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Abstract. We revisit the factoring with known bits problem on general RSA moduli
in the forms of N = prqs for r, s ≥ 1, where two primes p and q are of the same
bit-size. The relevant moduli are inclusive of pq, prq for r > 1, and prqs for r, s > 1,
which are used in the standard RSA scheme and other RSA-type variants. Previous
works acquired the results mainly by solving univariate modular equations.
In contrast, we investigate how to efficiently factor N = prqs with given leakage of the
primes by the integer method using the lattice-based technique in this paper. More
precisely, factoring general RSA moduli with known most significant bits (MSBs)
of the primes can be reduced to solving bivariate integer equations, which was first
proposed by Coppersmith to factor N = pq with known high bits. Our results provide
a unifying solution to the factoring with known bits problem on general RSA moduli.
Furthermore, we reveal that there exists an improved factoring attack via the integer
method for particular RSA moduli like p3q2 and p5q3.

Keywords: Factorization · General RSA moduli · Known bits · Integer method ·
Lattice-based technique

1 Introduction

1.1 Background

RSA [28] is a famous public key cryptosystem and has been widely used for secure
data transmission. In its standard scheme, the modulus N is the product of two
large primes, namely p and q of the same bit-size. The public and private keys are
defined as (N, e) and (p, q, d) respectively, where e is a randomly chosen integer such
that e, ϕ(N) are coprime for Euler’s totient ϕ(N) = (p − 1)(q − 1) and d satisfies
the key equation ed ≡ 1 (mod ϕ(N)). The message string is transformed into an
integer m and then encrypted as c = me (mod N). The decryption phase computes
cd (mod N). Since e and d are exponents in above computation, they are sometimes
called the public and private exponents.

In order to speed up the decryption phase when utilizing RSA in some con-
strained environments like smart cards, some variants with modified moduli have
been proposed. These modified moduli are designed as N = prq for r > 1, or
N = prqs for r, s > 1, or N =

∏r
i=1 pi for r ≥ 3. Similarly, the primes appearing in

each modulus are suggested to share the same bit-size.

The security of above RSA variants is also related to integer factoring problem
like the standard one. The well-known algorithm for factorizing large composite
integers is Number Field Sieve (NFS) [18], which works in sub-exponential time. In
practice, some partial information leaked by side channel attacks (e.g. [12,17]) can
be used to enhance the factoring attack. The so-called partial information is usually
referred to some known bits of the primes.



Therefore, it is interesting to investigate polynomial-time factorization of such
moduli used in RSA and its variants with some known bits of the primes. It is
designated as factoring with known bits problem and has been widely analyzed in
the literature. We review previous related works below.

Factoring N = pq with known bits. This problem was first studied by Rivest
and Shamir [27] in 1985. They used integer programming to construct an algorithm
that factors N when given 2/3-fraction of the bits of p. Later in 1996, Coppersmith
[6] showed that N can be factored when half of the bits of p are known. The main
technique is to solve small roots of modular/integer polynomial equations using
lattice reduction algorithm i.e. the LLL algorithm [19]. This lattice-based technique
is also named Coppersmith’s technique [4,5] in the literature.

Since previous analysis assumed that the remaining unknown bits of p are located
in one consecutive block, an algorithm proposed by Herrmann and May [13] extended
to the case of n unknown discrete blocks. They showed that ln 2 ≈ 70% known bits of
p are sufficient to attain the factorization. However, the running time is polynomial
in logN but exponential in n. It means that the running time becomes polynomial
for n = O(log logN).

Factoring N = prq with known bits. This RSA variant using a modulus in the
form of N = prq was suggested by Takagi [29] in 1998. Later, Boneh, Durfee and
Howgrave-Graham [2] considered the factorization of N by applying Coppersmith’s
technique. They showed that exposing a fraction 1/(r + 1) of the bits of p is sufficient
to factor N in polynomial time. Furthermore, when r increases to r ≈ log p, one
only needs to know a constant number of the bits of p, which can be recovered by
exhaustive search, hence the running time of the factorization becomes polynomial.
The result implies that one should not use Takagi’s RSA variant with a large r.

Inspired by [13], Lu, Zhang and Lin [23] proposed lattice-based analysis to extend
the number of unknown blocks in prime p to an arbitrary number n. The result
showed that knowing a fraction ln(r + 1)/r of the bits of p is already enough to
factor N . However, the running time is polynomial only for n = O(log logN).

Factoring N = prqs with known bits. In 2000, Lim et al. [21] extended general
RSA moduli N = prq to the form of N = prqs. The advantage is that the decryption
phase is much faster than that in Takagi’s RSA variant. On the other hand, how
to generalize the lattice-based factoring method to N = prqs for r and s of almost
the same size was considered as an open problem in [2]. Lim et al. also analyzed the
security of the extended RSA variant with N = prqr+1 by a modified lattice-based
factoring method. When r satisfies r ≥ log(pq), i.e. r ≥ 2 log p, N = prqr+1 can be
factored in polynomial time.

In 2016, Coron et al. [9] proposed an algorithm to factor N = prqs in polynomial
time when r is greater than log3 p. They first aimed to find an appropriate decom-
position of r and s and then applied Coppersmith’s technique to factor N . Later
this result was improved to r ≥ log p by Coron and Zeitoun [10,11]. To be specific,
there exist two positive integers a and b such that a · s− b · r = 1, which lead to the
decomposition of Na = (paqb)rq. It is much simpler to factor Na = (paqb)rq using
the algorithm in [2] to recover p and q.



Lu, Peng and Sarkar [22] studied how to factor N = prqs with partial known
bits of p or of pq. Knowing a fraction min{s/(r + s), 2(r − s)/(r + s)} of the bits of
p is sufficient to factor N in polynomial time. The attack then was generalized to
the case of n unknown blocks for an arbitrary number n similar to that mentioned
above.

Factoring N =
∏r

i=1 pi with known bits. This variant modifies modulus N
to be p1p2 · · · pr for r ≥ 3. It was patented by Compaq [3], using a modulus in the
form of N = p1p2p3. The advantage is the efficiency when using Chinese Remainder
Theorem in its decryption phase. The asymptotic speedup over standard RSA is ap-
proximately r2/4. Moreover, small private exponent attack and partial key exposure
attack are less effective as r increases. On the other hand, r should not be extremely
large because of Elliptic Curve Method (ECM) [20].

Hinek [14] studied its related factoring problem and presented the following at-
tack by directly applying the lattice-based factoring method proposed in [2]. For any
s ∈ [2, r], given a modulus N , along with r − s known primes of all r many prime
factors, a fraction (s− 1)/s of the bits of one remaining unknown prime, a fraction
(s− 2)/(s− 1) of the bits of another one remaining unknown prime, . . ., and 1/2 of
the bits of one of the last two remaining unknown primes, then N can be factored
in time polynomial in r and logN . Besides, factoring N = p1p2 · · · pr with small
prime difference, which can be viewed as knowing some MSBs of the primes, has
been studied in [30,31].

1.2 Our Contributions

In this paper, we revisit the factoring with known bits problem by solving several
distinct equations with the help of lattice-based technique. Instead of solving mod-
ular equations (or the modular method for short), we handle the problem by solving
integer equations (or the integer method for short). Previous factoring attacks on
general RSA moduli with known bits other than Coppersmith’s original work [4] are
based on the modular method. Thus, we further exploit the power of the integer
method to present a unifying condition on factoring N = prqs with known bits. We
want to point out that optimizing the solution to above factoring with known bits
problem on general RSA moduli is mainly of theoretical interest.

The subsequent analysis restricts our attack scenario when given some MSBs
in each prime leaving behind one consecutive unknown block. Though the descrip-
tion of our attack scenario is uncomplicated, we have many integer equations to
solve in different cases. Without loss of generality, we have the following reasonable
assumptions on the integer exponents r and s to simplify our analysis.

– They are known, otherwise we can recover them by exhaustive search in time
O(log2N).

– We have 1 ≤ s ≤ r � log p, otherwise we can exchange p and q.
– gcd(r, s) = 1, otherwise we can factorN ′ = pr

′
qs
′
for r′ = r

gcd(r,s) and s′ = s
gcd(r,s) .

More precisely, we aim to factor N = prqs for r ≥ s ≥ 1 with some known
MSBs namely P and Q respectively, where r and s are two known coprime integers.
The LSBs case is skipped since it is similar to the MSBs case. Previous factoring
attacks [2,9,13,22,23] on general RSA moduli with known bits except Coppersmith’s



original work [4] are based on the modular method. The difference is that distinct
solvable equations are used in two methods. When performing factoring attacks on
N = pq with P and Q, the modular method aims to solve P + x = 0 (mod p) while
(P + x)(Q+ y)−N = 0 is considered in the integer method.

Firstly, we show that all the previous results can be obtained through the integer
method. In fact, the modular method is preferable when s is small (down to 1) and
s is large (up to r− 1) because of the efficiency. Secondly, we observe that the least
amount of known MSBs to factor N depends on the relation of r and s. To be
specific, we identify some particular (r, s) pairs for s is medium (e.g. s = r+1

2 for
odd integers r) while the integer method surpasses the modular method.

In other words, our results can be seen as an extension of Coppersmith’s work [4]
via the integer method, as well as a refinement of previous solutions to the factoring
with known bits problem. With respect to solvable integer equations, we provide
the concrete choices for several RSA moduli with 1 ≤ r, s ≤ 7 in Table 1. A direct

Table 1. The choices of solvable integer equations for several RSA moduli

Solvable Integer Equations Applicable RSA Moduli

(P + x)ry −N = 0 pq, p2q, p3q, p4q, p5q, p5q2, p6q, p7q, p7q2, p7q3

(P + x)r(Q+ y)s −N = 0 p3q2, p5q3, p7q4

(PQ+ x)sy −N = 0 p4q3, p5q4, p6q5, p7q5, p7q6

application of our results is to factor RSA moduli in the forms of pr+1qr, pr+1qr−1

and pr+2qr−2 with known bits. Such RSA moduli were suggested by Lim et al. [21]
considering optimal efficiency for a roughly fixed sum of the exponents. It is clear
that p3q2 and p5q3 are more vulnerable to the integer method.

We provide a unifying condition on the desired amount of the prime leakage.
Informally speaking, knowing a fraction

min

{
s

r + s
,

√
rs

r + s− 1 +
√
rs
,

2(r − s)
r + s

}
of the bits of p is sufficient to factor N = prqs for coprime integers r > s in
polynomial time. Our asymptotic improvement and previous analytic results are
showed in Figure 1. The concrete results with respect to different attack scenarios
are showed in Table 2. More comparison and discussion of the integer and modular

Table 2. The desired fractions of known bits with respect to relevant solvable integer equations

The Fractions of Known Bits Solvable Integer Equations Restrictions

s/(r + s) (P + x)ry −N = 0 1 ≤ s ≤ r
√
rs/(r + s− 1 +

√
rs) (P + x)r(Q+ y)s −N = 0 1 ≤ s ≤ r

2(r − s)/(r + s) (PQ+ x)sy −N = 0 1 ≤ s < r < 3s

methods are depicted in detail in Sect. 4.



Fig. 1. The horizontal and vertical axes denote the ratio s/r and requisite fraction of known bits,
respectively. The grey area indicates known attack results that are bounded by previous analysis
min{s/(r + s), 2(r − s)/(r + s)}. The yellow area shows our improvement that is vulnerable to the
integer method, which finally leads to a unifying solution to the factoring with known bits problem
on general RSA moduli.

1.3 Organization

The rest of this paper is organized as follows. In Sect. 2, we review some basic
definitions and a useful theorem employed in the integer method. We develop two
parameterized theorems for the factoring with known bits problem on general RSA
moduli. In Sect. 3, we propose several attacks when using known MSBs in both
primes (i.e. P and Q) or only one prime (i.e. P or Q). In Sect. 4, we compare known
results and ours in detail to obtain a unifying condition. We conclude the paper in
Sect. 5.

2 Preliminaries

In this section, we first review several basic definitions of the integer method and
then state a crucial theorem. After that, we propose two theorems for solving spe-
cific integer polynomials in our attack scenario. We note that the detailed lattice
conception is not mentioned in order to simplify the analysis in this paper. More
information can be found in [6,15,16,25,26]. The integer method stemmed from Cop-
persmith’s work [4] and was later studied by [1,7,8,16].

We start with a set M of monomials in the variables x and y. A polynomial
f(x, y) is defined over M or is called a polynomial over M iff f(x, y) can be written
as

f(x, y) =
∑

xiyj∈M

cijx
iyj



for cij ∈ Z. An integer polynomial f(x, y) ∈ Z[x, y] is called irreducible if f(x, y) =
g(x, y) ·h(x, y) with g(x, y), h(x, y) ∈ Z[x, y] implies that we have either g(x, y) = ±1
or h(x, y) = ±1. Additionally, the greatest common divisor of all coefficients of an
irreducible polynomial must be 1.

More generally, there exists an index set (or a point set) in the Euclidean plane
R2 for any set M of monomials in two variables x and y. The index set for M is
defined as

IM := {(i, j) ∈ N2 : xiyj ∈M}.

The convex hull of the index set IM is defined as conv{(i, j) ∈ N2 : xiyj ∈ M}.
Furthermore, we define a convex set N(g) in the Euclidean plane for a polynomial
g(x, y) =

∑
cijx

iyj with cij ∈ R as

N(g) := conv{(i, j) ∈ N2 : cij 6= 0},

which is also called the Newton polygon of g(x, y).

It is important to identify the Newton polygon of an integer polynomial as well
as its polynomial norm when we try to solve bivariate integer polynomials. The
definition of the polynomial norm is given. Let f(x, y) =

∑
cijx

iyj ∈ Z[x, y] be an
integer polynomial. The lp-norm of f(x, y) is defined as

‖f(x, y)‖p =
(∑

|cij |p
)1/p

.

The l∞-norm is involved in the literature of handling integer polynomials such as
[1,7,8], We point out that it can be directly deduced from above definition as

‖f(x, y)‖∞ = max{|cij |}

for f(x, y) =
∑
cijx

iyj . We provide the following definition to guarantee that one
can extract the roots of a given bivariate integer polynomial.

Definition 1. Let f(x, y) be a bivariate integer polynomial and S,M be two finite
non-empty monomial sets in the variables x and y. The sets S,M are called admis-
sible for f(x, y) iff

1. For every monomial α ∈ S, the polynomial α · f(x, y) is defined over M .

2. For every polynomial g(x, y) defined over M , if g(x, y) = h(x, y) · f(x, y) for
some polynomial h(x, y), then h(x, y) is defined over S.

Before we show how to generate monomial sets S and M under the constraint that
S,M are admissible for f(x, y), we give the definition of Minkowski sum of two index
sets. Let IA and IB be two index sets. The Minkowski sum IA + IB is defined as

IA + IB = {(a1, a2) + (b1, b2) : (a1, a2) ∈ IA, (b1, b2) ∈ IB}.

For a certain integer polynomial f(x, y) and a chosen S, there is a natural choice
for M in order to guarantee the first property in Definition 1. That is, we choose M
such that IM = N(f) + IS . Actually, this choice will usually lead to monomial sets
S and M that also satisfy the second property, i.e. S,M are admissible for f(x, y),
which can be summarized in the following lemmas.



Lemma 1. Assume that the Newton polygon N(f) of polynomial f(x, y) is {(i, j) ∈
N2 : 0 ≤ i ≤ a, 0 ≤ j ≤ b} for positive integers a and b. Then we use monomial sets
S and M that correspond to two respective index sets

IS ={(i, j) ∈ N2 : 0 ≤ i ≤ γk, 0 ≤ j ≤ k},
IM ={(i, j) ∈ N2 : 0 ≤ i ≤ γk + a, 0 ≤ j ≤ k + b},

where k ∈ N controls the size of low order error terms and γ > 0 optimizes the final
condition. This construction lead to admissible sets S and M for f(x, y).

Lemma 2. Assume that the Newton polygon N(f) of polynomial f(x, y) is {(i, j) ∈
N2 : 0 ≤ i ≤ c

dj, 0 ≤ j ≤ d} for positive integers c and d. Then we use monomial
sets S and M that correspond to two respective index sets

IS = {(i, j) ∈ N2 : 0 ≤ i ≤ γk, 0 ≤ j ≤ k}

∪ {(γk + i, j) ∈ N2 : 0 ≤ i ≤ c

d
j, 0 ≤ j ≤ k},

IM = {(i, j) ∈ N2 : 0 ≤ i ≤ γk, 0 ≤ j ≤ k + d}

∪ {(γk + i, j) ∈ N2 : 0 ≤ i ≤ c

d
j, 0 ≤ j ≤ k + d},

where k ∈ N controls the size of low order error terms and γ > 0 optimizes the final
condition. This construction lead to admissible sets S and M for f(x, y).

See [1, Lemma 7] for the proofs. Now we state Blömer-May theorem from [1] for
finding the roots of bivariate integer polynomials.

Theorem 1. Let f(x, y) ∈ Z[x, y] be an irreducible integer polynomial in two vari-
ables x and y with degree at most dx, dy ≥ 1, respectively. Let X,Y ∈ N be the upper
bounds on roots (x′, y′) and set W := ‖f(xX, yY )‖∞. Furthermore let S, M such
that S ⊆M , be two admissible monomial sets for f(x, y). Set

s := |S|, m := |M |, sx :=
∑

xiyj∈M\S

i, sy :=
∑

xiyj∈M\S

j.

All pairs (x′, y′) ∈ Z2 satisfying

f(x′, y′) = 0 with |x′| ≤ X, |y′| ≤ Y

can be found in time polynomial in m, dx, dy and logW provided

XsxY sy < W s,

assuming that (m− s)2 = O(sdxdy) is satisfied.

In order to provide a concise condition, we omit low order terms since the running
time increases only by a constant factor. One may refer to [1, Section 5] for the
lattice-based proof.

However, Theorem 1 cannot be directly applied to the factoring with known
bits problem on general RSA moduli prqs. We embody Blömer-May theorem in our
theorems to solve two specific integer polynomials.



Theorem 2. Given f(x, y) = (x + x̃)a(y + ỹ)b − N for two positive integers a, b
with a known composite integer N and two approximations x̃, ỹ. Let X,Y ∈ N be the
upper bounds on roots (x′, y′) and set W := ‖f(xX, yY )‖∞. All roots (x′, y′) ∈ Z2

satisfying f(x′, y′) = 0 with |x′| ≤ X, |y′| ≤ Y can be found in time polynomial in
logW if

Xbγ2+2aγY 2bγ+a < W 2γ

for an optimizing parameter γ > 0.

Proof. Note that polynomial f(x, y) is an irreducible polynomial, whose Newton
polygon N(f) is

{(i, j) ∈ N2 : 0 ≤ i ≤ a, 0 ≤ j ≤ b}.

We can construct two admissible sets S and M such that S ⊆ M according to
Lemma 1,

S ={xiyj : 0 ≤ i ≤ γk, 0 ≤ j ≤ k},
M ={xiyj : 0 ≤ i ≤ γk + a, 0 ≤ j ≤ k + b},

where k ∈ N and γ > 0 is an optimizing parameter. Furthermore, we calculate s, m,
sx and sy stated in Theorem 1 as follows.

s =
k∑
j=0

γk∑
i=0

1 = γk2 + o(k2), m =
k+b∑
j=0

γk+a∑
i=0

1 = γk2 + o(k2),

sx =
k+b∑
j=0

γk+a∑
i=0

i−
k∑
j=0

γk∑
i=0

i =
bγ2 + 2aγ

2
k2 + o(k2),

sy =

k+b∑
j=0

γk+a∑
i=0

j −
k∑
j=0

γk∑
i=0

j =
2bγ + a

2
k2 + o(k2).

We substitute these values in XsxY sy < W s (omitting the lower order terms o(k2)
for simplicity) and obtain

X
bγ2+2aγ

2
k2Y

2bγ+a
2

k2 < W γk2 ,

which leads to
Xbγ2+2aγY 2bγ+a < W 2γ .

Furthermore, we have dx = a and dy = b. The condition (m − s)2 = O(sdxdy) =
O(k2) is satisfied. The time complexity is mainly dominated by logW since we have
a, b� logW and set k = logW . Thus the running time is polynomial in logW . This
concludes the proof of the theorem. ut

Theorem 3. Given f(x, y) = (x + x̃)cyd − N for two positive integers c, d with
a known composite integer N and an approximation x̃. Let X,Y ∈ N be the upper
bounds on roots (x′, y′) and set W := ‖f(xX, yY )‖∞. All roots (x′, y′) ∈ Z2 satisfying
f(x′, y′) = 0 with |x′| ≤ X, |y′| ≤ Y can be found in time polynomial in logW if

X(dγ+c)2Y 2d(dγ+c) < W 2dγ+c

for an optimizing parameter γ > 0.



Proof. Note that polynomial f(x, y) is an irreducible polynomial, whose Newton
polygon N(f) is

{(i, j) ∈ N2 : 0 ≤ i ≤ c

d
j, 0 ≤ j ≤ d}.

We can construct two admissible sets S and M such that S ⊆ M according to
Lemma 2,

S = {xiyj : 0 ≤ i ≤ γk, 0 ≤ j ≤ k}

∪ {xγk+iyj : 0 ≤ i ≤ c

d
j, 0 ≤ j ≤ k},

M = {xiyj : 0 ≤ i ≤ γk, 0 ≤ j ≤ k + d}

∪ {xγk+iyj : 0 ≤ i ≤ c

d
j, 0 ≤ j ≤ k + d},

where k ∈ N and γ > 0 is an optimizing parameter. Furthermore, we calculate s, m,
sx and sy stated in Theorem 1 as follows.

s =

k∑
j=0

γk∑
i=0

1 +

k∑
j=0

c
d
j∑

i=0

1 = (γ +
c

2d
)k2 + o(k2),

m =
k+d∑
j=0

γk∑
i=0

1 +
k+d∑
j=0

c
d
j∑

i=0

1 = (γ +
c

2d
)k2 + o(k2),

sx =
k+d∑
j=0

γk∑
i=0

i+
k+d∑
j=0

c
d
j∑

i=0

(γk + i)−
k∑
j=0

γk∑
i=0

i−
k∑
j=0

c
d
j∑

i=0

(γk + i)

=
(dγ + c)2

2d
k2 + o(k2),

sy =

k+d∑
j=0

γk∑
i=0

j +

k+d∑
j=0

c
d
j∑

i=0

j −
k∑
j=0

γk∑
i=0

j −
k∑
j=0

c
d
j∑

i=0

j

= (dγ + c)k2 + o(k2).

We substitute these values in XsxY sy < W s and obtain

X
(dγ+c)2

2d
k2Y (dγ+c)k2 < W (γ+ c

2d
)k2 ,

which reduces to

X(dγ+c)2Y 2d(dγ+c) < W 2dγ+c.

Furthermore, we have dx = c and dy = d. The condition (m − s)2 = O(sdxdy) =
O(k2) is satisfied. The time complexity is mainly dominated by logW since we have
a, b� logW and set k = logW . Thus the running time is polynomial in logW . This
concludes the proof of the theorem. ut

3 Factoring General RSA Moduli with Known Bits

In this section, we propose several attacks to factor N with known MSBs, namely P
and Q. Let us specify the attack scenario clearly. Given N = prqs with r, s and two
MSBs approximations P,Q, where p = P + x and q = Q+ y for unknown variables



x, y that can be bounded by X = Y = Nη, the goal is to efficiently recover p and
q that lead to the factorization of N under the minimal sizes of P and Q. It means
that the size of known MSBs of p (or q) is N1/(r+s)−η, or equivalently p1−(r+s)η.

We will provide the results by applying the integer method. To do so, we should
derive some integer equations from above attack scenario. The suitable integer equa-
tions are divided into two parts as follows. The first part is involved with two ap-
proximations that consists of solving

(P + x)r(Q+ y)s −N = 0, and (PQ+ x)sy −N = 0.

The second part is related to only one approximation, which consists of solving

(P + x)ry −N = 0.

Before presenting the results, we show that known MSBs in one prime can be used
to compute some MSBs of the same bit-size in another prime.

Lemma 3. Let N = prqs for r, s ≥ 1, where p and q are of the same bit-size.
Given an MSBs approximation P of p for |p− P | < Nη, the rounding integer Q :=

[(N/P r)
1
s ] is an MSBs approximation of q and satisfies |q −Q| < Nη.

Proof. Because r, s are negligible compared to p and q, we can assume that p, q and

P are roughly equal to N
1
r+s and thus Q is also roughly equal to N

1
r+s . In order to

bound the value of |q −Q|, we first bound the value of |qs −Qs| since we have

|q −Q| = |qs −Qs|
qs−1 + qs−2Q+ · · ·+ qQs−2 +Qs−1

≈ |q
s −Qs|
sN

s−1
r+s

.

We define Q := [(N/P r)
1
s ] and it leads to Qs ≈ N/P r, which gives

|qs −Qs| ≈ |qs − N

P r
| = qs|P r − pr|

P r
≈ |P r − pr|N

s−r
r+s .

Now we bound the value of |P r − pr|, that is

|P r − pr| = |P − p|(P r−1 + P r−2p+ · · ·+ Ppr−2 + pr−1) < rN
r−1
r+s

+η.

Combining above results (and omitting negligible r and s), we have

|q −Q| ≈ |q
s −Qs|
N

s−1
r+s

≈ |P
r − pr|N

s−r
r+s

N
s−1
r+s

<
N

r−1
r+s

+ηN
s−r
r+s

N
s−1
r+s

= Nη,

which terminates the proof. ut

In the following attacks, we mention the known leakage that always refers to the
MSBs approximation P and this implies we know both P and Q from N , r and s.



3.1 Using Two Approximations

We present the results in theorems derived from solving bivariate integer equations.
More concretely, we try to solve

(P + x)r(Q+ y)s −N = 0 and (PQ+ x)sy −N = 0

to obtain the solution to the factoring with known bits problem. It is a straightfor-
ward option to solve

(P + x)r(Q+ y)s −N = 0,

which is based on the observation that we can directly put p = P +x and q = Q+ y
into N = prqs. Our result is stated below.

Theorem 4. Let N = prqs for r ≥ s ≥ 1, where p and q are of the same bit-size.
Suppose that a fraction √

rs

r + s− 1 +
√
rs

of the bits of p are known, then we can factor N in time polynomial in logN .

Proof. Let
f(x, y) = (P + x)r(Q+ y)s −N

and we apply Theorem 2 with x̃ = P , ỹ = Q, a = r and b = s to obtain

Xsγ2+2rγY 2sγ+r < W 2γ .

We need to figure out the value of W since we know X = Y = Nη and P ≈ Q ≈
N

1
r+s . Since r, s� log p, the binomial coefficients can not exceed P,Q and we have

W = ‖f(xX, yY )‖∞ = max{|P r−1XQs|, |P rQs−1Y |, |P rQs −N |} = N
r+s−1
r+s

+η.

Considering the exponents in the condition, it leads to

η(sγ2 + 2rγ + 2sγ + r) < 2γ

(
r + s− 1

r + s
+ η

)
,

which further reduces to

η <
2(r + s− 1)γ

(r + s)(sγ2 + 2(r + s− 1)γ + r)
.

We set γ =
√
r/s to make the right side reach its maximum and then obtain

η <
r + s− 1

(r + s)(r + s− 1 +
√
rs)

.

A fraction 1 − (r + s)η is required to recover p and q, so it implies that we require
at least a fraction √

rs

r + s− 1 +
√
rs

of the bits of p and q. The running time is polynomial in logW , and it is also
polynomial in logN . ut



In fact, we have a new integer equation

(PQ+ x)sy −N = 0

from the observation

(P + x)r(Q+ y)s = ((P + x)(Q+ y))spr−s = (PQ+Qx+ Py + xy)spr−s = N.

Thus, we can apply Theorem 3 for this bivariate integer equation and the result is
stated below.

Theorem 5. Let N = prqs for 1 ≤ s < r < 3s, where p and q are of the same
bit-size. Suppose that a fraction

2(r − s)
r + s

of the bits of p are known, then we can factor N in time polynomial in logN .

Proof. Let

f(x, y) = (PQ+ x)sy −N

and we apply Theorem 3 with x̃ = PQ, c = s and d = 1, we have

X(γ+s)2Y 2(γ+s) < W 2γ+s.

We figure out the values of X, Y that are X = N
1
r+s

+η and Y = pr−s = N
r−s
r+s . The

value of W is

W = ‖f(xX, yY )‖∞ = max{|(PQ)sY |, |N |} = N.

From the condition, we have

(γ + s)2
(

1

r + s
+ η

)
+

2(r − s)
r + s

(γ + s) < 2γ + s,

which reduces to

η <
−γ2 + 2sγ + 2s2 − rs

(r + s)(γ + s)2
.

We set γ = (r − s)/2 to make the right side reach its maximum and then obtain

η <
3s− r

(r + s)2
.

We must have s < r < 3s since γ, η > 0. The solution of y is enough to compute p,
so a fraction at least

1− (r + s)
3s− r

(r + s)2
=

2(r − s)
r + s

of the bits of p is required to recover p and then factor N . The running time is
polynomial in logW , and thus is polynomial in logN . ut



In addition, we also can solve

(PQ+ x)syr−s −N = 0, and (PQ+ x)s(P + y)r−s −N = 0.

The result of the former equation is the same as Theorem 5. We apply Theorem 3

with x̃ = PQ, c = s and d = r− s for X = N
1
r+s

+η, Y = N
1
r+s and W = N . Setting

γ = 1
2 in the proof to obtain

η <
3s− r

(r + s)2
,

which leads to the same result that we require a fraction at least

1− (r + s)
3s− r

(r + s)2
=

2(r − s)
r + s

.

The value of y is p and then we can factor N .

As for the latter equation, we can apply Theorem 2 with x̃ = PQ, ỹ = P , a = s

and b = r − s for X = N
1
r+s

+η, Y = Nη and W = N
r+s−1
r+s

+η. The result is that we
need at least a fraction√

s2(r − s)2 + 8s(r − s)(r − 1)2 + s(r − s)√
s2(r − s)2 + 8s(r − s)(r − 1)2 + s(r − s) + 2(r − 1)2

of the bits of p to factor N in time polynomial in logN for r > s ≥ 1. However, this
result is always inferior to that stated in Theorem 4 and Theorem 5.

For the sake of completeness, we provide the result of solving univariate modular
equations instead of bivariate integer equations since we can achieve an acceleration
of efficiency. We have a modular equation PQ+x = 0 (mod pq), where x is bounded

by X = N
1
r+s

+η and (pq)s is a divisor of N . Thus, we apply the modular method
summarized in [24] and obtain the same result as that in Theorem 5.

3.2 Using One Approximation

We employ both p = P + x and q = Q + y for unknown variables x, y bounded by
X = Y = Nη in Sect. 3.1. But we observe that W decreases when taking both P
and Q into consideration and it may weaken the bound on η.

In this section, we handle the factoring with known bits problem only with the
help of P or Q. More concretely, we try to solve

(P + x)ry −N = 0

without the knowledge of Q, whose result is stated below.

Theorem 6. Let N = prqs for r ≥ s ≥ 1, where p and q are of the same bit-size.
Suppose that a fraction

s

r + s

of the bits of p are known, then we can factor N in time polynomial in logN .



Proof. Let
f(x, y) = (P + x)ry −N

and we apply Theorem 3 with x̃ = P , c = r and d = 1 to obtain

X(γ+r)2Y 2(γ+r) < W 2γ+r,

where the upper bounds are X = Nη, Y = N
s
r+s and W = ‖f(xX, yY )‖∞ = N .

Then we have

η(γ + r)2 +
2s

r + s
(γ + r) < 2γ + r.

It reduces to

η <
2rγ + r2 − rs

(r + s)(γ + r)2
.

We set γ = s to make the right side reach its maximum and then obtain

η <
r

(r + s)2
.

The solution of roots x, y implies the values of p and q, respectively. So a fraction
at least

1− (r + s)
r

(r + s)2
=

s

r + s

is required to recover p and then factor N . The running time is polynomial in logW ,
and it is also polynomial in logN . ut

Similarly, we can solve
(P + x)rys −N = 0

by Theorem 3 for x̃ = P , c = r and d = s with the upper bounds X = Nη, Y = N
1
r+s

and W = ‖f(xX, yY )‖∞ = N . We set γ = 1 in the proof to obtain

η <
r

(r + s)2
,

which leads to the same result as that in Theorem 6. We also can derive a modular
equation P + x = 0 (mod p), where x is bounded by X = Nη and pr is a divisor
of N . Thus, we apply the modular method summarized in [24], which leads to the
same result as that in Theorem 6.

When we consider using one approximation P or Q, there exists an integer
equation

(Q+ x)sy −N = 0, or (Q+ x)syr −N = 0.

For completeness, we provide the result but do not discuss it in further comparison
since it is a worse choice for r ≥ s. For example, we apply Theorem 3 to solve

(Q+ x)sy −N = 0

for x̃ = Q, c = s and d = r with X = Nη, Y = N
r
r+s and W = N . Setting γ = r,

we obtain
η <

s

(r + s)2
,

which means that a fraction at least

1− (r + s)
s

(r + s)2
=

r

r + s

is required to recover q and then factor N .



4 Comparison and Discussion

The modular method is more efficient and simpler than the integer method for
some equations. So, the algorithms for solving modular equations are preferred when
applying Theorem 5 and Theorem 6. However, the integer method shows its power
for solving a general integer equation

(P + x)r(Q+ y)s −N = 0,

which finally gives Theorem 4.
We compare the required amounts of known MSBs in a unifying condition derived

from the integer method in Sect. 3 since the fractions of known bits differ when
solving distinct integer equations. We summarize the respective fractions required
for factoring general RSA moduli N = prqs with known bits and the corresponding
solvable integer equations as follows.

– For the solvable equation

(P + x)r(Q+ y)s −N = 0 with r ≥ s ≥ 1,

the fraction given by Theorem 4 is

√
rs

r + s− 1 +
√
rs
.

– For the solvable equations

(PQ+ x)sy −N = 0, (PQ+ x)syr−s −N = 0 with 1 ≤ s < r < 3s,

the fraction given by Theorem 5 is

2(r − s)
r + s

.

– For the solvable equations

(P + x)ry −N = 0, (P + x)rys −N = 0 with r ≥ s ≥ 1,

the fraction given by Theorem 6 is

s

r + s
.

We discuss more about our unifying condition. For the standard RSA modulus
N = pq with r = s = 1, we can apply Theorem 4 and Theorem 6. Our results
cover that of [4] but we can provide more solvable equations. For the modified RSA
modulus N = prq with r > 1, s = 1, we can apply Theorem 6 since the required
amount of known MSBs is least. Our results also cover those of [2,22].

However, for general RSA moduli N = prqs with arbitrary r, s > 1, we should
compare the above three fractions to choose the best one. For example, we show the
comparison of the numerical values of the respective fractions for r = 3, 4, 5, 6 with
various reasonable s’s in Table 3. It is showed that the best choice actually depends
on the relation of r and s.



Table 3. The numerical values of the respective fractions for several (r, s) pairs

(r, s) (3, 2) (4, 3) (5, 2) (5, 3) (5, 4) (6, 5)

Theorem 4 0.380 0.367 0.346 0.357 0.359 0.354

Theorem 5 0.4 0.286 0.858 0.5 0.223 0.182

Theorem 6 0.4 0.429 0.286 0.375 0.445 0.455

Table 4. The respective applicable ranges and suitable equations according to distinct theorems

Applicable Ranges Most Suitable Equations Restrictions

Theorem 6 1 ≤ s ≤ θ(r) · r P + x = 0 (mod p) 1 ≤ s ≤ r

Theorem 4 θ(r) · r < s ≤ ξ(r) · r (P + x)r(Q+ y)s −N = 0 1 ≤ s ≤ r

Theorem 5 ξ(r) · r < s < r PQ+ x = 0 (mod pq) 1 ≤ s < r < 3s

To be concrete, Theorem 4 is preferred for medium s for a fixed r. Theorem 6
is more effective for small s like s = 1 and Theorem 5 works better for large s
like s = r − 1. Furthermore, we identify the respective applicable ranges of s along
with the most suitable solvable equations for each theorem in Table 4. The results
also include s = 1 that is considered as a special case of Theorem 6 if θ(r) < 1.
Additionally, the restrictions on each theorem are always satisfied.

We define two functions θ(r) and ξ(r) for simplicity since the explicit forms are
complicated. θ(r) is the unique real root in (0, 1) of the following equation

√
xr

r + xr − 1 +
√
xr

=
xr

r + xr
,

and ξ(r) is the unique real root in (0, 1) of the following equation

√
xr

r + xr − 1 +
√
xr

=
2(r − xr)
r + xr

.

We list the numerical values of θ(r) and ξ(r) for some r < 10 in Table 5. The results

Table 5. The numerical values of θ(r) and ξ(r) for various r < 10

r 1 2 3 4 5 6 7 8 9

θ(r) 1 0.697 0.611 0.572 0.549 0.534 0.524 0.516 0.510

ξ(r) – 0.658 0.680 0.690 0.696 0.699 0.702 0.704 0.705

are applicable for all reasonable (r, s) pairs if we let the cases when s = 1 for r = 1, 2
belong to Theorem 6. Finally, we derive a unifying condition for factoring general
RSA moduli N = prqs with known bits. For example, we roughly give the applicable
ranges of s for a fixed r < 10 as follows since coprime integers r, s� log p.

– If 0.7r < s < r, we choose to solve PQ+ x = 0 (mod pq).
– If 0.5r < s ≤ 0.7r, we choose to solve (P + x)r(Q+ y)s −N = 0.
– Else cases, we choose to solve P + x = 0 (mod p).



We do not extend the analysis to the case of more than one unknown block since
it is heuristic and relies on an unproven assumption. We do not analyze factoring
N =

∏r
i=1 pi with known bits either. In the case of more than two primes, there

seem no other efficient algorithms except the modular method.

5 Concluding Remarks

We revisit the factoring with known bits problem on general RSA moduli N = prqs

for r, s ≥ 1, where p, q are two primes of the same bit-size. To be specific, we study
the least desired amount of known MSBs of the primes and obtain the results based
on solving bivariate integer equations.

A unifying condition on the fraction of known MSBs is derived for efficiently
factoring N = prqs. On the one hand, previous works based on the modular method
to factor N = pq and N = prq are confirmed to remain the best so far. For general
moduli N = prqs, the modular method is still applicable to s of small or large
size. On the other hand, we reveal that the integer method is superior for some
particular (r, s) pairs (e.g. p3q2 and p5q3) when s is of medium size with respect to
r, i.e. s ∈ (0.5r, 0.7r] for r < 10.

We show that the integer method is more powerful since it covers the results
derived from the modular method and even provides an improved factoring attack
for several particular RSA moduli. We hope that the integer method is applicable
to other problems that can be reduced to solving integer equations and further give
better results.

Acknowledgments. The author would like to thank Noboru Kunihiro for helpful
discussions and the anonymous referees for their constructive comments.
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