
N-term Karatsuba Algorithm and its
Application to Multiplier designs for
Special Trinomials
YIN LI1, YU ZHANG1, XIAOLI GUO1 AND CHUANDA QI1.
1Department of Computer Science and Technology, Xinyang Normal University, Xinyang, 464000 P.R. China

Corresponding author: Yin Li (e-mail: yunfeiyangli@gmail.com).

This work was supported by the National Natural Science Foundation of China (Grant No. 61402393, 61601396) and Shanghai Key
Laboratory of Integrated Administration Technologies for Information Security (No. AGK201607).

ABSTRACT In this paper, we propose a new type of non-recursive Mastrovito multiplier for GF (2m)
using a n-term Karatsuba algorithm (KA), whereGF (2m) is defined by an irreducible trinomial, xm+xk+
1,m = nk. We show that such a type of trinomial combined with the n-term KA can fully exploit the spatial
correlation of entries in related Mastrovito product matrices and lead to a low complexity architecture. The
optimal parameter n is further studied. As the main contribution of this study, the lower bound of the space
complexity of our proposal is about O(m

2

2 + m3/2). Meanwhile, the time complexity matches the best
Karatsuba multiplier known to date. To the best of our knowledge, it is the first time that Karatsuba-based
multiplier has reached such a space complexity bound while maintaining relatively low time delay.

INDEX TERMS N-term Karatsuba Algorithm, Specific trinomials, Bit-parallel Multiplier

I. INTRODUCTION
The finite field GF (2m) arithmetic has many applications in
cryptography and error-correcting code [1], [2]. For instance,
one of the most important applications of GF (2m) is the
elliptic cure cryptosystem (ECC) [3]. Among the GF (2m)
arithmetic operations, multiplication is of most importance
because other costly operations such as exponentiation and
inversion can be carried out by iterative multiplications.
Therefore, it is necessary to design highly efficient multipli-
ers for GF (2m) multiplication.

The choices of the field basis and irreducible polynomials
are crucial to multiplier design. Compared with other bases,
polynomial basis (PB) is more promising in the sense of
flexibility in irreducible polynomial selection and hardware
optimization [9]. Moreover, some variations of polynomial
basis, e.g., shifted polynomial basis (SPB) [5], [13] and
generalized polynomial basis (GPB) [10], are proposed as
well to optimize the multiplier architecture further. Among
these irreducible polynomials in use, irreducible trinomial is
one of the most common considerations. During recent years,
many bit-parallel multiplier using PB have been proposed for
GF (2m) generated with an irreducible trinomial [7], [12],
[16], [17], [27].

Generally speaking, the PB multiplication consists of two
steps: polynomial multiplication and modulo reduction. The
polynomial multiplication can be optimized using a divide-
and-conquer algorithm such as Karatsuba algorithm (KA)
[4], [18]. Such an algorithm saves coefficient multiplications

at the cost of extra additions compared to the school-book
method. Thus, it can be easily adopted to design efficient
GF (2m) multipliers. Specifically, there exists a class of
Karatsuba based multipliers, named as non-recursive Karat-
suba multiplier, only apply KA once in the polynomial
multiplication and obtain a trade-off between the space and
time complexities. During recent years, several non-recursive
Karatsuba multipliers have been proposed for various type of
irreducible polynomials [14], [15], [21], [24], [28]. On one
hand, such multipliers cost several more XOR gates delay
compared with the fastest bit-parallel multiplier known to
date [6], where no divide-and-conquer algorithm is applied.
On the other hand, the space complexities of these multipliers
are roughly reduced by 1/4.

Empirically, non-recursive Karatsuba multipliers focusing
on specific irreducible polynomials usually have better space
and time complexity than the ones for general polynomial-
s. Such polynomials include equally-spaced trinomial (ES-
T) [28], all-one polynomial (AOP) [15], etc. Recently, we
explore another special form of trinomial xm + x

m
3 + 1

combined with a three-term Karatsuba algorithm to obtain an
efficient bit-parallel multiplier [25]. The proposed multiplier
roughly costs 2/3 circuit gates of the fastest multipliers, while
its time delay matches the best known Karatsuba multiplier.
In this study, we take inspiration from our previous scheme
and investigate the construction of the similar type of mul-
tipliers. Consider the GF (2m) multiplication defined by an
irreducible trinomial xm+xk+1, wherem = nk, n ≥ 2. We

VOLUME 4, 2016 1

name this type of trinomial as n-spaced trinomial. Obviously,
this type of trinomial is EST if n = 2. Shou et al. [26] have
already investigated the development of the bit-parallel mul-
tiplier for this trinomial using a n-term Karatsuba algorithm.
But their scheme requires 3 more XOR gate delays compared
with the fastest one. In this paper, we apply a n-term Karatsu-
ba algorithm along with the shifted polynomial basis (SPB)
to simplify the field multiplication. Mastrovito approach is
utilized for polynomial reduction. It is demonstrated that the
corresponding Mastrovito matrices for different parts of the
field multiplication have relatively simpler forms, which lead
to an efficient architecture. Moreover, we also give the explic-
it formulae with respect to the space and time complexity of
the corresponding multipliers. As a result, the lower bound of
our proposal costs approximatelyO(m

2

2 +m3/2) circuit gates
compared with the fastest bit-parallel multipliers, while its
time delay matches the Karatsuba based multipliers known
to date.

The rest of this paper is organized as follows: In Section
2, we briefly review the n-term Karatsuba algorithm, the
SPB representation and some pertinent notations. Then, we
present a new bit-parallel multiplier architecture for n-spaced
trinomial in Section 3. After that, a small example is given.
Section 4 presents a comparison between the proposed mul-
tiplier and some others. More discussion about the optimal
parameter is also given. Finally, some conclusions are drawn.

II. PRELIMINARY

In this section, we briefly review some important notations
and related algorithms that used throughout this paper.

A. IRREDUCIBLE N -SPACED TRINOMIAL

We first consider the existence of the irreducible trinomial
xm+xk+1,m = nk which are used to define the finite field
GF (2m). The following lemma is useful.

Lemma 1. [2] Let f1(x), f2(x), · · · , fN (x) be all the
distinct monic irreducible polynomial over Fp of degree m
and order e. Let t ≥ 2 be an integer whose prime factors
divide e but not pm−1

e . Assume also that pm ≡ 1 mod 4 if
t ≡ 0 mod 4. Then f1(xt), f2(xt), · · · , fN (xt) are all the
distinct monic irreducible polynomials in Fp[x] of degreem·t
and order t · e.

Lemma 1 provides a way to construct an irreducible trino-
mial of higher degree, i.e., xnk + xk + 1, from the known
irreducible trinomial xn+ x+1. If a trinomial xn+ x+1 is
irreducible over F2, one can find an integer k that satisfies
the above condition, to construct an irreducible trinomial
xnk + xk + 1. For example, it is easy to check that both
x3 + x+ 1 and x4 + x+ 1 are irreducible. Meanwhile, their
orders are 7 and 15, respectively. It follows that x3k+xk+1
(k = 7i) and x4k + xk + 1 (k = 3i × 5j , i, j ≥ 0) are all
irreducible.

B. SHIFTED POLYNOMIAL BASIS

The shifted polynomial basis (SPB) [13] actually is a varia-
tion of the polynomial basis. This notion is originally applied
in the field GF (2m) generated with irreducible trinomials,
and then pentanomials [5]. In this study, we consider the
field GF (2m) generated by a n-spaced trinomial f(x) =
xnk + xk + 1. Let x be a root of f(x), and the set
M = {xnk−1, · · · , x, 1} constitutes a polynomial basis (PB).
Then, the SPB can be obtained by multiplying the set M by
a certain exponentiation of x:

Definition 1. [13] Let v be an integer and the ordered set
M = {xnk−1, · · · , x, 1} be a polynomial basis of GF (2m)
over F2. The ordered set x−vM := {xi−v|0 ≤ i ≤ nk − 1}
is called the shifted polynomial basis with respect to M .

Under SPB representation, the field multiplication can be
performed as:

C(x)x−v = A(x)x−v ·B(x)x−v mod f(x).

If the parameter v is properly selected, the field multiplica-
tion using SPB representation is simpler than that using PB
representation, especially for the field define by irreducible
trinomial or some type of pentanomials [5]. This character-
istic directly lead to a more efficient Mastrovito multiplier
which has lower time complexity compared with classic one
using PB. Furthermore, it has been proved that the optimal
value of v is k or k − 1 for trinomials [13]. To construct an
efficient multiplier for n-spaced trinomials, we choose v = k
and use this denotation thereafter.

C. N -TERM KARATSUBA ALGORITHM

The classic Karatsuba algorithm multiplies two 2-term poly-
nomials using three scalar multiplications at the cost of one
extra addition. Then, Weimerskirch and Paar [8] proposed a
slightly generalized algorithm for the polynomial multiplica-
tion with arbitrary degree. This algorithm has the same idea
as the classic one. We denote such an algorithm as n-term KA
(n > 2). Provide that there are two polynomials of degree
n− 1 over F2:

A(x) =

n−1∑
i=0

aix
i, B(x) =

n−1∑
i=0

bix
i.

The n-term KA for polynomial multiplication AB is as
follows:

• Compute for each i = 0, · · · , n− 1,

Ei = aibi.

• Compute for each i = 1, · · · , 2n−3 and for all s, t with
s+ t = i and n > t > s ≥ 0,

Es,t = (as + at)(bs + bt).

2 VOLUME 4, 2016

• The coefficients of D(x) = A(x)B(x) =
∑2n−2
i=0 dix

i

can be computed as

d0 = E0,

d2n−2 = En−1,

di =
∑

s+t=i,
n>t>s≥0

Es,t+
∑

s+t=i,
n>t>s≥0

(Es+Et) (odd i),∑
s+t=i,

n>t>s≥0
Es,t+

∑
s+t=i,

n>t>s≥0
(Es+Et)+ Ei/2 (even i),

where i = 1, 2, · · · , 2n− 3.
The correctness proof about above formulae can be found in
[8]. Merge the similar items for Ei, (i = 0, 1, · · · , n − 1),
D(x) is rewritten as:

D(x) = En−1(x
2n−2 + · · ·+ xn−1) + En−2(x

2n−3+

+ · · ·+ xn−2) + · · ·+ E0(x
n−1 + · · ·+ 1)

+
∑2n−3

i=1 (
∑

s+t=i,
n>t>s≥0

Es,t)x
i.

(1)

One can easily check that the above formula costs about
O(n

2

2) coefficient multiplications and O(5n
2

2) additions.
Compared with classic KA, the n-term KA saves more
coefficient multiplications at the expense of more coeffi-
cient additions. Besides Weimerskirch and Paar’s algorithm,
Montgomery [20] and Fan [19] proposed more alternative
Karatsuba-like formulae. Their formulae aim to decrease as
many coefficient multiplications as possible. These formu-
lations usually contain complicated linear combinations of
the coefficients, which will lead more gates delay for the
bit-parallel architecture. Thus, we prefer to utilize the above
algorithm to develop bit-parallel multiplier.

In Section 3, we investigate the construction of non-
recursive Karatsuba algorithm using n-term KA for the n-
spaced trinomial. Our main strategy is analogous to that in
[24], which combines Mastrovito approach and n-term KA.
Therefore, some notations pertaining to matrices and vectors
are used as well. Note that these notations have already been
presented in [9], [24]. Z(i, :),Z(:, j) and Z(i, j) represent the
ith row vector, jth column vector, and the entry with position
(i, j) in matrix Z, respectively. Z[i] represents cyclic shift
of Z by upper i rows. Z[� i] represents appending i zero
vectors to the top of Z.

III. EFFICIENT MULTIPLIER BASED ON N -TERM
KARATSUBA ALGORITHM
In this section, we present an efficient non-recursive Karat-
suba multiplier for n-spaced trinomial xnk + xk + 1 using
SPB representation. We firstly investigate the structure of
the product matrix for polynomial multiplication based on
n-term KA. Then, reduced matrices are calculated using
Mastrovito approach. Accordingly, we propose the relat-
ed multiplier architecture. It is shown that corresponding
matrix-vector multiplications can be implemented efficiently
for n-spaced trinomial. The space and time complexity of the
corresponding multiplier is also discussed.

Provide that the finite field GF (2m) is generated with
an irreducible trinomial xm + xk + 1,m = nk, the field

elements are represented using SPB. Applying n-term KA
as presented previously, we partition two arbitrary field ele-
ments A =

∑m−1
i=0 aix

i−k, B =
∑m−1
i=0 bix

i−k into n parts
with each part consisting of k bits. More explicitly,

A =An−1x
(n−2)k +An−3x

(n−3)k + · · ·+A1 +A0x
−k,

B =Bn−1x
(n−2)k +Bn−3x

(n−3)k + · · ·+B1 +B0x
−k,

where Ai =
∑k−1
j=0 aj+(i−1)kx

j , Bi =
∑k−1
j=0 bj+(i−1)kx

j ,
for i = 0, 1, · · · , n− 1.

Then, we multiply A and B using the n-term Karatsuba
algorithm presented in Section 2 and do following transfor-
mation:

AB =
(
En−1 · x(n−2)k + En−2 · x(n−3)k + · · ·+ E1+

E0 · x−k
)
· h(x) +

2n−3∑
i=1

(∑
s+t=i,

n>t>s≥0

Es,t

)
xik−2k,

(2)

where h(x) = x(n−2)k+x(n−1)k+· · ·+1+x−k,Ei = AiBi
(i = 0, 1, · · · , n − 1) and Es,t = (As + At)(Bs + Bt). We
partition the above expression into two parts, i.e.,

S1 =(An−1Bn−1x
(n−2)k + · · ·+A1B1 +A0B0x

−k)h(x),

S2 =

2n−3∑
i=1

(∑
s+t=i,
n>s>t≥0

Es,t

)
xik−2k,

and compute them independently. Thus, the field multiplica-
tion C = AB mod f(x) now is rewritten as

C = (S1 + S2) mod f(x).

In order to apply Mastrovito approach, we have to rewrite
both S1 and S2 into matrix-vector forms and then reduce
those matrices. Please note that m = nk and thus corre-
sponding product matrices are more complicated than those
presented in [24], [25]. The following subsections give the
details.

A. COMPUTATION OF S1 MODULO F (X)

Since

S1 =(An−1Bn−1x
(n−2)k + · · ·+A1B1 +A0B0x

−k)h(x)

=An−1h(x)Bn−1x
(n−2)k + · · ·+A0h(x)B0x

−k,

it is clear that S1 in fact consists of n parts, each of
which can be recognized as a shift of Aih(x)Bi, for i =
0, 1, · · · , n−1. Through constructing the matrix-vector form
ofAih(x)Bi, i = 0, 1, · · · , n−1, we can develop the matrix-
vector form of S1. It is noted that

Aih(x)Bi = (Aix
(n−2)k + · · ·+Ai +Aix

−k) ·Bi.

Such an expression can be written as big matrix-vector mul-
tiplication derived from the matrix-vector form of AiBi. Let
Ai represents the multiplication matrix related to Aih(x)

VOLUME 4, 2016 3

and bi represents the coefficient vector of Bi(x). Then,
Aih(x)Bi = Ai · bi, where

Ai =

−k
...
...

nk−1

Ai,L

Ai,L +Ai,H

...
Ai,L +Ai,H

n−1

Ai,H

 .
The labels on the left side indicate the exponent of indetermi-
nate x for each row in Ai, which range from −k to nk − 1.
However, we check that the degrees of x in Aih(x)Bi are
actually in the range [−k, nk − 2]. But the last row of Ai is
0, which does not affect the result. The matrices Ai,H and
Ai,L are both k × k triangular Toeplitz matrix, i.e.,

Ai,L =

aik+0 0 · · · 0
aik+1 aik+0 · · · 0

...
...

. . .
...

aik+k−1 aik+k−2 · · · aik+0

 ,
and

Ai,H =

0 aik+k−1 · · · aik+1

0 0 · · · aik+2

...
...

. . .
...

0 0 · · · aik+k−1
0 0 · · · 0

 ,
for i = 0, 1, · · · , n− 1.

Accordingly, these n submatrix-vector multiplications can
constitute a bigger matrix-vector multiplication pertaining to
S1, denoted by AS1 · b. More explicitly,

S1 = AS1
· b = AS1

· [b0,b1, · · · ,bn−1]T

=

 A0 0k×k · · · 0k×k

0k×k A1
. . . 0(m−2k)×k

0(m−2k)×k 0(m−2k)×k · · · An−1

×
 b0,

...
bn−1

 .
(3)

For simplicity, we do not write the degree labels of the
product matrix here. Notice that deg(AiBih) = nk − 2, i =
0, 1, · · · , n − 1, we have deg(S1) = nk − 2 + (n − 2)k =
2m− 2k − 2. One can check that the degrees of the terms of
S1 are in the range [−2k, 2m−2k−2]. Based on Mastrovito
scheme, S1 needs a further reduction by f(x). The following
reduction rule is applied:

xi = xm+i + xi+k, for i = −2k, · · · ,−k − 1;

xi = xi−m + xi−m+k, for i = m−k,m−k+1,

· · · , 2m− 2k − 2.

(4)

The reduction can be regarded as the construction of the Mas-
trovito matrix from AS1

according to (4). Let MS1
denote

the Mastrovito matrix related to S1. In order to analyze the

organization of MS1
, we introduce a lemma, which is the key

step toward the development of the multiplier architecture.

Lemma 2. Provide that A is an arbitrary (2m − 1) × m
matrix and b is am×1 vector over F2. The Mastrovito matrix
M related to A · b modulo xm + xk + 1 using (4) can be
obtained as follows:

M = M1 +M2,

where

M1 = [A(1, :)T +A(m+1, :)T ,A(2, :)T +A(m+2, :)T ,

· · · ,A(2m−1, :)T +A(m−1, :)T ,A(m, :)T][k],
(5)

and

M2 = [A(1, :)T , · · · ,A(k, :)T ,A(k+m+1, :)T ,

· · · ,A(2m− 1, :)T ,0].
(6)

Proof. We notice that the product matrix A here includes
2m − 1 rows with each row corresponding the degree
from −2k to 2m− 2k − 2. Clearly, the first k rows and
the last m − k − 1 rows correspond to the term de-
grees that are out of the range [−k,m − k − 1]. Based
on (4), the reduction steps consist of reducing the row
{−2k,−2k + 1, · · · ,−k − 1} by adding them to the row
{−k, · · · ,−1} and {m− 2k, · · · ,m− k − 1}, and reduc-
ing the row {m− k, · · · , 2m− 2k − 2} by adding them to
the row {0, · · · ,m−k−2} and {−k, · · · ,m−2k−2}. The
explicit reduction process follows the same line as the proof
of Observation 3.1, [24]. Then, we partition these rows into
two categories, let

M1 = [A(k+m+1, :)T+A(k+1, :)T , · · · ,
A(2m−1, :)T+A(m−1, :)T ,A(m, :)T ,A(1, :)T+

A(m+1, :)T · · · ,A(k, :)T +A(k+m, :)T],

and

M2 = [A(1, :)T , · · · ,A(k, :)T ,A(k+m+1, :)T ,

· · · ,A(2m− 1, :)T ,0].

We compare the row number and obtain the result immedi-
ately.

Based on Lemma 2, we immediately give the following
proposition with respect to the structure of MS1

.

Proposition 1. The Mastrovito matrix MS1
can be con-

structed as

MS1
= MS1,1 +MS1,2,

where

MS1,1 = A0,L+A0,H A1,L+A1,H · · · An−1,L+An−1,H
...

...
. . .

...
A0,L+A0,H A1,L+A1,H · · · An−1,L+An−1,H

4 VOLUME 4, 2016

and

MS1,2 =
A0,L 0k×k 0k×k · · · 0k×k

0k×k A1,H A2,L+A2,H · · · An−1,L+An−1,H
0k×k 0k×k A2,H · · · An−1,L+An−1,H

...
...

...
. . .

...
0k×k 0k×k 0k×k · · · An−1,H

 .

Proof. The proof is the same as the proof of Lemma 2. We
directly get this conclusion by substituting A by AS1

.

It is noted that there are some overlapped terms between
MS1,1 and MS1,2. By adding these two matrices together,
we can obtain the explicit form of MS1 , which is shown in
(7). Moreover, the matrix-vector multiplication S1 = MS1 ·b
can be computed according to the strategy used in [25] and
overlapped terms are considered reusing to save more logic
gates.

1) Detailed computation of S1 modulo f(x).
(i) Perform 2n row-vector products

A0,L ∗ b0,A0,H ∗ b0,A1,L ∗ b1,A1,H ∗ b1,
· · · An−1,L ∗ bn−1,An−1,H ∗ bn−1,

(8)

in parallel. The symbol “*” represent only row-vector
product related to Ai,L (or Ai,H) and bi, i =
0, 1, · · · , n − 1. For instance, A0,H ∗ b0 represents
computing the products

[A0,H(i, 1) · b0, · · · ,A0,H(i, k) · bk−1],

for i = 1, 2, · · · , k in parallel.
(ii) Compute

A0,Lb0+A0,Hb0, · · · ,An−1,Lbn−1+An−1,Hbn−1

using binary XOR trees in parallel. Meanwhile,
A0,Hb0,A1,Lb1, · · · ,An−1,Lbn−1 are computed us-
ing sub-expression sharing technique.

(iii) Sum up all the n entries of each row using binary XOR
tree to obtain the final result.

Remark. It is clear that the row-vector products in (8) contain
all the possible row-vector products in (7). Only nk2 AND
gates are required to compute these expressions.

In addition, Ai,Lbi+Ai,Hbi, (i = 0, · · · , n− 1) contain
all the terms of Ai,Lbi or Ai,Hbi. These expressions can
be computed in parallel and more logic gates can be saved
using sub-expression sharing for binary tree. Such an ap-
proach has already been studied in [24]. The authors have
shown that if two binary XOR trees share t common items,
only t − W (t) XOR gates can be saved, where W (t) is
the Hamming weight of t. It is easy to check that the j-
th row (j = 1, 2, · · · , k) of Ai,Lbi shares j terms with
Ai,Lbi + Ai,Lbi for i = 1, 2, · · · , n − 1. Meanwhile, the
j-th row of Ai,Lbi includes j terms and originally requires
j− 1 XOR gates for binary XOR tree. Minus the saved XOR
gates, we can see that number of required XOR actually is
j−1− (j−W (j)) =W (j)−1. Specifically, the k-th row of

TABLE 1. Space and time complexities of S1 mod f(x)

Operation # AND #XOR Delay

Ai,L∗bi,Ai,H ∗bi nk2 - TA

Ai,Lbi +Ai,Hbi
- n(k2 − k)

dlog2 keTX
(i = 0, 1, · · · , n−1)

A0,Hb0,Ai,Lbi
-

n
∑k−1

i=1 W (i)

(i=1, 2, · · · , n−1) +n− nk

S1
- m+kW (n− 2)

dlog2 neTX
+k
∑n−2

i=0W (i)

Ai,Lbi is identical to that of Ai,Lbi+Ai,Lbi, no XOR gates
is needed here. Based on similar approach, we can calculate
the real number of XOR gates for the j-th row of A0,Hb0 is
W (k − j)− 1 for j = 1, 2, · · · , k − 1.

Table 1 summarizes the space and time complexity of
S1 mod f(x) for all the steps. One can notice that after
calculation of the row-vector products in (8), each row of
Ai,L ∗ bi+Ai,H ∗ bi consists of k terms. Thus, the inner
product of Ai,Lbi +Ai,Hbi will be obtained using a binary
XOR tree with a delay of dlog2 keTX . Finally, we have to
perform additions among the n entries to obtain the coeffi-
cient vector with respect to S1. More partial additions can be
saved using the same sub-expression sharing. For simplicity,
we put the details to the appendix A.

2) An example of S1 mod f(x)

Firstly we have an irreducible 4-spaced trinomial x4 + x+ 1
over F2. Then, we can construct another irreducible 4-spaced
trinomial of higher degree according to Lemma 1, i.e., x12 +
x3 + 1.

Consider the field multiplication using SPB representa-
tion over GF (212) defined by the previous trinomial. We
have the SPB parameter k = 3 and SPB is defined as
{x−3, x−2, · · · , x7, x8}. Assume thatA =

∑11
i=0 aix

i−3 and
B =

∑11
i=0 bix

i−3 are two elements in GF (212). A,B are
partitioned as

A = A3x
6 +A2x

3 +A1 +A0x
−3,

B = B3x
6 +B2x

3 +B1 +B0x
−3,

where Ai = a2+3ix
2 + a1+3ix + a0+3i, Bi = b2+3ix

2 +
b1+3ix+ b0+3i, for i = 0, 1, 2, 3.

Based on equation (2) and previous description, it is obvi-
ously that AB = S1 + S2 and the explicit form of S1 and S2

are as follows:

S1 = A3B3hx
6+A2B2hx

3+A1B1h+A0B0hx
−3,

S2 = E3,2x
9+E3,1x

6+(E3,0+E2,1)x
3+E2,0+E1,0x

−3,

VOLUME 4, 2016 5

S1 mod f(x) = MS1 · b =

A0,H A1,L+A1,H A2,L+A2,H · · · An−2,L+An−2,H An−1,L+An−1,H
A0,L+A0,H A1,L 0k×k · · · 0k×k 0k×k

A0,L+A0,H A1,L+A1,H A2,L · · · 0k×k 0k×k

...
...

...
. . .

...
...

A0,L+A0,H A1,L+A1,H A2,L+A2,H · · · An−2,L 0k×k

A0,L+A0,H A1,L+A1,H A2,L+A2,H · · · An−2,L+An−2,H An−1,L

 ·

b0

b1

...
bn−2
bn−1

 .
(7)

where h(x) = x6+x3+1+x−3 andEs,t = (As+At)(Bs+
Bt) for 3 ≥ s > t ≥ 0. Let

Ai,L =

 a3i+0 0 0
a3i+1 a3i+0 0
a3i+2 a3i+1 a3i+0

 ,
and

Ai,H =

 0 a3i+2 a3i+1

0 0 a3i+2

0 0 0

 .
Accordingly, it is easy to compute the matrices AS1 , MS1,1

and MS1,2, which are presented in the appendix. The Mas-
trovito matrix related to S1 mod f(x) is A0,H A1,L+A1,H A2,L+A2,H A3,L+A3H

A0,L+A0,H A1,L 0k×k 0k×k

A0,L+A0,H A1,L+A1,H A2,L 0k×k

A0,L+A0,H A1,L+A1,H A2,L+A2,H A3,L

=

0 a2 a1 a3 a5 a4 a6 a8 a7 a9 a11 a10
0 0 a2 a4 a3 a5 a7 a6 a8 a10 a9 a11
0 0 0 a5 a4 a3 a8 a7 a6 a11 a10 a9
a0 a2 a1 a3 0 0 0 0 0 0 0 0
a1 a0 a2 a4 a3 0 0 0 0 0 0 0
a2 a1 a0 a5 a4 a3 0 0 0 0 0 0
a0 a2 a1 a3 a5 a4 a6 0 0 0 0 0
a1 a0 a2 a4 a3 a5 a7 a6 0 0 0 0
a2 a1 a0 a5 a4 a3 a8 a7 a6 0 0 0
a0 a2 a1 a3 a5 a4 a6 a8 a7 a9 0 0
a1 a0 a2 a4 a3 a5 a7 a6 a8 a10 a9 0
a2 a1 a0 a5 a4 a3 a8 a7 a6 a11 a10 a9

.

Therefore, one can check that the exact number of logic gates
requried by every step of S1 mod f(x):
• Computation of A0,L ∗ b0,A0,H ∗ b0, · · · ,A3,L ∗

b3,A3,H ∗ b3 requires 36 AND gates with one TA gate
delay.

• Computation of A0,Lb0 + A0,Hb0, · · · ,A3,Lb3 +
A3,Hb3 costs 24 XOR gates in all. Meanwhile,
no XOR gates are needed for the computation
of A0,Hb0,A1,Lb1,A2,Lb2,A3,Lb3 using sub-
expression sharing, as the binary XOR tree for these
expressions can be embedded into those of Ai,Lbi+
Ai,Hbi for i = 0, 1, 2, 3. These operations requires
2TX delay in parallel.

• The final additions among 4 entries of each row costs
21 XOR gates using the trick presented in the appendix,
which cost another 2TX delay in parallel.

As a result, the calculation of MS1,1 · b totally requires 36
AND gates and 45 XOR gates, with TA + 4TX gate delay.
This result meets the complexity formulae shown in Table 1.

B. COMPUTATION OF S2 MODULO XNK +XK + 1

We then consider the computation of S2 mod f(x) in details.
Note that

S2 =

2n−3∑
i=1

(∑
s+t=i,
n>s>t≥0

Es,t

)
xik−2k

and Es,t = (As + At)(Bs + Bt), (n > s > t ≥ 0) consist
of k bits. Each of these expressions can be recognized as
a small matrix-vector multiplication. Let

∑k−1
i=0 u

(s,t)
i xi and∑k−1

i=0 v
(s,t)
i xi denote the result of As + At and Bs + Bt,

respectively. We have Es,t = Us,t · vs,t, where Us,t is the
product matrix constructed from

∑k−1
i=0 u

(s,t)
i xi and vs,t is

the coefficient vector [v(s,t)0 , v
(s,t)
1 , · · · , v(s,t)k−1]

T , i.e.,

Es,t = Us,t · vs,t =

u
(s,t)
0 0 · · · 0 0

u
(s,t)
1 u

(s,t)
0 · · · 0 0

...
...

. . .
...

...
u
(s,t)
k−2 u

(s,t)
k−3 · · · u

(s,t)
0 0

u
(s,t)
k−1 u

(s,t)
k−2 · · · u

(s,t)
1 u

(s,t)
0

0 u
(s,t)
k−1 · · · u

(s,t)
2 u

(s,t)
1

...
...

. . .
...

...
0 0 · · · u

(s,t)
k−1 u

(s,t)
k−2

0 0 · · · 0 u
(s,t)
k−1

·

v
(s,t)
0

v
(s,t)
1
...

v
(s,t)
k−2
v
(s,t)
k−1

 .
(9)

It is noted that these matrix-vector multiplications are in-
dependent and thus can be implemented in parallel. However,
S2 contains

(
n
2

)
different expressions in all, each of which has

a different degree. In order to simplify the reduction process,
we first classify these expressions into several categories,
where the expressions in the same category can constitute a
bigger matrix-vector multiplication. Then we can perform a
reduction with each category. In addition, the classification
has already been studied in [23]. Here, we can utilize the
result directly. Let

S(n) = S2 · x2k =

2n−3∑
i=1

(∑
s+t=i,
n>s>t≥0

Es,t

)
xik.

The classification lemma is as follows:

6 VOLUME 4, 2016

Lemma 3. [23] S(n) can be expressed as the plus of
g1x

(2λ−1)k, g2x
(2λ−3)k, · · · , gλxk for λ = n

2 (n is even) or
λ = n−1

2 (n is odd), where

g1 = C
(1)
n−2x

(n−2)k + C
(1)
n−3x

(n−3)k + · · ·+ C
(1)
0 ,

g2 = C
(2)
n−2x

(n−2)k + C
(2)
n−3x

(n−3)k + · · ·+ C
(2)
0 ,

...

gn
2
= C

(n2)
n−2x

(n−2)k + C
(n2)
n−3x

(n−3)k + · · ·+ C
(n2)
0 ,

or

g1 = C
(1)
n−1x

(n−1)k + C
(1)
n−2x

(n−2)k + · · ·+ C
(1)
0 ,

g2 = C
(2)
n−1x

(n−1)k + C
(2)
n−2x

(n−2)k + · · ·+ C
(2)
0 ,

...

gn−1
2

= C
(n−1

2)
n−1 x(n−1)k + C

(n−1
2)

n−2 x(n−2)k + · · ·+ C
(n−1

2)
0 ,

where C(i)
j ∈ {Es,t}, n > s > t ≥ 0.

Proof. See section 3.2 in [23].

Based on the above lemma, it is obvious that S2 can be par-
titioned into λ parts and all these parts are independent. More
explicitly, S2 = g1x

(2λ−3)k + g2x
(2λ−5)k + · · · + gλx

−k.
Obviously, g1, g2, · · · , gλ contain all the nonzero terms of
S2, where the number of such terms equals (n− 2)k + 2k −
2 + 1 = m − 1 terms if n is even or (n − 1)k + 2k − 2 +
1 = m + k − 1 if n is odd. We can first compute these
expressions in parallel, then, perform reductions related to
g1x

(2λ−3)k, g2x
(2λ−5)k, · · · , gλx−k.

1) Detailed computation of S2 mod f(x)

(i) Perform bitwise addition As + At, Bs + Bt, (n > s >
t ≥ 0) in parallel.

(ii) Perform
(
n
2

)
matrix-vector bitwise multiplications, i.e,

Es,t = Us,t ∗ vs,t in parallel.
(iii) Classify these

(
n
2

)
matrices Es,t into λ parts according

to Lemma 3 and constitute the small matrices of the
same category into λ big matrices Eg1 , · · · ,Egλ , which
correspond to g1, g2, · · · , gλ.

(iv) Add all the entries of the same row in Eg1 , · · · ,Egλ
using binary XOR tree, and obtain the coefficients of
g1, g2, · · · , gλ.

(v) Perform reduction for g1x(2λ−3)k, g2x(2λ−5)k, · · · , gλx−k
modulo f(x) using (4).

(vi) Add all these results binary XOR tree to obtain the
S2 mod f(x).

Remark. According to (9), it is clear that after performing
bitwise multiplication, Es,t are all (2k − 1) × k matrices.
When we classify these matrices and constitute them to λ
big matrices, one can check that the number of entries for
each row of Eg1 , · · · ,Egλ is equal to k. Thus, the coeffi-
cients of g1, g2, · · · , gλ will be obtained with dlog2 keTX
delay. Whereafter, we can perform the modular reduction for
g1x

(2λ−3)k, g2x
(2λ−5)k, · · · , gλx−k. Such reductions also

rely on equation (4). We have following observations for the

computation of S2 mod f(x).

Observation 3.2.1 To compute g1x
(2λ−3)k, g2x

(2λ−5)k,
· · · , gλx−k modulo f(x), we only need to reduce these
expressions at most once.

Proof. Apparently, the minimal and maximal degrees of
the terms in g1x(2λ−3)k, g2x(2λ−5)k, · · · , gλx−k are −k and
2m − 3k − 2, respectively. Apply reducing formulae of (4),
we have

xm−k = x0 + x−k,
xm−k+1 = x1 + x−k+1,

...
x2m−3k−2 = xm−2k−2 + xm−3k−2.

The exponents of x in the right side now are all in the range
[−k,m− k − 1], no further reduction is needed.

Observation 3.2.2 When the modular reduction and addition
are combined, Step (v) and (vi) can be calculated with at most
dlog2 neTX delay.

Proof. We know g1x
(2λ−3)k, g2x

(2λ−5)k, · · · , gλx−k modu-
lo f(x) only need to reduced once. But, gi contains different
number of nonzero terms according to the parity of n, which
lead to different reduction formulations. For simplicity, we
only consider the case of odd n here and put the analysis
about other case in Appendix.

If n is odd, we have λ = n−1
2 , and the degree of gi is

nk + k − 2. Let gi =
∑nk+k−2
j=0 h

(i)
j xj . Then,

gix
(n−2i−2)k =

2ik+k−1∑
j=0

h
(i)
j xj+(n−2i−2)k+

nk−1∑
j=2ik+k

h
(i)
j xj+(n−2i−2)k +

nk+k−2∑
j=nk

h
(i)
j xj+(n−2i−2)k,

for i = 1, 2, · · · , n−12 . When we reduce above expression
modulo f(x) = xnk + xk + 1, only two parts are needed to
be reduced. Then,

nk−1∑
j=2ik+k

h
(i)
j xj+(n−2i−2)k=

nk−1∑
j=2ik+k

h
(i)
j (xj−2ik−2k + xj−2ik−k),

nk+k−2∑
j=nk

h
(i)
j xj+(n−2i−2)k=

nk+k−2∑
j=nk

h
(i)
j (xj−2ik−2k + xj−2ik−k).

By combining non-overlapped parts of above expressions,
the result of gix(n−2i−2)k mod f(x) is given by

gix
(n−2i−2)k mod f(x) = p

(i)
1 (x) + p

(i)
2 (x) + p

(i)
3 (x),

VOLUME 4, 2016 7

where

p
(i)
1 =

2ik+k−1∑
j=0

h
(i)
j xj+nk−2ik−2k +

nk−1∑
j=2ik+k

h
(i)
j xj−2ik−2k,

p
(i)
2 =

nk+k−2∑
j=2ik+k

h
(i)
j xj−2ik−k,

p
(i)
3 =

nk+k−2∑
j=nk

h
(i)
j xj−2ik−2k.

Moreover, it is noted that the term degrees of p(i)3 are in the
range [nk− 2ik− 2k, nk− 2ik− k− 2]. One can check that
these ranges are [−k,−2], [k, 2k − 2], · · · , [(n − 4)k, (n −
3)k − 2]. Therefore, there is no overlapped term among all
the p(i)3 , which cost no XOR gates to add them up. Denoted
by r the addition of p(1)3 , p

(2)
3 , · · · , p(

n−1
2)

3 .
Consequently, to obtain S2 mod f(x), we only need to

add p
(1)
1 , p

(1)
2 , · · · , p(

n−1
2)

1 , p
(n−1

2)
2 and r in parallel, which

cost dlog2 ne XOR gate delay. We directly conclude the
observation.

We next analyze the space and time complexity related to
S2. Firstly, 2k ·

(
n
2

)
= (n2 − n)k XOR gates are needed

for pre-computation of As + At and Bs + Bt, (n > t >
s ≥ 0) in Step (i), which cost one TX in parallel. Then, the(
n
2

)
matrix-vector bitwise multiplications in Step (ii) cost k2 ·(

n
2

)
= (n2 − n)k2/2 AND gates with TA gate delay.

The classification in Step (iii) does not cost any logic
gates. Step (iv) includes adding all the entries of the same
row in Eg1 , · · · ,Egλ . Since these matrices are determined
by g1, g2, · · · , gλ, the required XOR gates varies according
to parity of n. If n is even, each of g1, g2, · · · , gn2 consists of
n− 1 sub-polynomials. That is to say, Egi , (i = 1, 2, · · · , n2
corresponds a combination of n − 1 matrices Es,t. Thus
the coefficient computation for each gi costs nk2 − k2 −
m + 1 XOR gates with dlog2 keTX delay. If n is odd,
g1, g2, · · · , gn−1

2
consists of n sub-polynomials. Similarly, it

costs nk2−k−m+1 XOR gates for each gi with dlog2 keTX
delay.

Step (v) and (vi) follow the description in Observation
3.2.2. We only add n (or n − 1) vectors together to obtain
S2 mod f(x). The space and time complexity for all the
steps is stated in Table 2.

2) An example of S2 mod f(x)

To illustrate our classification and reduction strategy, we
give a small example here. Consider S2 presented in former
example. According to Lemma 3, S1 can be rewritten as

S1 = g1x
3 + g2x

−3,

where g1 = E3,2x
6 + E3,1x

3 + E3,0, g2 = E2,1x
6 +

E2,0x
3+E1,0. LetAs+At =

∑2
i=0 u

(s,t)xi andBs+Bt =

TABLE 2. Space and time complexities of S2 mod f(x)

Operation # AND #XOR Time delay

As +At - (n2−n)k
2 TX

Bs +Bt - (n2−n)k
2

Us,t ∗ vs,t
(n2−n)k2

2
- TA

Step (iv) - m2−km−mn+n
2

dlog2 keTX

Step (v)(vi) - 3nm
4
− 3m

2
− n

2
+1 dlog2(n−1)eTX

Step (iv)∗ - m2−km−mn+k+n−1
2

dlog2 keTX

Step (v)(vi)∗ - 3nm
4
− 3m

2
− k

4
−n+1 dlog2 neTX

* represents the case of odd n.

∑2
i=0 v

(s,t)xi for 3 ≥ s > t ≥ 0. The explicit form of Eg1 is
given by

Eg1 =

u
(3,0)
0 v

(3,0)
0 0 0

u
(3,0)
1 v

(3,0)
0 u

(3,0)
0 v

(3,0)
1 0

u
(3,0)
2 v

(3,0)
0 u

(3,0)
1 v

(3,0)
1 u

(3,0)
0 v

(3,0)
2

u
(3,1)
0 v

(3,1)
0 u

(3,0)
2 v

(3,0)
1 u

(3,0)
1 v

(3,0)
2

u
(3,1)
1 v

(3,1)
0 u

(3,1)
0 v

(3,1)
1 u

(3,0)
2 v

(3,0)
2

u
(3,1)
2 v

(3,1)
0 u

(3,1)
1 v

(3,1)
1 u

(3,1)
0 v

(3,1)
2

u
(3,2)
0 v

(3,2)
0 u

(3,1)
2 v

(3,1)
1 u

(3,1)
1 v

(3,1)
2

u
(3,2)
1 v

(3,2)
0 u

(3,2)
0 v

(3,2)
1 u

(3,1)
2 v

(3,1)
2

u
(3,2)
2 v

(3,2)
0 u

(3,2)
1 v

(3,2)
1 u

(3,2)
0 v

(3,2)
2

0 u
(3,2)
2 v

(3,2)
1 u

(3,2)
1 v

(3,2)
2

0 0 u
(3,2)
2 v

(3,2)
2

0 0 0

.

The organization of Eg2 is almost the same as Eg1 . It is
easy to see that the computation of g1, g2 in Step (iv) cost
32 XOR gates with 2TX delay. In addition, 17 more XOR
gates are needed as well for Step (v) and (vi) with 2TX delay.
Combined with the number of logic gates required in Step
(i), (ii), it totally requires 54 AND and 85 XOR gates for
S2 mod f(x), with TA + 5TX delay.

C. THEORETIC COMPLEXITY
After the computation of S1 and S2 modulo f(x), othermX-
OR gates are needed to add two results together. From Table 1
and 2, it is clear that the delay of S2 mod f(x) cost one more
TX than S1 mod f(x). Thus, in parallel implementation of
S1, S2 modulo f(x), the delay is TA + (1 + dlog2 ke +
dlog2 ne)TX (or TA + (1 + dlog2 ke + dlog2(n − 1)e)TX
for even n). Plus one more TX that cost in the final addition,

8 VOLUME 4, 2016

we obtain the time complexity of our proposed architecture
as

Time delay = TA + (2 + dlog2 ke+ dlog2 ne)TX .

The space complexity is

AND = m2

2
+ mk

2
,

XOR = m2

2
+ mk

2
+ 5mn

4
+ n

∑k−1
i=1 W (i) + n

+k
∑n−2

i=1 W (i) + kW (n−2)− 5m
2

+ 1,

XOR∗ = m2

2
+ mk

2
+ 5mn

4
+ n

∑k−1
i=1 W (i)+ n

2

+ k
4
+ k

∑n−2
i=1 W (i) + kW (n−2)− 5m

2
+ 1

2
.

(10)

The symbol “*” represent the case of odd n. The formulation
for the number of XOR varies according to the parity of
n. We note that these formulae contain sums of hamming
weights related to k − 1 or n − 2. In fact, the expression∑δ
i=0W (i) can be roughly written as δ

2 log2 δ [22], where δ
is a nonzero integer. Thus, the hamming weight formulations
related to n roughly equal O(m log2 n), while the formula-
tions related to k are roughly equal to O(m log2 k). Omit
the linear parts, the number of required XOR gates can be
rewritten as:

m2

2
+
mk

2
+

5mn

4
+O(m log2 k) +O(m log2 n). (11)

The above formula reveals the lower bound of the space
complexity of our proposal. Based on (10) and (11), it is
obvious that with the increase of the parameter n, the number
of required AND gates is decreasing. If n = m, #AND
achieves its lower bound, i.e., m2+m

2 . But at this time, the
number of required XOR gates is more than 7m2

4 . Therefore,
the optimal parameter n should be the one that minimizes
both the number of XOR and AND gates. We combine the
two formulations with respect to #AND and #XOR, define a
function:

M(n) = m2 +mk +
5mn

4
1.

Please note that m = nk. Obviously, M(n) = m2 + m2

n +
5mn
4 . When m2

n = 5mn
4 , namely, n = 2(m5)

1/2, we obtain the
minimal value of M(n), which indicate the best asymptotic
space complexity of our proposal. In this case, we see that k
is almost equal to n. The space complexity is

AND = m2

2 +
√
5m3/2

4 ,

XOR = m2

2 + 3
√
5m3/2

4 +O(m log2 k).

Figure 1 shows the space complexity tendency with the
increase of n. It is clear that n could not always increase.
Combined with the lowest asymptotic space complexity
analysis, we can see that our proposal is more suitable for
xnk + xk + 1, where n is smaller than k.

1Here, we assume that the XOR and AND consist of the same number
of transistors. In practical application, one can modify this function by
multiplying different weight factors.

n

#XOR
#AND

FIGURE 1. Space complexity tendency with increase of n.

IV. SPEEDUP STRATEGY
As shown in previous section, the time delay of our proposal
is TA + (2 + dlog2 ke+ dlog2 ne)TX . Since

dlog2 ke+ dlog2 ne ≤ dlog2me+ 1,

the upper bound of the delay is TA+(3+dlog2me)TX . This
result is worse than the multiplier using classic Karatsuba
algorithm. The main reason is the delay of S2 is bigger than
that of S1. Indeed, we can add the intermediate values in
advance during the computation process of S1, S2 to speed up
the whole architecture. For better comprehension, we define
some additional notations.
• qS1,0,qS1,1, · · · ,qS1,n−1 represent the coordinate vec-

tors of MS1
(:, i ∼ ik)·bi+1 in (7) after the computation

of Ai,Lbi +Ai,Hbi, i = 0, 1, · · · , n− 1.
• qS2,0,qS2,1, · · · ,qS2,n−1 represent the coordinate vec-

tors corresponding to the polynomials p
(1)
1 , p

(1)
2 , · · · ,

p
(n−1

2)
1 , p

(n−1
2)

2 and r 2after we compute the entries
additions of Step (v).

For example,

qS1,0 = [A0,Hb0, (A0,L+A0,H)b0, · · · , (A0,L+A0,H)b0]
T ,

qS2,0 =
[
h
(1)
3k , · · · , h

(1)
nk−1, h

(1)
0 , · · · , h(1)

3k−1]
T .

According to Table 1 and 2, it is easy to see that the compu-
tation of qS1,0,qS1,1, · · · ,qS1,n−1 cost TA + dlog2 keTX , while
qS2,0,qS2,1, · · · ,qS2,n−1 cost TA + (1 + dlog2 ke)TX .

Our speedup strategy is adding these vector qS1,i and qS2,i di-
rectly before completing S1 and S2. Since the computation of qS2,i

cost one more TX than qS1,i, we can perform one more addition
for each two vectors, i.e., qS1,i + qS1,i+1 for i = 0, 2, · · · , n − 2
(or i = 0, 2, · · · , n − 3 if n is odd). After this addition, we
obtain dn

2
e column vectors. Plus n (or n − 1) coordinate vectors

qS2,0,qS2,1, · · · ,qS2,n−1, there are at most d 3n
2
e vectors need to

be added, which requires only dlog2d 3n2 eeTX . The computation
sequence of our architecture is arranged as shown in Fig.1.

As a result, the whole time delay is

TA + (1 + dlog2 ke+ dlog2d
3n

2
ee)TX .

2If n is even, there only n − 1 coordinate vectors corresponding to
p
(1)
1 , p

(1)
2 , · · · , p(

n
2
−1)

1 , p
(n
2
−1)

2 , gn
2
x−k .

VOLUME 4, 2016 9

As+At
Bs+Bt

Ai,L*bi,
Ai,H*bi Ai,Lbi+Ai,Hbi

Us,t*vs,t

TX TX k2log

 TX k2logTA

TA

q ,1,...,q ,n-12s 2s

q ,0+q ,1
q ,2+q ,3

.

.

.

q ,n-2+q ,n-1

1s 1s

1s 1s

1s1s

TA

Final addition
for at most

3n/2 vectors

 TX

2
3log2

n

S2:

S1:

n-1 vectors

n/2 vectors

FIGURE 2. Speedup strategy related to our architecture.

Furthermore, based on Lemma 3 of [11], we have 1+dlog2d 3n2 ee =
dlog2 3ne. Thus, the time delay formulation can be simplified as

TA + (dlog2 ke+ dlog2 3ne)TX .

V. COMPARISON AND DISCUSSION
According to the descriptions in the previous section, it is clear
that the time delay of our proposal using speedup strategy is
TA+(dlog2 ke+dlog2 3ne)TX . However, it is especially attractive
if

dlog2 ke+ dlog2 3ne = dlog2 3n · ke = dlog2 3me. (12)

At this time, the corresponding time delay is TA + dlog2 3me)TX ,
which approximately equals the fastest 2-term Karatsuba based
multiplier [24]. In fact, we have checked all the irreducible xnk +
xk +1, k > 1 of degree m = nk ∈ [100, 1023] over F2, and found
about 54% such trinomials satisfy (12), and the rest of them requires
at most one TX than than the fastest Karatsuba multiplier so far.

Table 3 gives a comparison of different implementations of bit-
parallel multipliers in the fields generated by trinomials xm + xk +
1,m = nk. More explicitly, we omit the expression O(m log2 n)
in (11), as n is usually smaller than k shown in Section 3.3. Based
on this table, it is easy to see that our proposal has better space
complexity while maintain relatively low time complexity. The
best of our result only costs about m2

2
+ O(m3/2) circuit gates

compared with the previous architectures without using a divide-
and-conquer algorithm. On the other hand, the time complexity of
the proposed multiplier is very closed to the fastest result utilizing
classic Karatsuba algorithm.

.

VI. CONCLUSION
In this paper, we investigate the application of a n-term Karatsuba
algorithm and develop a new type of bit-parallel multiplier for a
class of irreducible trinomials. The proposed architecture shows
that specific type of trinomials combined with Karatsuba algorithm
variations can reduce the space complexity further compared with
classic Karatsuba multipliers. We next work on the construction of
n-term Karatsuba multiplier for general trinomials.

.

TABLE 4. Saved XOR gates about the entries addition

Matrix rows Overlapped terms Saved #XOR

1 ∼ k (n− 2)k ((n−2)−W (n−2))k
k + 1 ∼ 2k k 1−W (1))k

2k + 1 ∼ 3k 2k (2−W (2))k

...
...

...

(n− 2)k + 1 ∼
(n− 2)k ((n−2)−W (n−2))k

(n− 1)k

(n− 1)k + 1 ∼ m nk (n− 1)k

APPENDIX A THE SUB-EXPRESSION SHARING FOR
ENTRIES ADDITION IN S1

Let Pi denote the coordinate vector of Ai,Lbi + Ai,Hbi and P′i
denote the coordinate vector of Ai,Lbi (or Ai,Hbi for i = 0).
Clearly, both Pi and P′i are k × 1 vectors. Therefore, (7) can be
rewritten as:

MS1 · b =

P′0 P1 P2 · · · Pn−2 Pn−1

P0 P′1 0 · · · 0 0
P0 P1 P′2 · · · 0 0

...
...

...
. . .

...
...

P0 P1 P2 · · · P′n−2 0
P0 P1 P2 · · · Pn−2 P′n−1

 .

So we only need to compute entries additions for k intermediate
coordinate vectors

P0 +P1 + · · ·+Pn−2 +P′n−1 (13)

and all the entries additions can be computed through reusing these
values. Table 4 indicates the overlapped values and the number of
saved XOR gates.

Note that the additions between these vectors without sub-
expression sharing require 2(n − 1)k − k

∑n−2
i=1 i XOR gates. By

10 VOLUME 4, 2016

TABLE 3. Comparison of bit-parallel Multipliers for GF (2m) generated with xm + xk + 1, (m = nk)

Multiplier # AND #XOR Time delay

Sunar [7] m2 m2 − 1 TA + (2 + dlog2me)TX

Wu [16] m2 m2 − 1 TA + (2 + dlog2me)TX

Wu [17] m2 m2 − 1 TA + (2 + dlog2me)TX

Fan [13] m2 m2 − 1 TA + dlog2(2n− 1)keTX

Elia [14] 3m2

4
3m2

4
+ 13m

3
− 23

4
TA + (3 + dlog2me)TX

Négre [27] m2 23m2

18
− 3m

2
TA + dlog2(2n− 1)keTX

Fan [11] Type-A m2 − m
3

m2 − m
3

TA + dlog2(max((3n−3)k, (2n−2)k+2v))eTX

Type-B m2 − m
3

m2 − 2m
3

+ m
3
·W (m

3
) TA + dlog2((3n− 3)k − 1)eTX

Li [24] 3m2+2m−1
4

3m2

4
+m

2
+O(m log2m) TA + (1 + dlog2(2n− 1)ke)TX

Li [25] (x3k + xk + 1) 2m2

3
2m2

3
+ 7m

3
− 1 TA + dlog2 8m

3
e)TX

This paper m2

2
+ mk

2
m2

2
+ mk

2
+ 5mn

4
+O(m log2 k) TA + (dlog2 ke+ dlog2 3ne)TX

where 2v−1 < m
3
≤ 2v and W (∗) is the hamming weight of the number *

subtracting the number of saved XOR gates, the number of required
XOR gates actually is

m+ k

n−2∑
i=1

W (i) + kW (n− 2).

APPENDIX B RELATED MATRICES IN EXAMPLE 3.1

As we know the form of Ai,L and Ai,H , it is easy to obtain the
explicit formulae with respect to Ai (i = 0, 1, 2, 3), and AS1 .

For the size of the above matrix, we do not present the line
number in the left side. One should note that the rows of AS1

correspond the term degree [-6, 17].

Ai =

−3
−2
−1
0
1
2
3
4
5
6
7
8
9
10
11

a3i+0 0 0
a3i+1 a3i+0 0
a3i+2 a3i+1 a3i+0

a3i+0 a3i+2 a3i+1

a3i+1 a3i+0 a3i+2

a3i+2 a3i+1 a3i+0

a3i+0 a3i+2 a3i+1

a3i+1 a3i+0 a3i+2

a3i+2 a3i+1 a3i+0

a3i+0 a3i+2 a3i+1

a3i+1 a3i+0 a3i+2

a3i+2 a3i+1 a3i+0

0 a3i+2 a3i+1

0 0 a3i+2

0 0 0

,

and

AS1
=

a0 0 0 0 0 0 0 0 0 0 0 0
a1 a0 0 0 0 0 0 0 0 0 0 0
a2 a1 a0 0 0 0 0 0 0 0 0 0
a0 a2 a1 a3 0 0 0 0 0 0 0 0
a1 a0 a2 a4 a3 0 0 0 0 0 0 0
a2 a1 a0 a5 a4 a3 0 0 0 0 0 0
a0 a2 a1 a3 a5 a4 a6 0 0 0 0 0
a1 a0 a2 a4 a3 a5 a7 a6 0 0 0 0
a2 a1 a0 a5 a4 a3 a8 a7 a6 0 0 0
a0 a2 a1 a3 a5 a4 a6 a8 a7 a9 0 0
a1 a0 a2 a4 a3 a5 a7 a6 a8 a10 a9 0
a2 a1 a0 a5 a4 a3 a8 a7 a6 a11 a10 a9
0 a2 a1 a3 a5 a4 a6 a8 a7 a9 a11 a10
0 0 a2 a4 a3 a5 a7 a6 a8 a10 a9 a11
0 0 0 a5 a4 a3 a8 a7 a6 a11 a10 a9
0 0 0 0 a5 a4 a6 a8 a7 a9 a11 a10
0 0 0 0 0 a5 a7 a6 a8 a10 a9 a11
0 0 0 0 0 0 a8 a7 a6 a11 a10 a9
0 0 0 0 0 0 0 a8 a7 a9 a11 a10
0 0 0 0 0 0 0 0 a8 a10 a9 a11
0 0 0 0 0 0 0 0 0 a11 a10 a9
0 0 0 0 0 0 0 0 0 0 a11 a10
0 0 0 0 0 0 0 0 0 0 0 a11
0 0 0 0 0 0 0 0 0 0 0 0

.

After reduction process, the explicit form of MS1,1 and MS1,2

are presented as follows:

MS1,1 =

a0 a2 a1 a3 a5 a4 a6 a8 a7 a9 a11 a10
a1 a0 a2 a4 a3 a5 a7 a6 a8 a10 a9 a11
a2 a1 a0 a5 a4 a3 a8 a7 a6 a11 a10 a9
a0 a2 a1 a3 a5 a4 a6 a8 a7 a9 a11 a10
a1 a0 a2 a4 a3 a5 a7 a6 a8 a10 a9 a11
a2 a1 a0 a5 a4 a3 a8 a7 a6 a11 a10 a9
a0 a2 a1 a3 a5 a4 a6 a8 a7 a9 a11 a10
a1 a0 a2 a4 a3 a5 a7 a6 a8 a10 a9 a11
a2 a1 a0 a5 a4 a3 a8 a7 a6 a11 a10 a9
a0 a2 a1 a3 a5 a4 a6 a8 a7 a9 a11 a10
a1 a0 a2 a4 a3 a5 a7 a6 a8 a10 a9 a11
a2 a1 a0 a5 a4 a3 a8 a7 a6 a11 a10 a9

,

VOLUME 4, 2016 11

MS1,2 =

a0 0 0 0 0 0 0 0 0 0 0 0
a1 a0 0 0 0 0 0 0 0 0 0 0
a2 a1 a0 0 0 0 0 0 0 0 0 0
0 0 0 0 a5 a4 a6 a8 a7 a9 a11 a10
0 0 0 0 0 a5 a7 a6 a8 a10 a9 a11
0 0 0 0 0 0 a8 a7 a6 a11 a10 a9
0 0 0 0 0 0 0 a8 a7 a9 a11 a10
0 0 0 0 0 0 0 0 a8 a10 a9 a11
0 0 0 0 0 0 0 0 0 a11 a10 a9
0 0 0 0 0 0 0 0 0 0 a11 a10
0 0 0 0 0 0 0 0 0 0 0 a11
0 0 0 0 0 0 0 0 0 0 0 0

.

APPENDIX C PROOF OF OBSERVATION FOR EVEN N
If n is even, we have λ = n

2
, and the degree of gi is nk − 2. Let

gi =
∑nk−2

j=0 h
(i)
j xj . Then

gix
(n−2i−1)k =

2ik−1∑
j=0

h
(i)
j xj+(n−2i−1)k+

nk−2∑
j=2ik

h
(i)
j xj+(n−2i−1)k,

for i = 1, 2, · · · , n
2
− 1. Similar with case of odd n, only one part

of the above expression needs reduction by f(x). We have

nk−2∑
j=2ik

h
(i)
j xj+(n−2i−1)k=

nk−2∑
j=2ik

h
(i)
j (xj−2ik−k + xj−2ik).

We note that if i = n
2

, all the term degrees of gn
2
x−k are in the

range [−k, nk − k − 1]. No further reduction is needed.
By combining non-overlapped parts of above expressions, the

result of gix(n−2i−1)k mod f(x) is given by

gn
2
x−k mod f(x) = gn

2
x−k

gix
(n−2i−1)k mod f(x) = p

(i)
1 (x) + p

(i)
2 (x),

where

p
(i)
1 =

2ik−1∑
j=0

h
(i)
j xj+nk−2ik−k +

nk−1∑
j=2ik

h
(i)
j xj−2ik−k,

p
(i)
2 =

nk−2∑
j=2ik

h
(i)
j xj−2ik,

for i = 1, 2, · · · , n
2
− 1. Therefore, in this case, to obtain

S2 mod f(x), we only need to add p(1)1 , p
(1)
2 , · · · , p(

n
2
−1)

1 , p
(n
2
−1)

2

and gn
2
x−k in parallel, which cost dlog2(n− 1)e XOR gate delay.

REFERENCES
[1] A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone and

T. Yaghoobian, Applications of Finite Fields. Kluwer Academic, Norwell,
Massachusetts, USA, 1993.

[2] R. Lidl and H. Niederreiter, Finite Fields. Cambridge University Press,
New York, NY, USA, 1996.

[3] I. Blake, G. Seroussi and N. Smart, Elliptic Curves in Cryptography. Lond.
Math. Soc. Lect. Note Ser., vol. 265, Cambridge University Press, 1999.

[4] A. Karatsuba and Yu. Ofman. "Multiplication of Multidigit Numbers on
Automata," Soviet Physics-Doklady (English translation), vol. 7, no. 7,
pp. 595–596, 1963.

[5] H. Fan and M. A. Hasan, “Fast bit parallel-shifted polynomial basis
multipliers in GF (2n),” Circuits and Systems I: Regular Papers, IEEE
Transactions on, vol. 53, no. 12, pp. 2606–2615, Dec 2006.

[6] H. Fan and M. A. Hasan, “A survey of some recent bit-parallel multipliers,”
Finite Fields and Their Applications, vol. 32, pp. 5–43, 2015.

[7] B. Sunar and Ç. K. Koç, “Mastrovito multiplier for all trinomials,” IEEE
Trans. Comput., vol. 48,no. 5, pp. 522–527, 1999.

[8] A. Weimerskirch, and C. Paar, "Generalizations of the Karatsuba Algo-
rithm for Efficient Implementations," Cryptology ePrint Archive, Report
2006/224, http://eprint.iacr.org/

[9] T. Zhang and K. K. Parhi, “Systematic design of original and modified
mastrovito multipliers for general irreducible polynomials,” IEEE Trans.
Comput., vol. 50, no. 7, pp. 734–749, July 2001.

[10] A. Cilardo, “Fast Parallel GF (2m) Polynomial Multiplication for All
Degrees,” IEEE Trans. Comput., 62(5):929–943, May 2013.

[11] H. Fan, “A Chinese Remainder Theorem Approach to Bit-Parallel
GF (2n) Polynomial Basis Multipliers for Irreducible Trinomials,” IEEE
Trans. Comput., 65(2):343–352, 2016.

[12] A. Hariri and A. Reyhani-Masoleh, “Bit-serial and bit-parallel Mont-
gomery multiplication and squaring over GF (2m)”, IEEE Trans. Com-
put., 58(10):1332–1345, October 2009.

[13] H. Fan, Y. Dai, Fast bit-parallel GF (2n) multiplier for all trinomials,
IEEE Transactions on Computers, Vol. 54, 2005, No. 4, pp. 485–490.

[14] M. Elia, M. Leone, C.Visentin, Low complexity bit-parallel multipliers for
GF (2m) with generator polynomial xm + xk + 1, Electronic Letters,
Vol. 35, 1999, No. 7, pp. 551–552.

[15] K. Chang, D. Hong, H. Cho, Low complexity bit-parallel multiplier for
GF (2m) defined by all-one polynomials using redundant representation,
IEEE Transactions on Computers, Vol. 54, 2005, No. 12, pp.1628–1630.

[16] H. Wu, Bit-parallel finite field multiplier and squarer using polynomial
basis, IEEE Transactions on Computers, Vol. 51, 2002, No. 7, pp. 750–
758.

[17] H. Wu, Montgomery multiplier and squarer for a class of finite fields, IEEE
Transactions on Computers, Vol. 51, 2002, No. 5, pp. 521–529.

[18] H. Fan, J. Sun, M. Gu, and K.-Y. Lam. Overlap-free Karatsuba-Ofman
polynomial multiplication algorithms, Information Security, IET, vol. 4,
no. 1, pp. 8–14, March 2010.

[19] H. Fan, M. Gu, J. Sun and K.-Y. Lam, Obtaining more Karatsuba-like
formulae over the binary field, Information Security, IET, vol. 6, no. 1,
pp. 14-19, March 2012.

[20] P.L. Montgomery, Five, six, and seven-term Karatsuba-like formulae,
IEEE Transactions on Computers, vol. 54, no. 3, pp. 362-369, March 2005.

[21] Y. Li, G. Chen, and J. Li. Speedup of bit-parallel karatsuba multiplier
in GF (2m) generated by trinomials, Information Processing Letters,
vol. 111, no. 8, pp. 390–394, 2011.

[22] Y. Li and Y. Chen, “New bit-parallel Montgomery multiplier for trinomials
using squaring operation,” Integration, the VLSI Journal, vol. 52, pp.142–
155, January 2016.

[23] X. Xie, G. Chen, Y. Li, Novel bit-parallel multiplier forGF (2m) defined
by all-one polynomial using generalized Karatsuba algorithm, Information
Processing Letters, Volume 114, Issue 3, pp.140–146, 2014.

[24] Y. Li, X. Ma, Y. Zhang and C. Qi, Mastrovito Form of Non-recursive
Karatsuba Multiplier for All Trinomials, IEEE Transactions on Computers,
vol. 66, no.9, pp.1573–1584, 2017.

[25] Y. Li, Y. Zhang, and X. Guo, Efficient Nonrecursive Bit-Parallel Karatsuba
Multiplier for a Special Class of Trinomials, VLSI Design, vol. 2018,
Article ID 9269157, 7 pages, 2018. https://doi.org/10.1155/2018/9269157.

[26] G. Shou, Z. Mao, Y. Hu, Z. Guo, Z. Qian, Low complexity architecture of
bit parallel multipliers for GF (2m), Electronics Letters, 46(19), (Septem-
ber 2010) 1326-1327.

[27] C. Négre, Efficient parallel multiplier in shifted polynomial basis, J. Syst.
Archit. Vol. 53, 2007, No. 2-3, pp. 109–116.

[28] H. Shen, Y. Jin, Low complexity bit parallel multiplier for GF (2m)
generated by equally-spaced trinomials, Inf. Process. Lett. Vol. 107, 2008,
No. 6, pp. 211–215.

12 VOLUME 4, 2016

