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Abstract

Substitution Boxes (S-Boxes) are crucial components in the design of many sym-
metric ciphers. The security of these ciphers against linear, differential, algebraic
cryptanalyses and side-channel attacks is then strongly dependent on the choice of
the S-Boxes. To construct S-Boxes having good resistive properties both towards
classical cryptanalysis as well side-channel attacks is not a trivial task. In this
article we propose new methods for generating S-Boxes with strong cryptographic
properties and therefore study the resilience of such S-Boxes against side-channel
attacks in terms of its theoretical metrics and masking possibility.

Keywords: S-Box, permutations, hamming weight, nonlinearity, differ-
ential uniformity, graph algebraic immunity, differential power analysis,
transparency order, confusion coefficient, signal-to-noise ratio.

1 Introduction

Modern block ciphers are often iterations of several rounds. Each round
(which must depend on the key) consists of a confusion layer and a diffusion
layer. The confusion layers are usually formed by local nonlinear mappings
(S-Boxes) while the diffusion layers are formed by global linear mappings
mixing the output of the different S-Boxes. Block ciphers can be built
using a well-known structure such as a Feistel network (and its variants)
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(see,e.g. [2]), a Substitution-Permutation network (SPN) [43], or a Lai-
Massey structure [55]. Cryptographic properties of S-Boxes deal with the
application of several logical attacks on ciphers, namely linear attack [34],
the differential attack [34], the higher order differential attack [37] and
algebraic attack [16] (which is not yet efficient but represents some threat
and should keep in mind by designers of next generation of block ciphers).
For this reason S-Boxes must satisfy various criteria for providing high level
of protection against such attacks.

Besides the linear, differential and algebraic attacks, today the most
prominent attacks on the cryptographic algorithms are based on supervi-
sion of physical processes in cryptographic device. In literature, this kind
of attack has received the name of side-channel attacks (SCAs). Examples
of such attacks are: Simple Power Analysis (SPA) [35], Differential Power
Analysis (DPA) [35], Timing Analysis (TA) [36] , Correlation Power Analy-
sis (CPA) [10], Mutual Information Attack (MIA)[18]. S-Boxes represent the
most vulnerable part in an implementation when considering side-channel
adversary and it is not a trivial task to construct S-Boxes having good re-
sistive properties both towards classical cryptanalysis as well side-channel
attacks.

The known methods for constructing S-Boxes can be divided into four
main classes: algebraic constructions, pseudo-random generation, heuristic
techniques and constructions from small to large S-Boxes. Each approach
has its advantages and disadvantages respectively (see, e.g. [11, 30]). Mo-
tivated by specialist’s work of Luxembourg’s university Alex Biryukov, Léo
Perrin and Aleksei Udovenko on cryptanalysis of the only known solution
to the big APN problem [9] we propose (using the last approach) new con-
structions for generating S-Boxes with strong cryptographic properties and
therefore study their resilience against side-channel attacks in terms of its
theoretical metrics and masking possibility.

This article is structured as follows: In Section 2 we give the basic def-
initions. In Section 3 we present our design criteria and new methods for
constructing S-Boxes with strong cryptographic properties. An algorithm
to generate 8-bit permutations having strong properties and good theoret-
ical DPA metrics, is presented in Section 4. In Section 5 we compare our
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S-Boxes with other from the perspective of conventional cryptanalysis and
theoretical DPA metrics. The possibility of combine our S-Boxes with the
masking countermeasure against SCAs is studied in Section 6. Our work
is concluded in Section 7.

2 Basic definitions and notations

Let Vn be n-dimensional vector space over the field GF(2), by S(Vn) we
denote the symmetric group on set of 2n elements. The finite field of size 2n

is denoted by GF(2n), where GF(2n)=GF(2)[ξ]/g(ξ), for some irreducible
polynomial g(ξ) of degree n. We use the notation Z/2n for the ring of the
integers modulo 2n. There are bijective mappings between Z/2n, Vn and
GF(2n) defined by the correspondences:[
an−1 · 2n−1 + . . .+ a0

]
↔ (an−1, . . . , a0) ↔

[
an−1 · ξn−1 + . . .+ a0

]
.

Using these mapping in what follows we make no difference between
vectors of Vn and the corresponding elements in and Z/2n and GF(2n).

Throughout the article, we shall use the following operations and nota-
tions:

a‖b - concatenation of the vectors a, b of Vl, i.e. a vector from V2l ;
0 - the null vector of Vl ;
⊕ - bitwise eXclusive-OR. Addition in GF(2l);
< a, b > - the scalar product of vectors a = (al−1, . . . , a0), b = (bl−1, . . . , b0)

of Vl and is equal to < a, b >= al−1bl−1 ⊕ . . .⊕ a0b0;
gcd(a, b) - the greatest common divisor of integers a and b;
wH(a) - the Hamming weight of a binary vector a ∈ Vl, i.e. the number

of its nonzero coordinates;
⊗ - finite field multiplication ;
Λ ◦Ψ - a composition of mappings, where Ψ is the first to operate;
Ψ−1 - the inverse transformation to some bijective mapping Ψ.

Now, we introduce some basic concepts needed to describe and ana-
lyze S-Boxes with respect to linear, differential, algebraic attack and DPA
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attacks. For this purpose, we consider an n-bit S-Box Φ as a vector of
Boolean functions:

Φ = (fn−1, . . . , f0), fi : Vn → V1, i = 0, 1, . . . n− 1. (1)

For some fixed i = 0, 1, . . . , n − 1, every Boolean function fi can be
written as a sum over V1 of distinct t-order products of its arguments,
0 ≤ t ≤ n− 1; this is called the algebraic normal form of fi. Functions fi
are called coordinate Boolean functions of the S-Box Φ and it is well known
that most of the desirable cryptographic properties of Φ can be defined in
terms of their linear combinations (also-called S-Box component Boolean
functions).

Definition 1. For each vector a ∈ Vn the The Walsh-Hadamard trans-
form Wf(a) of the n-variable Boolean function f is defined as

Wf(a) =
∑
x∈Vn

(−1)f(x)⊕<a,x>. (2)

Definition 2. The nonlinearity NL(f) of the n-variable Boolean func-
tion f is defined as

NL(f) = min
g∈An

wH(f ⊕ g), (3)

where An is the set of all n-variable affine Boolean functions and wH(f⊕g)
is the Hamming weight of the n-variable Boolean function f ⊕ g. The
nonlinearity NL(f) can be expressed as follows:

NL(f) = 2n−1 − 1

2
max

a∈Vn\{0}
|Wf(a)| (4)

Definition 3. For a, b ∈ Vn the Walsh transform WΦ(a, b) of an n-bit
S-Box Φ is defined as

WΦ(a, b) =
∑
x∈Vn

(−1)<b,Φ(x)>⊕<a,x>. (5)

Definition 4. The nonlinearity of an n-bit S-Box Φ, denoted byNL(Φ),
is defined as

NL(Φ) = min
a∈Vn\{0}

{NL(an−1fn−1 ⊕ . . .⊕ a0f0)}, (6)
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where NL(an−1fn−1⊕ . . .⊕ a0f0) is the nonlinearity of each of the compo-
nent Boolean functions excluding the zero one.
The nonlinearity NL(Φ) of an arbitrary n-bit S-Box Φ can be calculated
as follows

NL(Φ) = 2n−1 − 1

2
· max
a6=0,b∈Vn

|WΦ(a, b)|. (7)

From a cryptographic point of view S-Boxes with small values of Walsh
coefficients offer better resistance against linear attacks.

Definition 5. The differential uniformity of an n-bit S-Box Φ, denoted
by δΦ, is defined as

δΦ = max
a6=0,b∈Vn

δ(a, b), (8)

where δ(a, b) = |{x ∈ Vn|Φ(x⊕ a)⊕ Φ(x) = b}|.
The resistance offered by an S-Box against differential attacks is related

by the highest value of δ, for this reason S-Boxes must have a small value of
δ-uniformity for a sufficient level of protection against this type of attacks.

The algebraic degree of the Boolean functions f : Vn → V1, denoted by
deg f , is the maximum order of the terms appearing in its algebraic normal
form.

Definition 6. The minimum degree of an S-Box Φ, denoted by deg(Φ),
is defined as

deg(Φ) = min
a∈Vn\{0}

{deg(an−1fn−1 ⊕ . . .⊕ a0f0)}. (9)

In general, S-Boxes should have high minimum degree because S-Boxes
with low degree are susceptible to algebraic attack, higher-order differen-
tial, interpolation, cube attacks etc.

Definition 7. The univariate polynomial representation of an n-bit
S-Box Φ over GF(2n), is defined in a unique fashion as

Φ(X) =
2n−1∑
i=0

νiX
i, νi ∈ GF(2n), (10)

where coefficients νi, i = 0, . . . , 2n−1 can be obtained from the n-bit S-Box
Φ by applying Lagrange’s Interpolation theorem (see,[13],[49]).
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Definition 8. Let U be a non-empty subset of V2n, then the annihilating
set of U is defined as {p ∈ GF(2)[z1, . . . , z2n]|p(U) = 0}.

Definition 9. The algebraic immunity of U is defined as

AI(U) = min
{

deg p
∣∣∣0 6= p ∈ GF(2)[z1, . . . , z2n], p(U) = 0

}
.

Definition 10. The graph algebraic immunity of n-bit S-Box Φ, de-
noted by AIgr(Φ), is defined as

AIgr(Φ) = min
{

deg p
∣∣∣0 6= p ∈ GF(2)[z1, . . . , z2n], p(gr(Φ)) = 0

}
, (11)

where gr(Φ) = {(x,Φ(x))|x ∈ Vn} ⊆ V2n.

Thus we focus on the graph algebraic immunity of S-Box Φ and also on

the parameter r
(AIgr(Φ))
Φ referred to as the number of all the independent

equations in input and output values of the S-Box Φ, i.e., equations of the
form p(x,Φ(x)) = 0 ∀x ∈ Vn.

Definition 11. An element a ∈ Vn is called a fixed point of an n-bit
S-Box Φ if Φ(a) = a.

Definition 12. Two n-bit S-Boxes Φ1 and Φ2 are affine/linear equiva-
lent if there exist a pair of invertible affine/linear permutation A1(x) and
A2(x), such that Φ1(x) = A2 ◦ Φ2 ◦ A1(x).

Definition 13. The Transparency Order of an S-Box Φ, denoted by
TO(Φ), is defined as

(12)
TO(Φ) = max

b∈Vn

(
|n− 2wH(b)| − 1

22n − 2n
×∑

a∈Vn\{0}

∣∣∣ ∑
c∈Vn,wH(c)=1

(−1)<c,b>WΦ(x)⊕Φ(x⊕a)(0, c)
∣∣∣).

The smaller the transparency order metric, the higher is its resistance
the S-Box Φ to DPA attacks.

Definition 14. The DPA Signal-to-Noise Ratio of an S-Box Φ, denoted
by SNR(DPA)(Φ), is defined as

SNR(DPA)(Φ) = n22n
(∑
a∈Vn

( n−1∑
i=0

Wfi(a)
)4)− 1

2

, (13)
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where fi, i = 0, . . . , 7 are the coordinate Boolean functions of the S-Box Φ.
The SNR(DPA), proper to each S-Box Φ, fully characterizes the DPA

discrimination power. The lower the SNR(DPA) metric of Φ , the better
resistance to DPA attacks.

Definition 15. The confusion coefficient of of an S-Box Φ, denoted by
CC(Φ), is defined as

CC(Φ) = σ2[κ] = σ2[κ(ki, kj)|∀i < j], (14)

where σ2[·] is the variance, κ denote the list [κ(ki, kj)|∀i < j], κ(ki, kj) =

Ep

[(
L(Φ(ki ⊕ p)) − L(Φ(ki ⊕ p))2

)]
, ki and kj are the i-th and the j-the

value of the key, p - is some known plaintext, L represents the leakage
function and E is the mean operator.

According to [45], the S-Box Φ with higher CC(Φ) metric leads to a
higher resistance against SCAs.

3 General S-Box Design Criteria

Our goal is to find bijective S-Boxes that satisfy the following criteria
(which in what follows are called almost optimal):

1. Absence of fixed points;

2. Maximum value of minimum
degree ;

3. Maximum graph algebraic im-
munity with the minimum num-
ber of equations;

4. Minimum value of δ-uniformity
limited by parameter listed
above;

5. Maximum value of nonlinear-
ity limited by parameter listed
above.

For example,when n = 8 an almost optimal permutation Φ without
fixed points has:

• deg(Φ) = 7;

• AIgr(Φ) = 3 with r
(3)
Φ = 441;

• δΦ ≤ 8;

• NL(Φ) ≥ 100.
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Also, we concentrate on generating 8-bit almost optimal S-Boxes that
have good values of transparency order property, SNR(DPA) and confusion
coefficient respectively. By good values, we mean such values that are
better than those found in currently used 8-bit S-Boxes. Although it is
well known that, improving the aftermentioned metrics is a good defense
strategy, we do recognize that this cannot be counted as a countermeasure
(see, [14]). Thus, we are looking for 8-bit S-Boxes having good resistive
properties both towards classical cryptanalysis as well side-channel attacks
with some given level of masking.

3.1 Constructing almost optimal S-Boxes from smaller ones and
finite field multiplication

Now, we present some methods for constructing S-Boxes having almost op-
timal cryptographic properties using smaller ones and finite field multipli-
cation. In cryptography, it is very common to build an S-Box from smaller
ones, usually an 8-bit S-Box from variuos 4-bit S-Boxes. Several S-Boxes of
block ciphers have been designed in this fashion (see, [4, 5, 21, 46, 51, 52]).
In many cases, such a structure is used not only to allow an efficient im-
plementation of the S-Box in software (hardware) or using a bit-sliced
approach, but also to protect S-Boxes implemented in this way against
SCAs. The implementation cost of our S-Boxes in hardware is outside the
scope of this work. The main components that we need for constructing
ours S-Boxes are described below

Let be n = 2k a natural number, where k ≥ 2. Choosing:

• The permutation polynomial (PP) Pd(x) = xd over GF (2k) (denoting
for the sake of simplicity I = P2k−2(x)) where d is a positive integer
such that gcd(d, 2k − 1) = 1, d 6= 1, 2s and s < k;

• Non-bijective k-bit funtions ψ, ψ1, ψ2 which have no pre-image for 0;

• Arbitrary permutations h, h1, h2 ∈ S(Vk).

We construct the following 2k-bit vectorial Boolean functions F ,G,H from
V2k to V2k as follows
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Construction of F
For the input value (l‖r) ∈ V2k we
define the corresponding output

value F(l‖r) = (l1‖r1) where,
l1 = Pd(l ⊗ ψ1(r));
r1 = h(r)⊗ ψ2(l1).

l r

ψ1

Pd

⊗

⊗ψ2

h

l1 r1

Figure 1: High level structure of F

Construction of G
For the input value (l‖r) ∈ V2k we
define the corresponding output

value G(l‖r) = (l1‖r1) where,
l1 = h(l ⊗ ψ(l ⊗ r));
r1 = I(r)⊗ ψ(l ⊗ r).

l r

ψ I

⊗

⊗ ⊗
h

l1 r1

Figure 2: High level structure of G

Construction of H
For the input value (l‖r) ∈ V2k we
define the corresponding output
value H(l‖r) = (l1‖r1) where,

l1 =

{
h1(l), if r = 0;
Pd(l ⊗ r), if r 6= 0;

r1 =

{
h2(r), if l1 = 0;

l1 ⊗ Pd(r), if l1 6= 0.

l r

⊗
Pdh1

Pd h2

⊗

l1 r1

Figure 3: High level structure of H
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As shown in Figure 1, the construction of F is similar to a 2-round
combination of a Misty-like and Feistel structure where the XORs have
been replaced by finite field multiplications. Figure 2 shows us, that the
construction of G share similarities with 1-round Lai-Massey structure re-
placing in the latter the XORs by finite field multiplications. The high level
structure of H is shown at Figure 3, as we can see, the construction of H
represent a particular version of F which has some advantages over the
latter (see, Section 4.1). The non-bijective k-bit functions ψ, ψi, i = 1, 2
(which have no pre-image for 0) and the special nonlinear components
of H where chosen in such a way to make all these structures invertible.
Moreover, from the next constructions:

• F−1(l1‖r1) = l‖r where r = h−1(r1⊗I(ψ2(l1))), l = Pd(l1)⊗I(ψ1(r));

• G−1(l1‖r1) = l‖r where l = h−1(l1)⊗ I(ψ(h−1(l1)⊗ I(r1))),
r = I(r1 ⊗ I(ψ(h−1(l1)⊗ I(r1))));

• H−1(l1‖r1) = l‖r where r =
{

h−1
2 (r1), if l1 = 0;

l1 ⊗ Pd(r1), if l1 6= 0;
, l =

{
h−1

1 (l1), if r = 0;
Pd(l1 ⊗ r), if r 6= 0.

we can easy derive the bijectivity of the S-Boxes F ,G,H which is a nec-
essary design criteria for SPN ciphers and quite useful for Feistel and Lai-
Massey ciphers.

4 Generating almost optimal 8-bit S-Boxes having

good theoretical DPA metrics

When n = 8, in correspondence with the suggested constructions of F ,G,H
we need to construct; the 4-bit non-bijective functions ψ, ψi, i = 1, 2 , the
4-bit permutations h, hi, i = 1, 2 ∈ S(V4) and the PP Pd(x) = xd over
GF(24) where d ∈ {7, 11, 13, 14} \ {1, 2, 4, 8}. Taking into account that
in GF(24), the values of d are all in the same cyclotomic class (notice
that for n > 4 this fact is not always true) in what follows we shall work
with the inversion function I over the finite field GF(24)=GF(2)[ξ]/g(ξ),
constructing the latter with the irreducible polynomial g(ξ) = ξ4 + ξ + 1.
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The main advantage offered by constructions of F ,G and H is that
its allows to perform a search based on random generation of 4-bit non-
bijective functions and 4-bit permutations for finding almost optimal 8-bit
S-Boxes having good theoretical DPA metrics. For this purpose we propose
the following generic algorithm:

Step 1. Select one of the three constructions F ,G or H ;
Step 2. In dependency of the selected construction, generate
randomly the 4-bit components (ψ1, ψ2, h) or (ψ, h) or (h1, h2);

Step 3. For already generated 4-bit components, (ψ1, ψ2, h) or (ψ, h)
or (h1, h2) construct the S-Box;
Step 4. Test this permutation for all criteria 1-5. If the choosen
substitution satisfies all of them except criterion 1 then go to Step 5.
Otherwise repeat Step 2;
Step 5. Apply affine/linear equivalence to the obtained permutation
in order to achieve the required property 1;
Step 6. Compute the parameters TO, SNR(DPA),CC for the S-Box
obtained in the previous step. If
(TO < 7.860)&(SNR(DPA) < 9.600)&(CC > 0.111) then go to
Step 7. Otherwise repeat Step 2;
Step 7. Output of the algorithm. A nonlinear bijective mapping
with the desired properties.
Let us point out that the values of transparency order, SNR(DPA) and

confusion coefficient specified in the step 6 of the previous algorithm were
select in such a way to ensure that our S-Boxes have at least better theo-
retical DPA metrics than the AES’s S-Box.

Our algorithm was implemented in SAGE [50] and has been applied to
a large number of random 4-bit permutations and random non-bijective
4-bit functions (which have no pre-image for 0). As a result we have ob-
tained affine nonequivalent almost optimal 8-bit permutations based on
construction of F without fixed points with the following parameters

• minimum degree — 7;

• graph algebraic immunity — 3 (with
441 equations);

• 8 — uniform;

• nonlinearity in range of 100 up to a
value of 104.
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While the construction of G is able to produce almost optimal afine
nonequivalent 8-bit S-Boxes without fixed points with

• minimum degree — 7;

• graph algebraic immunity — 3 (with
441 equations);

• 6 and 8 — uniform;

• nonlinearity in range of 100 up to a
value of 104.

The best result have been achieved by the construction of H, which
generate almost optimal affine nonequivalent 8-bit S-Boxes without fixed
points having the parameters listed below

• minimum degree — 7;

• graph algebraic immunity — 3 (with
441 equations);

• 6 and 8 — uniform;

• nonlinearity in range of 100 up to a
value of 108.

Some 8-bit permutations generated by constructions of F ,G and H in
correspondence with the previous algorithm have been listed in the ap-
pendix section. These S-Boxes exhibit good theoretical DPA metrics.

4.1 Relations, advantages and disadvantages between and H

As stated in Section 3.1 the construction of H represent a version of F
which has some advantages and disadvantages over F . In fact, directly
from these constructions we can easy obtain that, when h = Pd, ψ1(z) =

ψ2(z) =
{

c, if z = 0;
z, if z 6= 0.

, c ∈ GF(2k)\{0}, the constructions of F and H are

the same, when in the latter h1(z) = Pd(z ⊗ c), h2(z) = Pd(z) ⊗ c. From
practical point of view the main difference between these structures comes
from the cryptographic quality of the permutations that they produce. For
example, when n = 8 we have no found any S-Box generated by F with
graph algebraic immunity — 3 and nonlinearity more than 104 while the
construction ofH does it, solving at the same time the open question raised
in [32] about existence of such permutations. It shoult be noted that even
when the construction of H can be weak against SCAs due to the use
of an ”if” operation (see, [27, 28, 35]) we can apply the Cycloatomic or
Parity-Split methods described in [13] for masking 8-bit S-Boxes generated
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by H in GF(28). However, due to its multiplicative complexity (33 and 22
nonlinear field multiplications respetively) in GF(28) the issue of finding
more efficient methods of masking for construction of H is left as future
work.

5 Comparing our S-Boxes with other from the per-

spective of conventional cryptanalysis and theoret-

ical side-channel metrics

In Table 1 we show the cryptographic parameters on some classes of cur-
rently 8-bit S-Boxes used in different modern block ciphers. As it can be
seen the Scream S-Box highlight the best values of transparency order,
SNR(DPA) and confusion coefficient respectively. It should be noted that
the Scream cipher was designed to be side-channel resistant with masking
(see, [23]). However, this S-Box is not almost optimal with respect the
chosen criteria decribed in Section 3. Only Kuznyechik and Belt (relaxing
slightly the condition on the minimum degree) S-Boxes satisfies our design
criteri. But even when these permutations have good theoretical DPA met-
rics at the time of writing we have no found any dth-order (d > 1) masked
version of aftermentioned S-Boxes in the public available literature. How-
ever, in [38] was proposed a method of masking which can be applied to
any SPN block cipher and therefore the whole Kuznyechik cipher can be
protected using this approach or using the Cycloatomic or Parity-Split
methods [13] for masking the Kuznyechik S-Box. The remainder S-Boxes
compiled in this table can be masking using different methods described
in [15, 21, 33, 46].

In Table 2 we compare our results with the state-of-the-art in design of
cryptographically strong S-Boxes obtained by different available methods.
This comparison shows that our construction produces 8-bit permutations
with the same properties reported in [1, 17, 20, 29, 30, 32, 39, 40, 41, 53]
and other with the best parameters reported in the public available liter-
ature for nonlinearity and graph algebraic immunity respectively. Table 2
also shows that our S-Boxes have better resistence to algebraic and DPA at-
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S-Boxes class/Cryptographic properties Bijection NL δ deg AIgr
(
r(AIgr)

)
TO SNR(DPA) CC

AES S-Box [43] Yes 112 4 7 2(39) 7.860 9.600 0.111
Belt S-Box [6] Yes 102 8 6 3(441) 7.833 8,318 0.169

Clefia S-Box S0 [52] Yes 100 10 6 3(441) 7.745 9.662 0.109
FOX S-Box [54] Yes 96 16 6 3(441) 7.788 9.342 0.121

Iceberg S-Box [51] Yes 96 8 7 3(441) 7.812 10.254 0.089
Khazad S-Box [4] Yes 96 8 7 3(441) 7.80 8.860 0.141

Kuznyechik S-Box [25] Yes 100 8 7 3(441) 7.835 9.571 0.112
Picaro S-Box [46] No 94 4 2 3(441) 7.843 8.557 0.147
Scream S-Box [23] Yes 96 8 6 3(441) 7.589 7.921 0.194
Zorro S-Box [21] Yes 96 10 6 3(441) 7.806 9.260 0.124

Table 1: Crytptographic parameters on some classes of currently used 8-bit S-Boxes

Methods/Cryptographic properties NL δ deg AIgr
(
r(AIgr)

)
TO SNR(DPA) CC

Gradient descent method [32] 104 8 7 3(441) 7.823 9.208 0.149
GA/HC [41] 100 NR NR NR NR NR NR

GaT [53] 104 NR NR NR NR NR NR
106 6 6 2(32) 7.850 9.458 0.108

GA1 [31] 108 6 6 2(34) 7.849 9.768 0.119
110 6 7 2(36) 7.855 9.850 0.109

GA2 [31] 112 6 7 2(38) 7.858 9,866 0.118
Hill Climbing [40] 100 NR NR NR NR NR NR
Hybrid Heuristic 102 6 4 3(441) 7.833 8.650 0.102

Methods [29] 104 6 4 3(441) 7.824 8.467 0.108
Simulated Annealing [17] 102 NR NR NR NR NR NR

SpImmAlg [30] 104 6 7 3(441) 7.822 9.038 0.128
Spectral-linear and

spectral-difference methods [39] 104 6 7 3(441) NR NR NR
Tweaking [20] 106 6 7 2(27) 7.854 9.481 NR

S-Box F1 [this work] 100 8 7 3(441) 7.780 5.873 0.402
S-Box F2 [this work] 102 8 7 3(441) 7.758 6.384 0.331
S-Box G1 [this work] 104 8 7 3(441) 7.786 7.400 0.230
S-Box G2 [this work] 104 6 7 3(441) 7.800 8.380 0.165
S-Box H1 [this work] 106 6 7 3(441) 7.834 8.644 0.152
S-Box H2 [this work] 108 6 7 3(441) 7.838 9.335 0.121

Table 2: A comparison between the cryptographic properties of 8-bit permutations pro-
duced by different modern generation methods (NR means “not reported”)

tacks in terms of graph algebraic immunity, transparency order, SNR(DPA)
and confusion coefficient than other permutations while having comparable
classical cryptographic properties.

6 Higher-Order Masking of 8-bit S-Boxes obtained

by construction of F and G

In this section we study the possibility of combine ours 8-bit S-Boxes having
almost optimal cryptographic properties and good values of transparency
order, SNR(DPA) and confusion coefficient with the classical masking coun-
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termeasure against SCAs. The principle of the so-called masking scheme
is to randomly split every sensitive intermediate variable occurring in the
computation into d+1 shares, where d is called the masking order and plays
the role of a security parameter.

In connection with [13], to design a higher-order masking scheme for any
n-bit S-Box Φ, we need to express it as a sequence of field multiplications
and additions over GF(2n). This representation is based on four kinds
of operations over GF(2n): additions, scalar multiplications, squares, and
nonlinear multiplications. Masking is efficient for the three first kinds, the
latter operations are linear (resp. affine) over Vn, and in this case the
masking overhead will solely correspond to d times the original operation
complexity. In the case of nonlinear multiplications, the masking scheme
is more expensive: it costs (d + 1)2 field multiplications, 2d(d + 1) XORs
and the generation of d(d + 1)/2 random n-bit values. Masking an n-bit
S-Box Φ processing can hence be done by masking every affine function
and every nonlinear multiplication independently. We refers to [13] for a
detailed explanation of how this can be done for each category. As defined
in [13], the masking complexity of any n-bit S-Box Φ, denoted byMC(Φ),
is the minimal number of nonlinear multiplications required to evaluate
its polynomial representation over GF(2n). Denoting by Mn

k as the class
of exponents α such that Xα has a masking complexity equal to k we
summarizes in Table 3 the results (obtained in [13]) for the cyclotomic
classes Cα = {α · 2j mod (15) |j = 0, 1, 2, 3.} in M4

k.

k Cyclotomic classes in M4
k

0 C0 = {0}, C1 = {1, 2, 4, 8}
1 C3 = {3, 6, 12, 9}, C5 = {5, 10}
2 C7 = {7, 11, 13, 14}

Table 3: Cyclotomic classes for n = 4 w.r.t. the masking complexity k.

S-Boxes should have a simple expression as a polynomial in order to
be efficiently masked (see, [46, 21]). Keeping our design criteria described
in Section 3 and choosing in the suggested constructions (in the first two)
h = I we obtain the following two candidates which are not expressed
directly as a polynomial of the form (7), but as the concatenation two
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bivariate functions over GF(24):

1. F3(l‖r) =
((
l ⊗ ψ1(r)

)14∥∥∥(r14 ⊗ ψ2((l ⊗ ψ1(r))
14
))
⊕ 6,

2. G3(l‖r) =
((
l ⊗ ψ(l ⊗ r)

)14∥∥∥(r14 ⊗ ψ(l ⊗ r)
))
⊕ 252,

where the 4-bit non-bijective functions ψ1, ψ2 and ψ (which have no pre-
image for 0) having the following polynomial representations ψ1(X) =
1+11X+6X2+3X3+12X4+12X6+6X8+X9+X12, ψ2(X) = 14+X+14X15

and ψ(X) = 4 + X + 13X2 + 11X3 + X14 were randomly generated. It
can be easily checked that ψ1, ψ2 and ψ can be computed with 1,3 and
2 field multiplications respectively. We summarizes in Table 4, the values
obtained forMC(F3) andMC(G3) and the look-up tables of these S-Boxes
and its cryptographic parameters are listed in the appendix section.

# nonl. multiplications # additions # squarings # random 4-bit values

Unmasked F3 10 8 8 0
Unmasked G3 9 3 4 0

dth-order masked F3 10(d+ 1)2 (20d+ 8)(d+ 1) 8(d+1) 5d(d+1)
dth-order masked G3 9(d+ 1)2 (18d+ 3)(d+ 1) 4(d+1) 9

2d(d+ 1)

Table 4: Number of operations

Taking into account that the number of field of multiplications for any
4-bit non-bijective function and any 4-bit permutation is lower bounded by
0 and upper bounded by 3,4 respectively (see, [13]), we obtain the following
bounds for 8-bit S-Boxes produced by construction of F and G:

4 ≤ # nonl. mult. of F ≤ 15, 5 ≤ # nonl. mult. of G ≤ 12. (15)

As we can see from (15), 8-bit S-Boxes with only 4 and 5 nonlinear mul-
tiplications over GF(24) can be constructed using the schemes of F and G
respectively, but our experiments have shown that these permutations are
not almost optimal with respect to the chosen criteria.

Finally, in Table 5 we compare our results with some candidates having
a given level of masking. As we can see our S-Boxes exhibits better values
of fields multiplications than S-Boxes of Clefia, Iceberg and Khazad re-
spectively, having at the same time stronger cryptographic properties but
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S-Box class # nonl. multiplications

AES’s S-Box [21] 4 (GF(28))
AES’s S-Box [33] 5 (GF(24))
Clefia S-Box [15] 10 (GF(28))

Iceberg S-Box [21] 18 (GF(24))
Khazad S-Box [21] 18 (GF(24))
Picaro S-Box [46] 4 (GF(24))
Zorro S-Box [21] 4 (GF(24))
F3 S-Box [this work] 10 (GF(24))
G3 S-Box [this work] 9 (GF(24))

Table 5: Comparison of 8-bit S-Boxes w.r.t. # nonl. multiplications.

at the cost of a worse number of nonlinear multiplications compared with
the AES [33], Picaro [46] and Zorro S-Boxes [21].

7 Conclusion

In this work we have presented some new schemes based on the well-known
Feistel and Lai-Massey structures for constructing S-Boxes of dimension
n = 2k, k ≥ 2. The main cores of our constructions are: the inversion
in GF(2k), the k-bit non-bijective functions (which have no pre-image for
0) and the k-bit permutations. Combining these components with the
finite field multiplication, we provide new cryptographically strong 8-bit
S-Boxes having good values of transparency order, SNR(DPA), confusion
coefficient and acceptable masking complexity over GF(24) respectively.
There are several questions (theoretical results, hardware and bit-sliced
implementations, efficient methods of masking) about the constructions
suggested in this work which are left as future work.
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8 Appendix

8.1 Some S-Boxes generated by our constructions

S-Box F1 S-Box F2

NL(F1) = 100, δ(F1) = 8, deg(F1) = 7,AIgr(F1) = 3, r
(3)
F1

= 441, NL(F2) = 102, δ(F2) = 8, deg(F2) = 7,AIgr(F1) = 3, r
(3)
F1

= 441

TO(F1) = 7.780, SNR(DPA)(F1) = 5.873,CC(F1) = 0.402 TO(F2) = 7.758, SNR(DPA)(F2) = 6.384,CC(F2) = 0.331

f1 fa fd f9 f7 f8 f5 fe f2 f4 fc f0 f3 fb ff f6

a1 87 dc d6 15 dd e6 90 ee 8d 30 e4 ba 54 98 3e

41 e8 89 6f 6c 93 d4 c0 ef 5d c3 ea 6b 5a 9c ab

c1 08 18 06 2f b3 b2 36 1e 13 9e d9 d2 4d 3b 05

31 52 28 eb 6e 75 26 c8 2e 60 73 c5 64 aa 46 a4

e1 a8 24 27 04 ad d3 47 0a 43 76 bc b8 50 a9 49

71 80 0e d7 8c cc e7 96 1f 10 9f d5 e2 85 19 3a

21 86 8b e3 1a 9a e0 97 69 16 37 de 34 33 45 99

91 00 2c 0f 0c b5 2b 3f 66 a7 70 b9 79 23 4b 44

51 17 12 df be da bb 48 03 8a b7 7d db 4f 38 3c

61 0b 1b e5 14 bf d0 42 0d 40 3d 4a d8 35 32 a3

d1 a0 5c 2d 6a 7e 62 cb 2a 88 57 7c b0 a5 a2 55

b1 1c 58 6d 8e ce 67 82 ed 53 cf 78 e9 83 94 59

81 1d 02 20 09 c7 b6 72 7f a6 bd b4 74 4e ac 4c

01 56 84 63 22 9d 9b 39 65 5f cd c4 ec 8f c2 95

11 5b 07 c6 29 7a 68 77 25 af 92 ca 7b ae c9 5e

cf c6 c2 c8 c0 c3 c5 cc c1 ce c9 c4 ca cd c7 cb

ef f1 74 bd 56 7e 6d fd 88 64 fb 0b 43 46 4d 00

df 0a 1e 9b e1 47 84 8b 6b 40 4b 0d a7 9a a2 8e

3f 09 a9 4c 58 8d d3 a1 83 16 57 59 d9 b7 de 41

5f 3d d0 ea 97 87 fc f6 77 a5 e7 8c ab 82 ed 75

9f 5a 28 19 25 5e b4 67 b5 18 04 2c ee b6 85 e5

2f f3 11 54 e4 1c 53 5d 89 a3 f0 eb 13 3e 80 6c

0f 61 91 5b 24 79 63 51 95 60 d1 f5 3b 38 9d 20

1f 52 7c 49 0c dc f7 db d5 2b 4e ec e9 f8 08 e6

8f b3 a8 45 93 7d 2e ad d2 f2 96 f9 be 71 ae fe

7f b1 b8 6a 68 aa dd e8 33 15 9c 1d b9 31 d8 6e

6f 55 d4 2a 35 37 5c 73 3a 22 d6 86 23 8a bb 4a

bf 30 da 14 e3 42 34 e2 1a 44 1b 39 d7 f4 99 2d

4f a0 29 e0 05 ac fa 62 69 98 9e 26 36 a6 0e 06

af 70 ba 94 78 50 27 7b 17 90 10 03 48 92 b2 21

ff 65 01 bc 3c 32 81 66 7a 02 07 12 a4 72 b0 0b

S-Box G1 S-Box G2

NL(G1) = 104, δ(G1) = 8, deg(G1) = 7,AIgr(G1) = 3, r
(3)
G1

= 441, NL(G2) = 104, δ(G2) = 6, deg(G2) = 7,AIgr(G2) = 3, r
(3)
G2

= 441

TO(G1) = 7.786, SNR(DPA)(G1) = 7.400,CC(G1) = 0.23 TO(G2) = 7.80, SNR(DPA)(G2) = 8.38,CC(G2) = 0.165

d9 d3 dc df d2 db da d0 d5 de d8 dd d1 d7 d4 d6

19 6c 7f b5 a1 9f e5 5d ec 8c 51 1d ba 2f 9d 0f

b9 85 7a 52 53 9a ef f1 e2 13 91 f5 b1 63 25 35

99 fe ce 03 fc 73 42 e6 95 c6 83 05 45 12 56 b3

e9 8f 9e 55 5c fa ea 32 9c 62 ca ff c2 be a2 1e

09 74 a7 b4 ae f4 e4 3b 7e 0e 97 4b cb 26 20 30

f9 47 c3 0c f2 6e 02 94 2e c7 54 8e 22 44 ee bc

39 86 66 01 58 71 21 7b 98 84 ab c4 48 68 a0 36

59 f7 93 5f f3 4f 4c 7c 92 65 ac cf c5 1c b7 e7

69 72 82 b2 aa 6b 1f ed 3d 0a 5a 11 bf 4a eb 5b

29 76 77 50 87 f6 4d 38 e0 80 ad c0 0d 27 a8 34

49 43 a6 a3 3e c8 16 5e 33 07 96 f8 b6 24 28 04

c9 4e cc 2c 37 90 3c 57 23 06 f0 17 67 46 e3 00

89 41 a5 2b 75 6d 15 e1 31 c1 88 1a 6a e8 bb b8

a9 14 9b 3a fb 7d 0b 78 2a 64 8d 8a 40 60 a4 1b

79 fd cd 2d 3f 61 08 70 af b0 8b 81 6f 10 bd 18

f1 f6 fb fd f4 f5 f7 f0 fa ff f3 f9 f2 fe f8 fc

91 5d 19 55 52 dd b4 b9 00 65 6a a0 d4 78 67 1a

c1 82 a7 db 13 24 eb 2d a9 aa d2 ea 43 29 84 b0

d1 9d 2e 06 0e 4f 8f 8d c2 a2 69 8b 2a 94 96 4a

71 4d 85 66 42 e7 35 5b e6 57 0a 0b 64 44 d3 02

01 a8 30 70 5f 7f 8a c4 3c e4 de d8 36 a3 d6 53

e1 0c 1c 5e 77 22 04 cf 1f ca 5a 3e 56 47 34 cb

81 4c c0 ce d5 b6 63 49 ab c5 6e 68 dc 33 39 26

b1 59 37 99 6f 14 2b e5 2f 3a a6 6d 16 ad 17 3b

31 e3 87 28 05 58 83 ed 89 cc b7 ba 7a 0d 75 e2

11 93 ae 54 98 ec 9f ef b3 40 7b be e0 6b a5 45

21 da 5c 4e 48 bc c8 bf 86 50 c6 4b 1d 80 9a bb

61 88 bd 1b 8e a4 af 9b ac 18 7e 07 9c 74 76 3d

41 9e d0 15 12 7d 6c 72 23 27 8c cd 10 d9 d7 c3

51 73 e9 25 46 2c e8 92 7c 38 32 df 20 79 0f 95

a1 62 3f 60 b8 97 03 1e 09 b5 c7 08 ee 90 c9 b2
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S-Box F3 S-Box G3

NL(F3) = 100, δ(F3) = 8, deg(F3) = 7,AIgr(F3) = 3, r
(3)
F3

= 441, NL(G3) = 100, δ(G3) = 8, deg(G3) = 7,AIgr(G3) = 3, r
(3)
G2

= 441

TO(F3) = 7.773, SNR(DPA)(F3) = 6.509,CC(F3) = 0.316 TO(G3) = 7.753, SNR(DPA)(G3) = 6.629,CC(G2) = 0.302

1d 1f 1c 12 14 18 13 11 10 19 16 17 1a 15 1b 1e

5d 3f 3c 2c 5c ee 90 31 02 0f ce 70 af cc 64 cf

3d 0c 04 94 34 f5 52 0b 83 8c e5 22 dc e4 b0 ec

cd e2 e3 03 c3 4c 87 e9 f8 f2 bc 37 92 b3 da b2

0d 84 80 50 00 69 33 8e ca c4 f9 93 74 f0 42 f4

bd 48 46 f6 b6 23 6b 40 ae a8 73 eb 88 76 51 78

ed f3 fa 8a ea a4 c8 ff 66 63 44 08 53 4a 77 43

ad d1 db bb ab 57 45 d3 79 71 97 65 e1 9b 0e 91

8d c0 c2 32 82 bf 0a c5 e7 e0 6f 5a 20 62 a3 60

9d 59 5f 7f 9f cb 24 56 30 39 8b d4 49 8f fc 89

4d a6 a1 61 41 9a be a2 d5 d6 2a fe c6 21 3b 26

6d b7 b8 e8 68 72 f1 b4 4b 47 d2 c1 07 d8 96 d7

fd 6a 67 c7 f7 d0 e6 6c b1 ba a0 86 3a a7 28 aa

2d 95 99 d9 29 81 7c 98 54 55 01 ac b5 09 ef 05

dd 7b 7e 4e de 38 a9 7a 2f 2b 58 b9 fb 5e 85 5b

7d 2e 25 a5 75 06 df 27 9c 9e 36 4f 6e 35 c9 3e

fc f8 fe f1 fd f6 f3 f7 f5 f4 f9 fb f2 ff f0 fa

2c 6e d1 8e 2d e7 a8 8b 61 68 1b 02 6b 4b 07 42

0c e5 0e 44 25 82 22 19 58 28 52 69 13 24 33 32

5c 3a c0 12 85 7d 45 80 ad 88 75 a2 35 5f 8a 08

1c 18 0d 03 a4 a3 81 91 3f 6d 86 53 26 04 93 0f

9c 4d 74 6f b4 a0 64 30 cd cf 99 36 3b 34 b6 eb
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