, 16]. Our model is more
rigorous, and due to this fact we obtain more targeted and precise results. In Section 4 we in-
troduce cascades, that is, inhomogeneous compositions of round circuits. Sections 5, 6, 8 deal
with diffusion characteristics of cascades. These characteristics are related to cryptographic
strength of corresponding block ciphers. Sections 7 and 9 are devoted to the similarity and
duality relations between round circuits. Cascades of related circuits have the same or dual
diffusion characteristics. We find canonical representatives of classes of similar circuits and
show that duality between circuits is related to duality between differential and linear attacks
against corresponding block ciphers. In Section 10 we discuss families of circuits with growing
number of inputs. Such families can be used to build wide-block ciphers.
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As a final remark, there is only one step from XS- to XMS-circuits. A circuit of the
latter type is used, for example, in the AES block cipher. Usually XMS-circuits are classified
as XLS where L stands not for logical operations but for linear transformations over tuples
of underlying words. Actually, these transformations are described by circuits of type XM,
so the overall XLS-circuit indeed has type XMS in our notations. It is interesting that XMS-
circuits are also extensively used in message authentication algorithms like GCM [18]. In
these algorithms, S is a block cipher with a fixed key (the homogeneous case).

2 Preliminaries

Consider a circuit with the same number n of inputs and outputs. Call n its dimension.
Let x1, . . . , xn be inputs and y1, . . . , yn be outputs. They are binary words of length m
which we interpret as elements of the field F2m . In most cases, the specific value of m does
not matter, so we usually write F instead of F2m . Arrange inputs and outputs into the
vectors x = (x1, . . . , xn) and y = (y1, . . . , yn).

Elements of F can be added together using the operation X and substituted separately
using the operation S. To simplify notations for sums, we multiply each potential summand
by zero or unity of the field F and sum all the resulting products. Multiplication by 1 means
inclusion into the sum, multiplication by 0 means exclusion.

We call the number of S operations used in the circuit its S-complexity. Further we
concentrate mainly on the circuits of S-complexity 1. From these simplest circuits a circuit
of arbitrary complexity can be constructed.

For each instantiation of its S operations, the circuit induces a mapping F n → F n : x 7→ y.
We are mainly interested in such a circuit that all these mappings are invertible. Two circuits
of the same S-complexity are equivalent if their mappings are necessarily identical under
identical instantiations. Among all pairwise equivalent circuits, find one which contains the
minimum number of X operations. Call this number the X-complexity and assign it to all
circuits of the equivalence class.

A circuit of dimension n and S-complexity 1 can be described by three parameters: a
column vector a = (a1, . . . , an)T , a matrix B = (bij), i, j = 1, . . . , n, and a row vector c =
(c1, . . . , cn). Coordinates of the vectors and elements of the matrix belong to the set {0, 1} ⊂
F . Despite binarity, a, B and c can be used in operations with arbitrary vectors and matrices
over F .

The parameters (a,B, c) and an oracle S, some instantiation of S, describe the following
mapping x 7→ y:

1) u← a1x1 + a2x2 + . . .+ anxn;

2) v ← S(u);

3) for i = 1, . . . , n: yi ← b1ix1 + b2ix2 + . . .+ bnixn + civ.

Denote this mapping by (a,B, c)[S]. It may be written in the matrix form:

(a,B, c)[S](x) = xB + S(xa)c.

Let us exclude from consideration zero vectors a and c, because with them the S-complexity
actually reduces to 0. Indeed, if a = 0 then S gets only one (zero) query, and if c = 0 then S
is not queried at all.
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It is convenient to encode the parameters (a,B, c) by the matrix

(
B a
c 0

)
=


b11 b12 . . . b1n a1
b21 b22 . . . b2n a2
. . . . . . . . . . . . . . . . . . . . .
bn1 bn2 . . . bnn an
c1 c2 . . . cn 0

 .

Call it the extended matrix of the circuit. In Table 1 we provide extended matrices of some
well-known circuits.

In each column of an extended matrix there is at least one unity (otherwise, either the
corresponding circuit zeroizes some output coordinate or a = 0). Under direct implementation
of the extended matrix, each next unity in the column requires an extra X addition. From
here we obtain the upper bound on the X-complexity of (a,B, c): the number of unities in its
extended matrix minus the number of columns.

Returning to Table 1, the Feistel, GFN1, Matsui and SkipjackX circuits all have X-comple-
xity 1. The X-complexity of LaiMassey, SMS4 and MARS3 is equal to 3.

3 Invertibility

We have agreed to concentrate on circuits that induce invertible mappings. Let us give a
formal definition.

Definition 1. A circuit (a,B, c) with nonzero a and c is invertible if the corresponding map-
ping (a,B, c)[S] is invertible for any bijective oracle S over any field F = F2m .

Theorem 1. A circuit (a,B, c) of dimension n is invertible if and only if one of the following
cases holds:

1. The matrix B is invertible and cB−1a = 0.

2. The matrices B, (B a) and
(
B
c

)
have ranks n− 1, n and n respectively.

In the second case, the extended matrix of the circuit is invertible.

Proof. Let us consider 2 cases: B is invertible or not.
1. Let B be invertible. Then yB−1 = x+ S(xa)cB−1 and yB−1a = xa+ S(xa)cB−1a.
1.1. If cB−1a 6= 0 then

xa+ S(xa) = yB−1a.

For the circuit to be invertible it is necessary that for any v = yB−1a there exists a solution u =
xa of the equation u + S(u) = v. But the mapping u 7→ u + S(u) can be non-bijective (that
is, S may not be a complete mapping), and the target equation may not have solutions for a
certain v.

1.2. If cB−1a = 0 then xa = yB−1a and inversion is defined by the equation

x = yB−1 + S(yB−1a)cB−1.

2. Let B be non-invertible. To determine x from y = xB + S(xa)c it is necessary to get
the response S(xa) of S. This response can be obtained either directly from y or indirectly
by determining xa from y and then using the query xa to S.
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Table 1: Extended matrices of XS-circuits of S-complexity 1

Circuit Extended matrix Comments

Feistel

0 1 1
1 0 0
1 0 0

 Used in the Lucifer and DES block ciphers which were
developed under the direction of H. Feistel [11].

LaiMassey

1 0 1
0 1 1
1 1 0

 Used by Lai X. and J. Massey in the IDEA block ci-
pher [13].

Matsui

0 0 1
1 1 0
0 1 0

 Used by M. Matsui in the MISTY2 block cipher [17].

SkipjackA


0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
1 1 0 0 0

 Used in the Skipjack block cipher [19]. Describes its first
and third 8-round cascades.

SkipjackB


0 0 1 0 1
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0

 Describes the second and forth 8-round cascades of Skip-
jack.

MARS3


0 0 0 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 1 1 0 0


Used in the MARS block cipher [6]. In the specification of
MARS the circuit is called the type-3 Feistel network. We
modify the original circuit by replacing two operations A
by X.

SMS4


0 0 0 1 0
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 0

 Used in the SMS4 block cipher [10].

GFN1



0 0 . . . 0 1 1
1 0 . . . 0 0 0
0 1 . . . 0 0 0
. . . . . . . . . . . . . . . . . .
0 0 . . . 1 0 0
1 0 . . . 0 0 0


The generalization of Feistel to an arbitrary dimension.
Introduced in [24] under the name Generalized Feistel Net-
work of type 1.

SkipjackG



0 0 . . . 0 0 1
1 0 . . . 0 0 0
0 1 . . . 0 0 0
. . . . . . . . . . . . . . . . . .
0 0 . . . 1 0 0
1 0 . . . 0 1 0


The generalization of the Skipjack circuits to an arbitrary
dimension. Proposed in [22].
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2.1. To determine xa from y there must exist a row vector α ∈ F n such that Bα = a,
cα = 0 and consequently xa = yα. After determining u = xa we can find v = S(u) and
obtain the equation x(B a) = (y+vc, u) in x. This equation can have more than one solution
since the matrix (B a) does not have full rank. Indeed, B is not invertible and a = Bα is a
linear combination of columns of B.

2.2. Suppose that S(xa) can be determined by y. Then α has to satisfy the equa-
tions Bα = 0 and cα = 1 which can be used to calculate v = S(xa) = yα and u = xa =
S−1(v). After determining u, we again obtain the equation x(B a) = (y+vc, u). In order that
this equation has a unique solution, the matrix (B a) has to have full rank. If rank(B a) = n
then rankB = n − 1. Therefore, all nonzero row vectors β ∈ F n such that Bβ = 0 are
collinear to α. Since cα = 1 and consequently cβ 6= 0, rank

(
B
c

)
= n.

3. If rankB = n− 1 and rank(B a) = rank
(
B
c

)
= n then the extended matrix

(
B a
c 0

)
has

full rank. Indeed, none of the rows of (B a) can be expressed as a linear combination of other
rows. In case the row (c 0) is a linear combination of rows of (B a), the vector c is a linear
combination of rows of B. But it contradicts the fact that

(
B
c

)
has full rank. �

We refer the circuits which correspond to the different cases of Theorem 1 as circuits
of type I and type II respectively. From the proof above it follows that a type I circuit is
invertible even if its oracle S is not bijective. In Table 1 only the SkipjackX and Matsui circuits
are of type II.

Theorem 2. For an invertible circuit (a,B, c) with an oracle S the inverse mapping
(a,B, c)[S]−1 is again determined by an XS-circuit of S-complexity 1. This inverse circuit
is defined as follows:

1. In the first case of Theorem 1 the inverse circuit uses the same oracle S and its descrip-
tion is (B−1a,B−1, cB−1).

2. In the second case of Theorem 1 the inverse circuit uses the inverse oracle S−1 and its
extended matrix is inverse of the extended matrix of (a,B, c).

Proof. Let us continue the previous proof. The inverse circuit of the first case was already
described in clause 1.2. Consider the second case.

The left bottom element of the inverted extended matrix must be 0:(
B a
c 0

)−1
=

(
D α
γ 0

)
.

Indeed, otherwise Bα = a which contradicts the fact that (B a) has full rank.
Return to the equation x(B a) = (y + vc, u) of clause 2.2. Multiplying both parts of this

equation by the matrix
(
D
γ

)
we obtain

x = yD + vcD + uγ.

The required result follows from the fact that cD = 0 and u = S−1(v) = S−1(yα). �

Further we denote the inverse of a circuit (a,B, c) by (a,B, c)−1.

Example 1. The matrix B of the GFN1 circuit is a special circulant: multiplication of a row

(column) vector on the right (left) by B causes left (right) cyclic shift of the vector. The matrix B−1
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induces cyclic shifts in the reverse direction. Therefore, the extended matrix
(
B−1 B−1a
cB−1 0

)
of GFN1−1

has the form 

0 1 0 . . . 0 0

0 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 0

1 0 0 . . . 0 1

0 1 0 . . . 0 0

 .

The extended matrix of SkipjackG−1:

0 0 . . . 0 0 1

1 0 . . . 0 0 0

0 1 . . . 0 0 0

. . . . . . . . . . . . . . . . . .

0 0 . . . 1 0 0

1 0 . . . 0 1 0



−1

=



0 1 0 . . . 0 0

0 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 0

0 1 0 . . . 0 1

1 0 0 . . . 0 0

 .

�

4 Regularity

Let us combine several instances of a circuit (a,B, c) by connecting one instance’s output
to the next instance’s input. Call the resulting XS-circuit a cascade. Its dimension is the
dimension of the underlying circuit (a,B, c). The cascade is invertible if (a,B, c) is invertible.

In cryptography, instances, parts of a cascade, are usually called rounds. We suppose that
rounds use independent oracles S1, S2, . . . or, in other words, cascades are inhomogeneous
XS-circuits. Suppose also that round oracles are bijective.

Let (a,B, c)t be the t-round cascade. Its S-complexity equals t and X-complexity does not
exceed the the total X-complexity of the rounds. If (a,B, c)t is invertible then its inverse is the
t-round cascade (a,B, c)−t which contains t rounds of (a,B, c)−1 and also has S-complexity t.

Setting some y(0) ∈ F n as the cascade input, we obtain y(1) ∈ F n after the first round,
y(2) ∈ F n after the second one and so on. Let (a,B, c)t[S1, . . . , St] be the mapping y(0) 7→ y(t)
induced by the cascade (a,B, c)t with oracles S1, . . . , St.

Round outputs satisfy the following equations:

y(t) = y(0)Bt +
t∑

τ=1

Sτ (y(τ − 1)a)cBt−τ , t = 1, 2, . . . .

They may be rewritten as follows:

y(t) = y(0)Bt +
t∑

τ=1

v(τ)cBt−τ ,

v(t) = St(u(t)),

u(t) = y(0)Bt−1a+
t−1∑
τ=1

v(τ)cBt−1−τa, t = 1, 2, . . . .

Here u(1), . . . , u(t) is the trace of queries and v(1), . . . , v(t) is the trace of responses. More
precisely, we deal with t-traces. Since round oracles are independent, there exist |F |t different
t-traces of each type.
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In the cryptographic context, each cascade’s round has to establish complex dependencies
between certain coordinates of input and output vectors and simultaneously has to shuffle all
the coordinates. Using related terms of Shannon, rounds are responsible for confusion and
diffusion. In our case confusion is managed by round oracles, diffusion is maintained by the
round circuit (a,B, c) itself.

Further we introduce several characteristics of diffusion. In particular, we will analyze
how a cascade processes not one but two vectors: y(0) and y′(0). The additional vector y′(0)
produces an additional sequence y′(1), y′(2), . . . of round outputs. This sequence induces an
additional trace of queries and is induced by an additional trace of responses. A query u′(t)
and, consequently, a corresponding response v′(t) can differ from u(t) and v(t). Traces are
compatible, that is, each oracle returns the same responses to the same queries and different
responses to different queries.

We are interested in the dynamics of the differences

∆y(t) = y(t) + y′(t), ∆u(t) = u(t) + u′(t), ∆v(t) = v(t) + v′(t)

during the rounds. In the equations above, + can be replaced with − (because F is a field of
characteristic 2), that is why the term “difference” is relevant.

The difference ∆u(t) is the input difference of St, ∆v(t) is the output one. The relation
between these differences may be written as follows:

∆v(t) = ∆St(∆u(t)).

The compatibility of traces means that ∆v(t) = 0 if and only if ∆u(t) = 0.
In cryptography, the event ∆u(t) 6= 0 is called the activation of St. In case of the activation,

the output difference ∆v(t) is hard to predict during cryptanalysis. The more activations a
cascade guarantees while processing different y(0) and y′(0), the higher quality of the diffusion.

Relations between differences are derived from the previous equations by inserting the
symbol ∆ before the expressions y(t), y(0), v(τ), v(t), St, u(t), etc. For example,

∆u(t) = ∆y(0)Bt−1a+
t−1∑
τ=1

∆v(τ)cBt−1−τa.

Definition 2. The lag of a circuit (a,B, c) is the minimum positive integer l such
that cBl−1a = 1.

The lag l characterizes the relationship between a query u(t) and previous responses
v(1), . . . , v(t − 1): For a suffuciently large t the query u(t) depends on v(t − l) but not
on v(t− l + 1), . . . , v(t− 1). The smaller the lag, the higher quality of diffusion because un-
predictable oracle’s responses are used faster to create new queries. The lag also characterizes
the relationship between ∆u(t) and ∆v(1), . . . ,∆v(t− 1).

Circuits that provide reasonable (rational) diffusion are described by the following defini-
tions. Further we justify the relevance of the requirements of these definitions.

Definition 3. An invertible circuit (a,B, c) of dimension n is regular if the following condi-
tions hold:

1) the matrix C =


cBn−1

. . .
cB
c

 is invertible;
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Table 2: Lags of the regular standard circuits

Circuit Lag Inverse lag Sum of lags

Feistel 1 1 2

Matsui 2 1 3

SkipjackA 1 4 5

SkipjackB 4 1 5

MARS3 1 1 2

SMS4 1 1 2

GFN1 1 n− 1 n

SkipjackG 1 n n+ 1

2) the matrix A =
(
a Ba . . . Bn−1a

)
is invertible.

Definition 4. A circuit (a,B, c) of dimension n is strongly regular if it is regular and addi-
tionally

3) the matrix Cl =


cB(n−1)l

. . .
cBl

c

 is invertible. Here l is the lag of (a,B, c).

The forthcoming Corollary 3 shows that the lag of a regular circuit doesn’t exceed its
dimension. Therefore, in the last definition, l is finite and the third condition is correct.

Trivially, if a regular circuit has lag 1 then this circuit is strongly regular. Further we
prove more complicated facts, for example, the fact that mutually inverse circuits are both
regular or both non-regular (Corollaries 1 and 2). Despite this fact, the following example
shows that mutually inverse circuits are not necessarily strongly regular simultaneously.

Example 2. FourCell is a circuit proposed in [9]. Its extended matrix has the form
0 0 0 0 1

1 0 0 1 0

0 1 0 1 0

0 0 1 1 0

0 0 0 1 0

 .

FourCell has lag 4. The circuit is regular but not strongly regular. The inverse circuit has lag 1 and

therefore is strongly regular. �

All circuits of Table 1 except LaiMassey are strongly regular. In Table 2 we report their lags
as well as inverse lags, that is, lags of inverse circuits. The lags of GFN1−1 and SkipjackG−1

are easily calculated using Example 1.

5 Transitivity

Definition 5. A cascade (a,B, c)t of dimension n is transitive if for any α, β ∈ F n there exist
round oracles S1, . . . , St such that

(a,B, c)t[S1, . . . , St](α) = β.
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A circuit (a,B, c) is transitive if (a,B, c)t is transitive for some t. The minimal such t is the
index of transititvity of (a,B, c).

Transitivity indeed characterizes diffusion in the sense that for a sufficiently large t any y(t)
is reachable from any y(0). The smaller the index of transitivity, the faster the diffusion.

Example 3. The LaiMassey circuit maps x = (x1, x2) to

y = (y1 + S(x1 + x2), y2 + S(x1 + x2)).

This mapping saves the sum of coordinates: y1 +y2 = x1 +x2. The sum is not being changed during

all further rounds and therefore the circuit is not transitive. �

Theorem 3. The index of transitivity of a circuit (a,B, c) does not exceed its dimension n.
The index equals n if and only if the first condition of regularity (invertibility of C) holds.

Proof. Let α, β be arbitrary elements of F n. The number of vectors y(t) reachable from y(0) =
α does not exceed the number of t-traces of responses. With t < n this number is less than |F n|
and therefore there exists unreachable y(t). Consequently, the index of transitivity cannot be
less than n.

Let C be invertible. Then there exists a unique vector v = (v(1), . . . , v(n)) ∈ F n such that

vC = αBn + β.

The responses v(1), . . . , v(n) transfer y(0) = α to y(n) = β:

y(n) = y(0)Bn +
n∑
τ=1

v(τ)cBn−τ = αBn + vC = β.

Therefore, (a,B, c)n is transitive.
Let (a,B, c)n be transitive. Suppose by contradiction that C is not invertible. Then there

exist α, β ∈ F n such that the equation vC = αBn + β does not have solutions in v. It means
that no trace of responses transfers y(0) = α to y(n) = β, a contradiction. �

Note that transitivity does not require invertibility. For example, a circuit of dimen-
sion 1 which maps x1 to x1 + S(x1) is transitive but not invertible. However, below we need
invertibility.

Corollary 1. The first condition of regularity holds for an invertible circuit (a,B, c) if and
only if it holds for the inverse circuit (a,B, c)−1.

Proof. By definition, mutually inverse circuits are transitive simultaneously, their indices of
transitivity coincide. The required result follows from the second part of Theorem 3. �

Call a binary operation Latin if its table is a Latin square or, in other words, if the operation
induces a quasigroup on the underlying set. Latin operations are often used in cryptography,
for example, to instantiate round oracles using round keys, as in the following theorem. The
theorem means that a circuit which dimension n is equal to its index of transitivity can be
used to extend a Latin operation on F to a Latin operation on F n.
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Theorem 4. Let a cascade (a,B, c)n of dimension n be transitive and use the oracles

Skt (u) = S(u ∗ kt), u ∈ F, t = 1, . . . , n,

where k = (k1, . . . , kn) ∈ F n, S is a fixed permutation on F , and ∗ is a Latin operation on F .
Then the operation

O : F n × F n → F n, (α, k) 7→ (a,B, c)n[Sk1 , . . . , S
k
n](α)

is Latin too.

Proof. Firstly, due to transitivity of (a,B, c)n there exists a unique n-trace of responses which
transfers any given α to any given β. Since ∗ is Latin, this trace unambiguously determines k,
that is, the equation O(α, k) = β has a unique solution in k. Secondly, due to invertibility any
given β and k unambiguously determine α, that is, the equation O(α, k) = β has a unique
solution in α. In result, O induces a quasigroup on F n. �

6 2-transitivity

Definition 6. A cascade (a,B, c)t of dimension n is 2-transitive if for any distinct α, α′ ∈ F n

and any distinct β, β′ ∈ F n there exist round oracles S1, . . . , St such that

(a,B, c)t[S1, . . . , St](α) = β, (a,B, c)t[S1, . . . , St](α
′) = β′.

2-transitivity is an important diffusion property of cascades. In particular, 2-transitivity
of (a,B, c)t implies absence of so-called impossible differentials, that is, unrealizable transitions
from some difference ∆y(0) = ∆α to some difference ∆y(t) = ∆β. Such transitions can be
used to mount impossible differential attacks.

In addition, 2-transitivity helps to determine the permutation group generated by the
mappings (a,B, c)[S], where S runs over all bijections over F . Usually, 2-transitivity is a
serious evidence that this group is the alternating group. It is the largest achievable group
(for n ≥ 2), its appearance demonstrates the welcomed diversity of the mappings (a,B, c)[S].

Unfortunately, 2-transitivity is a rather complicated property which cannot be supported
by such a simple criterion as in the case of transitivity (Theorem 3). Let us introduce a
weakened version of 2-transitivity.

Definition 7. A cascade (a,B, c)t of dimension n is weakly 2-transitive if there do not exist
nonzero ∆α,∆β ∈ F n such that (a,B, c)t[S1, . . . , St] necessarily, independently of the choice
of the round oracles, tranfers the difference ∆y(0) = ∆α to the difference ∆y(t) = ∆β.

As before, a circuit (a,B, c) is (weakly) 2-transitive if (a,B, c)t is (weakly) 2-transitive for
some t. The minimal such t is the index of (weak) 2-transitivity.

Example 4. Let us continue Example 3. The LaiMassey circuit is not weakly 2-transitive. Indeed,

for any nonzero ∆γ ∈ F the difference ∆x = (∆γ,∆γ) goes to the difference ∆y = (∆γ,∆γ). This

difference is being saved during all further rounds. �

Note that (weak) 2-transitivity, as well as transitivity, does not require invertibility.

Theorem 5. The index of weak 2-transitivity of a circuit (a,B, c) does not exceed its dimen-
sion n. The index equals n if and only if the second condition of regularity (invertibility of A)
holds.

11



Proof. A cascade (a,B, c)t is not weakly 2-transitive if and only if there exists a nonzero
input difference ∆y(0) which induces the zero vector ∆u = (∆u(1), . . . ,∆u(t)) of internal
differences between queries to the round oracles. The vector ∆u must exist because once two
queries to some oracle Sτ are distinct, the corresponding responses are distinct too and the
output difference ∆y(t) depends on the difference ∆v(τ) between these responses. Note that
if ∆u = 0, then the differences ∆v(1), . . . ,∆v(t) are zero too. This fact can be written as

∆y(0)
(
a Ba . . . Bt−1a

)
= 0.

If t < n, then the last equation has a nonzero solution in ∆y(0). This solution induces
zero ∆u and (a,B, c)t is not weakly 2-transitive. This proves the first part of the theorem.

If A =
(
a Ba . . . Bn−1a

)
is invertible then (a,B, c)n is weakly 2-transitive. Indeed,

otherwise ∆y(0)A = 0 for some nonzero ∆y(0), which is impossible.
Conversely, if (a,B, c)n is weakly 2-transitive then A is invertible. Indeed, otherwise there

exists a nonzero ∆y(0) which induces ∆u = 0. �

Corollary 2. The second condition of regularity holds for an invertible circuit (a,B, c) if and
only if it holds for the inverse circuit (a,B, c)−1.

Proof. By definition, mutually inverse circuits are weakly 2-transitive simultaneously, their
indices of weak 2-transitivity coincide. The required result follows from the second part of
Theorem 5. �

Theorem 6. Let circuits (a,B, c) and (a,B, c)−1 of dimension n be strongly regular and(
1− 2

|F |

)n−1(
1− 1

|F |

)
>

1

2
.

Then the circuits are 2-transitive and their indices of 2-transitivity do not exceed

2n+ (n− 1)(l + l′),

where l is the lag of (a,B, c) and l′ is the lag of (a,B, c)−1.

Proof. From the proof of Theorem 5 it follows that for any nonzero input difference ∆y(0)
there exists r ≤ n such that ∆u(r), the difference between queries to Sr, is nonzero. The
corresponding difference ∆v(r) = ∆Sr(∆u(r)) between responses is nonzero too.

Let r be the first round when ∆u(r) 6= 0. By definition of lag

∆u(r + l) = ∆v(r) + ∆y(0)Br+l−1a+
r−1∑
τ=1

∆v(τ)cBr+l−1−τa

= ∆v(r) + ∆y(0)Br+l−1a.

Manipulating responses of Sr (round oracles are free to choose which response to give), we
obtain different ∆v(r). At least |F | − 2 of them provide ∆u(r + l) 6= 0.

Having a nonzero ∆u(r+ l), we tune a nonzero ∆v(r+ l) to achieve a nonzero ∆u(r+ 2l).
Continue in such a manner until the round number r + (n − 1)l. In this round, we do not
require that ∆u(r + nl) 6= 0 and have |F | − 1 ways to choose ∆v(r + (n− 1)l).

Thus, there exist at least (|F | − 2)n−1(|F | − 1) vectors

∆v = (∆v(r),∆v(r + l), . . . ,∆v(r + (n− 1)l))

12



Table 3: Bounds on the indices of 2-transitivity

Circuit Upper bound (Theorem 6) Lower bound

Feistel 6 6 [12]

Matsui 7

SkipjackA 22 17 [3]

SkipjackB 22 17 [3]

MARS3 14 12 [15]

SMS4 14 12 [15]

GFN1 (n = 4) 20 20 [8]

SkipjackG (n = 4) 22 17 [15]

with nonzero coordinates.
Let the oracles St, t 6= r + il, implement the identity mapping, that is, they output input

queries. Then
∆y(r + (n− 1)l) = ∆y(0)M + ∆vCl,

where M is some matrix of order n, Cl is the matrix of the definition of strong regularity.
Due to the invertibility of Cl, different ∆v induce different ∆y(r + (n − 1)l). Therefore, the
difference ∆y(r + (n− 1)l) can take at least (|F | − 2)n−1(|F | − 1) distinct values.

To provide the required difference ∆v(t), t = r + il, the oracle St first returns an ar-
bitrary St(u(t)) and then the specific St(u

′(t)) = St(u(t)) + ∆v(t). By choosing a vec-
tor v = (v(r), v(r + l), . . . , v(r + (n− 1)l)) of the first responses, achieve that the vector

y(r + (n− 1)l) = y(0)M + vCl

takes a fixed value γ ∈ F n.
In sum, applying the circuit (a,B, c)r+(n−1)l to a given pair (α, α′), α 6= α′, and running

over all possible round oracles, we obtain at least (|F | − 2)n−1(|F | − 1) different pairs (γ, z),
z ∈ F n.

The same holds for the inverse circuit (a,B, c)−1: The circuit (a,B, c)−r
′−(n−1)l′ , r′ ≤ n,

with various round oracles transfers a given pair (β, β′), β 6= β′, to at least (|F |−2)n−1(|F |−1)
different pairs (γ, z′), z′ ∈ F n.

Under conditions of the theorem,

2(|F | − 2)n−1(|F | − 1) > |F |n

and there must exist a collision z = z′. This collision means that the pair (α, α′) can be
transferred to the pair (β, β′) by the circuit (a,B, c)r+r

′+(n−1)(l+l′). This implies the required
result. �

The additional condition of Theorem 6 is not burdensome. It holds for example if |F | =
2m > 4n. In practice, m ≥ 16, n ≤ 8 and the condition indeed satisifies.

In Table 3 we present bounds on the indices of 2-transitivity of the standard circuits. Upper
bounds are computed using Theorem 6 and Table 2. Lower bounds are the quantities d +
1, where d is the maximum known number of rounds such that an impossible differential
for (a,B, c)d exists.
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Note that the upper bounds for SkipjackA and SkipjackB presented in Table 3 should not
be transferred on the Skipjack cipher itself. In this cipher 8 SkipjackA rounds are followed
by 8 SkipjackB rounds, then again by 8 SkipjackA and 8 SkipjackB rounds.

The proof of Theorem 6 can be easily extended to the case when the last rounds of a
cascade differ from the first ones. In particular, using the fact that SkipjackA and SkipjackB−1

both have lag 1, the cascade of first 7 SkipjackA and then 7 SkipjackB rounds is 2-transitive.
It is interesting that although the 14-round cascade SkipjackA7SkipjackB7, as well as 22-

round cascades SkipjackA22 and SkipjackB22 are 2-transitive (we multiply round circuits from
left to right), the 24-round cascade

SkipjackA4SkipjackB8SkipjackA8SkipjackB4

is not (see [2] for details).

7 Similarity

Definition 8. Circuits (a,B, c) and (a′, B′, c′) of dimension n are similar if there exists an
invertible (0, 1)-matrix P of order n such that a′ = P−1a, B′ = P−1BP , c′ = cP .

Similarity means that if y = (a,B, c)[S](x) and x′ = xP , y′ = yP then y′ = (a,B, c)[S](x′).
Indeed, from y = xB + S(xa)c it follows that

yP = xPP−1BP + S(xPP−1a)cP

or
y′ = x′B′ + S(x′a′)c′.

The conclusion above is easily extended to several rounds: If (a,B, c)t[S1, S2, . . . , St] trans-
fers y(0) to y(t) then (a′, B′, c′)t[S1, S2, . . . , St] transfers y′(0) = y(0)P to y′(t) = y(t)P . It
means that similar circuits have the same cryptographic quality. In particular, they have the
same type, lag, indices of transitivity and (weak) 2-transitivity, they are (strongly) regular
simultaneously. At the same time, mutually similar circuits can have different X-complexity.
To reduce the number of X operations, a circuit may be replaced by a similar one.

Similarity is an equivalence relation. It is natural to pose the problem of determining
canonical representatives of equivalence classes as well as other classification problems.

Manipulating P and replacing B by P−1BP , we can bring B to a convenient matrix
canonical form. Let us use the Frobenius normal form:

B = diag(B1, B2, . . . , Bk).

Here Bi are Frobenius cells, that is, companion matrices of polynomials fBi
(λ) ∈ F2[λ] which

satisfy the relation fB1(λ) | fB2(λ) | . . . | fBk
(λ).

The condition k = 1 is necessary for regularity of a circuit. Indeed, by the Cayley–
Hamilton theorem the matrix B is a root of fBk

. If k > 1, then deg fBk
< n and some

nonzero linear combination of the matrix powers B0, B1, . . . , Bn−1 drops to zero. But it
means that the matrices C and A of the definition of regularity do not have full rank, that
is, regularity does not hold.

14



Further we consider only single-cell canonical matrices B. Such a matrix has the form:

0 0 . . . 0 0 b1
1 0 . . . 0 0 b2
0 1 . . . 0 0 b3
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 0 bn−1
0 0 . . . 0 1 bn

 .

Its characteristic polynomial fB(λ) = λn + bnλ
n−1 + . . . + b1. The coefficient b1 equals 1 for

circuits of type I and 0 for circuits of type II.

Theorem 7. Let (a,B, c) be a circuit of dimension n in which B is a Frobenius cell with a
characteristic polynomial λn + bnλ

n−1 + . . .+ b1. The circuit is invertible if and only if one of
the following cases holds:

1) b1 = 1 and a1(b2c1 + b3c2 + . . .+ bncn−1 + cn) + a2c1 + a3c2 + . . .+ ancn−1 = 0;

2) b1 = 0, a1 = 1 and b2c1 + b3c2 + . . .+ bncn−1 + cn = 1.

There exist 22n−1 − 3 · 2n−1 + 1 suitable pairs (a, c) in the first case and 22n−2 in the second.

Proof. Let us apply Theorem 1. If b1 = 1 then the invertibility requires that cB−1a = 0. The
stated result follows from the fact that

B−1 =


b2 1 0 . . . 0
b3 0 1 . . . 0
. . . . . . . . . . . . . . .
bn 0 0 . . . 1
b1 0 0 . . . 0

 .

If b1 = 0 then the matrices (B a) and
(
B
c

)
must have full rank n. For the first matrix,

it is true if and only if a1 = 1. The second matrix has full rank if and only if c cannot be
expressed linearly through the last n− 1 rows of B. It is equivalent to the inequality b2c1 +
b3c2 + . . .+ bncn−1 6= cn written in the statement of the theorem in a slightly different form.

The second case of the last part of the theorem is obvious. To treat the first case, we have
to determine the number of pairs (a, c) which make the quadratic form g(a, c) = cB−1a equal
to 0. The form g is linearly equivalent to a1cn + a2c1 + . . .+ ancn−1 and the required number
of pairs is 22n−1 + 2n−1 (see, for example, [14, Theorem 6.32]). From this number we have to
subtract 2n+1 − 1, the number of pairs (a, c) such that a = 0 or c = 0. �

Let P be a (0, 1)-normalizer of B, that is, an invertible matrix such that P−1BP = B.
Using P , we can bring (a,B, c) to the form (a′, B′, c′) = (P−1a,B, cP ) in which, generally,
(a′, c′) 6= (a, c) but B′ = B. In other words, we can refine the canonical form of not only the
matrix but also the vectors of circuit’s description.

Let p1, p2, . . . , pn be consecutive rows of P . From the equality PB = BP it follows that

pnB = pn−1 + bnpn,

pn−1B = pn−2 + bn−1pn,

. . .

p2B = p1 + b2pn.
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These equations mean that all rows of P can be expressed through pn:

P = P (pn) =


pnM1

pnM2

. . . . .
pnMn

 .

Here Mn = E and Mi = BMi+1 + bi+1E = Bn−i + bnB
n−i−1 + . . .+ bi+1E, i = n− 1, . . . , 2, 1,

where E is the identity matrix.
Multiplying P (pn) on the left by an invertible matrix, we can bring it to the form

pnB
n−1

pnB
n−2

. . . . . . .
pnE

 .

With pn = c this is the matrix C of the definition of regularity. Thus, P (pn) is invertible if and
only if the first condition of regularity holds with c = pn. Moreover, there exists a bijective
correspondence between acceptable vectors c of regular circuits (a,B, c) and normalizers P of
the matrix B: c↔ P (c).

The vector c = (0, 0, . . . , 0, 1) is acceptable because in the corresponding matrix C the
main diagonal contains only unities, all elements above the diagonal are zero and, therefore,
C is invertible. A normalizer P (c′) transfers a regular circuit (a,B, c) to the similar cir-
cuit (a′, B, c′). Indeed, cP (c′) is the last row of P (c′) which is c′. Moreover, only one P (c′)
transfers c to c′ and a′ = P (c′)−1a is uniquely determined.

This reasoning can be inverted: We can bring a regular circuit (a′, B, c′) to the
form (a,B, c) in which c = (0, 0, . . . , 0, 1) and a is uniquely determined. Simultaneously, act-
ing in same manner, we can bring (a′, B, c′) to the form (a,B, c) in which a = (1, 0, . . . , 0, 0)T

and c is uniquely determined. The chosen a is acceptable because the corresponding matrix A
of the definition of regularity equals E.

Gathering all, we obtain the following result.

Theorem 8. A regular circuit is similar to each of the following circuits:

1) (a,B, (0, 0, . . . , 0, 1));

2) ((1, 0, 0, . . . , 0)T , B, c).

Here B is a uniquely determined Frobenius cell. The vectors a and c are also uniquely deter-
mined.

Theorem 8 provides two canonical forms of regular circuits. These forms are represented
schematically in Figures 1 and 2.

Corollary 3. The lag of a regular circuit does not exceed its dimension.

Proof. Since similar circuits have the same lag, it is sufficient to consider a circuit of the
first canonical form. If its lag is greater than its dimension n then the first coordinates
of c, cB, . . . , cBn−1 are zero. Therefore, C is not invertible which contradicts regularity. �
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Figure 1: The first canonical form

Figure 2: The second canonical form

Let us refine the vectors a and c which can appear in Theorem 8. The number of acceptable
vectors a (vectors c) is the number of equivalence classes of regular circuits with similar
matrices B.

Identify vectors (row and column) with polynomials: both a vector w = (w1, w2, . . . , wn)
and its transpose are associated with the polynomial w(λ) = w1 + w2λ + . . . + wnλ

n−1. In
particular, fB(λ) = λn + b(λ), where b is the last column of B.

Theorem 9. Let (a,B, c) be an invertible circuit of dimension n in which B is a Frobenius
cell. The circuit is regular if and only if both the polynomials a(λ) and (cP )(λ) are coprime
with fB(λ). Here P = (pij), 1 ≤ i, j ≤ n, where

pij =


bi+j, i+ j ≤ n,

1, i+ j = n+ 1,

0, i+ j > n+ 1.

Proof. Columns of A are described by the polynomials

(Bia)(λ) = λia(λ) mod fB(λ), i = 0, 1, . . . , n− 1.

The matrix A is invertible if and only if any nonzero linear combination of its columns is
nonzero. In other words, if and only if

g(λ)a(λ) 6≡ 0 (mod fB(λ))

for any nonzero g(λ) ∈ F2[λ], deg g ≤ n. It is equivalent to coprimeness of a(λ) and fB(λ).
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In [20] it was proved that B = PBTP−1. From this fact, taking into account the symmetry
of P , it follows that columns of PCT have the form

P (cBi)T = P (cP (BT )iP−1)T = Bi(cP )T .

Processing PCT in the same way as A, we conclude the proof. �

Example 5. Let n ≥ 2 and fB(λ) be irreducible. Then there are 2n−1 − 1 equivalence classes of

regular circuits which matrices are similar to B. Indeed, let such a circuit has the first canonical

form. By Theorem 7, the circuit is invertible if and only if cn = b2c1 + b3c2 + . . . + bncn−1. There

are 2n−1 − 1 acceptable nonzero c and they all satisfy the conditions of Theorem 9.

It is interesting that if fB(λ) is irreducible then the set of normalizers of B augmented with the

zero matrix forms the field of order 2n. In particular, the sum of distinct normalizers is again a

normalizer. �

Example 6. Let fB(λ) = λn + 1. This is the case of the Feistel, SMS4, MARS3 and GFN1 circuits.

Normalizers of B are all invertible circulants. In the most interesting case n = 2k, acceptable a, c

are those that contain an odd number of unities and both the number of normalizers and equivalence

classes is 2n−1.

The SMS4 circuit has the first canonical form, MARS3 has the second one. These circuits are

similar: MARS3 can be converted to SMS4 using the normalizer

P =


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 .

�

Example 7. Let (a,B, c) be a circuit of type II. Bring it to the second canonical form. For invert-

ibility, it is sufficient and necessary that a(0) = 1. For regularity, a(λ) must additionally be coprime

to fB(λ). If fB(λ) = λn (SkipjackA, SkipjackG) then the last condition holds for every (a2, . . . , an)

and consequently there are 2n−1 equivalence classes.

It is interesting that SkipjackB does not belong to the equivalence class of SkipjackA because its

polynomial fB(λ) = λ4 + λ 6= λ4. �

8 Activations

In differential cryptanalysis, differences ∆y(0),∆y(1), . . . ,∆y(t) into a cascade (a,B, c)t are
investigated. if for a given ∆y(0) = ∆α(0) there exist oracles S1, . . . , St such that ∆y(1) =
∆α(1), . . . ,∆y(t) = ∆α(t) then ∆α(0),∆α(1), . . . ,∆α(t) is the (differential) characteristic
of (a,B, c)t.

Let us specify the relationship between adjacent differences of a characteristic. To do this,
recall the transfer from ∆y(τ−1) to ∆y(τ) described in Section 4. If ∆y(τ−1)a = 0 then the
oracle Sτ is not activated. Its input difference ∆u(τ) is zero, the output difference ∆v(τ) is also
zero and ∆y(τ) = ∆y(τ−1)B. If ∆y(τ−1)a 6= 0 then Sτ is active, its output difference ∆v(τ)
can take an arbitrary nonzero value ∆δ(τ) and ∆y(τ) = ∆y(τ − 1)B + ∆δ(τ)c.

Thus, the differences ∆α(0),∆α(1), . . . ,∆α(t) form a characteristic if

∆α(τ) =

{
∆α(τ − 1)B, ∆α(τ − 1)a = 0,

∆α(τ − 1)B + ∆δ(τ)c, ∆α(τ − 1)a 6= 0,
(1)

for τ = 1, 2, . . . , t and some nonzero ∆δ(τ) ∈ F .
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Definition 9. The ith activation time of a circuit (a,B, c) is the minimum number of rounds t
such that (a,B, c)t guarantees i activations, that is, each nonzero characteristic ∆α(0),
∆α(1), . . ., ∆α(t) of (a,B, c)t contains at least i differences ∆α(τ − 1), 1 ≤ τ ≤ t, such
that ∆α(τ − 1)a 6= 0.

Denote the ith activation time of a circuit (a,B, c) by ρi(a,B, c) or simply ρi if the circuit
is clear from the context.

Weak 2-transitivity of a cascade (a,B, c)t can be interpreted as a guarantee of 1 activation.
Therefore, the index of weak 2-transitivity of (a,B, c) coincides with ρ1(a,B, c). If (a,B, c) has
dimension n and satisfies the second condition of regularity then, by Theorem 5, ρ1(a,B, c) =
n. Moreover, if (a,B, c) is invertible then the inverse circuit (a,B, c)−1 also satisfies the
second condition (Corollary 2) and (a,B, c)−n also guarantees 1 activation. It means that the
cascade (a,B, c)2n guarantees 2 activations and ρ2(a,B, c) ≤ 2n.

The last bound can be refined.

Theorem 10. Let a circuit (a,B, c) of dimension n satisfy the second condition of regularity
(invertibility of A). Let γt = cBt−1a, t = 1, 2, . . .. Then

ρ2(a,B, c) = n+ max
r=1,2,...,n

τ(r),

where τ(r) is the mininum positive integer τ such that

(0, . . . , 0︸ ︷︷ ︸
r−1

, 1, γ1, . . . , γn−r)A
−1Bn+τ−1a 6= γn−r+τ . (2)

Proof. Suppose that the first activation occurs in the rth round:

∆u(1) = . . . = ∆u(r − 1) = 0, ∆u(r) = αβ, ∆v(r) = β, α, β 6= 0.

The arguments above yield r ≤ n.
To avoid activations during the next n−r rounds, the differences ∆u(r+τ), τ = 1, . . . , n−r,

must be zero, thus having the form

∆u(r + τ) = ∆y(0)Br+τ−1a+ γτβ.

It is achieved by choosing ∆y(0) as a solution of the linear equation

∆y(0)A = β(0, 0, . . . , 0︸ ︷︷ ︸
r−1

, α, γ1, . . . , γn−r).

Since A is invertible, a solution exists and is unique.
In the rounds n + τ , τ = 1, 2, . . ., the differences between queries to round oracles have

the form
∆u(n+ τ) = β(0, 0, . . . , 0︸ ︷︷ ︸

r−1

, α, γ1, . . . , γn−r)A
−1Bn+τ−1a+ γn−r+τβ.

As soon as a nonzero difference is encountered, we get the second activation. Therefore,

ρ2 = n+ max
r=1,2,...,n

min
α∈F\{0}

τ(r, α),

where τ(r, α) is the minimal positive integer τ such that

(0, . . . , 0, α, γ1, . . . , γn−r)A
−1Bn+τ−1a 6= γn−r+τ .

To complete the proof, it is sufficient to say that τ(r, α) ≥ τ(r, 1) = τ(r). Indeed, if the
product of a row vector (0, . . . , 0, α, γ1, . . . , γn−r) by a column (0, 1)-vector A−1Bn+τ−1a is
equal to γn−r+τ ∈ {0, 1} for α 6= 1, then this product stays the same for α = 1. �
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Example 8. Let us apply Theorem 10 to determine the time ρ2 of the GFN1 circuit of dimen-

sion n. For this circuit, A = Bn = E and the sequence (γt) consists of repetitions of the n-

fragment (1, 0, . . . , 0).

Consider the inequality (2). If r < n and τ runs from 1 to n then the left and right parts of the

inequiality take the values

0, . . . , 0︸ ︷︷ ︸
r−1

, 1, 1, 0, . . . , 0︸ ︷︷ ︸
n−r−1

and 0, . . . , 0︸ ︷︷ ︸
r

, 1, 0, . . . , 0︸ ︷︷ ︸
n−r−1

respectively. The parts differ for the first time at τ = r. If r = n then the inequality occurs

immediately at τ = 1. Consequently,

τ(r) =

{
r, r < n,

1, r = n,

and ρ2 = n+ maxr τ(r) = 2n− 1.

SkipjackG has the same characteristics τ(r) and ρ2. We have rediscovered results of [23]. �

Theorem 11. Let (a,B, c) be a regular circuit of dimension n. Then ρ2(a,B, c) ≤ 2n− 1.

Proof. Let us continue the previous proof. The sequence (γt) is a linear recurrence sequence
(LRS) over F with the characteristic polynomial fB. Another LRS with the same character-
istic polynomial is the sequence zt = ∆y(0)Bt−1a, t = 1, 2, . . .. To justify the estimate ρ2 ≤
2n − 1, it is sufficent to show that if zr = 1 then all the equalities zr+1 = γ1, . . . , zr+n = γn
cannot hold simultaneously. Let us prove this fact by contradiction.

Without loss of generality, let (a,B, c) have the first canonical form. Then γ1 = zr+1 =
c1, . . . , γn = zr+n = cn. The sequences (γt) and (zt+r) coincide as LRS with the same charac-
teristic polynomial of order n and the same initial prefixes of length n.

If the circuit has type I then (γt) and (zt+r) are purely periodic. Therefore, zr = γ0, where
γ0 = cB−1a = 0. By Theorem 1, γ0 = 0 which contradicts the fact that zr = 1.

If the circuit has type II then b1 = 0 and

zr+n = b2zr+1 + b3zr+2 + . . .+ bnzr+n−1 = b2c1 + b3c2 + . . .+ bncn−1.

By Theorem 7, zr+n 6= cn, again a contradiction. �

In Table 4 we report the second activation times of standard regular circuits. Only the
times of MARS3 and SMS4 are strictly less than the bound of Theorem 11.

It is interesting that the time ρ2(Feistel) fully determines all other times ρi(Feistel), i ≥ 3.
Indeed, the fact that ρ3 = 2 means that in 3 consecutive Feistel rounds there must be at
least 2 activations. This is the only restriction on differential characteristics of Feistel cascades.
Therefore, 3 activations are guaranteed by 5 rounds, 4 activations — by 6 rounds, and so on:
ρ3 = 5, ρ4 = 6, ρ5 = 8, ρ6 = 9,. . . .

9 Duality

Definition 10. For a circuit (a,B, c), its dual is the circuit (cT , BT , aT ).

Let us list obvious facts regarding duality.

1. Mutually dual circuits have mutually transposed extended matrices.
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Table 4: The 2nd activation times

Circuit ρ2

Feistel 3

Matsui 3

SkipjackA 7

SkipjackB 7

MARS3 5

SMS4 5

GFN1 2n− 1

SkipjackG 2n− 1

2. Mutually dual circuits are invertible simultaneously.

3. Invertible mutually dual circuits have the same type (I or II).

4. A circuit is transitive if and only if its dual is weakly 2-transitive.

5. Mutually dual circuits are regular simultaneously.

6. Mutually dual circuits have the same lag.

More sophisticated facts are related to differential and linear attacks against corresponding
block ciphers. It is well-known (see, for example, [5, 7, 16]) that these attacks are dual in the
sense of similarity and complementarity. Further we show their duality in a more specific sense:
Linear attacks against ciphers which use (a,B, c) as the round circuit are connected with
differential attacks against ciphers which use (cT , BT , aT ). Our results correlate with results
of the paper [3] where mirror round functions, an analogue of dual circuits, are introduced.

Consider an invertible cascade (a,B, c)t. In linear cryptanalysis, the correlations between
adjacent vectors of the sequence y(0), y(1), . . . , y(t) are exploited. These correlations are
described by column vectors β(0), β(1), . . . , β(t) ∈ F n called masks. Suppose that y(0) is
chosen uniformly at random from F n. Due to invertibility of (a,B, c), each induced vec-
tor y(τ), τ = 1, . . . , t, is also uniformly distributed over F n under any choice of round ora-
cles S1, S2, . . . , Sτ .

Let us say that y(τ) correlates with y(τ − 1) if there exists Sτ such that

P {Tr(y(τ)β(τ)) = Tr(y(τ − 1)β(τ − 1))} 6= 1

2
.

A sequence of masks which provides correlations between all adjacent vectors is called the
linear characteristic of (a,B, c)t.

Above, Tr is the trace function F 3 u 7→ u + u2 + u4 + . . . + u2
m−1 ∈ {0, 1}. Any

linear function L : F → {0, 1} can be written as L(u) = Tr(γu) under an appropriate choice
of γ ∈ F . The transition y(τ) 7→ Tr(y(τ)β(τ)) is a linear compression of y(τ) up to one bit.
The mask β(τ) regulates the compression rule.

Consider the relationship between adjacent masks of a linear characteristic. Let x be
chosen uniformly at random from F n, y = xB + S(xa)c and α, β ∈ F n be nonzero masks.
The vectors x and y correlate if

P {Tr(xBβ + S(xa)cβ) = Tr(xα)} 6= 1

2
.
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With cβ = 0 the correlation is possible if and only if α = Bβ. Let cβ = γ 6= 0. Then the
correlation condition is refined as follows:

P {Tr(x(Bβ + α)) = Tr(S(xa)γ)} 6= 1

2
.

The correlation appears with some S if and only if u = xa and v = x(Bβ + α) are related
linearly, that is, v = uδ for some nonzero δ ∈ F . It means that

α = Bβ + δa.

Gathering all, masks β(0), β(1), . . . , β(t) form a characteristic if

β(τ − 1) =

{
Bβ(τ), cβ(τ) = 0,

Bβ(τ) + δ(τ)a, cβ(τ) 6= 0.
(3)

for τ = t, . . . , 2, 1 and some nonzero δ(τ) ∈ F .
Comparing the equations (1) and (3), we immediately obtain the following result.

Theorem 12. Let β(0), β(1), . . . , β(t) be a linear characteristic of an invertible cas-
cade (a,B, c)t. Then ∆α(0),∆α(1), . . . ,∆α(t), where ∆α(τ) = β(t − τ)T , is the differential
characteristic of the dual cascade (cT , BT , aT )t. The converse is also true.

Recall that the condition ∆α(τ − 1)a 6= 0 in (1) is called the activation. The dual
condition cβ(τ) 6= 0 in (3) is also the activation, only linear not differential. Theorem 12
means that the minimum number of linear activations in some cascade is equal to the minimum
number of differential activations in the dual cascade. This fact helps to switch from linear
attacks to differential ones during security evaluation of block ciphers.

10 Expandability

The GFN1 and SkipjackG circuits are actually families of circuits of growing dimension n.
We can easily switch from one dimension to another because the parameters (a,B, c) of the
circuits are simply described depending on n. We call this property expandability.

Expandable circuits can be used to build variable input length (VIL) or wide-block (WBL)
ciphers. To support cryptographic strength and effectiveness of these ciphers, an underlying
circuit must be regular, has to have small X-complexity, direct and inverse lags.

Both GFN1 and SkipjackG satisfy all these properties except the last one: Their inverse
lags are close to their dimensions (see Table 2). That is why the circuits have rather large
indices of 2-transitivity (see Table 3) and hypothetical VIL- or WBL-ciphers should involve
a rather large number of rounds to achieve cryptographic strength.

Further we discuss one possible expandable circuit with better diffusion properties. This
circuit, called BeltWBL, has already been used in [21] where symmetric cryptographic algo-
rithms based on the block cipher Belt are standardized. More precisely, BeltWBL is the core of
the belt-keywrap algorithm which provides confidentiality and integrity control of variable
length keys. In general, BeltWBL can be used to construct WBL-ciphers, that is why the
name. The idea of BeltWBL belongs to Andrey Afonenko.

The BeltWBL circuit of dimension n ≥ 2 is described as follows:

1) B is a Frobenius cell which last column is b = (1, 1, . . . , 1, 0)T ;
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2) a = b;

3) c = (0, 0, . . . , 1, 0).

It is interesting that the last two columns (rows) of the extended matrix are equal.
The circuit has type I. It coincides with Feistel for n = 2. The next theorem shows that

BeltWBL is optimal with respect to the mentioned diffusion properties.

Theorem 13. The BeltWBL circuit of dimension n ≥ 2 is regular. The lags of BeltWBL and
BeltWBL−1 are both equal to 1.

Proof. Apply Theorem 9 to prove regularity. Firstly, the polynomial fB(λ) = λn + a(λ) is
coprime to a(λ) = 1+λ+ . . .+λn−2. Secondly, the matrix P from the statement of Theorem 9
has the form: 

1 1 . . . 1 0 1
1 1 . . . 0 1 0
1 1 . . . 1 0 0
. . . . . . . . . . . . . . . . . .
0 1 . . . 0 0 0
1 0 . . . 0 0 0


Hence, cP = (0, 1, 0, . . . , 0) and the polynomial (cP )(λ) = λ is also coprime to fB(λ). Condi-
tions of Theorem 9 are satisfied and BeltWBL is regular.

Since ca = 0, the lag of BeltWBL is equal to 1. The lag of BeltWBL−1 = (B−1a,B−1, cB−1)
is the minimum l such that

cB−1(B−1)l−1B−1a = cB−1−la = 1.

We have cB−1 = (0, 0, . . . , 0, 1), cB−2 = (1, 0, . . . , 0, 0) and cB−2a = 1. Thus, the inverse lag
is also equal to 1. �

Finally, let us discuss the X-complexities of BeltWBL, BeltWBL−1 and their cascades.
The BeltWBL circuit induces the mapping

(x1, x2, . . . , xn−2, xn−1, xn) 7→ (x2, x3, . . . , xn−1, xn + S(u), u),

where u = x1 +x2 + . . .+xn−1. We need n−2 additions to calculate u and one more addition
to calculate xn + S(u). Therefore, the X-complexity of BeltWBL is n− 1.

Fortunately, for large n the X-complexity of the cascade BeltWBLt is considerably less
than (n− 1)t. Indeed, storing x1, we can update u in the next round using only 2 additions.
Moreover, in the second round we can use just 1 addition if we previously save the sum x2 +
. . . + xn−1. It means that the X-complexity of BeltWBLt does not exceed (n − 2) + 3(t − 1),
that is, we need approximately 3 additions per round (this is the case of MARS3 and SMS4)
as t grows.

The inverse mapping has the form:

(x1, x2, x3, . . . , xn−1, xn) 7→ (u+ xn, x1, x2, . . . , xn−2, xn−1 + S(xn)),

where u = x1 + x2 + . . . + xn−2. The X-complexity of BeltWBL−1 is again equal to n− 1. In
the cascade BeltWBL−t of large dimension n, we can again update u using 2 additions and,
therefore, decrease the average X-complexity per round from n− 1 to approximately 4.
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A Canonical forms

A.1 Bringing to canonical forms

Let (a,B, c) be a regular XS-circuit. Let us show how to bring it to the first and second
canonical forms. We proceed in two steps.

1. Make B a Frobenius cell.

2. Construct a normalizer P of B such that cP = (0, 0, . . . , 0, 1) for the first form or
P−1a = (1, 0, . . . , 0, 0) for the second.

To implement the first step, replace (a,B, c) with (A−1a,A−1BA, cA). Let us recall that
A = (a Ba . . . Bn−1a). The matrix A−1BA is indeed a Frobenius cell with the characteristic
polynomial fB(λ) = b1 + b2λ+ . . .+ bnλ

n−1 + λn. It follows from the fact that the matrix

B(a Ba . . . Bn−2a Bn−1a) = (Ba B2a . . . Bn−1a Bna)

coincides with the matrix

(a Ba . . . Bn−1a)



0 0 . . . 0 0 b1
1 0 . . . 0 0 b2
0 1 . . . 0 0 b3
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 0 bn−1
0 0 . . . 0 1 bn

 =

(
Ba B2a . . . Bn−1a

n∑
i=1

biB
i−1a

)
.

We take into account that Bn =
∑n

i=1 biB
i−1.

At the second step, in the triple (a,B, c), the matrix B is a Frobenius cell. Consider its
normalizer

P = P (c) =


cM1

cM2

. . . .
cMn

 .

Here the matrices Mi are constructed from B according to the rules defined in Section 7. In
particular, Mn = E and (0, 0, . . . , 0, 1)P = c. Therefore, cP−1 = (0, 0, . . . , 0, 1) and

(Pa,B, (0, 0, . . . , 0, 1))

is the first canonical form of (a,B, c).
The matrix A = (a Ba . . . Bn−1a) is the normalizer of B:

BA = (Ba B2a . . . Bna) =

(
Ba B2a . . .

n∑
i=1

biB
i−1a

)
= AB.

Moreover, a = A(1, 0, . . . , 0, 0)T = a and A−1a = (1, 0, . . . , 0, 0)T . This means that

((1, 0, . . . , 0, 0)T , B, cA)

is the second form.
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A.2 Canonical forms of named circuits

In the next table, we provide canonical forms of regular circuits listed in Table 1. The circuits
are represented by extended matrices.

Circuit First form Second form

Feistel
(

0 1 0
1 0 1
0 1 0

) (
0 1 1
1 0 0
1 0 0

)
Matsui

(
0 0 1
1 1 0
0 1 0

) (
0 0 1
1 1 0
0 1 0

)
SkipjackA

(
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0

) (
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 1 0 0 0

)

SkipjackB

(
0 0 0 0 1
1 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

) (
0 0 0 0 1
1 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0

)

MARS3

(
0 0 0 1 0
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 0

) (
0 0 0 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 1 1 0 0

)

SMS4

(
0 0 0 1 0
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 0

) (
0 0 0 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

)

GFN1

 0 0 ... 0 1 0
1 0 ... 0 0 0
0 1 ... 0 0 0
... ... ... ... ... ...
0 0 ... 0 0 0
0 0 ... 1 0 1
0 0 ... 0 1 0

  0 0 ... 0 1 1
1 0 ... 0 0 0
0 1 ... 0 0 0
... ... ... ... ... ...
0 0 ... 0 0 0
0 0 ... 1 0 0
1 0 ... 0 0 0


SkipjackG

 0 0 ... 0 0 1
1 0 ... 0 0 0
0 1 ... 0 0 0
... ... ... ... ... ...
0 0 ... 0 0 0
0 0 ... 1 0 1
0 0 ... 0 1 0

  0 0 ... 0 0 1
1 0 ... 0 0 0
0 1 ... 0 0 0
... ... ... ... ... ...
0 0 ... 0 0 0
0 0 ... 1 0 0
1 0 ... 0 1 0


Let us justify the last two rows of the table, where the circuits of arbitrary dimension n ≥ 2

are presented.
The GFN1 circuit already has the second canonical form: a = (1, 0, . . . , 0)T , B is a Frobe-

nius cell whose last column b = a, c = aT . Replacing (a,B, c) with

(B−1a,B−1BB, cB) = ((0, . . . , 0, 1)T , B, (0, . . . , 0, 1)),

we obtain the first canonical form.
The SkipjackG circuit also has the second form: a = (1, 0, . . . , 0)T , B is a Frobenius cell

with zero last column, c = (1, 0, . . . , 0, 1). The normalizer

P = P (c) =



1 0 . . . 0 0
0 1 . . . 0 0
0 0 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 1 0
1 0 . . . 0 1

 .

Replacing (a,B, c) with

(Pa, PBP−1, cP−1) = ((1, 0, . . . , 0, 1)T , B, (0, . . . , 0, 1)),

we obtain the first form.
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