
Burning Zerocoins for Fun and for Profit
A Cryptographic Denial-of-Spending Attack on the Zerocoin Protocol

Tim Ruffing
Saarland University, Germany

tim.ruffing@mmci.uni-saarland.de

Sri Aravinda Thyagarajan Viktoria Ronge Dominique Schröder
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

name.separated.by.dots@fau.de

Abstract—Zerocoin (Miers et. al, IEEE S&P’13), designed as
an extension to Bitcoin and similar cryptocurrencies, was the
first anonymous cryptocurrency proposal which supports large
anonymity sets. We identify a cryptographic denial-of-spending
attack on the original Zerocoin protocol and a second Zerocoin
protocol (Groth and Kohlweiss, EUROCRYPT’15), which enables
a network attacker to destroy money of honest users. The attack
leads to real-world vulnerabilities in multiple cryptocurrencies,
which rely on implementations of the original Zerocoin protocol.1

The existence of the attack does not contradict the formal
security analyses of the two Zerocoin protocols but exposes the
lack of an important missing property in the security model of
Zerocoin. While the security definitions model that the attacker
should not be able to create money out of thin air or steal money
from honest users, it does not model that the attacker cannot
destroy money of honest users. Fortunately, there are simple
fixes for the security model and for both protocols.

I. INTRODUCTION

Traditional currency systems rely on a trusted central
authority that keeps track of transactions and validates them in
order to ensure that users do not spend more than what they can.
With Bitcoin [21] we witnessed a new paradigm: a decentralized
digital currency where transaction verification takes place in a
distributed fashion on a public ledger, otherwise known as the
blockchain. To enable public verifiability, sensitive information
about the financial transactions are disclosed on the blockchain.

For example, each transaction in Bitcoin is authenticated
with a digital signature issued by the sender. While signing
each transaction is necessary to make sure that only the owner
can spend the funds, it also puts the anonymity of users at
risk. By simply looking at a transaction any observer can learn
the involved parties’ public keys along with the transactions.
The observer can use transaction graph analysis techniques
empowered with different heuristics to link transactions and
ultimately break anonymity [19], [24], [11]. But anonymity is
crucial for financial privacy of users individually and fungibility
of a cryptocurrency globally.

The Zerocoin [20] protocol, proposed as an extension to
Bitcoin, was among the first solutions to solve the linkability
problem and provide anonymity in cryptocurrencies. This
protocol as well as a second instantiation by Groth and
Kohlweiss (EUROCRYPT’15) [14] use zero-knowledge proofs

1 We stress that the findings in this paper apply to the Zerocoin protocol
and not to the different Zerocash protocol as used in the cryptocurrency Zcash.

to achieve anonymity by hiding which coin in the blockchain
is spent by a transaction.

At first glance, anonymity seems to conflict with the goal of
preventing double-spending: If an observer cannot tell which
zerocoin is spent, how can he tell whether two transactions
spend the same zerocoin or not? The Zerocoin protocol
solves this problem by essentially letting each zerocoin be a
commitment to a so called serial number S . When a zerocoin
is spent, the spender reveals the serial number S and proves in
zero-knowledge that she knows a zerocoin with serial number S ,
without revealing which zerocoin. Verifiers of transactions can
now prevent double-spending by simply rejecting transactions
with serial numbers that have been used already. (And since
the commitment scheme is binding, no malicious spender can
spend the same zerocoin with two different serial numbers.)

The original Zerocoin protocol is used by multiple cryp-
tocurrencies (Zcoin, PIXV, SmartCash, Zoin, and HexxCoin)
with a combined market capitalization of about 66 000 BTC
≈ 660 000 000 USD at the time of writing [1].

A. Contribution

Our contribution is a cryptographic denial-of-spending attack
on both Zerocoin protocols. The attack enables a network
attacker to burn a zerocoin of an honest user by spending a
maliciously generated zerocoin with the same (but supposedly
unique) serial number. Since any attempt by the honest user to
spend her zerocoin will reveal the same, already used, serial
number. Any such attempt will be falsely rejected as double-
spend and the zerocoin of the honest user is unspendable.

We believe that attacks of this kind could potentially have
large-scale consequences beyond burning money: A greedy
attacker may not be interested in harming individuals but in
creating suspicion and subsequent devaluation of the currency.
The attacker can then profit by placing bets on a decline of
the price of the currency.

The attack is interesting from a theoretical point of view,
because the designs of both Zerocoin protocols are rigorous
and follow the paradigm of provable security. While our attack
does not contradict the formal security analysis of the two
Zerocoin protocols, it exposes the lack of an important missing
property in the security model of Zerocoin, reminding us that
provable security is only as good as the security definitions.



As countermeasures to the attack, we provide a definition
of the missing security property serial number unforgeability
and present a fix that applies to both Zerocoin protocols.

II. OVERVIEW ON ZEROCOIN

Before we are ready to explain the attack, we review the
basics of the Zerocoin protocol. We restrict our attention to
what is necessary to understand the attack and refer the reader
to Miers et al. [20] for details.

The Zerocoin extension acts as “cryptographic mixer” for
an underlying base currency. The basic idea is to exchange
one unit of the base currency for the ability to mint a zerocoin,
which can later be spent anonymously, i.e., without revealing
which minted zerocoin is spent.

There are four algorithms to make the scheme work: The
trusted Setup algorithm takes a security parameter as input and
outputs public parameters given as input to all other algorithms;
this is necessary to model a trusted setup.

The Mint algorithm generates a zerocoin c, a serial number
S and a trapdoor skc.2 By putting the outputs of Mint in a
mint transaction on the blockchain, a user can mint a zerocoin
according to the consensus rules, which require the user to
forgo a fixed denomination of the base currency in exchange
for the zerocoin. (The user must sign the mint transaction under
the public key associated with the forgone funds in the base
currency to prove ownership of these funds.)

The Spend algorithm takes as input an (already minted)
zerocoin c, a serial number S , a trapdoor skc for c, an
anonymity set C of zerocoins, and a transaction string R.
It outputs a spend proof π, which authorizes the spending of
zerocoin c with the effects specified in the transaction string
R (according to the consensus rules of the currency) without
revealing which zerocoin in the set C is actually spent.

The tuple (π, S,R,C) is recorded in a spend transaction in
the blockchain.3 It can be verified using Verify, which outputs
true iff π is a valid spend proof for S , R and C.

No attacker can double-spend the same zerocoin, because he
will be forced to reveal the same serial number S twice, and
the second attempt can easily be detected as a double-spend.

Both known Zerocoin schemes [20], [14] realize the public
part c of a zerocoin as a commitment c = Com(S, r) to a
randomly chosen serial number S with randomness r = skc,
which is the trapdoor necessary to spend c. Further details of
the constructions are not relevant for our discussion.

III. THE ATTACK

Since honestly generated serial numbers are drawn randomly
from a sufficiently large space, the probability of having two
honest zerocoins with the same serial numbers is negligible.
However, the constructions do not prevent a maliciously
generated zerocoin from having the same serial number as

2 In the other formalizations [20], [14], the serial number is only later output
by the Spend algorithm. This is only a syntactic difference. Our formulation
simplifies our security definition.

3 The anonymity set can have a short representation, e.g., a cryptographic
accumulator [20], or even be implicit from the blockchain.

a honestly generated zerocoin! Observe that an attacker can
choose the serial number freely when creating the commitment.
This yields the following denial-of-spending attack:

1) An honest user U creates a spend transaction for her
zerocoin c with serial number S , thereby revealing S in
the transaction.

2) The attacker A, listening on the honest user’s network,
obtains the transaction and blocks the propagation of the
transaction into the network. The attacker A also blocks
any further communication for U .

3) The attacker A then mints a new maliciously generated
zerocoin with commitment c′ = Com(S , r′), which is a
commitment to the same serial number S .

4) The attacker A creates a spend transaction that spends
c′ with serial number S (to an address controlled by A,
so A gets his funds in the base currency back).

Now, transactions by U spending c will be rejected as double-
spends by the cryptocurrency nodes, because they have already
witnessed S in a previous spend transaction. Therefore, A has
made U’s zerocoin unspendable and effectively burned it.

We stress that an attacker does not need to have full control
over the network to perform this attack. It suffices to control
all outgoing connections of a single user, which is a concern in
cryptocurrencies in general [15], [13] and in particular for thin
clients relying on a semi-trusted server and clients connecting
via relays, e.g., through the Tor network [13].

IV. CONSEQUENCES AND DISCUSSION

The attack applies to the original Zerocoin protocol [20],
and thus leads to real-world security vulnerabilities in all
cryptocurrencies relying on this protocol, namely Zcoin [8],
PIXV [6], SmartCash [7], Zoin [9], and Hexxcoin [3].

Furthermore, the attack applies to a second (unimplemented)
Zerocoin protocol proposed by Groth and Kohlweiss [14].

a) Cost of the Attack: When carried out successfully, the
attacker only incurs the transaction fee of his mint transaction
and his spend transaction. He can get his base currency back
by spending to one of his own addresses and therefore regains
his investment fully except for the transaction fee.

The attacker however risks his zerocoin: if the honest spend
transaction wins, then the attack occurs effectively with reversed
roles, i.e., the honest spend transaction burns the zerocoin of
the attacker. If that is an concern for the attacker, he needs to
make sure that either the user will not broadcast the honest
transaction, or that the malicious transaction wins with very
high probability. The attacker can achieve the latter by mining
the transaction on its own such that the attack is effectively
carried out only if it will succeed. In that case it is necessary to
include both the malicious mint transaction and the malicious
spend transaction in a single block.

b) Profiting from the Attack: The immediate impact of
the attack is digital vandalism: an attacker can destroy funds of
a honest user. This itself is a serious threat, but the attacker is
poised to profit from the attack as follows. The attacker short
sells the currency, i.e., he bets on a falling price by borrowing
and selling currency units, which must be sold back later. He

2



then demonstrates publicly that he can destroy funds of the
currency in the hope of creating panic among users, who will
sell their currency. The attacker makes a sizable profit if the
price drops as expected. Similar attacks happened on other
markets, where criminals tried to use their insider knowledge
about their own forthcoming crimes to profit [12].

We are not aware of anyone who lends the affected
cryptocurrencies, but we believe that there has just been
not enough demand for borrowing due to the relatively low
popularity of the affected currencies. In contrast, it is very
easy to borrow popular cryptocurrencies such as Bitcoin and
Ethereum. Moreover, nothing stops an attacker from borrowing
units of the cryptocurrencies over the counter.

V. FIXING THE SECURITY MODEL

Despite the presence of this attack, both Zerocoin
schemes [20], [14] are proven to be secure in the proposed
security models. On the formal side, the problem is an arguably
too weak security definition. Miers et al. [20] as well as Groth
and Kohlweiss [14] define correctness notions, which capture
that honest users are able to create spend transaction for their
own zerocoins such that these spend proofs pass verification
by the verification algorithm.4

However, the respective definitions fail to take the effect
of double-spending prevention into account. The subtlety is
that it is not the task of the verification algorithm to check
for double-spending. Instead, the verification algorithm is just
required to check whether a spend transaction is valid for a
given serial number S , and checking whether S has been used
already is outside the formal security model. (There is a good
reason to use this approach: the verification algorithm can
remain stateless, which simplifies the model.) As a result, the
correctness property fails to capture this attack.

To exclude the attack, we need an additional security property
which captures that an attacker cannot forge a spend transaction
under a honestly generated serial number, even if he is allowed
to obtain other honest spend proofs (including serial numbers)
of his choice. We denote this property, which is similar to non-
slanderability in the context of ring and group signatures [18],
[25], serial number unforgeability.

We note that in our model the attacker is allowed to query
to oracle multiple times for the same zerocoin, i.e., the attacker
is allowed to obtain double-spends from honest users. We have
chosen this strong model, because honest users may (attempt
to) double-spend the same zerocoin accidentally, e.g., when
they keep the same secret keys in different wallets (desktop
and mobile) and the wallets are not fully synchronized.

Definition 1 (Serial number unforgeability). A Zerocoin scheme
Π = (Setup,Mint,Spend,Verify) is serial number unforgeable

4Despite its name, Groth and Kohlweiss [14] define correctness as a security
property in the sense that it is supposed to hold in presence of an attacker,
who is allowed to select the anonymity set C of zerocoins adaptively. This is
necessary to prevent other potential denial-of-spending attacks.

In the model by Miers et. al. [20], the language is ambiguous: Correctness,
which is explicitly not listed as a security property, is supposed to hold for
spends with anonymity sets C which can be “any valid set of coins” but it is
not clear what “valid” refers to in this context.

SNUnfA,p
Π (λ)

params ← Setup(λ); T ← ∅
for i← 1, . . . , p(λ)

(ci, Si, skci)← Mint(params)

(π∗, S∗, R∗,C∗)← ASpend′(params, (c1, . . . , cp(λ)))

return Verify(params, π∗, S∗, R∗,C∗) = true

∧ ∃i. S = Si ∧ (π∗, S∗) /∈ T
Oracle Spend′(i, R,C)

if ci /∈ C then

return ⊥
π ← Spend(params, ci, Si, skci, R,C)

T ← T ∪ {(π, Si)}
return (π, Si)

Figure 1. Game for serial number unforgeability

if for all PPT adversaries A and all polynomials p there exists
a negligible function negl(λ) such that for the game SNUnfA,p

Π

defined in Figure 1, we have Pr
[
SNUnfA,p

Π (λ) = true
]
≤

negl(λ) .

VI. FIXING THE SCHEMES

Fortunately, a simple and inexpensive fix is available to
prevent the attack in each of the existing Zerocoin schemes.
Concretely, the modification (valid for each of the schemes) is
as follows: Instead of using a fresh bitstring as serial number,
we propose to use a fresh verification key of an ordinary
signature scheme, which is strongly existentially unforgeable
under chosen message attacks. The spender will additionally
sign spend transactions under this verification key, and verifiers
will additionally verify these signatures using the verification
key revealed as serial number.

Then the attacker will not be able to create a valid spend
transaction under a honest same serial number, because this
requires a signature under a honest verification key.

Theorem 1 (Unforgeability). The modified version of Miers et
al.’s scheme and the modified version of Groth and Kohlweiss’
scheme are serial number unforgeable.

Proof sketch. In the modified schemes, the serial number is
a verification key of a signature scheme, under which spend
transactions need to be signed. Thus a forgery under a honest
serial number implies a forgery under a honest verification key
of the signature scheme. The theorem follows from the strong
existential unforgeability of the signature scheme.

Our modifications do not invalidate any other desired
properties of the schemes: In particular, Miers et al.’s modified
scheme fulfills correctness, balance, and anonymity in its
respective security model [20], and Groth and Kohlweiss’
modified scheme fulfills perfect correctness, balance, and
perfect anonymity in its respective security model [14]. We
do not present proofs, because the original proofs [20], [14]
hold with trivial modifications. We note that our modification

3



can be seen as a general transformation that turns any “secure”
Zerocoin scheme without serial number unforgeability into a
secure Zerocoin scheme with serial number unforgeability.

VII. IMPLEMENTATIONS AND RESPONSIBLE DISCLOSURE

We contacted the authors of the original Zerocoin protocols,
who confirmed the attack. Moreover, we contacted the Zcoin
maintainers, who hired the first the author of this paper to
help them implement a fix. Unfortunately we noticed only later
that the other mentioned cryptocurrencies also use the original
Zerocoin protocol; we finally contacted the maintainers of the
reference implementations of all of those cryptocurrencies. At
the time of writing, the status of the affected cryptocurrencies
is as follows.

In the case of Zcoin and Zoin, the respective maintainers
have integrated the fix in the reference implementation of
the wallets [16], [10], and zerocoins minted by the current
version are not vulnerable to the denial-of-spending attack.
However, old zerocoins (minted before with old versions) are
still vulnerable at the time of writing, because there is nothing
that prevents an attacker from minting new old-style zerocoins
in order to attack honest spends of old zerocoins.

The Zcoin maintainers and the Zoin maintainers have
indicated to us that an additional fix that prevents the attack
will be released in the future.

In the case of SmartCash, PIVX, and Hexxcoin, the maintain-
ers have disabled the Zerocoin functionality: The SmartCash
maintainers had already disabled Zerocoin [17] in response to
other critical implementation vulnerabilities in libzerocoin.5

Similarly a user from the Hexxcoin community went ahead
and revived the dead project by releasing a client in which
Zerocoin is disabled [2], and later, also the PIVX maintainers
disabled Zerocoin.

Disabling Zerocoin is not a permanent solution: Beside the
obvious drawback for privacy, it implies that minted but unspent
zerocoins cannot be spent, effectively disabling these zerocoins
temporarily. We believe that this interferes seriously with the
savings of users, but nevertheless the respective communities
seem to have accepted that Zerocoin has disabled temporarily.

VIII. RELATED WORK

a) Zerocash: Zerocash [23], which can be considered
a successor to Zerocoin, also makes use of serial numbers
to prevent double-spending. In Zerocash however, a general
transaction non-malleability property prevents the attack de-
scribed above, because it includes serial number unforgeability
as a special case. In the construction, the serial number is
a output of a pseudorandom function (PRF). Since the PRF
key is kept secret by honest users and required to authenticate
spend transactions, the construction ensures that no attacker can
create a spend transaction valid with a honest serial number.

5Those vulnerabilities have been found by the first author when implementing
the fix in Zcoin. We note that libzerocoin was developed an academic
prototype and includes very explicit warnings about security and non-readiness
for deployment [4] but was nevertheless integrated effectively without changes
in Zcoin, SmartCash, Zoin and Hexxcoin, which were all vulnerable to these
implementation issues. Only the developers of PIVX audited the library before
deployment and found those issues independently.

b) Monero: In the anonymous cryptocurrency Monero [5],
[22] the serial number6 is constructed as S = H(c)skc , where
c = gskc is a public part of the coin, skc is the corresponding
secret key and H is a hash function modeled as a random
oracle. As in Zerocoin, the security model by Noether and
Mackenzie [22] lacks the consideration that an attacker could
produce a malicious spend proof valid under an honest serial
number. However, the construction used in Monero ensures
that an attacker, given an honest coin and its serial number,
cannot find a coin with the same serial number. Consequently,
Monero is not vulnerable to our denial-of-spending attack.
Nevertheless, more work is required to determine the exact
security properties of the construction used in Monero.

Sun et al. [25] propose a different construction and an
improved security model for Monero that includes an explicit
non-slanderability property that is similar to serial-number
unforgeability as defined above.

REFERENCES

[1] “CoinMarketCap,” https://coinmarketcap.com/.
[2] “Forked hexxcoin,” https://github.com/hexxcointakeover/4.0.1.X.
[3] “Hexxcoin,” https://bitcointalk.org/index.php?topic=1171724.1180.
[4] “libzerocoin,” https://github.com/Zerocoin/libzerocoin.
[5] “Monero,” https://getmonero.org.
[6] “PIVX,” https://pivx.org/.
[7] “SmartCash,” https://smartcash.cc/.
[8] “Zcoin,” https://zcoin.io/.
[9] “Zoin,” https://zoinofficial.com/.

[10] “Zoin core release v.0.13.0.0,” https://github.com/zoinofficial/zoin/
releases/tag/v0.13.0.0.

[11] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun,
“Evaluating user privacy in Bitcoin,” in FC’13.

[12] BBC, “Borussia Dortmund bombs: ’speculator’ charged with bus attack,”
2017, http://www.bbc.com/news/world-europe-39664212.

[13] A. Biryukov and I. Pustogarov, “Bitcoin over Tor isn’t a good idea,” in
S&P’15.

[14] J. Groth and M. Kohlweiss, “One-out-of-many proofs: Or how to leak a
secret and spend a coin,” in EUROCRYPT’15.

[15] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
Bitcoin’s peer-to-peer network.” in USENIX Security ’15.

[16] P. Insom, https://github.com/zcoinofficial/zcoin/commit/
01e25084b88622a5d9dd1207a4cbebd78bed1dcb.

[17] JuicyG, “SmartCash Zerocoin related issues and
the path forward,” https://forum.smartcash.cc/t/
smartcash-zerocoin-related-issues-and-the-path-forward/1359.

[18] J. K. Liu and D. S. Wong, “Linkable ring signatures: Security models
and new schemes,” in ICCSA’05.

[19] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.
Voelker, and S. Savage, “A fistful of bitcoins: Characterizing payments
among men with no names,” in IMC’13.

[20] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anonymous
distributed e-cash from Bitcoin,” in S&P’13.

[21] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[22] S. Noether and A. Mackenzie, “Ring confidential transactions,” Ledger,

vol. 1, 2016, https://doi.org/10.5195/ledger.2016.34.
[23] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and

M. Virza, “Zerocash: Decentralized anonymous payments from Bitcoin,”
in S&P’15.

[24] M. Spagnuolo, F. Maggi, and S. Zanero, “BitIodine: Extracting intelli-
gence from the Bitcoin network,” in FC’14.

[25] S.-F. Sun, M. H. Au, J. K. Liu, and T. H. Yuen, “RingCT 2.0: A compact
accumulator-based (linkable ring signature) protocol for blockchain
cryptocurrency Monero,” in ESORICS’17.

6In Monero, the term key image is used instead of serial number. For the
sake of readability, we stick with the Zerocoin terminology.

4

https://coinmarketcap.com/
https://github.com/hexxcointakeover/4.0.1.X
https://bitcointalk.org/index.php?topic=1171724.1180
https://github.com/Zerocoin/libzerocoin
https://getmonero.org
https://pivx.org/
https://smartcash.cc/
https://zcoin.io/
https://zoinofficial.com/
https://github.com/zoinofficial/zoin/releases/tag/v0.13.0.0
https://github.com/zoinofficial/zoin/releases/tag/v0.13.0.0
http://www.bbc.com/news/world-europe-39664212
https://github.com/zcoinofficial/zcoin/commit/01e25084b88622a5d9dd1207a4cbebd78bed1dcb
https://github.com/zcoinofficial/zcoin/commit/01e25084b88622a5d9dd1207a4cbebd78bed1dcb
https://forum.smartcash.cc/t/smartcash-zerocoin-related-issues-and-the-path-forward/1359
https://forum.smartcash.cc/t/smartcash-zerocoin-related-issues-and-the-path-forward/1359
https://doi.org/10.5195/ledger.2016.34

	Introduction
	Contribution

	Overview on Zerocoin
	The Attack
	Consequences and Discussion
	Fixing The Security Model
	Fixing the Schemes
	Implementations and Responsible Disclosure
	Related Work
	References

