
New Methods for Indistinguishability Obfuscation:

Bootstrapping and Instantiation

Shweta Agrawal∗

Abstract

Constructing indistinguishability obfuscation (iO) [BGI+01] is a central open question in
cryptography. We provide new methods to make progress towards this goal. Our contributions
may be summarized as follows:

1. Bootstrapping. In a recent work, Lin and Tessaro [LT17] (LT) show that iO may
be constructed using i) Functional Encryption (FE) for polynomials of degree L, ii)
Pseudorandom Generators (PRG) with blockwise locality L and polynomial expansion,
and iii) Learning With Errors (LWE). Since there exist constructions of FE for quadratic
polynomials from standard assumptions on bilinear maps [Lin17, BCFG17], the ideal
scenario would be to set L = 2, yielding iO from widely believed assumptions.

Unfortunately, it was shown soon after [LV17, BBKK17] that PRG with block locality 2
and the expansion factor required by the LT construction, concretely Ω(n · 2b(3+ε)), where
n is the input length and b is the block length, do not exist. In the worst case, these lower
bounds rule out 2-block local PRG with stretch Ω(n · 2b(2+ε)). While [LV17, BBKK17]
provided strong negative evidence for constructing iO based on bilinear maps, they could
not rule out the possibility completely; a tantalizing gap has remained. Given the current
state of lower bounds, the existence of 2 block local PRG with expansion factor Ω(n ·2b(1+ε))
remains open, although this stretch does not suffice for the LT bootstrapping, and is hence
unclear to be relevant for iO.

In this work, we improve the state of affairs as follows.

(a) Weakening requirements on Boolean PRGs: In this work, we show that the narrow
window of expansion factors left open by lower bounds do suffice for iO. We show a
new method to construct FE for NC1 from i) FE for degree L polynomials, ii) PRGs
of block locality L and expansion factor Ω̃(n · 2b(1+ε)), and iii) LWE (or RLWE). Our
method of bootstrapping is completely different from all known methods and does not
go via randomizing polynomials.

This re-opens the possibility of realizing iO from 2 block local PRG, SXDH on Bilinear
maps and LWE.

(b) Broadening class of sufficient randomness generators: Our bootstrapping theorem
may be instantiated with a broader class of pseudorandom generators than hitherto
considered for iO, and may circumvent lower bounds known for the arithmetic degree

∗IIT Madras, India. Email: shweta.a@cse.iitm.ac.in.

1

of iO-sufficient PRGs [LV17, BBKK17]; in particular, these may admit instantiations
with arithmetic degree 2, yielding iO with the additional assumptions of SXDH on
Bilinear maps and LWE. In more detail, we may use the following two classes of PRG:

i. Non-Boolean PRGs: We may use pseudorandom generators whose inputs and
outputs need not be Boolean but may be integers restricted to a small (polynomial)
range. Additionally, the outputs are not required to be pseudorandom but must
only satisfy a milder indistinguishability property1. We tentatively propose
initializing these PRGs using the multivariate quadratic assumption MQ which
has been widely studied in the literature [MI88, Wol05, DY09] and against the
general case of which, no efficient attacks are known. We note that our notion
of non Boolean PRGs is qualitatively equivalent to the notion of ∆ RGs defined
in the concurrent work of Ananth, Jain, Khurana and Sahai [AJKS18] except
that ∆ RG are weaker, in that they allow the adversary to win the game with
1/ poly probability whereas we require that the adversary only wins with standard
negligible probability. By relying on the security amplification theorem of [AJKS18]
in a black box way, our construction can also make do with the weaker notion of
security considered by [AJKS18].

ii. Correlated Noise Generators: We introduce an even weaker class of pseudorandom
generators, which we call correlated noise generators (CNG) which may not
only be non-Boolean but are required to satisfy an even milder (seeming)
indistinguishability property.

(c) Assumptions and Efficiency. Our bootstrapping theorems can be based on the hardness
of the Learning With Errors problem or its ring variant (LWE/RLWE) and can compile
FE for degree L polynomials directly to FE for NC1. Previous work compiles FE for
degree L polynomials to FE for NC0 to FE for NC1 to iO [LV16, Lin17, AS17, GGH+13c].
Our method for bootstrapping to NC1 does not go via randomized encodings as in
previous works, which makes it simpler and more efficient than in previous works.

2. Instantiating Primitives. In this work, we provide the first direct candidate of FE
for constant degree polynomials from new assumptions on lattices. Our construction is
new and does not go via multilinear maps or graded encoding schemes as all previous
constructions. In more detail, let F be the class of circuits with depth d and output
length `. Then, for any f ∈ F , our scheme achieves Time(KeyGen) = O

(
poly(κ, |f |)

)
,

and Time(Enc) = O(|x| · 2d · poly(κ)) where κ is the security parameter. This suffices to
instantiate the bootstrapping step above. Our construction is based on the ring learning
with errors assumption (RLWE) as well as new untested assumptions on NTRU rings.

We provide a detailed security analysis and discuss why previously known attacks in
the context of multilinear maps, especially zeroizing attacks and annihilation attacks,
do not appear to apply to our setting. We caution that the assumptions underlying
our construction must be subject to rigorous cryptanalysis before any confidence can be
gained in their security. However, their significant departure from known multilinear map
based constructions make them, we feel, a potentially fruitful new direction to explore.
Additionally, being based entirely on lattices, we believe that security against classical
attacks will likely imply security against quantum attacks. Note that this feature is not
enjoyed by instantiations that make any use of bilinear maps even if secure instances of

1For the knowledgeable reader, we do not require the polynomials computing our PRGs to be sparse and hence the
general attack of [BBKK17] does not rule out existence of degree 2 instantiations to the best of our knowledge.

2

weak PRGs, as defined by the present work, the follow-up by Lin and Matt [LM18] and
the independent work by Ananth, Jain, Khurana and Sahai [AJKS18] are found.

Contents

1 Introduction 5

1.1 Bootstrapping, the Ideal. 6

1.2 Instantiation: the Ideal. 8

1.3 Our Techniques: Bootstrapping . 9

1.4 Related Work: Bootstrapping . 14

1.5 Our Techniques: Direct Construction of NLinFE . 17

1.6 Related Work: Instantiation . 21

1.7 Putting it together. 22

1.8 Organization of the paper . 22

2 Preliminaries 23

2.1 Pseudorandom Generators . 23

2.2 Indistinguishability Obfuscation . 24

2.3 Functional Encryption . 24

2.4 Function Hiding Symmetric Key Encryption . 26

2.5 Lattice Preliminaries . 26

2.6 Hardness Assumptions. 27

2.7 Sampling and Trapdoors . 28

3 Noisy Linear Functional Encryption 28

4 Warm-up: Quadratic Functional Encryption 30

4.1 Construction . 31

4.2 Correctness. 32

4.3 Indistinguishability Based Security . 33

4.3.1 Instantiating The Ingredients. 37

5 Broader Classes of Randomness Generators 38

5.1 Correlated Noise Generators . 38

5.2 Non Boolean Pseudorandom Generators . 39

6 Functional Encryption for NC1 40

6.1 Construction . 41

6.2 Ciphertext Size . 43

6.3 Proof of Security. 43

6.4 Instantiating CNG and NLinFE . 45

7 Constructing Noisy Linear Functional Encryption 46

7.1 PRG with non-Boolean output. 47

3

7.2 Public Key Noisy Linear Functional Encryption . 48

7.2.1 Shrinking Degree of Functionality. 49

7.2.2 Proof of Security. 50

7.2.3 Putting it all together. 52

7.2.4 Interfacing with known constructions of quadratic functional encryption . . . 52

7.3 Symmetric Key Noisy Linear Functional Encryption 53

7.3.1 Proof of Security . 54

7.3.2 Putting it all together. 57

8 Direct Construction: Noisy Linear Functional Encryption 57

8.1 Security of Succinct Symmetric Key NLinFE . 63

8.1.1 Security against Known Attacks: A Discussion 64

8.2 Propagating Computation on Noise . 66

9 Parameters 67

10 Conclusions 68

A Quadratic Functional Encryption from CNG and NLinFE 78

A.1 Indistinguishability Based Security . 80

B Direct Construction of NLinFE: The General Case 82

C Towards a Proof of Security for the construction in Section 8 87

D Non-Succinct NLinFE from LinFE 92

D.1 Construction. 92

D.2 Security. 93

E Public Key and Ciphertext Evaluation Algorithms 94

E.1 Ciphertext and Public Key Structure. 99

E.2 Error Analysis. 104

4

1 Introduction

Indistinguishability Obfuscation. Program obfuscation aims to make a program “unintelligible”
while preserving its functionality. Indistinguishability obfuscation [BGI+01] (iO) is a flavour of
obfuscation, which converts a circuit C to an obfuscated circuit O(C) such that any two circuits
that have the same size and compute the same function are indistinguishable to a computationally
bounded adversary.

While it is non-obvious at first glance what this notion is useful for, recent work has demonstrated
the tremendous power of iO. iO can be used to construct almost any cryptographic object that
one may desire – ranging (non-exhaustively) from classical primitives such as one way functions
[KMN+14], trapdoor permutations [BPW16], public key encryption [SW14] to deinable encryption
[SW14], fully homomorphic encryption [CLTV15], functional encryption [GGH+13c], succinct
garbling schemes [CHJV15, BGL+15, KLW15, LPST16] and many more.

The breakthrough work of Garg et al. [GGH+13c] presented the first candidate construction of iO
from the beautiful machinery of graded encoding schemes [GGH13a]. This work heralded substantial
research effort towards understanding iO: from cryptanalysis to new constructions to understanding
and weakening underlying assumptions to applications. On the cryptanalysis front, unfortunately, all
known candidate graded encoding schemes [GGH13a, CLT13, GGH15] as well as several candidates
of iO have been broken [CHL+15, CGH+15, HJ15, CJL, CFL+, MSZ16, CLLT16, ADGM16]. Given
the power of iO, a central question in cryptography is to construct iO from better understood
hardness assumptions.

Functional Encryption. Functional encryption (FE) [SW05, SW] is a generalization of public key
encryption in which secret keys correspond to programs rather than users. In more detail, a secret
key embeds inside it a circuit, say f , so that given a secret key SKf and ciphertext CTx encrypting a
message x, the user may run the decryption procedure to learn the value f(x). Security of the system
guarantees that nothing beyond f(x) can be learned from CTx and SKf . Recent years have witnessed
significant progress towards constructing functional encryption for advanced functionalities, even
from standard assumptions [BF01, Coc01, BW06, BW07, GPV08, CHKP10, ABB10, GPSW06,
BSW07, KSW08, LOS+10, AFV11, Wat12, GVW13, GGH+13d, GGH+13c, GVW15]. However,
most constructions supporting general functionalities severely restrict the attacker in the security
game: she must request only a bounded number of keys [GVW12, AR17, GKP+13], or may request
unbounded number of keys but from a restricted space2 [GVW15, Agr17]. Schemes that may be
proven secure against a general adversary are restricted to compute linear or quadratic functions
[ABCP15, ALS16, Lin17, BCFG17].

Constructing iO from FE. Recent work [AJ15, BV15, AJS15] provided an approach for
constructing iO via FE. While we do not have any candidate constructions for FE that satisfy the
security and efficiency requirements for constructing iO (except constructions that themselves rely
on graded encoding schemes or iO [GGH+13c, GGHZ14]), FE is a primitive that is closer to what
cryptographers know to construct and brings iO nearer the realm of reachable cryptography.

An elegant sequence of works [Lin16, LV16, Lin17, AS17, LT17] has attempted to shrink the
functionality of FE that suffices for iO, and construct FE for this minimal functionality from graded

2Referred to in the literature as “predicate encryption”

5

encoding schemes or multilinear maps. Concretely, the question is: what is the smallest L such that
FE supporting polynomials of degree L suffices for constructing iO? At a high level, these works
follow a two step approach described below:

1. Bootstrapping FE to iO. The so called “bootstrapping” theorems have shown that general
purpose iO can be built from one of the following: i) sub-exponentially secure FE for NC1

[AJ15, BV15, AJS15, BNPW16], or ii) sub-exponentially secure FE for NC0 and PRG in NC0

[LV16] iii) PRGs with locality L and FE for computing degree L polynomials [Lin17] or iv)
PRGs with blockwise locality L and FE for computing degree L polynomials [LT17].

At a high level, all bootstrapping theorems make use of randomized encodings [IK00, AIK06]
to reduce computation of a polynomial sized circuit to computation of low degree polynomials.

2. Instantiating Primitives. Construct FE supporting degree L polynomials based on graded
encodings or multilinear maps [LV16, Lin17].

1.1 Bootstrapping, the Ideal.

Since we have candidates of FE for quadratic polynomials from standard assumptions on bilinear
maps [Lin17, BCFG17], a dream along this line of work would be to reduce the degree required to
be supported by FE all the way down to 2, yielding iO, from bilinear maps and other widely believed
assumptions (like LWE and PRG with constant locality). The recent work of Lin and Tessaro [LT17]
(LT) came closest to achieving this, by leveraging a new notion of PRG they termed blockwise local
PRG. A PRG has blockwise locality L and block-size b, if when viewing the input seed as a matrix of
b rows and n columns, every output bit depends on input bits in at most L columns. As mentioned
above, they showed that PRGs with blockwise locality L and certain polynomial stretch, along with
FE for computing degree L polynomials and LWE suffice for iO.

Unfortunately, it was shown soon after [LV17, BBKK17] that PRG with block locality 2 and
the stretch required by the LT construction, concretely Ω(n · 2b(3+ε)), do not exist. In the worst
case, these lower bounds rule out 2-block local PRG with stretch Ω(n · 2b(2+ε)). On the other hand,
these works suggest that 3 block local PRG are likely to exist, thus shrinking the iO-sufficient degree
requirement on FE to 3.

While [LV17, BBKK17] provided strong negative evidence for constructing iO based on 2 block
local PRG and hence bilinear maps, they could not rule out the possibility completely; a tantalizing
gap has remained. Roughly speaking, the construction of candidate PRG (first suggested by Goldreich
[Gol00]) must choose a hyper-graph with variables on vertices, then choose predicates that are placed
on each hyper-edge of the graph and output the values of the edge-predicates on the vertex-variables.
The lower bounds provided by [LV17, BBKK17] vary depending on the choices made in the above
construction. The following table by [LV17] summarises our current understanding on the existence
of 2 block local PRG:

6

Stretch Worst case
versus Random

Predicate

Worst case
versus Random

Graph

Different versus
Same Predicate
per output bit

Reference

Ω̃(n · 2b(1+ε)) Random Random Different [BBKK17]

Ω̃(n · 2b(2+ε)) Worst Case Worst Case Different [BBKK17]

Ω̃(n · 2b(1+ε)) Worst Case Worst Case Same [LV17]

Ω̃(n · 2b(1+ε)) Worst Case Worst Case Different Open

As we see in the above table, the existence of 2 block local PRG with carefully chosen graph and
predicates with stretch Ω̃(n · 2b(1+ε)) is open. However, even in the case that these exist, it is not
clear whether its even useful, since the Lin-Tessaro compiler requires larger stretch Ω(n · 2b(3+ε)),
which is ruled out by row 2 above. In the current version of their paper, [LT17] remark that “Strictly
speaking, our results leave a narrow window of expansion factors open where block-wise PRGs could
exist, but we are not aware whether our approach could be modified to use such low-stretch PRGs.”

Bootstrapping: Our Results. In this work, we show that the narrow window of expansion
factors left open by lower bounds do suffice for iO. Moreover, we define a larger class of
pseudorandomness generators than those considered so far, which may admit lower degree
instantiations. We then show that these generators with the same expansion suffice for iO. We
discuss each of these contributions below.

Weakening requirements on PRGs: We show a new method to construct FE for NC1 from FE
for degree L polynomials, sub-exponentially secure PRGs of block locality L and LWE (or RLWE).
Since FE for NC1 implies iO for P/Poly [AJ15, BV15, BNPW16], this suffices for bootstrapping all
the way to iO for P/Poly. Our transformation requires the PRG to only have expansion n · 2b(1+ε)

which is not ruled out as discussed above. This re-opens the possibility of realizing 2 block local
PRG with our desired expansion factor (see below for a detailed discussion), which would imply iO
from 2 block local PRG, SXDH on Bilinear maps and LWE. A summary of the state of art in PRG
based bootstrapping is provided in Figure 1.1.

Broadening class of sufficient PRGs: Our bootstrapping theorem may be instantiated with a
broader class of pseudorandom generators than hitherto considered for iO, and may circumvent
lower bounds known for the arithmetic degree of iO-sufficient PRGs [LV17, BBKK17]; in particular,
these may admit instantiations with arithmetic degree 2, yielding iO along with the additional
assumptions of SXDH on Bilinear maps and LWE. In more detail, we may use the following two
classes of PRG:

1. Non-Boolean PRGs: We may use pseudorandom generators whose inputs and outputs need
not be Boolean but may be integers restricted to a small (polynomial) range. Additionally, the
outputs are not required to be pseudorandom but must only satisfy a milder indistinguishability
property3. We tentatively propose initializing these PRGs using the multivariate quadratic
assumption MQ which has been widely studied in the literature [MI88, Wol05, DY09] and
against the general case of which, no efficient attacks are known.

3For the knowledgeable reader, we do not require the polynomials computing our PRGs to be sparse and hence the
general attack of [BBKK17] does not rule out existence of degree 2 instantiations to the best of our knowledge.

7

2. Correlated Noise Generators: We introduce an even weaker class of pseudorandom generators,
which we call correlated noise generators (CNG) which may not only be non-Boolean but are
required to satisfy an even milder (seeming) indistinguishability property.

Assumptions and Efficiency. Our bootstrapping theorems can be based on the hardness of
LWE or its ring variant RLWE and compiles FE for degree L polynomials directly to FE for NC1.
Our method for bootstrapping to NC1 does not go via randomized encodings as in previous works.
Saving the transformation to randomized encodings makes bootstrapping to NC1 more efficient than
in previous works. For instance, [LT17] require Q PRG seeds, where Q is the (polynomial) length of
random tapes needed by the randomized encodings. On the other hand we only need 2 PRG seeds,
since we avoid using randomized encodings, yielding a ciphertext that is shorter by a factor of Q, as
well as (significantly) simpler pre-processing.

L block-local PRG FE for deg L poly

FE for NC0

FE for NC1

iO for P/Poly

Uses randomized

polys [AIK11, LV16]

[LT17, Lin17, AS17]

[AJ15, BV15, BNPW16]

Need PRG with

expansion Ω(n 2b(3+ε)),

LV17, BBKK17 rule out

2 block local PRG with

expansion Ω(n 2b(2+ε)).

Instantiable for L=2

assuming SXDH on

bilinear maps

[Lin17,BCFG17]

L block-local PRG FE for deg L poly

FE for NC1

iO for P/Poly

This. New proof

technique not using

randomizing polys.

[AJ15, BV15, BNPW16]

Need PRG with

expansion Ω(n 2b(1+ε)),

NOT ruled out for L=2

by LV17, BBKK17 in

worst case

Instantiable for L=2

assuming SXDH on

bilinear maps

[Lin17, BCFG17]

Lin-Tessaro, Crypto 17 This Work

Figure 1.1: State of the Art in Bootstrapping FE to iO. In the present work, we may bootstrap
directly to FE for NC1 without going through NC0.

1.2 Instantiation: the Ideal.
To instantiate iO via FE for constant degree polynomials, [LT17] rely on the FE for degree L
polynomials constructed by Lin [Lin17], which relies on SXDH on noiseless algebraic multilinear
maps of degree L, for which no candidates of degree greater than 2 are known to exist. As discussed
by [Lin17], instantiating her construction with noisy multilinear maps causes the proof to fail, in
addition to the SXDH assumption itself being false on existing noisy multilinear map candidates.
We refer the reader to [LT17, Lin17] for a detailed discussion.

Evidently, one ideal instantiation for iO would be to construct noiseless multilinear maps of degree

8

at least 34, on which the SXDH assumption is believed to hold. At the moment, we have no evidence
that such objects exist. Another ideal instantiation would be to provide a direct construction of FE
for constant degree polynomials from well understood hardness assumptions, satisfying the requisite
compactness properties for implication to iO. Constructing FE from well-understood hardness
assumptions has received significant attention in recent years, and for the moment we do not have
any constructions that suffice for iO excepting those that themselves rely on multilinear maps or iO.

Thus, at present, all concrete instantiations of the FE to iO compiler must go via noisy multilinear
maps on which SXDH fails.

Instantiation: Our Results. In our work, we take a different approach to the question of
instantiation. We propose to construct FE directly, without going through multilinear maps or
graded encoding schemes, and use this FE to instantiate the transformation to iO. We believe this
new approach has the following advantages:

1. May be Simpler: Construction of iO-sufficient FE might not need the full power of asymmetric
multilinear maps, since FE is not known to imply asymmetric multilinear maps equipped with
SXDH to the best of our knowledge 5. Hence, constructing FE directly may be simpler.

2. Yield new and possibly more robust assumptions: Attempts to construct FE directly
for low degree polynomials yield new hardness assumptions which are likely different from
current assumptions on noisy multilinear maps. This direction may yield more resilient
candidates than those that go via multilinear maps.

In this work, we provide the first direct candidate of symmetric key FE for constant degree
polynomials from new assumptions on lattices. Let F be the class of circuits with depth d and
output length `. Then, for any f ∈ F , our scheme achieves Time(KeyGen) = O

(
poly(κ, |f |)

)
, and

Time(Enc) = O(|x| · 2d · poly(κ)) where κ is the security parameter. This suffices to instantiate the
bootstrapping step above. Our construction is based on the ring learning with errors assumption
(RLWE) as well as new untested assumptions on NTRU rings. We provide a detailed security analysis
with necessary and sufficient conditions for security. In particular, we provide a proof based on
a new assumption in a simplified variant of our scheme; we view this as a first step to provable
security. Please see Section 8 for details. The assumptions underlying our construction must be
subject to rigorous cryptanalysis before any confidence can be gained in their security. However,
even if our particular attempt proves insecure, we believe there is significant value in taking this
route and hope it inspires other candidates.

1.3 Our Techniques: Bootstrapping

In this section, we assume familiarity of the reader with RLWE and Regev’s public key encryption
scheme [Reg09, GPV08]. Please see Section 2 for a refresher. Although our bootstrapping can also
be based on standard LWE, we describe it using RLWE here since it is simpler.

4Ideally degree 5, so as to remove the reliance on even blockwise local PRG and rely directly on 5 local PRG which
are better understood.

5A line of work can traverse the route of FE to iO to PiO (probabilistic iO) to symmetric multilinear maps (see
[FHHL18] and references therein) using multiple complex subexponential reductions, still not yielding asymmetric
multilinear maps with SXDH.

9

Ciphertext and Public Key Evaluation by [AR17]. The starting point of our work is the
bounded collusion FE constructed recently by Agrawal and Rosen [AR17]. In this work, the authors
design a new encryption algorithm and a new ciphertext evaluation algorithm EvalCT so that the
decryptor, given the encoding of some input x and some (arithmetic) circuit f ∈ NC1 can execute
EvalCT to compute a functional ciphertext that encodes f(x), obliviously of x.

In more detail, if CT(f(x)) = EvalCT(∪
i∈[d]
Ci, f) where d is the depth of the circuit and ∪

i∈[d]
Ci

is a set of encodings provided by the encryptor, then the functional ciphertext has the following
structure:

CT(f(x)) = 〈Linf , Cd〉+ Polyf (C1, . . . , Cd−1)

for some f -dependent linear function Linf and polynomial Polyf . Here, Linf and Polyf may be
computed by a corresponding public key evaluation algorithm, denoted by EvalPK, given only the
public key and function f . Moreover, upon decrypting CT(f(x)), we get

f(x) + noisef(x) = 〈Linf , Md〉+ Polyf (C1, . . . , Cd−1) (1.1)

where Md is the message vector encoded in level d encodings Cd. Here, f(x) ∈ Rp0 for some ring
Rp0 and noisef(x) is a noise term which may be modded out using standard techniques to recover
f(x) as desired.

Given the above algorithms, an approach to compute f(x) is to leverage functional encryption
for linear functions [ABCP15, ALS16], denoted by LinFE. Recall the functionality of LinFE: the
encryptor provides a ciphertext CTz for some vector z ∈ Rn, the key generator provides a key SKv

for some vector v ∈ Rn and the decryptor learns 〈z,v〉 ∈ R. Thus, we may use LinFE to enable the
decryptor to compute 〈Linf , Md〉, let the decryptor compute Polyf (C1, . . . , Cd−1) herself to recover
f(x) + noisef(x).

Unfortunately, this approach is insecure as is, as discussed in [AR17]. For bounded collusion
FE, the authors achieve security by having the encryptor encode a fresh, large noise term noisefld

for each requested key f which “floods” noisef(x). This noise is forcibly added to the decryption
equation so that the decryptor recovers f(x) + noisef(x) + noisefld, which by design is statistically
indistinguishable from f(x) + noisefld. [AR17] show that with this modification the scheme can be
shown to achieve strong simulation style security, by relying just on security of LinFE. However,
encoding a fresh noise term per key causes the ciphertext size to grow at least linearly with the
number of function keys requested, or in the case of single key FE, with the output length of the
function. Note that to suffice for iO, we are required to construct this scheme with ciphertext size
sublinear in the output length of the function, say ` [AJ15, BV15]. Thus, the ciphertext size of
[AR17] violates the efficiency required from an FE scheme to be sufficient for iO.

Noisy Linear Functional Encryption. In this work, we show that the approach of [AR17] can
be extended to construct a single key FE for NC1 with ciphertext size sublinear in the output length,
by replacing linear functional encryption LinFE with noisy linear functional encryption, denoted
by NLinFE. Noisy linear functional encryption is like like regular linear functional encryption
[ABCP15, ALS16], except that the function value is recovered only up to some bounded additive
error/noise, and indistinguishability holds even if the challenge messages evaluated on all the
function keys are only “approximately” and not exactly equal. The functionality of NLinFE is as
follows: given a ciphertext CTz which encodes vector z ∈ Rn and a secret key SKv which encodes

10

vector v ∈ Rn, the decryptor recovers 〈z, v〉+ noisez,v where noisez,v is specific to the message and
function being evaluated.

Let f ∈ NC1 and let the output of f be of size `. Let f1, . . . , f` be the functions that output
the ith bit of f for i ∈ [`]. At a high level, our FE for NC1 will enable the decryptor to compute
〈Linfi , Md〉+ noisefldi as in [AR17] but instead of having the encryptor encode ` noise terms during
encryption, we use NLinFE to add noise terms noisefldi into the decryption equation. In more detail,
the encryptor must provide encodings ∪

i∈[d−1]
Ci as well as an NLinFE encryption of the level d message

encodingsMd (please see Equation 1.1). The key generator provides an NLinFE key for Linf so that
the decryptor may compute Polyfi(C

1, . . . , Cd−1) + 〈Linfi , Md〉+ noisefldi as desired.

Noisy linear functional encryption provides the right abstraction (in our opinion) for the smallest
functionality that may be bootstrapped to FE for NC1 using our methods. NLinFE captures the
precise requirements on noise that is required for the security of the construction and integrates
seamlessly with our new proof technique. Moreover, NLinFE may be constructed in different ways
from different assumptions – we provide three constructions from various assumptions (more on
this below), and properties such as ciphertext size and collusion resistance achieved by NLinFE are
inherited by FE for NC1. Please see Sections 4 and Section 6 for details.

We remark that our construction crucially uses a powerful property of the ciphertext evaluation
algorithm of [AR17], namely that computing a linear function on secret values plus a noise term
suffices, along with additional public computation, to compute a function in NC1. This is because
the deep computation is performed on the public encodings as Polyf (C1, . . . , Cd−1) and constrained
decryption is only required for a much shallower function. In this work we show that by assuming
indistinguishability based security NLinFE, we may prove indistinguishability based security of FE
for NC1.

Constructing NLinFE. Next, we discuss three methods to construct NLinFE which imply FE for
NC1 from various assumptions. Together with the bootstrapping of NLinFE to FE for NC1 described
above, this suffices for applying the FE to iO compiler of [AJ15, BV15].

Our first method makes use of a compact FE scheme which is powerful enough to compute
PRG/blockwise local PRG [LT17]. Let PrgFE be a functional encryption scheme that supports
evaluation of a PRG with polynomial stretch. Then, we may construct NLinFE and hence FE for
NC1 by leveraging PrgFE to compute the the noise to be added by NLinFE as the output of a PRG.

In more detail, by the discussion above, we would like the decryptor to compute:

f(x) + noisef(x) + noisefld = 〈Linf , Md〉+ noisefld + Polyf (C1, . . . , Cd−1)

where noisef(x) +noisefld is statistically indistinguishable from noisefld. Say that the norm of noisef(x)

may be bounded above by value Bnse. Then, it suffices to sample a uniformly distributed noise term
noisefld of norm bounded by Bfld, where Bfld is superpolynomially larger than Bnse for the above
indistinguishability to hold. We will use PrgFE to compute noisefld.

In more detail, let G be a PRG with polynomial stretch which outputs ` uniform ring elements
of norm bounded by Bfld, and let Gi be the function that selects the ith output symbol of G, namely
Gi(seed) = G(seed)[i] where seed is the seed of the PRG. Then,

1. The encryptor may provide PrgFE encryptions of (Md, seed) along with encodings ∪
i∈[d−1]

Ci,

11

2. The key generator may provide a PrgFE secret key for polynomial Pi(z1, z2) = 〈Linfi , z1〉+
Gi(z2)

3. The decryptor may compute 〈Linfi , Md〉+Gi(seed) as well as Polyf (C1, . . . , Cd−1), to recover
f(x) + noisef(x) +Gi(seed) by Equation 1.1 as desired.

It is crucial to note that the degree of the polynomial Pi is equal to the degree required to compute
Gi, because Linfi is a linear function. Moreover, the degree is unchanged even if we make use of a
standard PRG with binary range. To see this, take a binary PRG that requires degree L to compute,
and apply the standard (linear) powers of two transformation to convert binary output to larger
alphabet. For a more in-depth discussion, please see Section 7.

Thus, an FE scheme that supports polynomials of degree L, where L is the degree required to
compute a PRG, suffices to construct NLinFE and hence FE for NC1. Moreover, we may pre-process
the seed of the PRG as in [LT17] to leverage “blockwise locality”; our construction allows the PRG
to have smaller expansion factor than that required by the Lin-Tessaro construction, as discussed
next.

Analyzing the Expansion Factor of the PRG. Above, the polynomial Pi we are required to
construct must compute a function that is degree 1 in the PRG output plus an additional linear
function of the encoded messages. By comparison, the underlying degree L FE in [LV16, Lin17, LT17]
must natively compute a polynomial which has degree 3 in output of a PRG. In more detail, the
FE of [Lin17, LT17] must compute a randomizing polynomial [AIK11], which contains terms of the
form rirjrk where ri, rj , rk are random elements, each computed using a PRG. Thus, if L is the
locality of the PRG, the total degree of the polynomial is 3L, which is reduced to L using a clever
precomputing trick developed by Lin [Lin17]. In contrast, our FE must compute a polynomial of the
form 〈Linf , Md〉+ PRG(seed) as discussed above, thus natively yielding a polynomial of degree L.

Further, Lin and Tessaro [LT17] construct a method to leverage the blockwise locality L of the
PRG, which is believed to be smaller than locality as discussed above. Recall that the PRG seed
is now a matrix of b rows and n columns, and each output bit depends on input bits in at most
L columns. Then, to begin, [LT17] suggest computing all possible monomials in any block, for all
blocks, resulting in O(n · 2b) total monomials. At this point, the output of a PRG can be computed
using a degree L polynomial. However, since the final polynomial has degree 3 in the PRG outputs,
LT further suggest precomputing all degree 3 products of the monomials constructed so far, leading
to a total of O(n · 23b) terms. To maintain ciphertext compactness then, the expansion of the PRG
must be at least Ω(n · 2b(3+ε)). We refer the reader to [BBKK17, Appendix B] for an excellent
overview of the LT construction, and to [LT17] for complete details.

Since the polynomial in our FE must compute has degree only 1 rather than 3 in PRG output,
we need not compute degree 3 products in O(n · 2b) monomials as required by [LT17], thus requiring
to encode a total number of O(n · 2b) monomials. Hence, to maintain ciphertext compactness
(which is necessary for implication to iO [AJ15, BV15]), the expansion of the PRG in our case must
be Ω(n · 2b(1+ε)). Thus, our transformation requires a lower expansion factor than that of [LT17].
Moreover, by sidestepping the need to compute randomized encodings, our bootstrapping becomes
simpler and more efficient than that of [LV16, Lin17, LT17]. Please see Section 7.2.1 for more
details.

Correlated Noise Generators. As discussed above, FE for implementing PRG suffices to
construct NLinFE and hence FE for NC1. However, examining carefully the requirements on

12

the noise that must be added to decryption by NLinFE, reveals that using a PRG to compute the
noise is wasteful; a weaker object appears to suffice. Specifically, we observe that the noise terms
noisefi(x) for i ∈ [`], which must be flooded are low entropy, correlated random variables, constructed
as polynomials in O(L) noise terms where L = | ∪

k∈[d]
Ck|. A PRG mimics ` i.i.d noise terms where

` > L, i.e. O(`) bits of entropy, whereas the random variables that must be flooded have only O(L)
bits of entropy.

Indeed, even to flood ` functions on L noise terms statistically, only L fresh noise terms are
needed. For instance, let us say that we are required to flood (fi(µ))i∈[`] for µ ∈ RL. Then, it

suffices to choose β ∈ RL such that β is superpolynomially larger than µ to conclude that

SD
(
β, β + µ

)
= negl(κ)

This implies that

SD
((
f1(β), . . . , f`(β)

)
,
(
f1(β + µ), . . . , f`(β + µ)

))
= negl(κ)

Considering that we must only generate O(L) bits of pseudoentropy, can we make do with something
weaker than a PRG?

To make this question precise, we define the notion of a correlated noise generator, denoted
by CNG. A CNG captures computational flooding of correlated noise, to mimic statistical flooding
described above. In more detail, we will use a CNG to generate flooding terms g1(β), . . . , g`(β) such
that to any computationally bounded adversary Adv, it holds that(

g1(β), . . . , g`(β)
) c
≈
(
(g1(β) + f1(µ), . . . g`(β) + f`(µ)

)
Note that if we denote by gi the function for computing the ith element of the PRG output, then

by choosing the range of PRG superpolynomially larger than |fi(µ)|, the above condition is satisfied.
Thus, a PRG implies a CNG. However, implication in the other direction does not hold, since CNG
only generates strictly fewer bits of pseudoentropy than a PRG.

Moreover, matters are even nicer in the case of CNG, because gi can be chosen after seeing fi,
and the distribution of µ is known at the time of choosing gi. So each gi can be different depending
on what it needs to “swallow”. Additionally, we may leverage the fact that a CNG posits that a
distribution must be indistinguishable from itself plus a fixed function, not indistinguishable from
uniform.

Our hope is that since a CNG appears weaker than a PRG, it may sidestep the lower bounds
known for the blockwise-locality of polynomial stretch PRGs, thereby providing a new route to iO
from bilinear maps. Suggesting candidates for CNG that have lower degree than PRG is outside
the scope of this work but we believe it is useful to identify the weakest object that suffices for
bootstrapping to iO. For the precise definition of CNG, please see Section 5.

Non Boolean PRG. A notion of randomness generators that interpolates CNG and Boolean PRG is
that of non-Boolean PRG, which allows the inputs and outputs to lie in a bounded (polynomial) sized
interval over the integers and must only satisfy the computational flooding property described above.
Taking a step back, we note that in prior work [Lin17, LT17, AS17], Boolean PRGs were required
in order to compute the binary randomness needed for constructing randomizing polynomials. In

13

our case, the PRG output need not be binary since we do not require these as input to randomized
encodings. Additionally, they must satisfy a much weaker property than indistinguishability to
uniform i.i.d random variables as discussed above. In more detail, say we can bound |fi(µ)| ≤ ε
for i ∈ [`]. Then we require the PRG output Gi(β) to computationally flood fi(µ) for i ∈ [`], i.e.
Gi(β) + fi(µ) must be computationally indistinguishable from Gi(β).

We note that the above notion of non Boolean PRGs is qualitatively equivalent to the notion of
∆RGs defined in the concurrent work of Ananth et al. [AJKS18] except that ∆RG are weaker, in
that they allow the adversary to win the game with 1/ poly probability whereas we require that the
adversary only wins with standard negligible probability. By relying on the security amplification
theorem of [AJKS18] in a black box way, our construction can also make do with the weaker notion
of security considered by [AJKS18].

We conjecture that degree 2 polynomials over Z may be used to compute Gi(β) via the
multivariate quadratic MQ assumption. At a high level, the MQ assumption states that given
` multivariate quadratic polynomials pi(x) in n variables x = (x1, . . . , xn), where ` > n, over a
finite field F, it is infeasible to recover x for appropriate values of `, n and choice of polynomials pi.
The MQ assumption has been studied extensively [MI88, BFP09, BFSS13, BFS03, Wol05, DY09,
YDH+15, WP05, TW10, AHKI+17] and has formed the basis of several cryptosystems, please see
[DY09] for a survey. MQ is known to be NP complete in the worst case, and the general method to
solve MQ involves computing Gröbner bases, which are notoriously hard to compute [Wol05]. We
remark that a significant effort in design of MQ based cryptosystems stems from embedding hidden
trapdoors in systems of equations, something that is unnecessary in our setting. Hence, using MQ
to design PRG with non-Boolean output appears significantly simpler than using it to design public
key encryption, which has been the focus of much past research. Please see Section 5 for more
discussion. We conjecture that randomly chosen polynomials with coefficients super-polynomially
larger than ε suffice for the aforementioned flooding. We leave further analysis of such randomness
generators to future work.

1.4 Related Work: Bootstrapping

In this section, we provide a detailed comparison with works that are most closely related to ours.

Predicate encryption [GVW15, Agr17, BTVW17] and reusable garbled circuits
[GTKP+13, Agr17]. A successful approach to constructing functional encryption schemes from
standard assumptions is the predicate encryption scheme by Gorbunov et al. [GVW15] and its
extensions [Agr17, BTVW17]. Roughly speaking, these schemes make use of an attribute based
encryption (ABE) scheme for circuits [GVW13, BGG+14] in conjunction with a fully homomorphic
encryption scheme to achieve a system where the input x is hidden only as long as the adversary’s
key requests obey a certain “one sided” restriction w.r.t the challenge messages. In more detail,
security holds as long as the adversary does not obtain keys SKf for any circuit f such that f(x) = 0.
Given an adversary who obeys this “one sided” restriction, functionality is general, i.e. the adversary
may request for a key corresponding to any polynomial sized circuit. However, in the general
“two sided” security game, the schemes are shown to be insecure [GVW15, Agr17]. The reusable
garbled schemes of [GTKP+13, Agr17] satisfy general two sided security but do not achieve compact
ciphertext required for bootstrapping to iO.

The techniques of the aforementioned line of work and the present work are fundamentally

14

different. While [GVW15, GKP+13] also use FHE in order to hide the attributes in an FE scheme,
the building block of ABE necessitates the restriction of one sided security due to the basic structure
of ciphertexts and secret keys. As discussed in [Agr17], if the predicate encryption scheme [GVW15]
is subject to a general two sided adversary, the adversary may requests keys for related functions
which can lead to the recovery of a secret lattice basis, leading to a complete break in security. We
emphasize that this attack exploits the structure of the secret keys and ciphertext in the underlying
ABE scheme and is in distinct from the attack implied by the leakage of the FHE noise learnt by
the attacker upon decryption – indeed, the follow-up work of [BTVW17] shows how to construct
predicate encryption that does not contain the FHE noise leakage. Thus, despite supporting powerful
functionality, current techniques for generalizing ABE to FE get stuck in the quicksand of one sided
security.

To overcome this challenge, we insist on a two sided adversary at any cost to functionality.
We follow the approach of [AR17] which starts with the modest functionality of linear functional
encryption [ABCP15, ALS16] satisfying two sided security, and makes use of special properties of
the FHE scheme of Brakerski and Vaikuntanathan [BV11b] to decompose function computation into
a “deep” public computation performed using FHE and a “shallow” (linear) private computation,
performed using linear FE [ABCP15, ALS16]. The public FHE computation is performed by the
decryptor outside any FE scheme, namely, without any guarantee of constrained decryption. This
is in contrast to [GVW15, Agr17, BTVW17] where the entire function evaluation is performed
within the confines of the ABE evaluation, which constrains decryption of the final FHE ciphertext
and renders futile any attempts to tamper with the functionality. However, in [AR17] the only
constrained decryption is via the modest functionality of linear FE but the authors argue that
constraining a linear function suffices to constrain computation in NC1, at the cost of non-compact
ciphertext.

In the present work, to achieve security as well as succinct ciphertext, we look at the mildest
possible strengthening of this functionality, namely one that supports computation of linear functions
plus a noise term which satisfies a relatively mild statistical property, as formalized via the notion
of noisy linear functional encryption (NLinFE). We then show that this notion of NLinFE may be
bootstrapped all the way to iO.

Comparison with [AR17]. Even though the present work uses the ciphertext and public
key evaluation algorithms developed by Agrawal and Rosen [AR17], our construction of FE for
NC1 and particularly our proof technique are quite different. Firstly, [AR17] is in the bounded
collusion setting with non-compact ciphertext, and achieves a simulation based security which is
known to be impossible in our setting where compact ciphertext is crucial. Hence, we must give
an indistinguishability style proof which is significantly harder, and requires using a new proof
technique developed in this work. Moreover, [AR17] adds statistical large flooding noise which is
oblivious of the distribution of noise it needs to drown, whereas we will analyze and leverage the
distribution carefully. Most importantly, [AR17] can make do with linear FE whereas we crucially
need noisy linear FE6. Finally, we give many instantiations of NLinFE using bilinear maps and weak
randomness generators as well as directly using new assumptions.

6We remark that a weak version of NLinFE in the bounded collusion setting was developed in an earlier version of
[AR17] (see [AR16]) but was found to be redundant and was subsequently removed. The current, published version of
[AR17] relies on LinFE alone. Our definition of NLinFE is significantly more general.

15

Independent and concurrent work. In an independent and concurrent work, Ananth, Jain,
Khurana and Sahai [AJKS18] also provide an approach to construct iO without multilinear maps.
They rely on (subexponentially-secure) bilinear maps, LWE, block-locality 3 PRGs, and a new type
of randomness generator, which they call perturbation resilient generator, denoted as ∆RG. Their
techniques and overall construction are extremely different from ours. However, we find it very
interesting that both works intersect in identifying a very similar new type of PRG as sufficing
to fill the gap between assumptions we believe and iO. Their notion of ∆RG is almost exactly
the same as the non-Boolean PRG that (is one of the types of PRGs) we identify – both notions
require the generation of some noise N such that N is indistinguishable from N + e for some
bounded e. However, they only require a weak form of indistinguishability, namely the adversary
is allowed to distinguish between N and N + e with 1/poly probability in their case, whereas
we require standard negligible distinguishing probability. They also provide a generic security
amplification theorem, which transforms FE for NC1 which satisfies this weak indistinguishability
to FE with standard indistinguishability. Their security amplification theorem can be used black
box in our construction to also rely on ∆RG (or the weaker notion of CNG) with similar weak
indistinguishability. We may also use their security amplification theorem to weaken the requirement
on the underlying quadratic FE scheme so that it can be instantiated using existing constructions
[Lin17, BCFG17]. In more detail, we use quadratic FE to compute a noise term which must be
natively superpolynomial in size to argue security. However, existing constructions of quadratic
functional encryption schemes [Lin17, BCFG17] perform decryption “brute force”, by computing a
discrete logarithm in the end, restricting the space of decryptable values to be polynomial in size.
To align with known constructions of quadratic FE, we choose our flooding noise to be polynomial
in size – this overcomes the above issue but results in 1/ poly advantage to the adversary. This
advantage can be made negligible by leveraging the security amplification theorem of [AJKS18] in a
black box manner. For more details, please see Section 7.

Aside from significantly different techniques, the final results obtained by the two works are
also different. First, we define the abstraction of noisy linear FE, and bootstrap this to iO. The
instantiation of noisy linear FE using bilinear maps and ∆RG is only one of the ways of achieving
iO; we also define an even weaker type of PRG, namely correlated noise generators (denoted by
CNG, please see Section 5) which suffices for iO. On the other hand, their security requirement from
their randomness generators is significantly weaker – they only require 1/ poly security as discussed
above. Moreover, they provide a general security amplification theorem which we do not. The
details of the techniques in the two works are vastly different: [AJKS18] define and instantiate the
notion of tempered cubic encodings which do not have any analogue in our work. Also, we provide
a direct construction of NLinFE from new lattice assumptions (Section 8). We believe this opens a
new approach to constructing iO from different assumptions, which may be especially relevant in
the post quantum regime. In the bilinear maps instantiation, we rely on the SXDH assumption on
bilinear maps, whereas they argue security in the generic bilinear map model. Finally, they require
block-locality 3 PRGs whereas we do not.

We remark that in [AJKS18], the special PRG, namely ∆RG needs to be computable by a cubic
polynomial that degree 1 in a public seed component and degree 2 in the secret seed components.
In the present work, as well as [LM18], the special PRG output must be computed using quadratic
polynomials. However, as observed by [LM18], computing ∆RG(x,y, z) with a random public
seed x is equivalent to first sampling a quadratic function ∆RGx with the a random public seed x
hard-coded in the function, and then evaluating a quadratic polynomial on (y, z). Thus, the effect

16

of the public seed can be emulated by sampling a function from a family. We refer the reader to
[LM18] for a detailed discussion.

Follow-up work. In a follow-up work7, Lin and Matt [LM18] leverage our techniques to provide
a different construction of iO from bilinear maps, LWE and weak pseudorandom objects, which they
term Pseudo Flawed-smudging Generators (PFG). The high level structure of their construction
is very similar to ours: they also use special properties of the FHE scheme of Brakerski and
Vaikuntanathan [BV11b] to split the functional computation into a deep public computation and a
shallow private computation, the former being done by the decryptor in the clear, and the latter
being performed in the exponent of a bilinear group using quadratic operations. To argue security,
they must, similarly to us, perform noise flooding in the exponent. The main difference from our
work is that the choice of noise in our setting is natively super-polynomial as discussed above,
whereas [LM18] can make do with polynomial noise via their notion of Pseudo Flawed-smudging
Generators (PFG). PFGs guarantee that flooding with polynomial sized noise hides the input at all
except a few locations. They construct “weak and leaky” FE for degree 3 polynomials using bilinear
maps, LWE and PFGs, which they further amplify to full fledged FE for NC1 using threshold
multi-key FHE. Their security analysis is also quite different from ours and relies on the robustness
of LWE as well as the specific properties of PFG. We observe that PFG and ∆RG are incomparable
and refer the reader to [LM18] for a detailed comparison.

We remark that in contrast to the present work, [LM18] construct FE for NC0 and then rely
on randomized encodings to bootstrap this to FE for NC1, as in prior work [LV16, Lin17, LT17].
On the other hand, we use techniques from [BV11b] in a non blackbox way to bootstrap all the
way to NC1 directly. Both works suggest using the multivariate quadratic assumption to instantiate
the (different) weak PRGs they need, but while our suggestion is preliminary, [LM18] back up their
suggestion with a concrete candidate and extensive security analysis.

1.5 Our Techniques: Direct Construction of NLinFE

Next, we provide a direct construction of NLinFE based on new (untested) assumptions that
strengthen ring learning with errors (RLWE) and NTRU. Our construction is quite different from
known constructions and does not rely on multilinear maps or graded encoding schemes.

As discussed above, flooding correlated noise terms appears qualitatively easier than generating
uniform pseudorandom variables. Recall that ` is the output length of the function and L is sublinear
in `. In this section, we discuss a method to provide L encodings of a seed vector β in a way that
the decryptor can compute ` encodings of {gi(β)}i∈[`] on the fly. The careful reader may suspect
that we are going in circles: if we could compute encodings of gi(β) on the fly, could we not just
compute encodings of fi(x) on the fly?

We resolve this circularity by arguing that the demands placed on noise in lattice based
constructions are significantly weaker than the demands placed on messages. In particular, while
computation on messages must maintain integrity, noise need only create some perturbation, the
exact value of this perturbation is not important. Therefore if, in our attempt to compute an encoding
gi(β), we instead compute an encoding of g′i(β

′), this still suffices for functionality. Intuitively g′i(β
′)

will be a polynomial equation of β designed to flood fi(µ).

7Although our work and [LM18] appeared on eprint at roughly the same time, we had shared an earlier version
with the authors several months ago.

17

In order to construct FE that supports the computation of noisy linear equations, we begin with an
FE that supports computation of linear equations, denoted by LinFE, provided by [ABCP15, ALS16].
All our constructions use the blueprint provided in [ALS16] to support linear equations, and develop
new techniques to add noise. In order to interface with the LinFE construction of [ALS16], we are
required to provide encodings of noise terms β such that:

1. Given encodings of β and gi the decryptor may herself compute on these to construct an
encoding of gi(β).

2. The functional encoding of gi(β) must have the form hg,i · s+ noiseg,i + gi(β) where hg,i is
computable by the key generator given only the public/secret key and the function value. In
particular, hg,i should not depend on the ciphertext.

In order to compute efficiently on encodings of noise, we introduce a strengthening of the RLWE
and NTRU assumptions. Let R = Z[x]/〈xn + 1〉 and Rp1 = R/(p1 ·R), Rp2 = R/(p2 ·R) for some
primes p1 < p2. Then, the following assumptions are necessary (but not sufficient) for security of
our scheme:

1. We assume that the NTRU assumption holds even if multiple samples have the same
denominator. This assumption has been discussed by Peikert [Pei16, 4.4.4], denoted as
the NTRU learning problem and is considered a reasonable assumption. In more detail, for
i ∈ {1, . . . , w}, sample f1i, f2i and g1, g2 from a discrete Gaussian over ring R. If g1, g2 are
not invertible over Rp2 , resample. Set

h1i =
f1i

g1
, h2i =

f2i

g2
∈ Rp2

We assume that the samples {h1i, h2j} for i, j ∈ [w] are indistinguishable from random. Note
that NTRU requires the denominator to be chosen afresh for each sample, i.e. h1i (resp. h2i)
should be constructed using denominator g1i (resp. g2i), for i ∈ [w].

2. We assume that RLWE with small secrets remains secure if the noise terms in RLWE samples
live in some secret ideal. In more detail, for i ∈ [w], let D̂(Λ2), D̂(Λ1) be discrete Gaussian
distributions over lattices Λ2 and Λ1 respectively. Then, sample

e1i ← D̂(Λ2), where Λ2 , g2 ·R. Let e1i = g2 · ξ1i ∈ small,

e2i ← D̂(Λ1), where Λ1 , g1 ·R. Let e2i = g1 · ξ2i ∈ small,

Above, small is a place-holder term that implies the norm of the relevant element can be
bounded well below the modulus size, p2/5, say. We use it for intuition when the precise
bound on the norm is not important. Hence, for i, j ∈ [w], it holds that:

h1i · e2j = f1i · ξ2j , h2j · e1i = f2j · ξ1i ∈ small

Now, sample small secrets t1, t2 and for i ∈ [w], compute

d1i = h1i · t1 + p1 · e1i ∈ Rp2
d2i = h2i · t2 + p1 · e2i ∈ Rp2

18

We assume that the elements d1i, d2j for i, j ∈ [w] are pseudorandom. The powerful property that
this assumption provides is that the product of the samples d1i · d2j do not suffer from large cross
terms for any i, j ∈ [w] – since the error of one sample is chosen to annihilate with the large element
of the other sample, the product yields a well behaved RLWE sample whose label is a product of the
original labels. In more detail,

d1i · d2j =
(
h1i · h2j

)
· (t2 t2) + p1 · noise

where noise = p1 ·
(
f1i · ξ2j · t1 + f2j · ξ1i · t2 + p1 · g1 · g2 · ξ1i · ξ2j

)
∈ small

If we treat each d1i, d2j as an RLWE sample, then we may use these samples to encode noise
terms so that direct multiplication of samples is well behaved. Note that the noise terms we wish to
compute on, are the messages encoded by the “RLWE sample” d1i, hence d1i must contain two kinds
of noise: the noise required for RLWE security and the noise that behaves as the encoded message.
This requires some care, but can be achieved by nesting these noise terms in different ideals as:

d1i = h1i · t1 + p1 · ẽ1i + p0 · e1i ∈ Rp2
d2i = h2i · t2 + p1 · ẽ2i + p0 · e2i ∈ Rp2

Here, (p1 · ẽ1i, p1 · ẽ2i) behave as RLWE noise and (p0 · e1i, p0 · e2i) behave as the encoded messages.
Both ẽ1i, e1i as well as ẽ2i, e2i are chosen from special ideals as before. Now, we may compute
quadratic polynomials on the encodings “on-the-fly” as

∑
i,j
d1id2j to obtain a structured-noise RLWE

sample whose label is computable by the key generator. If we treat this dynamically generated
encoding as an RLWE encoding of correlated noise, then we can use this to add noise to the NLinFE
decryption equation by generalizing techniques from [ALS16]. The decryptor can, using all the
machinery developed so far, recover fi(x) + noisef(x) + noisefldi where noisefldi is constructed as a
quadratic polynomial of noise terms that live in special ideals. Indeed, there is no need to stop at
quadratic polynomials – we can compute any constant degree polynomial, see Section 8 for details.
Again, we remind the reader that setting noisefldi = PRGi(seed) would make the scheme provably
secure, so an approach is to choose the bounded degree polynomial to be computed as PRGi.

Mixing Ideals. While it suffices for functionality to choose the correlated noise term as a
polynomial evaluated on noise living in special ideals, the question of security is more worrisome.
By using the new “on-the-fly” encodings of noise, the decryptor recovers noise which lives in special,
secret ideals, and learning these ideals would compromise security. In more detail, the noise term we
constructed above is a random linear combination of terms (g1 · g2), {f1i}i, {f2j}j , which must be
kept secret for semantic security of d1i, d2j to hold. Indeed, if we over-simplify and assume that the
attacker can recover noise terms that live in the ideal generated by g1 · g2, then recovering g1 · g2

from these terms becomes an instance of the principal ideal problem [Gen09, CDPR16].

While the principal ideal problem has itself resisted efficient classical algorithms so far, things in
our setting can be made significantly better by breaking the ideal structure using additional tricks.
We describe these next.

1. Mixing ideals. Instead of computing a single set of pairs
((

h1i, d1i

)
,
(
h2i, d2i

))
, we now

compute k of them, for some polynomial k fixed in advance. Thus, we sample f j1i, f
j
2i and gj1, g

j
2

19

for i ∈ {1, . . . , w}, j ∈ {1, . . . , k}, where w, k are fixed polynomials independent of function
output length `, and set

hj1i =
f j1i
gj1
, hj2i =

f j2i
gj2
∈ Rp2

The encoding of a noise term constructed corresponding to the (i, j)th monomial is dii′ =∑
j∈[k]

d1id2i′ . Thus, the resultant noise term that gets added to the decryption equation looks

like:

p0 ·

[∑
j∈[k]

(
gj2 · g

j
1 ·
(
p0 · (ξj1i · ξ

j
2i′)
)

+
(
f j1i · ξ

j
2i′ · t1 + f j2i′ · ξ

`
1i · t2

))]
(1.2)

Thus, by adding together noise terms from multiple ideals, we “spread” it out over the entire
ring rather than restricting it to a single secret ideal. Also, we note that it is only the higher
degree noise terms that must live in special ideals; if the polynomial contains linear terms,
these may be chosen from the whole ring without any restrictions. In more detail, above, we
computed a noise term corresponding to a quadratic monomial which required multiplying and
summing encodings. If we modify the above quadratic polynomial to include a linear term, we
will need to add a degree 1 encoding into the above equation. The degree 1 encoding which
does not participate in products, may encode noise that is chosen without any restrictions,
further randomizing the resultant noise.

2. Adding noise generated collectively by ciphertext and key. Aside from computing polynomials
over structured noise terms encoded in the ciphertext, we suggest an additional trick which
forces noise terms into the decryption equation. These noise terms are quadratic polynomials
where each monomial is constructed jointly by the encryptor and the key generator. This trick
relies on the structure of the key and ciphertext in our construction. We describe the relevant
aspects of the key and ciphertext here, for details please see Section 8. The key for function fi
is a short vector k such that:

〈w, k〉 = ufi

where w is part of the master secret, and ufi is computed by the key generator using the
EvalPK function. The encryptor provides an encoding

c = w · s+ p1 · noise0

As part of decryption, the decryptor computes 〈k, c〉 to obtain ufi ·s+p1 ·〈k, noise0〉. Moreover
by running EvalCT(C1, . . . , Cd), she also obtains ufi · s+ f(x) + p0 · noise + p1 · noise′ (please
see Appendix E for details). Subtracting these and reducing modulo p1 and then modulo p0

yields f(x) as desired.

Intuitively, the structured noise computed above is part of the noise in the sample computed
by EvalCT, i.e. part of

(
p0 · noise + p1 · noise′

)
in the notation above. Our next trick shows

how to add noise to 〈k, c〉.

20

We modify KeyGen so that instead of choosing a single k, it now chooses a pair (k1,k2) such
that:

〈w, k1〉 = ufi + p0 ·∆1 + p1 · ∆̃1

〈w, k2〉 = ufi + p0 ·∆2 + p1 · ∆̃2

Here, ∆1, ∆2, ∆̃1, ∆̃2 are discrete Gaussians sampled by the key generator unique to the key
for fi. Additionally, the encryptor splits c as:

c01 = w · s1 + p1 · ν1

c02 = w · s2 + p1 · ν2

where s1 + s2 = s and s1, s2 are small, then,

〈k1, c01〉+ 〈k2, c02〉 = ufi · s+ p0 ·
(
∆1 · s1 + ∆2 · s2

)
+ p1 ·

(
∆̃1 · s1 + ∆̃2 · s2

)
+ p1 · noise

Thus, we forced the quadratic polynomial p0 ·
(
∆1 · s1 + ∆2 · s2

)
+ p1 ·

(
∆̃1 · s1 + ∆̃2 · s2

)
into

the noise, where ∆1,∆2 and ∆̃1, ∆̃2 are chosen by the key generator for the particular key
request and the terms s1 and s2 are chosen by the encryptor unique to that ciphertext. Note
that w can be hidden from the view of the adversary since it is not required for decryption,
hence the adversary may not compute 〈w, k1〉, 〈w, k2〉 in the clear. For more details, please
see Section 8.

1.6 Related Work: Instantiation

To the best of our knowledge, all prior work constructing FE for degree L ≥ 3 polynomials
rely on either iO itself [GGH+13c] or multilinear maps [GGHZ16] or bilinear maps and weak
pseudorandomness [AS17, Lin17, LT17] as discussed above. Since our direct construction also makes
use of NTRU lattice assumptions, we discuss here some high level differences between multilinear
map based approaches and our approach.

Let us describe the main ideas behind the multilinear map construction of [GGH13b]. Our
description follows the summary of [LSS14]. Similarly to us, the authors consider the polynomial
rings R = Z[x]/〈xn + 1〉 and Rq = R/qR. They generate a small secret g ∈ R and set I = 〈g〉 to be
the principal ideal over R generated by g. Next, they sample a uniform z ∈ Rq which stays secret.
The “plaintext” is an element of R/I, and is encoded via a division by z in Rq: to encode a coset
of R/I, give element [c/z]q where c is an arbitrary small coset representative. Since g is hidden,
the authors provide another public parameter y, which is an encoding of 1 and the encoding of the
coset is chosen as [e · y]q where e is a small coset representative. At level i 6= 1, the encoding has
the form c/zi]q.

The encodings are additively and multiplicatively homomorphic, and for testing whether an
element in the last level D (say) encodes 0, the authors provide a “zero test parameter” pzt = hzDg−1

mod q where h is an element of norm approximately
√
q. The parameters are set so that if an

element encodes 0, its product with this parameter is “small” otherwise it is “large”.

Known attacks against multilinear maps and obfuscators operate on the following broad principle:
perform algebraic manipulations on some initial encodings, then apply the zero test to each top

21

level encoding, perform an algebraic computation on the results of the zero testing so as to obtain
an element in the ideal 〈g〉. Once an element in 〈g〉 is obtained, different attacks work in different
ways, but in the “weak multilinear map model” [GMM+16], being able to recover an element in 〈g〉
is considered a successful attack. Thus, the unique element g must crucially be kept secret.

In our work, decryption of the FE scheme also results in a high degree polynomial containing
secret elements f1ig1, f2ig2 for i ∈ [poly] along with fresh random elements per ciphertext. However,
unlike the multilinear map template where there is a single secret g, there are a polynomial
number of secret elements that play (what appears to us) qualitatively the same role as g in our
construction. Moreover, these are “spread out” in the recovered polynomial which makes obtaining
any term isolating any one secret element via algebraic manipulations see improbable. Additionally,
annihilation attacks [MSZ16] crucially make use of the fact that the unstructured elements that are
unique to every encoding are linear, which assists in the computation of the annihilation polynomial.
In contrast, unstructured elements in our recovered polynomial that are unique to the encoding are
high degree and seem much harder to annihilate.

Our construction of NLinFE appears much simpler in design than the construction of multilinear
map based obfuscators, we refer the reader to [MSZ16, PM18] for a clean description of an abstract
obfuscator. Unlike current candidate obfuscators, we do not need to use straddling sets for handling
mixed input attacks, eliminating a vulnerability recently exploited by [PM18]. This is because mixed
input attacks seem very hard to launch in our construction, since we do not use branching programs
and all parts of a given input are tied together using an LWE secret (albeit with a non-standard
LWE assumption). Moreover, the function keys in our FE construction have a different structure
than the ciphertext and do not seem amenable to mix and match attacks. Finally, if we assume for
a moment that the weak LWE problem used above does not leak anything, then the adversary is
left with a high degree polynomial in many fixed secrets as well as many fresh random variables.
The only requirement from this polynomial is that it must mimic noise which satisfies some mild
statistical properties, as captured by the notion of CNG. Since PRGs are conjectured to exist with
low degree computation, and CNG are even weaker, explicitly permitting certain kinds of correlation,
it seems quite plausible that the mixed-ideal high-degree polynomial that the adversary sees does
fulfil this mild requirement. Nevertheless, serious cryptanalysis effort is required on our construction
before confidence can be gained in its security.

1.7 Putting it together.

Put together, an overview of our transformation is provided in Figure 1.2.

1.8 Organization of the paper

In Section 2 we provide the definitions and preliminaries we require. In Section 3 we define the notion
of noisy linear functional encryption NLinFE. In Section 4 we provide our warm-up construction of
Quadratic FE from Noisy Linear FE and PRG. In Section 5 we define the notion of correlated noise
generators CNG and non-Boolean PRG that we require. In Section 6, we provide our full construction
of FE for NC1 using NLinFE, RLWE and CNG. In Section 7 we provide our bootstrapping theorems,
namely, construction of NLinFE from FE for polynomials of degree L, where L is the blockwise
locality of PRG in the public setting or CNG in the symmetric setting. In Section 8 we provide our
new construction of succinct, symmetric key noisy linear FE based on new assumptions, and we
reason about its security in Section 8.1. We discuss parameters in Section 9 and conclude in Section

22

Figure 1.2: Overview of our transformation. Above, FH refers to function hiding.

10.

2 Preliminaries

In this section, we define the preliminaries we require for our constructions. We begin with defining
the notation that we will use throughout the paper.

Notation. We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n)
to denote a negligible function of n. We say f(n) is polynomial if it is O(nc) for some c > 0, and
we use poly(n) to denote a polynomial function of n. We say an event occurs with overwhelming
probability if its probability is 1 − negl(n). The function log x is the base 2 logarithm of x. The
notation bxe denotes the nearest integer to x, rounding towards 0 for half-integers.

Throughout the writeup, we use the term noise as a place-holder for RLWE noise when its precise
value is not important. Similarly we use the term small as a place holder that implies the norm of
the relevant element (β (say) when we have β ∈ small), can be bounded well below the modulus
size, modulus/5, say. We use it for intuition when the precise bound on the norm is not important.

2.1 Pseudorandom Generators

Definition 2.1 (Pseudorandom Generator (PRG)). A function G : {0, 1}n → {0, 1}m is a
pseudorandom generator (PRG) if it has the following properties:

1. G is computable in (uniform) time poly(n)

23

2. For any probabilistic polynomial time adversary Adv, it holds that∣∣∣ Pr
β←{0,1}n

(
1← Adv(G(β)

)
− Pr

r←{0,1}m

(
1← Adv(r)

) ∣∣∣ = negl(κ)

Here, β is called the seed of the PRG G, and m− n is called the stretch of the PRG. In this
paper, we focus on the polynomial stretch regime, namely where m = O(nc) for some constant
c > 1. If G is computable in NC0, then we define the locality of G to be the maximum number
of input elements on which any output element of G depends.

Lin and Tessaro [LT17] defined the notion of blockwise locality as follows.

Definition 2.2 (Blockwise Locality[LT17]). Let n, m, L and b be polynomials. We say an (n, b,m)
PRG has blockwise locality L if the input of the PRG may be viewed as a matrix with b rows and n
columns, and each output bit of the PRG depends on input bits that are contained in at most L of
b columns.

2.2 Indistinguishability Obfuscation

A uniform P.P.T machine iO is an indistinguishability obfuscator for a class of circuits {Cκ}κ∈N, if
the following conditions are satisfied:

1. Correctness. For all security parameters κ ∈ N, for any C ∈ Cκ and every input x from the
domain of C, we have that:

Pr
[
C ′ ← iO(1κ, C) : C ′(x) = C(x)

]
= 1

where the probability is taken over the coin-tosses of the obfuscator iO.

2. Indistinguishability of Equivalent Circuits. For every ensemble of pairs of circuits
{C0,κ, C1,κ}κ∈N, and C0,κ(x) = C1,κ(x) for every x, we have that the following ensembles of
pairs of distributions are indistinguishable to any P.P.T Adv:{

C0,κ, C1,κ, iO(1κ, C0,κ)
}

c
≈
{
C0,κ, C1,κ, iO(1κ, C1,κ)

}
2.3 Functional Encryption

Let X = {Xκ}κ∈N and Y = {Yκ}κ∈N denote ensembles where each Xκ and Yκ is a finite set. Let
C =

{
Cκ
}
κ∈N denote an ensemble where each Cκ is a finite collection of circuits, and each circuit

g ∈ Cκ takes as input a string x ∈ Xκ and outputs g(x) ∈ Yκ.

A functional encryption scheme FE for C consists of four algorithms FE = (FE.Setup,FE.Keygen,
FE.Enc,FE.Dec) defined as follows.

• FE.Setup(1κ) is a p.p.t. algorithm takes as input the unary representation of the security
parameter and outputs the master public and secret keys (PK,MSK).

• FE.Keygen(MSK, g) is a p.p.t. algorithm that takes as input the master secret key MSK and a
circuit g ∈ Cκ and outputs a corresponding secret key SKg.

24

• FE.Enc(PK, x) is a p.p.t. algorithm that takes as input the master public key PK and an input
message x ∈ Xκ and outputs a ciphertext CT.

• FE.Dec(SKg,CTx) is a deterministic algorithm that takes as input the secret key SKg and a
ciphertext CTx and outputs g(x).

Definition 2.3 (Correctness). A functional encryption scheme FE is correct if for all g ∈ Cκ and
all x ∈ Xκ,

Pr

[
(PK,MSK)← FE.Setup(1κ);

FE.Dec
(
FE.Keygen(MSK, g),FE.Enc(PK, x)

)
6= g(x)

]
= negl(κ)

where the probability is taken over the coins of FE.Setup, FE.Keygen, and FE.Enc.

Security. In this paper we will consider the standard indistinguishability based definition.

Definition 2.4. A functional encryption scheme FE for a function family C is secure in the adaptive
indistinguishability game, denoted as IND secure, if for all probabilistic polynomial-time adversaries
Adv, the advantage of Adv in the following experiment is negligible in the security parameter κ:

1. Public Key. Challenger Ch returns PK to Adv.

2. Pre-Challenge Key Queries. Adv may adaptively request keys for any functions
g1, . . . , g`′ ∈ C. In response, Adv is given the corresponding keys SKgi .

3. Challenge. Adv outputs the challenges (x0,x1) ∈ X to the challenger, subject to the
restriction that gi(x0) = gi(x1) for all i ∈ [`′]. The challenger chooses a random bit b, and
returns the ciphertext CTxb .

4. Post-Challenge Key Queries. The adversary may continue to request keys for additional
functions gi, subject to the restriction that gi(x0) = gi(x1) for all i ∈ {`′ + 1, . . . , `}. In
response, Adv is given the corresponding keys SKgi .

5. Guess. Adv outputs a bit b′, and succeeds if b′ = b.

The advantage of Adv is the absolute value of the difference between its success probability and 1/2.
In the selective game, the adversary must announce the challenge in the first step, before receiving
the public key. Note that without loss of generality, in the selective game, the challenge ciphertext
can be returned along with the public key. In the semi-adaptive game, the adversary must announce
the challenge after seeing the public key but before making any key requests.

We also define a very restricted notion of security, called Full-Sel security, in which the adversary
must announce both the challenge messages and key requests in the very beginning of the game,
before seeing even the public key. This notion of security is sufficient for building iO from FE (see
for instance [LT17, Sec 2.5.1]).

Compactness. Intuitively, an FE scheme is compact if the length of its ciphertext does not depend
on the size of the circuit it supports [AJ15, BV15]. Formally, we say an FE scheme is compact
if the encryption algorithm runs in time poly(κ, |x|, logS) where x is the input and S is the size
of the circuit. The notion of weak compactness asks that the encryption algorithm run in time
poly(κ, |x|, S)1−ε for any constant ε ∈ (0, 1).

25

2.4 Function Hiding Symmetric Key Encryption

The symmetric key version of functional encryption is defined analogously to the public key version
defined above except:

1. The encryptor also makes use of the master secret key to perform the encrypt operation.

2. In the security game, the adversary can make ciphertext queries in addition to key queries,
since he may no longer compute ciphertexts on his own.

In the symmetric key setting, we may additionally define the notion of function hiding as follows.

Definition 2.5 (Function hiding). A symmetric key FE scheme FE is function-hiding, if every
admissible PPT adversary Adv has negligible advantage in the following game:

1. Key Generation. The challenger Ch samples MSK← FE.Setup(1κ).

2. The challenger Ch chooses a random bit b and repeats the following with Adv for an arbitrary
number of times determined by Adv:

• Function Queries. Upon Adv choosing a pair of functions (f0, f1), Ch sends Adv a function
key SK← FE.Keygen(MSK, fb).

• Message Queries. Upon Adv choosing a pair of messages (x0,x1), Ch sends Adv a
ciphertext CT← FE.Enc(PK,xb).

3. The adversary outputs a guess b′ for the bit b and wins if b = b′.

We say an adversary is admissible if for all function and message queries, it holds that f0(x0) =
f1(x1).

2.5 Lattice Preliminaries

An m-dimensional lattice Λ is a full-rank discrete subgroup of Rm. A basis of Λ is a linearly
independent set of vectors whose span is Λ.

Gaussian distributions. For any vector c ∈ Rn and any positive parameter σ ∈ R>0, let
ρσ,c(x) := Exp

(
−π‖x− c‖2/σ2

)
be the Gaussian function on Rn with center c and parameter σ.

Let ρσ,c(Λ) :=
∑

x∈Λ ρσ,c(x) be the discrete integral of ρσ,c over L, and let DΛ,σ,c be the discrete
Gaussian distribution over Λ with center c and parameter σ. Specifically, for all y ∈ Λ, we have

DΛ,σ,c(y) =
ρσ,c(y)
ρσ,c(Λ) . For notational convenience, ρσ,0 and DΛ,σ,0 are abbreviated as ρσ and DΛ,σ,

respectively.

We will also need the definition of a B-bounded distribution.

Definition 2.6 (B-bounded distribution). A distribution ensemble (χκ)κ∈N is called B-bounded if

Pr
e←χκ

(‖e‖ > B) = negl(κ)

The following lemma gives a bound on the length of vectors sampled from a discrete Gaussian.

26

Lemma 2.7 ([MR07, Lemma 4.4]). Let Λ be an n-dimensional lattice, let T be a basis for Λ, and
let ‖T‖GS denote the Gram Schmidt norm of T. Suppose σ ≥ ‖T‖GS · ω(

√
log n). Then for any

c ∈ Rn we have
Pr
[
‖x− c‖ > σ

√
n : x

R← DΛ,σ,c

]
≤ negl(n)

We will also need the “noise smudging” or “noise flooding lemma” as follows.

Lemma 2.8. [GKPV10] Let n ∈ N. For any real σ = ω(
√

log n), and any c ∈ Zn,

SD(DZn,σ, DZn,σ,c) ≤ ‖c‖/σ

2.6 Hardness Assumptions.

Our constructions are based on the hardness of the learning with errors problem LWE [Reg09] or its
ring variant RLWE problem [LPR10]. We define these next.

Definition 2.9 (LWE). For security parameter κ, let n = n(κ) be an integer dimension, let
q = q(κ) ≥ 2 be an integer and let χ = χ(λ) be a distribution over Z. The LWEn,q,χ problem is to
distinguish the following two distributions: in the first distribution, sample (ai, bi) uniformly from
Zn+1
q . In the second distribution, one first draws s← Znq uniformly and then samples (ai, bi) ∈ Zn+1

q

by sampling ai ← Znq uniformly, ei ← χ and setting bi = 〈ai, s〉+ ei. The LWEn,q,χ assumption is
that the LWEn,q,χ problem is infeasible.

Regev [Reg09] proved that for certain moduli q and Gaussian error distributions χ, the LWEn,q,χ

assumption is true as long as certain worst-case lattice problems are hard to solve using a quantum
algorithm. This result was de-quantized by Peikert for exponential modulus [Pei09] and by Brakerski,
Langlois, Peikert, Regev, Oded and Stehlé for polynomial modulus [BLP+13].

Next, we define the ring variant of the LWE problem.

Definition 2.10 (RLWE). For security parameter κ, let f(x) = xn + 1 where n is a power of 2. Let
q = q(κ) be an integer. Let R = Z[x]/f(x) and let Rq = R/qR. Let χ be a probability distribution
on R. For s ∈ Rq, let As,χ be the probability distribution on Rq × Rq obtained by choosing an
element a ∈ Rq uniformly at random, choosing e← χ and outputting (a, a · s+ e). The decision
RLWEn,q,χ problem is to distinguish between samples that are either (all) from As,χ or (all) uniformly
random in Rq ×Rq. The RLWEn,q,χ assumption is that the RLWEn,q,χ problem is infeasible.

Theorem 2.11 ([LPR10]). Let r ≥ ω(
√

log n) be a real number and let R, q be as above. Then,
there is a randomized reduction from 2ω(logn) · (q/r) approximate RSVP to RLWEn,q,χ where χ is the
discrete Gaussian distribution with parameter r. The reduction runs in time poly(n, q).

NTRU. In Section 8, we will also need the NTRU assumption defined by [HPS98] which roughly
states that it is hard to distinguish a fraction of small elements over Rq from random.

Definition 2.12 (NTRUq,χ). The NTRU problem NTRUq,χ is to distinguish between the following
two distributions: in the first distribution sample a polynomial h = g/f where f, g ← χ, conditioned
on f being invertible in Rq and in the second distribution sample a polynomial h uniformly over Rq.

Stehlé and Steinfeld [SS11] showed that the NTRUq,χ problem is hard even for unbounded
adversaries for χ chosen as the discrete Gaussian distribution with parameter r >

√
q · poly(n).

However, we will need to make the assumption for much smaller r = poly(n) as in many prior works
(eg. [LATV12]).

27

NTRU Learning Problem. Peikert [Pei16] defines the NTRU learning problem as follows.

Definition 2.13 (NTRU Learning Problem). For an invertible g ∈ R∗q and a distribution χ on R,
define Ng,χ to be the distribution that outputs f/g where f ← χ. The NTRU learning problem is:
given independent samples hi ∈ Rq where every sample is distributed according to either Ng,χ for
some randomly chosen g ∈ R∗q (fixed for all samples), or the uniform distribution, distinguish which
is the case with non-negligible advantage.

Peikert observes that just as with the normal form of ring-LWE, we can assume without loss
of generality that the secret denominator g is chosen from the distribution χ, restricted to units
in Rq. Note that in the NTRU cryptosystem, the public key is one sample f/g for a short g, and
the ciphertexts essentially correspond to additional samples with the same denominator, and less
short numerators. In our construction provided in Section 8, we will make use of a public key which
contains multiple elements of the form fi/g for varying fi and fixed g. We refer the reader to [Pei16,
4.4.4] for a discussion on the hardness of this problem.

The Multivariate Quadratic Polynomial Problem (MQ): [MI88, BFSS13, Wol05, DY09]
The multivariate quadratic polynomial problem, denoted by MQ, is: given m quadratic polynomials
f1, . . . , fm in n variables x1, . . . , xn, with coefficients chosen from a field F, find a solution z ∈ Fn
such that fi(z) = 0 for i ∈ [m].

2.7 Sampling and Trapdoors

Ajtai [Ajt99] showed how to sample a random lattice along with a trapdoor that permits sampling
short vectors from that lattice. Recent years have seen significant progress in refining and extending
this result [SSTX09, AP09, MP12]. Our construction in Section 8 requires trapdoor generation in
polynomial lattices.

Let R = Z[x]/(φ) where φ = xn + 1 and n is a power of 2. Let Rq , R/qR where q is a large
prime satisfying q = 1 mod 2n. For r ∈ R, we use ‖r‖ to refer to the Euclidean norm of r’s
coefficient vector.

We will make use of the following algorithms from [MP12]:

1. TrapGen(n,m, q): The TrapGen algorithm takes as input the dimension of the ring n, a
sufficiently large integer m = O(n log q) and the modulus size q and outputs a vector w ∈ Rmq
such that the distribution of w is negligibly far from uniform, along with a “trapdoor”
Tw ∈ Rm×m for the lattice Λ⊥q (w) =

{
x : 〈w, x〉 = 0 mod q

}
.

2. SamplePre(w,Tw, a, σ): The SamplePre algorithm takes as input a vector w ∈ Rmq along
with a trapdoor Tw and a syndrome a ∈ Rq and a sufficiently large σ = O(

√
n log q) and

outputs a vector e from a distribution within negligible distance to DΛaq (w),σ·ω(
√

logn) where

Λaq(w) =
{
x : 〈w, x〉 = a mod q

}
.

3 Noisy Linear Functional Encryption

In this section, we define the notion of noisy linear functional encryption. At a high level, noisy
linear functional encryption is like regular linear functional encryption [ABCP15, ALS16], except

28

that the function value is recovered only up to some bounded additive error (which we informally
call noise), and indistinguishability holds even if the challenge messages evaluated on all the function
keys are only “approximately” equal, i.e. they differ by an additive term of low norm.

In our constructions, R is a ring, instantiated either as the ring of integers Z or the ring of
polynomials Z[x]/f(x) where f(x) = xn + 1 for n a power of 2. We let Rq = R/qR for some prime
q. Let D be a distribution over R, F be a class of functions F : R` → R and B ∈ R+ a bounding
value on the norm of the decryption error. In general, we require B << q. Then,

Definition 3.1. A (D,F , B)-noisy linear functional encryption scheme FE is a tuple FE =
(FE.Setup,FE.Keygen,FE.Enc,FE.Dec) of four probabilistic polynomial-time algorithms with the
following specifications:

• FE.Setup(1κ, R`q) takes as input the security parameter κ and the space of message and function

vectors R`q and outputs the public key and the master secret key pair (PK,MSK).

• FE.Keygen(MSK,v) takes as input the master secret key MSK and a vector v ∈ R`q and outputs
the secret key SKv.

• FE.Enc(PK, z) takes as input the public key PK and a message z ∈ R`q and outputs the
ciphertext CTz.

• FE.Dec(SKv,CTz) takes as input the secret key of a user SKv and the ciphertext CTz, and
outputs y ∈ Rq ∪ {⊥}.

Definition 3.2 (Approximate Correctness). A noisy linear functional encryption scheme FE is
correct if for all v, z ∈ R`q,

Pr

[
(PK,MSK)← FE.Setup(1κ);

FE.Dec
(
FE.Keygen(MSK,v),FE.Enc(PK, z)

)
= 〈v, z〉+ e

]
= 1− negl(κ)

where e ∈ R with ‖e‖ ≤ B and the probability is taken over the coins of FE.Setup, FE.Keygen, and
FE.Enc.

Security. Security is defined in the standard indistinguishability setting, which requires that
no admissible adversary should be able to distinguish CT(z0) from CT(z1) with non negligible
advantage. However, we place severe restrictions on our adversary as defined next.

Definition 3.3 (Admissible Adversary). We say an adversary is admissible if for any pair of
challenge messages z0, z1 ∈ R`q and any queried key vi ∈ R`q, it holds that 〈vi, z0 − z1〉 = fi(µ)

where µ← D` and fi ∈ F .

While it may appear strange to restrict the adversary to choosing messages and functions
that satisfy a strong constraint such as the above, such a restricted adversary suffices for our
main application of constructing quadratic functional encryption QuadFE in Section 4 and its
generalisation to NC1 in Appendix 6. At a high level, a QuadFE adversary makes queries for
quadratic functions, which translate to queries against NLinFE which obey the restrictions above.
Constructing an NLinFE scheme secure against such a restricted adversary will prove significantly
simpler as we shall see.

Formally, we define the notion of Noisy-IND security as follows.

29

Definition 3.4 (Noisy-IND security). A (D,F , B) noisy linear FE scheme NLinFE is Noisy-IND
secure if for all admissible probabilistic polynomial-time adversaries Adv, the advantage of Adv in
the following experiment is negligible in the security parameter κ.

1. Public Key: Challenger returns PK to the adversary.

2. Pre-Challenge Queries: Adv may adaptively request keys for any functions vi ∈ R`q for
i ∈ [k] for some polynomial k. In response, Adv is given the corresponding keys SK(vi).

3. Challenge Ciphertexts: Adv outputs the challenge message pairs (zi0, z
i
1) ∈ R`q × R`q, for

i ∈ [Q], where Q is some polynomial, to the challenger. The challenger chooses a random bit
b, and returns the ciphertexts {CT(zib)}i∈[Q].

4. Post-Challenge Queries: Adv may request additional keys for functions of its choice and is
given the corresponding keys. Adv may also output additional challenge message pairs which
are handled as above.

5. Guess. Adv outputs a bit b′, and succeeds if b′ = b.

The advantage of Adv is the absolute value of the difference between the adversary’s success
probability and 1/2.

In the selective game, the adversary must announce the challenge in the first step, before receiving
the public key. In the semi-adaptive game, the adversary must announce the challenge after seeing
the public key but before making any key requests.

The symmetric key version of noisy functional encryption is defined analogously to functional
encryption, please see Section 2.

4 Warm-up: Quadratic Functional Encryption

In this section, we provide our warm-up construction of functional encryption for quadratic
polynomials. For ease of exposition, we present first our simplest construction, which relies
on the RLWE assumption, a noisy linear functional encryption scheme (D,F , B)-NLinFE and a PRG
with polynomial expansion. We may improve assumptions to use LWE in place of RLWE, and CNG
(please see Section 1) in place of PRG – this is discussed in Appendix A. The parameters of NLinFE
are instantiated below in Section 4.3.1.

The construction relies on the ciphertext and public key evaluation procedures developed recently
by Agrawal and Rosen [AR17]. Let R = Z[x]/(xd + 1) and Rp = R/pR. Let ui, s ← Rp1 and
xi ∈ Rp0 for i ∈ [w]. [AR17] observe that given “Regev encodings” of xi as:

ci ≈ ui · s+ xi, cj ≈ uj · s+ xj

one may compute a Regev encoding of the product xixj by re-purposing a trick used by Brakerski
and Vaikuntanathan [BV11b]. In more detail, we write

xixj ≈ cicj + uiuj(s
2)− uj(cis)− ui(cjs)

30

Here, since ci, cj are known to the decryptor she may compute the cross term cicj herself. The
remaining linear term may be written as an inner product〈

(uiuj ,−0−, ui,−0−, uj ,−0−), (s2, c1s, . . . , cws)
〉

of which the first vector is known to the key generator and the second to the encryptor. If the
encryptor provides Regev encodings ci as well as a LinFE encryption of vector (s2, c1s, . . . , cws), and
the key generator provides a LinFE secret key for the linear function (uiuj ,−0−, ui,−0−, uj ,−0−),
then the decryptor may recover the inner product using a linear FE scheme and compute (an
approximation of) xixj as above.

The above intuitive description is insecure and [AR17] suggest a way to secure it but their
approach results in non-compact ciphertext. In this work, we show that by replacing the usage of
LinFE by NLinFE, we can make the ciphertext compact.

Formally, quadratic polynomials will be represented by a circuit with a multiplication layer,
followed by an addition layer. For the construction below, we will require two prime moduli p0 < p1

where p0 serves as the message space for the quadratic scheme, and p1 serves as the message space
for the NLinFE scheme. Below, the distribution D0 is a discrete Gaussian with width σ0 and D1 is a
discrete Gaussian with width σ1. Parameters are instantiated in Appendix 9.

Choosing the PRG. Below, we will modify slightly (albeit superficially) the standard definition
of PRG so that it has non-Boolean output. In more detail, we choose G : {−1, 1}n → Rfld

L where
L = |{ (i, j) : 1 ≤ j ≤ i ≤ w}|, Rfld ⊂ Rp1 is the set of elements in Rp1 with norm ≤ Bfld, and
Bfld is a parameter which is set in Section 4.3.1. We denote the seed of the PRG as β and denote
by Gij(β) the output symbol corresponding to the pair (i, j) in the L length output of G. Note
that this formulation of PRG is implied trivially by the standard binary PRG by generating each
coefficient of the polynomial Gij(β) in its binary representation and using the standard powers of
two transformation to map it to an element in Zdp1 .

4.1 Construction

We proceed to describe our construction, which we denote by QuadFE.

QuadFE.Setup(1κ, Rwp0) : On input a security parameter κ and the space of message vectors Rwp0 ,
do:

1. Sample u← Rwp1 .

2. Invoke NLinFE.Setup(1κ, Rw+2
p1) to obtain NLinFE.PK and NLinFE.MSK.

3. Sample a PRG G : {−1, 1}n → Rfld
L where L = |{ (i, j) : 1 ≤ j ≤ i ≤ w}| as discussed

above.

4. Sample t0, . . . , tw ← Rp1 and let t = (t0, . . . , tw).

5. Output PK = (NLinFE.PK,u), MSK = (NLinFE.MSK,β, t).

QuadFE.Enc(PK,x): On input public parameters PK, and message vector x ∈ Rwp0 do:

1. Sample s1 ← Rp1 and µ← Dw0 , and compute the encoding of the message

c = u · s1 + p0 · µ + x ∈ Rwp1 .

31

2. Let b = NLinFE.Enc (s2
1, c1s1, . . . , cws1, 0).

3. Output CT = (c,b)

QuadFE.KeyGen(PK,MSK,g): On input the public parameters PK = (NLinFE.PK,u), the master
secret key MSK = (NLinFE.MSK,β, t), and a function g(x) =

∑
1≤j≤i≤w

gijxixj , represented as

a coefficient vector (gij) ∈ ZLp0 do:

1. Compute

ug =
∑

1≤j≤i≤w
gij (uiuj , 0....0,−ui, 0...0,−uj , 0...0) ∈ Rw+1

p1 .

2. Define

keyij = uiujt0 − ujti − uitj − p0 ·Gij(β), ∀1 ≤ j ≤ i ≤ w,

keyg =
∑

1≤j≤i≤w
gijkeyij , Gg(β) =

∑
1≤j≤i≤w

gij ·Gij(β)

Note that, keyg = 〈ug, t〉 − p0 ·Gg(β) ∈ Rp1

3. Compute SKg = NLinFE.KeyGen
(
MSK, (ug|keyg)

)
and output it.

QuadFE.Dec(PK,SKg,CTx): On input the public parameters PK, a secret key SKg for polynomial∑
1≤j≤i≤w

gijxixj , and a ciphertext CTx = (c,b), compute

∑
1≤j≤i≤w

gijcicj + NLinFE.Dec(b,SKg) mod p0

and output it.

Ciphertext Size. The ciphertext in the above scheme is comprised of:

c = u · s1 + p0 · µ + x ∈ Rwp1 , b = NLinFE.Enc (s2
1, c1s1, . . . , cws1, 0)

Clearly, c enjoys linear efficiency. Additionally, note that the message size in b is linear, hence
efficiency of QuadFE ciphertext is inherited from that of NLinFE ciphertext.

4.2 Correctness.

We show correctness of the quadratic FE scheme.

Theorem 4.1. If NLinFE is correct, then the QuadFE is correct.

Proof. Let 1 ≤ j ≤ i ≤ w. By definition

xi + p0 · µi = ci − uis1, xj + p0 · µj = cj − ujs1

Let
µij = xiµj + xjµi + p0µiµj (4.1)

32

xixj + p0 · µij = cicj − ciujs1 − cjuis1 + uiujs
2
1 (4.2)

We denote the noise corresponding to monomial xixj , added by the scheme NLinFE by p0 · ρij .
We note that the noise added by NLinFE can easily be chosen to be a multiple of p0, since this is
chosen by the encryptor of the NLinFE scheme, please see Section 8 for details.

By correctness of the linear scheme NLinFE, we have that

NLinFE.Dec(b, SKg) =
∑

1≤j≤i≤w
gij
(
uiujs

2
1 − ujcis1 − uicjs1 + p0 · ρij

)
∑

1≤j≤i≤w
gijcicj + NLinFE.Dec(b,SKg) =

∑
1≤j≤i≤w

gij

(
cicj − ciujs1 − cjuis1 + uiujs

2
1 + p0 · ρij

)
=

∑
1≤j≤i≤w

gij
(
xixj + p0 · µij + p0 · ρij

)
=

∑
1≤j≤i≤w

gij xixj mod p0 as long as p0 · (µij + ρij) ≤
p1

5
.

Note that the error recovered in decryption is p0 ·
∑

1≤j≤i≤w
gij (µij + ρij).

4.3 Indistinguishability Based Security

Theorem 4.2. Assume that the noisy linear FE scheme NLinFE satisfies semi-adaptive indistin-
guishability based security as in Definition 3.4, that the RLWE assumption holds and that G is a
secure PRG for the parameters discussed in Section 4.3.1. Then, the construction QuadFE in Section
4 achieves semi-adaptive indistinguishability based security provided in Definition 2.4.

Proof. We will prove the theorem via a sequence of hybrids, where the first hybrid is the real world
with challenge x0 and the last hybrid is the real world with challenge x1.

The Hybrids. Our Hybrids are described below.

Hybrid 0. This is the real world with message x0. In hybrid 0, keyg is picked as follows:

1. Sample t0, . . . , tw ← Rp1 and let β ← {−1, 1}n be the seed of the PRG.

2. For 1 ≤ j ≤ i ≤ w, set keyij =
(
uiujt0 − ujti − uitj − p0 ·Gij(β)

)
mod p1

3. Let keyg =
∑

1≤j≤i≤w
gijkeyij mod p1.

33

Hybrid 1. In this hybrid, the only thing that is different is that the challenger picks keyg to
depend on the challenge ciphertext (c1, . . . , cw) and the function value g(x). Specifically,

1. Sample t0, . . . , tw ← Rp1 and let β ← {−1, 1}n be the seed of the PRG.

2. Set

keyij =
(
xixj − cicj

)
−
(
uiujt0 − ujti − uitj)− p0 ·Gij(β) ∀ 1 ≤ j ≤ i ≤ w

keyg =
∑

1≤j≤i≤w
gijkeyij mod p1

Hybrid 2. In this hybrid, we change the input for NLinFE.Enc to (t0, t1, . . . , tw, 1) where ti are
chosen as in Hybrid 1.

Hybrid 3. In this hybrid, we change the message vector in c to x1.

Hybrids 4 and 5. In Hybrid 4 we change the input to NLinFE.Enc to (s2
1, c1s1, . . . , cws1, 0) as in

Hybrid 1. In Hybrid 5, we change keyg to be chosen independent of the ciphertext as in Hybrid 0.
This is the real world with message x1.

Indistinguishability of Hybrids. Below we establish that consecutive hybrids are indistinguish-
able.

Claim 4.3. Hybrid 0 and Hybrid 1 are indistinguishable assuming the security of the PRG G for
parameters as discussed in Section 4.3.1.

Proof. The only difference between Hybrid 0 and Hybrid 1 is in the way keyg is sampled.
In Hybrid 1, keyg is picked as follows:

1. Sample t0, . . . , tw ← Rp1 and β ← {−1, 1}n be the seed of the PRG.

2. Let keyij =
(
xixj − cicj

)
−
(
uiujt0 − ujti − uitj

)
− p0 ·Gij(β) for 1 ≤ j ≤ i ≤ w.

To argue that keyij (and hence keyg) are indistinguishable, we rely on the security of PRG. Note
that by Equation 4.2,

xixj − cicj = uiujs
2
1 − ciujs1 − cjuis1 − p0 ·

(
p0 · µiµj + xiµj + xjµi

)
Hence,(
xixj − cicj

)
−
(
uiujt0 − ujti − uitj

)
=
(
uiujs

2
1 − uicjs1 − ujcis1 − p0 · (p0 · µiµj + xiµj + xjµi)

)
−
(
uiujt0 − ujti − uitj

)
= uiuj(s

2
1 − t0)− ui(cjs1 − tj)− uj(cis1 − ti)

− p0 · (p0 · µiµj + xiµj + xjµi)

Recall µij = p0 · µiµj + xiµj + xjµi, and let t′0 = s2
1 − t0, t′i = cis1 − ti, ∀ i ∈ [w]

34

Then,
(
xixj − cicj

)
−
(
uiujt0 − ujti − uitj

)
= uiujt

′
0 − uit′j − ujt′i − p0 · µij

Thus, in Hybrid 1, we have

keyij = uiujt
′
0 − uit′j − ujt′i − p0 ·

(
µij +Gij(β)

)
(4.3)

where t′0, . . . , t
′
w are uniform in Rp1 . Next, keyg =

∑
1≤j≤i≤w

gijkeyij .

In Hybrid 0, we have:

1. Sample t0, . . . , tw ← Rp1 and β ← {−1, 1}n be the seed of the PRG.

2. Set keyij = uiujt0 − ujti − uitj − p0 ·Gij(β)

3. Set keyg =
∑

1≤j≤i≤w
gijkeyij .

Thus, it suffices to argue that
(
µij +Gij(β)

)
is indistinguishable from Gij(β). We have by security of

the PRG G that
(
µij+Gij(β)

)
is indistinguishable from

(
µij+UnifRfld

)
, where Rfld is the range of Gij .

Next, we have by our choice of parameters (please see Section 4.3.1) that
(
µij+UnifRfld

)
is statistically

indistinguishable from UnifRfld
, and again by security of PRG that UnifRfld

is indistinguishable from
Gij(β) as desired.

Claim 4.4. Assuming semi-adaptive IND security of the noisy linear FE scheme NLinFE, Hybrid 1
and Hybrid 2 are indistinguishable.

Proof. Given an adversary B who distinguishes between Hybrid 1 and 2, we construct an adversary
A who breaks the semi-adaptive IND security of the noisy linear FE scheme NLinFE. A runs as
follows:

1. The challenger of the NLinFE scheme provides NLinFE.PK to A. A picks u ∈ Rwp1 , and sends
PK = (NLinFE.PK,u) to B.

2. B outputs challenges x0,x1 ∈ Rwp0 . A picks s1 ← Rp1 , and t← Rw+1
p1 and computes

ci = uis1 + p0 · µi + x0[i] ∀i ∈ [w].

A chooses challenge messages z0, z1 as:

z0 =
(
s2

1, c1s1, . . . , cws1, 0
)
∈ Rw+2

p1

z1 = (t0, t1, . . . , tw, 1) ∈ Rw+2
p1

A returns (z0, z1) to the NLinFE challenger.

3. When the NLinFE challenger sends the challenge NLinFE.CT(zb) to A, it sends CT =(
NLinFE.CT(zb), c

)
to B.

4. When B requests a key for quadratic polynomial
∑

1≤j≤i≤w
gijxixj , A computes keyg ∈ Rp1 as

in Hybrid 1, namely, for 1 ≤ j ≤ i ≤ w, let

keyij =
(
xixj − cicj

)
−
(
uiujt0 − ujti − uitj)− p0 ·Gij(β), keyg =

∑
1≤j≤i≤w

gijkeyij

It forwards (ug‖keyg) ∈ Rw+2
p1 to the NLinFE challenger. It’s response is relayed to B.

35

5. When B outputs a guess bit b, A forwards this guess to the NLinFE challenger.

Now, we argue that for all the requested keys, the difference between the decryption values on
the challenge messages z0 and z1 has the required distribution.

Consider a key request for quadratic function g(x) =
∑

1≤j≤i≤w
gijxixj , i.e. a NLinFE key request

for (ug‖keyg) ∈ Rw+2
p1 .

In Hybrid 1, the function (ug‖keyg) evaluated on z0 yields:∑
1≤j≤i≤w

gij
(
uiujs

2
1 − uicjs1 − ujcis1

)
In Hybrid 2 the function (ug‖keyg) evaluated on z1 yields:∑

1≤j≤i≤w
gij

(
uiujt0 − uitj − ujti + keyij

)
=

∑
1≤j≤i≤w

gij

(
uiujt0 − uitj − ujti +

(
uiuj(s

2
1 − t0)− uj(cis1 − ti)− ui(cjs1 − tj)

− p0 · µij − p0 ·Gij(β)
))

=
∑

1≤j≤i≤w
gij

(
uiujs

2
1 − uicjs1 − ujcis1 − p0 · (µij +Gij(β))

)
Thus, the decryption values in both worlds are the same upto an additive error of

p0 ·
∑

1≤j≤i≤w
gij(µij +Gij(β))

Thus, the difference between the 2 hybrids is distributed as
∑

1≤j≤i≤w
gij
(
fij(x,µ) +Gij(β)

)
We

will instantiate NLinFE so that
∑

1≤j≤i≤w
gij
(
fij(x,µ) +Gij(β)

)
∈ FNFE. Then, by the guarantee of

Noisy Linear FE we obtain that Hybrids 1 and 2 are indistinguishable.

Claim 4.5. Assume Regev public key encryption is semantically secure. Then, Hybrid 2 is
indistinguishable from Hybrid 3.

Proof. Recall that by semantic security of Regev’s (dual) public key encryption, we have that the
ciphertext c = u · s1 + p0 · µ + x0 is indistinguishable from c = u · s1 + p0 · µ + x1, where u is part
of the public key and µ← D0 is suitably chosen noise. We refer the reader to [GPV08] for more
details.

Given an adversary B who distinguishes between Hybrid 2 and Hybrid 3, we build an adversary
A who breaks the semantic security of Regev public key encryption. The adversary A receives
PK = u upon which, it simulates the view of B as follows:

• Run NLinFE.Setup to obtain NLinFE.PK and NLinFE.MSK. Return PK = (NLinFE.PK,u) to
B.

36

• When B outputs challenges x0,x1, A forwards these to the PKE challenger.

• A receives c where c = u · s1 + p0 · µ + xb for a random bit b.

• A computes b = NLinFE.CT(t0, . . . , tw, 1) and returns (c,b) to B.

• When B requests a key for quadratic polynomial g, construct it using NLinFE.MSK and with
keyg as in the previous hybrid.

• Finally, when B outputs a guess bit b, A outputs the same.

Clearly, if b = 0, then B sees the distribution of Hybrid 2, whereas if b = 1, it sees the distribution
of Hybrid 3. Also, the advantage of the attacker B in distinguishing Hybrids 2 and 3 translates
directly to the advantage of the attacker A in breaking the semantic security of Regev public key
encryption. Hence the claim follows.

Hybrid 4 is analogous to Hybrid 1 and indistinguishability can be argued along the same lines
as that between Hybrids 1 and 2, while Hybrid 5 is analogous to Hybrid 0 but with message x1.
This is the real world with message x1. Indistinguishability between Hybrids 4 and 5 can be argued
along the same lines as that between Hybrids 0 and 1.

4.3.1 Instantiating The Ingredients.

Below, we discuss how to instantiate the PRG and the NLinFE scheme.

1. Pseudorandom Generator PRG. Intuitively, we need the PRG to make the distribution of
keyij match in the real world and the simulation. As discussed in the proof of Lemma 4.3, we
need the PRG output Gij(β) to flood the noise term µij , that is,

SD
(
Gij(β), Gij(β) + µij

)
= negl(κ) (4.4)

Recall that Gij(β) is distributed uniformly in Rfld which is the set of polynomials with norm
at most Bfld. Moreover, we have by equation 4.1 that

µij = xiµj + xjµi + p0µiµj

where xi ∈ Rp0 and µi ← D0 are Binit bounded distributions (please see Definition 2.6), so we
may bound ‖µij‖ by p0 ·B2

init. Now, by choosing Bfld to satisfy

|µij |
Bfld

= negl(κ) (4.5)

we claim equation 4.4 by a standard probabilistic argument8.

2. Noisy linear functional encryption NLinFE. In Claim 4.4, we saw that decryption in
Hybrid 1 and 2 is the same up to an additive error of

p0 ·
∑

1≤j≤i≤w
gij
(
µij +Gij(β)

)
8We note that this is the usual “flooding” argument, but here we flood using a uniform random variable rather

than the more standard Gaussian. This makes the argument even simpler.

37

where µij is defined in equation 4.1 and Gij is an output symbol of the PRG G as discussed
above.

We require a (DNFE,FNFE, BNFE)-NLinFE scheme where (i). (x0,µ,β)← DNFE when x ∈ Rwp0
is chosen arbitrarily, µ ← Dw0 and β ← {−1, 1}n is the seed of the PRG (ii). FNFE ={ ∑

1≤j≤i≤w
gij hij(·, ·, ·)

}
1≤j≤i≤w with

hij(x,µ,β) = p0 ·
(
µij +Gij(β)

)
and (iii) BNFE is chosen to satisfy BNFE < p1/5 to maintain decryption correctness as discussed
in Section 4.2. Our constructions of NLinFE will impose an additional constraint on BNFE,
please see Section 7 for details.

For parameters, please see Section 9.

5 Broader Classes of Randomness Generators

In this section we define broader classes of randomness generators that suffice for our bootstrapping.

5.1 Correlated Noise Generators

In this section we define the notion of a correlated noise generator, which we denote by CNG. Since
the intuition was discussed in Section 1, we proceed directly with the formalism.

We denote by R the ring of integers Z or the ring of polynomials Z[x]/f(x) where f(x) = xd + 1
as discussed in Section 2. Let D1 be a distribution over R and F : Rw → R be a set of deterministic
functions. Let DomCng,RgCng be finite subsets of R, let G : Domn

Cng → RgmCng be a family of
deterministic functions and D2 be a distribution over DomCng. We require that n be linear in w, i.e.
n = O(w,poly(κ)).

Definition 5.1 ((D1,F)- Correlated Noise Generator). We say that (D2,G) is a (D1,F)- Correlated
Noise Generator (CNG) if the advantage of any P.P.T adversary A is negligible in the following
game:

1. Challenger chooses n i.i.d samples β ← Dn2 .

2. The adversary A does the following:

(a) It chooses m functions f1, . . . , fm ∈ F .

(b) It samples µ← Dw1 .

(c) It returns {fi, fi(µ)}i∈[m] to the challenger.

3. The challenger chooses m functions G1, . . . , Gm ∈ G. It tosses a coin b. If b = 0, it returns
{fi(µ) +Gi(β)}i∈[m], else it returns {Gi(β)}i∈[m].

4. The adversary outputs a guess for the bit b and wins if correct.

We will refer to β as the seed of the CNG. We say that an CNG has polynomial stretch if m = n1+c

for some constant c > 0.

Blockwise local CNG is defined analogously to blockwise local PRG, please see Section 2.1 for
details.

38

Discussion. As discussed in Section 1, a correlated noise generator is weaker than a pseudorandom
generator, in that, a PRG implies an CNG but not the other way around. As discussed in Section
4.3.1, by choosing the range of a PRG G to have norm bounded by a value which is superpolynomially
larger than ‖fi(µ)‖ for all i ∈ [m], we have that Gi(β) + fi(µ) is indistinguishable from Gi(β), by a
standard “flooding” argument.

Our construction will use CNG for flooding noise terms as was done by PRG in Section 4, claim
4.3, but now leveraging the fact that the noise terms that must be flooded are correlated in a
special way, not i.i.d. as to require PRG. Intuitively, flooding is performed to wipe out leakage
otherwise provided by noise terms, but the flooded noise term must still be small enough to maintain
correctness of the scheme. Hence the norm of the CNG output will be chosen so as to be smaller
than p1/5; we discuss this in detail in Section 7.

5.2 Non Boolean Pseudorandom Generators

In this section, we describe the properties we require from non-Boolean PRGs and discuss methods to
instantiate these. As discussed in Section 1, in prior work [Lin17, LT17], Boolean PRGs were required
in order to compute the binary randomness needed for constructing randomizing polynomials. Note
that when instantiated with low degree candidates such as Goldreich’s PRG [Gol00], the PRG output
can be expressed as a degree 2 polynomial over Z2, however to compute this polynomial within a
QuadFE scheme which only supports computations over Z, the polynomial must be arithmetized,
and this blows up the degree to the locality of the PRG, which is 5 for the case of [Gol00].

In our case, the PRG output must satisfy a much weaker property than indistinguishability to
uniform as discussed above. Say we can bound ‖fi(µ)‖ ≤ ε for i ∈ [m]. Then we require the PRG
output Gi(β) to computationally flood fi(µ) for i ∈ [m], i.e. Gi(β) +fi(µ) must be computationally
indistinguishable from Gi(β). We conjecture that degree 2 polynomials over Z may be used to
compute Gi(β) via the multivariate quadratic MQ assumption.

At a high level, the MQ assumption states that given m multivariate quadratic polynomials
pi(x) in n variables x = (x1, . . . , xn), where m > n, over a finite field F, it is infeasible to recover x
for appropriate values of m,n and choice of polynomials pi. The MQ assumption has been studied
extensively [MI88, BFP09, BFSS13, BFS03, Wol05, DY09, YDH+15, WP05, TW10, AHKI+17] and
has formed the basis of several cryptosystems, please see [DY09] for a survey. MQ is known to be
NP complete in the worst case, and the general method to solve MQ involves computing Gröbner
bases, which are notoriously hard to compute [Wol05]. Please see Section 2 for a precise statement
of the assumption.

We note that our setting is different from the standard setting of MQ in that in our case, the
quadratic polynomials are computed over (a bounded range of) Z rather than over a finite field.
Even for this setting however, the problem is no easier than the standard case of finite fields to the
best of our knowledge, indeed, computing Gröbner bases in this setting typically involves reducing
the equations modulo some prime and then applying the tools of the standard finite field setting
[Wol05].

We conjecture that MQ can be used to instantiate the non-Boolean PRG we require by choosing
parameters so that the output of the polynomials is super-polynomially larger than ε, the size of
the term it seeks to flood. We do not insist on a concrete candidate here, but note that randomly
chosen polynomials are often considered good candidates (please see [Wol05] for a discussion on
how to construct hard MQ problems) for m,n as in our case, please see Section 7. We leave further

39

studies on such PRG to future work, but note that we do not impose any sparsity requirement on
the non-Boolean PRG (please see Section 7), and hence the general attack of [BBKK17] does not
seem to apply.

6 Functional Encryption for NC1

In this section, we construct a functional encryption scheme for NC1, denoted by FeNC1, from a
correlated noise generator CNG, the RLWE assumption and a noisy linear functional encryption
scheme NLinFE. Our construction is a generalisation of the quadratic FE scheme provided in Section
4 and makes use of the public key and ciphertext evaluation algorithms developed by Agrawal and
Rosen [AR17].

Background. Let R = Z[x]/(φ) where φ = xd + 1 and d is a power of 2. Let Rp , R/pR for any
large prime p satisfying p = 1 mod 2n.

We consider arithmetic circuits F : Rwp0 → Rp0 of depth d, consisting of alternate addition and
multiplication layers. For circuits with long output, say `, we consider ` functions, one computing
each output bit. For k ∈ [d], layer k of the circuit is associated with a modulus pk. For an addition
layer at level k, the modulus pk will be the same as the previous modulus pk−1; for a multiplication
layer at level k, we require pk > pk−1. Thus, we get a tower of moduli p1 < p2 = p3 < p4 = . . . < pd.
We define encoding functions Ek for k ∈ [d] such that Ek : Rpk−1

→ Rpk . The message space of the
scheme FeNC1 is Rp0 .

At level k, the encryptor will provide Lk encodings, denoted by Ck, for some Lk = O(2k). For
i ∈ [Lk] we define

Ek(yi) = uki · s+ pk−1 · ηki + yi.

Here uki ∈ Rpk is called the “label” or “public key” of the encoding, ηki is noise chosen from some
distribution χk, s← Rp1 is the RLWE secret, and yi ∈ Rpk−1

is the message being encoded. We will
refer to Ek(yi) as the Regev encoding of yi. We denote:

PK
(
Ek(yi)

)
, uki , Nse(Ck) , pk−1 · ηki

The messages encoded in level k encodings Ck are denoted by Mk.

Agrawal and Rosen [AR17] show that at level k, the decryptor is able to compute a Regev
encoding of functional message fk(x) where fk is the circuit f restricted to level k. Formally:

Theorem 6.1. [AR17] There exists a set of encodings Ci for i ∈ [d], such that:

1. Encodings have size sublinear in circuit. ∀i ∈ [d] |Ci| = O(2i).

2. Efficient public key and ciphertext evaluation algorithms. There exist efficient
algorithms EvalPK and EvalCT so that for any circuit f of depth d, if PKf ← EvalPK(PK, f)
and CT(f(x)) ← EvalCT(∪

i∈[d]
Ci, f), then CT(f(x)) is a “Regev encoding” of f(x) under public

key PKf . Specifically, for some LWE secret s, we have:

CT(f(x)) = PKf · s+ pd−1 · ηd−1
f + µf(x) + f(x) (6.1)

40

where pd−1 · ηd−1
f is RLWE noise and µf(x) + f(x) is the desired message f(x) plus some noise

µf(x)
9.

3. Ciphertext and public key structure. The structure of the functional ciphertext is as:

CTf(x) = Polyf (C1, . . . , Cd−1) + 〈Linf , Cd〉 (6.2)

where Polyf (C1, . . . , Cd−1) ∈ Rpd−1
is a high degree polynomial value obtained by computing a

public f -dependent function on level k ≤ d−1 encodings {Ck}k∈[d−1] and Linf ∈ RLdpd computed
by EvalPK(PK, f) is an f -dependent linear function. We also have

f(x) + µf(x) = Polyf (C1, . . . , Cd−1) + 〈Linf ,Md〉 (6.3)

where Md are the messages encoded in Cd and µf(x) is functional noise. The public key for

the functional ciphertext is structured as:

PK
(
CTf(x)

)
=
〈
Linf ,

(
PK(Cd1), . . . ,PK(CdLd)

)〉
(6.4)

The Encodings. The encodings Ck for k ∈ [d] are defined recursively as:

1. C1 , {E1(xi), E1(s)}

2. If k is a multiplication layer, Ck = {Ek(Ck−1), Ek(Ck−1 · s), Ek(s2)}10. If k is an addition layer,
let Ck = Ck−1.

As in the case of QuadFE, we will use NLinFE to enable the decryptor to compute 〈Linf ,Md〉+
Gf (β) where Gf (β) is a large noise term that is meant to “flood” functional noise µf(x). She may

then compute Polyf (C1, . . . , Cd−1) herself and by Equation 6.3 recover f(x) + µf(x) +Gf (β).

In Section 4, Gf was chosen to be a PRG; here, we will use the weaker primitive of correlated
noise generator CNG to instantiate Gf . As discussed in Section 1 and Section 5, CNG leverages the
fact that the noise it must flood has special structure and in particular lower entropy than i.i.d
random variables.

6.1 Construction

We will instantiate the parameters of NLinFE and CNG in Section 6.4. Next, we proceed to describe
the construction. The construction below supports a single function of output length ` or equivalently
` functions with constant size output (however, in this case ` must be fixed in advance and input to
all algorithms). The ciphertext size is sublinear in the size of the circuit, as discussed in Section 6.2.

FeNC1.Setup(1κ, 1w, 1d): Upon input the security parameter κ, the message dimension w, and the
circuit depth d, do:

9Here µf(x) is clubbed with the message f(x) rather than the RLWE noise pd−1 · ηd−1
f since µf(x) + f(x) is what

will be recovered after decryption of CTf(x).
10Here, we use the same secret s for all RLWE samples, but this is for ease of exposition – it is possible to have a

different secret at each level so that circular security need not be assumed. We do not describe this extension here.

41

1. For k ∈ [d], let Lk = |Ck| where Ck is as defined in Theorem 6.1. For k ∈ [d− 1], i ∈ [Lk],
choose uniformly random uki ∈ Rpk . Denote uk = (uki) ∈ RLkpk .

2. Invoke NLinFE.Setup(1κ, 1Ld , pd) to obtain PK = NLinFE.PK and MSK = NLinFE.MSK.

3. Sample a CNG seed β ← Dnseed. Sample t0, . . . , tLd ← Rpd−1
and let t = (t0, . . . , tLd).

4. Output PK = (u1, . . . ,ud−1,NLinFE.PK) and MSK = (NLinFE.MSK,β, t).

FeNC1.KeyGen(MSK, f): Upon input the master secret key NLinFE.MSK, CNG seed β and a circuit
f : Rwp0 → Rp0

11 of depth d, do:

1. Let Linf ← EvalPK(PK, f) ∈ RLdpd as described in Equation 6.4.

2. Let Gf denote the CNG chosen corresponding to function f as described in Section 6.4.

3. Compute keyf = 〈Linf , t〉 −Gf (β).

4. Let SKf = NLinFE.KeyGen(MSK, Linf‖keyf).

FeNC1.Enc(x,PK): Upon input the public key and the input x, do:

1. Compute the encodings Ck for k ∈ [d− 1] as defined in Theorem 6.1. Denote by s the
RLWE secret used for these encodings.

2. Define Md =
(
Cd−1, Cd−1 · s, s2

)
∈ RLdpd . Compute Cd = NLinFE.Enc(NLinFE.PK,Md).

3. Output CTx = ({Ck}k∈[d]).

FeNC1.Dec(PK,CTx,SKf): Upon input a ciphertext CTx for vector x, and a secret key SKf for
circuit f , do:

1. Compute CTf(x) = EvalCT({Ck}k∈[d−1], f). Express CTf(x) = Polyf (C1, . . . , Cd−1) +

〈Linf , Cd〉 as described in Equation 6.2.

2. Compute NLinFE.Dec(SKf , Cd) to obtain 〈Linf ,Md〉 + ηf for some noise ηf added by
NLinFE.

3. Compute Polyf (C1, . . . , Cd−1) + 〈Linf ,Md〉 + ηf mod pd mod pd−1, . . . , mod p0 and
output it.

Correctness follows from correctness of EvalPK, EvalCT and NLinFE. We have by correctness of
EvalPK, EvalCT that:

CTf(x) = 〈Linf , Cd〉+ Polyf (C1, . . . , Cd−1)

Polyf (C1, . . . , Cd−1) + NLinFE.Dec(SKf , Cd) = Polyf (C1, . . . , Cd−1) + 〈Linf ,Md〉+ ηf

= f(x) + µf(x) + ηf by theorem 6.1

= f(x) mod pd mod pd−1, . . . , mod p0

where the last step follows since µf(x) and ηf are linear combinations of noise terms, each noise
term being a multiple of pk for k ∈ {0, . . . , d− 1}. For details regarding the structure of the noise
terms, please see Appendix E.

11We will let the adversary request ` functions

42

6.2 Ciphertext Size

The size of the ciphertext is | ∪
k∈[d−1]

Ck|+ |NLinFE.CT(Md)|. Note that | ∪
k∈[d−1]

Ck| = O(2d) and

|Md| = O(2d) by Theorem 6.1. All our constructions of NLinFE will have compact ciphertext (please
see Sections 7 and 8), hence the ciphertext of the above scheme is also sublinear in circuit size.

6.3 Proof of Security.

In this section, we provide the proof of security. The proof is nearly identical to that in Section 4,
generalised with EvalPK and EvalCT.

Theorem 6.2. Let NLinFE and CNG be instantiated as described in Section 6.4. Assume the noisy
linear FE scheme NLinFE satisfies semi-adaptive indistinguishability based security as in Definition
3.4 and that G is a secure CNG as defined in Definition 5.1. Then, the construction FeNC1 achieves
semi-adaptive indistinguishability based security in the single key game described in Definition 2.4.

Proof. We will prove the theorem via a sequence of hybrids, where the first hybrid is the real world
with challenge x0 and the last hybrid is the real world with challenge x1.

The Hybrids. Our Hybrids are described below.

Hybrid 0. This is the real world with message x0. In hybrid 0, the element keyf in the
FeNC1.KeyGen procedure is picked as follows: sample t0, . . . , tLd ← Rp1 and denote t = (t0, . . . , tLd).
Let

keyf = 〈Linf , t〉 −Gf (β)

Hybrid 1. In this hybrid, the only thing that is different is that the challenger picks keyf to
depend on the challenge ciphertext. In more detail,

1. Sample t0, . . . , tLd ← Rpd−1
and compute Gf (β) as in Hybrid 0. Denote t = (t0, . . . , tLd).

2. Set
keyf = f(x)− Polyf (C1, . . . , Cd−1)− 〈Linf , t〉 −Gf (β)

Hybrid 2. In this hybrid, we change the input for NLinFE.Enc to (t0, t1, . . . , tLd , 1) where ti for
i ∈ [Ld], are chosen as in Hybrid 1.

Hybrid 3. In this hybrid, we change the message vector in ∪
k∈[d−1]

Ck to x1.

Hybrids 4 and 5. In Hybrid 4 we change the input to NLinFE.Enc to (Md) as in Hybrid 1. In
Hybrid 5, we change keyf to be chosen independent of the ciphertext as in Hybrid 0. This is the
real world with message x1.

43

Indistinguishability of Hybrids.

Lemma 6.3. Hybrid 0 and Hybrid 1 are indistinguishable by the security of CNG.

Proof. In Hybrid 0, we set

keyfi = 〈Linfi , t〉 −Gfi(β), ∀i ∈ [`]

In Hybrid 1, we set

keyfi = fi(x)− Polyfi(C
1, . . . , Cd−1)− 〈Linfi , t〉 −Gfi(β)

We have by Theorem 6.1 that

〈Linfi ,M
d〉+ Polyfi(C

1, . . . , Cd−1) = fi(x) + µfi(x)

Hence, fi(x)− Polyfi(C
1, . . . , Cd−1) = 〈Linfi ,M

d〉 − µfi(x)

Hence, we have in Hybrid 1,

keyfi = 〈Linfi ,M
d〉 − µfi(x) − 〈Linfi , t〉 −Gfi(β)

= 〈Linfi ,M
d − t〉 − (µfi(x) +Gfi(β))

= 〈Linfi , t
′〉 − (µfi(x) +Gfi(β))

Above we set t′ =Md − t. Since t is chosen randomly, we have that t′ is distributed uniformly over
Rpd−1

.

Next, we claim for CNG instantiated as in Section 6.4, we have µfi(x) +Gfi(β)
c
≈ Gfi(β) by the

security of CNG. Formally, given an adversary Adv who distinguishes between Hybrid 0 and 1, we
construct an adversary AdvCNG against CNG 5 as follows:

1. AdvCNG expresses µfi(x) = f̂i
(
M1,Nse(C1), . . . ,Md,Nse(Cd)

)
as described in Section 6.4 for

all i ∈ [`] (corresponding to ` output bits) and sends (f̂i, µfi(x) to the CNG challenger.

2. The CNG challenger chooses CNG Gfi for i ∈ [`] and seed β ← Dnseed, a random bit b and
returns zi = Gfi(β) if b = 0 and zi = Gfi(β) + µfi(x) if b = 1.

3. AdvCNG computes keyfi = 〈Linfi , t′〉 − zi. It computes all other elements as in Hybrid 0 and
returns this to Adv.

4. It outputs whatever Adv outputs.

Note that the reduction AdvCNG is a valid adversary against the CNG. Additionally, if b = 0,
we are in Hybrid 0, else in Hybrid 1, hence the advantage of AdvCNG translates to an advantage of
Adv.

Indistinguishability of remaining Hybrids is exactly as in Section 4.3. In more detail, Hybrid 1
and Hybrid 2 are indistinguishable by the security of NLinFE because the challenge decryption in
both Hybrids is equal up to an additive error with the appropriate distribution. To see this, note
that in Hybrid 1, NLinFE decryption gives:

〈Linf ,Md〉

44

and in Hybrid 2, NLinFE decryption gives:

〈Linf , t〉+ keyf = 〈Linf , t〉+
(
f(x)− Polyf (C1, . . . , Cd−1)− 〈Linf , t〉 −Gf (β)

)
= f(x)− Polyf (C1, . . . , Cd−1)−Gf (β)

= 〈Linf ,Md〉 − µf(x) −Gf (β) by Theorem 6.1

= 〈Linf ,Md〉 −
(
µf(x) +Gf (β)

)
Thus, the challenge message evaluation on the requested key differs by an additive term of(

µf(x) +Gf (β)
)

(6.5)

which, for our choice of parameters (see Section 6.4) and by guarantee of NLinFE implies
indistinguishability of NLinFE ciphertexts in Hybrids 1 and 2. The formal reduction is exactly as in
Claim 4.4.

Indistinguishability of Hybrids 2 and 3 follows exactly as in Claim 4.5. Intuitively, now that
the NLinFE message is independent of the encodings ∪

i∈[d−1]
Ck, we may switch the message in the

encodings to x1 by the semantic security of Regev encodings. Note that decryption still works
correctly because the term keyfi for i ∈ [`] in the functional key compensates for the NLinFE message,
exactly as in Section 4.3.

6.4 Instantiating CNG and NLinFE

Instantiating the CNG. To instantiate the CNG, we must analyse the distribution of the noise
term µf(x) that occurs in Equation 6.3. The final noise term µf(x) is a high degree polynomial
computed on L =

∣∣ ∪
i∈[d]
Ci
∣∣ noise terms and message terms that are used in the encodings Ci for

i ∈ [d]. A detailed analysis of this distribution is provided in Appendix E.2, here we give an intuitive
overview. The disinterested reader may safely skip this section – it is not very important what is
the exact distribution of µf(x) as long as it can be understood as a circuit computed on O(L) noise
terms where L is sublinear in |f |.

The distribution of µf(x) may be analysed by proceeding from bottom to top of the circuit as
follows. At level 1, for computing a multiplication layer, we require (D1

CNG,F1
CNG)-CNG where to

sample from D1
CNG, we choose x ∈ Rwp0 arbitrarily, and µ← Dw0 , where D0 is a discrete Gaussian.

Since x is the message encoded at level 1, it is denoted byM1 using the notation above and since µ
is the noise used in level 1 encodings, this is denoted by Nse(C1). Thus, D1

CNG is defined by sampling
as (M1,Nse(C1)) as specified by the encrypt algorithm. The function family F1

CNG is described as
follows. Let k be a multiplication gate taking as input wires i and j and let `1 = |1 ≤ j ≤ i ≤ w|.
Then, F1

CNG = { f̂1
k }k∈[`1] where,

Mult: f̂1
k (x,µ) = p0 ·

(
p0 · µiµj + xiµj + xjµi

)
(6.6)

At the next (addition) layer, D2
CNG = D1

CNG and the function family F2
CNG is described as follows.

Let g be an addition gate at level 2 taking input wires k and k′ and let `2 denote the number of
addition gates at level 2. Then, F2

CNG = { f̂2
g }g∈[`2]

Add: f̂2
g (x,µ) = f̂1

k (x,µ) + f̂1
k′(x,µ) (6.7)

45

Note that f̂1
k (x,µ) and f̂1

k′(x,µ) are computed as described in Equation 6.6. Generalizing,
the distribution DdCNG is defined by sampling from the vector (M1,Nse(C1), . . . ,Md,Nse(Cd)) as

specified by the encrypt algorithm. The function f̂d corresponding to circuit f in the function key
is computed bottom up using the analogue of Equation 6.6 for multiplication and the analogue of
Equation 6.7 for addition.

We note that the final noise is a high degree polynomial in the message and noise terms that
were used to compute the encodings {Ck}k∈[d], i.e. a function of

∑
k∈[d]

|Ck| = O(2d) terms.

Thus, we may instantiate the correlated noise generator (DdCNG,FdCNG)-CNG, with seed β so that

if f̂ is the circuit that computes the noise µf(x) corresponding to ciphertext evaluation on f , and
Gf is the CNG chosen to flood µf(x), we have:

f̂
(
M1,Nse(C1), . . . ,Md,Nse(Cd)

)
+Gf (β)

c
≈ Gf (β)

Instantiating the Noisy Linear FE. We will also require a noisy linear functional encryption
scheme as in Section 4, (DNFE,FNFE, BNFE)-NLinFE where the parameters (DNFE,FNFE, BNFE) are
computed as:

1. y← DNFE if y =
(
M1,Nse(C1), . . . ,Md,Nse(Cd),β

)
where each of the components is sampled

as above.

2. h(y) = f̂
(
(M1,Nse(C1), . . . ,Md,Nse(Cd)

)
+Gf (β) for h ∈ FNFE.

3. BNFE is bounded below pd/5 to allow decryption and is chosen superpolynomially larger than
any |h(y)| above, for reasons discussed in Section 7. We set the parameters in Section 9.

7 Constructing Noisy Linear Functional Encryption

In this section, we provide a construction of noisy linear functional encryption NLinFE as defined
in Section 3. The ciphertext space for our construction is a ring Rq for some prime q where
R = Z[x]/(xd + 1) and Rq = R/qR and the plaintext space is Rp for some prime p << q.

Our construction of NLinFE relies on:

1. In the public key setting, an L blockwise local PRG with input size n, block size b and stretch
Ω(n · 2b(1+ε)) and a compact FE scheme supporting polynomials of degree L.

2. In the private key setting, an L blockwise local correlated noise swallowing generator CNG
with input size n, block size b and stretch Ω(n · 2b(1+ε)) and a compact function hiding FE
scheme supporting polynomials of degree L.

Intuition. Recall that NLinFE requires that if two challenge messages x0,x1 evaluate to only
approximately the same value for a given function key, their ciphertexts should be indistinguishable.
Evidently, to prevent functionality itself from nullifying security, the decryption values must be
suitably modified so as to be indistinguishable.

46

In our applications of NLinFE, the difference in decryption values is a random variable of fixed
distribution and bounded norm. For instance, we see in Section 6 that the challenge message
decryption values differ by the term

(
µf(x) +Gf (β)

)
12 (please see Equation 6.5) where µf(x) and

Gf (β) are deterministic functions of random variables from known distributions. To make the
decryption values indistinguishable, all our constructions will add a carefully constructed noise term,
noisefld (say), generated either using PRG or CNG so as to smudge the above term and make the
resultant term simulatable. In more detail, we require:(

µf(x) +Gf (β)
)

+ noisefld
c
≈ noisefld

Now, the decryptor recovers either val +
(
µf(x) +Gf (β)

)
+ noisefld or val + noisefld for some value

val ∈ Rq, which are indistinguishable by the choice of added noise.

In order to preserve functionality of the system, the added noise must not be so large as to
completely randomize the decrypted value val – to achieve this, the added noise term will still have
norm that is suitably bounded below the modulus size q, and live in a fixed ideal that is modded out
to recover val exactly as in fully homomorphic encryption (FHE). Indeed, this is not a coincidence
since we will be using NLinFE to compute an FHE decryption equation, as discussed in Section 4.

In summary, we will use an FE scheme to construct a PRG or CNG noise term which must be
large enough to smudge the leaky distribution of the aforementioned noise term, but small enough
to be removable in the final decryption process. Since our FE must construct a linear equation
plus noise13, the degree of the polynomial that FE must support is equal to the degree required to
construct the noise term.

7.1 PRG with non-Boolean output.

As discussed above, we will require our PRG or CNG to generate elements in Rq of bounded size
(please see Section 6 and Section 4 to confirm this). Here, we discuss two approaches to achieve the
same.

Using Boolean PRG to construct non-Boolean PRG. In our first approach, we will use a
standard binary PRG to generate coefficients of the ring element, so that each coefficient is bounded
by some value Bcoef << q (say) as follows. Let ri be pseudorandom bits output by the PRG,
then

∑
i∈[logdBcoefe]

2i · ri generates a pseudorandom element bounded by Bcoef . Thus, to generate `

output ring elements of bounded norm, the binary PRG must output m = ` · logdBcoefe · d bits.
Since the powers of 2 expansion is a linear function, the degree of the function that computes
the pseudorandom ring element we require retains degree equal to that of the binary PRG. Let
RBd ⊂ Rq be the set of elements in Rq with bounded norm as we require. We will instantiate this
in Section 7.2.3.

Below, we will let Gq : {−1, 1}n → R`Bd be a PRG that outputs ` ring elements of bounded
coefficients directly. Gqi will denote the function that outputs the ith element for i ∈ [`]. Our
construction of NLinFE will support ` function queries, and have ciphertext size sublinear in `.

12In the symmetric key setting, the challenge message decryption values need differ only by term µf(x)
13We emphasize that we are not constructing LWE samples, our usage of noisy linear equations is much more general

and does not follow the LWE distribution.

47

Direct construction of non-Boolean PRG. As discussed in Section 1, using a Boolean PRG
to construct non-Boolean output is wasteful, since Boolean PRGs are more restricted than what we
need, and indeed have the undesirable side-effect of requiring large arithmetic degree to compute.

As discussed in Section 5.2, we propose that the MQ (Multivariate Quadratic) assumption
(please see [DY09] and references therein) be used in order to generate the term noisefld via quadratic
polynomials.

7.2 Public Key Noisy Linear Functional Encryption

Let PrgFE be an FE scheme supporting degree L polynomials, where L is the degree required to
compute a pseudorandom generator as discussed above. Let Sym be a symmetric key encryption
scheme. We show how to construct NLinFE from these. Our proof follows the strategy of embedding
a hidden thread in the functionality which is only active during simulation [CIJ+13, ABSV15]. To
convey intuition, we will describe the simplest scheme which does not leverage the blockwise locality
of the PRG; we discuss in Section 7.2.1 how to pre-process the input and massage the functionality
as in [LT17] so that the degree of the functionality is reduced to the block locality of the PRG.

NLinFE.Setup(1κ, 1w): Upon input the security parameter and length of input message, do the
following:

1. Choose PRG. Let Gq be a PRG with input size n and output length ` as described above.

2. Invoke (PK,MSK)← PrgFE.Setup(1κ, 1w+n+κ+1) and output (PK,MSK).

NLinFE.Enc(PK, z): Upon input the master secret key MSK and a vector z ∈ Rwp , do the following:

1. Sample a seed s← {−1, 1}n for the PRG.

2. Compute PrgFE.Enc
(
PK, (z, s,⊥,mode = 0)

)
.

NLinFE.KeyGen(MSK,vi, . . .v`): Upon input the master secret key MSK and ` vectors v1, . . . ,v` ∈
Rwp , do the following:

1. For i ∈ [`], choose CTi randomly from the space of Sym ciphertexts.

2. For i ∈ [`], define functionality gi,vi,CTi in Figure 7.2

3. Output PrgFE.KeyGen(MSK, gi) for i ∈ [`].

Functionality gi,vi,CTi(z, s,Sym.K,mode)

If mode = 0, output y = 〈z, vi〉+Gqi (s) ∈ Rq else output y = Sym.Dec(K,CT).

Figure 7.1: Functionality Gi,vi,CTi

NLinFE.Dec(PK,CTz,SKv): Upon input the public key PK, a ciphertext CTz and a function key
SKv, compute PrgFE.Dec(PK,CTz,SKv) and output it.

Correctness. We have by correctness of PrgFE that decryption recovers 〈z, vi〉+Gqi (s) as desired.

48

7.2.1 Shrinking Degree of Functionality.

The case of the Boolean PRG. In this section, we show how to pre-process the input and
modify the function description so that the output can be computed by a degree L polynomial
where L is the blockwise locality of the Boolean PRG.

To begin, we choose the encryption scheme Sym to simply be a one time pad with the mask
computed using a PRG. In more detail, we let s′ be a PRG seed, and encrypt a value yi as yi⊕Gqi (s′).
We set Sym.K = s′.

Then, the function gi,vi,CTi from Figure 7.2 may be written as the polynomial

gi,vi,CTi = (1−mode)
(
z, vi〉+Gqi (s)

)
+ mode ·

(
CT⊕Gqi (s

′)
)

(7.1)

The largest degree term in the above polynomial is mode ·Gqi (s) which, if computed naively, would
require degree L′ + 114 where L′ is the locality of Gqi . However, by choosing Gq to be a block local
PRG and pre-processing the input in a manner inspired from [LT17], we may express the above
functionality as a degree L polynomial, where L is the blockwise locality of Gqi . Since PRG may have
much smaller block locality as compared to locality, this significantly reduces the degree required to
be supported by the FE scheme.

We note that our pre-processing step is significantly simpler than that in [Lin17, LT17] since our
functionality has a native degree of L′+1 as against the degree 3L′+2 incurred by the bootstrapping
of [LV16, Lin17, LT17].

In more detail, we define a function PreProcess as follows.

1. Sample two seeds s, s′ ← {−1, 1}n·b for the PRG. We view each seed as a matrix with n
columns and b rows. We denote the nth column of the matrices as sγ and s′γ respectively.

2. Compute all multilinear monomials in every block of size b. Define

Mnml(A) , {ai1ai2 . . . aiq |q ≤ |A| and ∀ j, k, aij 6= aik ∈ A }

3. Define
V1 = {Mnml(sγ)}γ∈[n] ⊗ (mode||1), V2 = {Mnml(s′γ)}γ∈[n] ⊗ (mode||1)

Return (V1‖V2).

Since all the monomials in a given column of the seed matrix are pre-computed, and since by
definition of block locality the output of the PRG may depend on inputs from only L columns, it
holds that the output of the PRG can be computed by a degree L polynomial. By further computing
the product of these monomials with mode, we conclude that the polynomial that computes the
function gi,vi,CTi defined above has degree L in the input (z, ‖V1‖V2).

Thus, if instead of computing PrgFE encryption of message (z, s,⊥,mode = 0), we compute
PrgFE encryption of input (z, ‖V1‖V2), and if instead of computing the key corresponding to function
gi,vi,CTi we compute the keys corresponding to the degree L polynomials that compute gi,vi,CTi on
input (z, ‖V1‖V2), we obtain that FE supporting evaluation of degree L polynomials suffices.

14Note that multiplication with CT does not incur any additional degree (as in the case of [Lin17]) since this is a
constant hardwired in the function.

49

The case of the non-Boolean PRG. Note that if there exists a secure quadratic instantiation
of non-Boolean PRG that suffices for our purpose, then we do not require the pre-processing above
(except the pre-multiplication with mode), simplifying the pre-processing even further.

Ciphertext Size. It remains to argue that the ciphertext size is sublinear in the circuit size. This
is implied by [Lin17, LT17] since our pre-processed input size is strictly smaller than in these works.
In more detail, note that |V1| = |V2| = |Mnml(sγ)| · n · 2. By choosing block size log κ, we get that

|Mnml(sγ)| = κ. Moreover, as in [LT17], we set the seed size n = S
1

1+α where S is the size of the

circuit and α > 0. Hence the length of the message encrypted by PrgFE is O(κ · S
1

1+α) which is
clearly sublinear in S. Additionally, since we assumed that PrgFE enjoys compact ciphertext, we
get that the ciphertext size is sublinear in S.

7.2.2 Proof of Security.

Next, we argue that the NLinFE scheme constructed above is secure.

Theorem 7.1. Assume that PrgFE is an FE scheme that supports evaluation of degree L polynomials
and satisfies IND security as in Definition 2.4. Assume that Gq is a secure PRG with block locality L
and polynomial expansion. Then, the NLinFE scheme constructed in Section 7.2 satisfies Noisy-IND
security as in Definition 3.4.

Proof. The proof proceeds via a sequence of hybrids. Let us say the adversary provides Q ciphertext
challenges, denoted by message pairs –(z0

1, z
1
1) . . . , (z0

Q, z
1
Q). For a given key vector v, let us say we

have 〈(z0
i − z1

i),v〉 = εi for i ∈ [Q].

We construct Q hybrids, one corresponding to each challenge message pair. In hybrid 0, all
messages are encrypted as in the real world with bit b = 0. In hybrid i for i ∈ [Q], the first i− 1
challenge messages correspond to bit b = 1, namely {(z1

j , sj ,⊥,mode = 0)} for j ∈ [i − 1] and

{(z0
j , sj ,⊥,mode = 0)} for j ∈ [i, Q]. Thus, hybrid Q corresponds to the real world with bit b = 1.

Between Hybrids i and i+ 1 for i ∈ [Q], we define 4 sub-Hybrids as follows.

Hybrid (i, 0): In hybrid i for i ∈ [Q], the first i− 1 challenge ciphertexts correspond to bit b = 1,
namely {(z1

j , sj ,⊥,mode = 0)} for j ∈ [i] and {(z0
j , sj ,⊥,mode = 0)} for j ∈ [i+ 1, Q].

Hybrid (i, 1): In this world, we hardwire the output of the function on the ith message i.e.
yi = 〈z0

i , v〉 + Gqv(si) into the function key using symmetric key encryption. That is, let
CT = Sym.Enc(Sym.K, yi).

Hybrid (i, 2): In this world, change the mode of the message in the ith ciphertext, i.e. message
encoded is (⊥,⊥, Sym.K,mode = 1).

Hybrid (i, 3): In this world, we change the value of yi to yi = 〈z1
i , v〉+Gqv(si).

Hybrid (i, 4): In this world, we change the message in the ith ciphertext to (z1
i , s,⊥,mode = 0).

Hybrid (i, 5): In this world, we change the value of CT hardwired in the key back to random.
Note that this world corresponds to Hybrid (i+ 1, 0), with the first i challenge ciphertexts
corresponding to bit b = 1.

50

Thus, Hybrid (1, 0) corresponds to the real world with b = 0 and Hybrid (Q, 5) corresponds to the
real world with b = 1. Next, we argue that consecutive hybrids are indistinguishable.

Lemma 7.2. Hybrids (i, 0) and (i, 1) are indistinguishable assuming the security of Sym.

Proof. The only thing that changes between Hybrid (i, 0) and (i, 1) is the choice of CT, so that in
the former it is chosen randomly and in the latter case it is an honest encryption of the scheme
Sym. Given an adversary A who distinguishes between Hybrid 0 and Hybrid 1, we construct an
adversary B who breaks the semantic security of Sym.

B generates the public key honestly and returns it to A. When A outputs two challenge message
pairs (z0

1, z
1
1) . . . , (z0

Q, z
1
Q), B samples sj and honestly computes ciphertexts for (zbj , sj ,⊥,mode = 0)

where b = 1 for j ∈ [i − 1] and b = 0 for j ∈ [i, Q] and returns these to A. When A requests a
function key v, B computes the value y = 〈z0

i , v〉+Gv(si), and sends y to the Sym challenger. The
Sym challenger responds with CT which is either an honest encryption of y or an element chosen
randomly from the ciphertext space. B uses CT in constructing the function key and returns this to
A. Now, if CT is random, A sees the view of Hybrid 0 and if it is an encryption of y, it sees the
view of Hybrid 1.

Lemma 7.3. Hybrids (i, 1) and (i, 2) are indistinguishable assuming the security of PrgFE.

Proof. The only difference between Hybrids 1 and 2 is that in the former the message in the ith

ciphertext is (z0
i , si,⊥,mode = 0) and in the latter it is (⊥,⊥,Sym.K,mode = 1). Assume there is

an adversary A who distinguishes between Hybrid 1 and Hybrid 2, we construct an adversary B
who can break the security of PrgFE.

B does the following:

1. It obtains the public key from the PrgFE challenger and returns this to A.

2. When A outputs two message pairs (z0
1, z

1
1) . . . , (z0

Q, z
1
Q), it samples si for i ∈ [Q], Sym.K and

returns challenges (z0
i , si,⊥,mode = 0) and (⊥,⊥,Sym.K,mode = 1) to the PrgFE challenger.

It obtains an encryption of one of them chosen at random. The rest of the ciphertexts it
generates honestly and returns these to A.

3. When A outputs a function v, B constructs the function Gv as described in Figure 7.2
and sends this to the PrgFE challenger. Here, CT is computed as Sym.Enc(Sym.K, y) where
y = 〈z0

i , v〉+Gv(s). It returns the obtained key to A.

4. When A outputs a guess bit, it outputs the same.

When the PrgFE challenger returns an encryption of (z0
i , si,⊥,mode = 0), A sees the view of Hybrid

1, and when it returns an encryption of (⊥,⊥,Sym.K,mode = 1), it sees the view of Hybrid 2. Note
that in either case the decrypted value is the same. Thus, the advantage of A translates to the
advantage of B.

Lemma 7.4. Hybrids (i, 2) and (i, 3) are indistinguishable assuming the security of PRG.

Proof. The only difference between hybrids (i, 2) and (i, 3) is that in the former case, we have
y = 〈z0

i , v〉+Gqv(si) and in the latter, we have y = 〈z1
i , v〉+Gqv(si). If Gv is a PRG, then the two

values of y are indistinguishable by the security of the PRG. To see this, note that the output of the

51

PRG is uniform over a set RBfld
of elements with norm bounded by Bfld, which is super-polynomially

larger than ‖εi‖ where εi = 〈z0
i − z1

i , v〉. In more detail, let Unifi be distributed uniformly over RBd.
Then, we have:

〈z0
i − z1

i , v〉+Gv(si)
c
≈ εi + Unifi

s
≈ Unifi

Lemma 7.5. Hybrids (i, 3) and (i, 4) are indistinguishable assuming the security of PrgFE.

Proof. The only difference between Hybrids (i, 3) and (i, 4) is that in the former, the message
encoded in the ith ciphertext is (⊥,⊥,Sym.K,mode = 1) and in the latter the message encrypted is
(z1
i , si,⊥,mode = 0). Note that in both cases, we have the same output of decryption hence the two

ciphertexts are indistinguishable by security of PrgFE.

Hybrids (i, 4) and (i, 5) are are indistinguishable assuming the security of Sym as in Lemma 7.2.
Thus, we have that Hybrids (1, 0) and (Q, 5) are indistinguishable, which proves the theorem.

7.2.3 Putting it all together.

For the proof of Lemma 7.4, we require that the bound Bfld on the norm of elements in RBd must
be super-polynomially larger than ‖εi‖ where εi = 〈z0

i − z1
i , v〉. Recall that R`Bd is the range of the

PRG in our construction. In our application of NLinFE in the construction of FeNC1 (Section 6), we

have that ‖εi‖ = O(B2d

init) where Binit is the noise bound in level 1 encodings, and d is the depth of

the circuit. Hence, setting Binit = O(κ) and Bfld = κ2(2d) suffices for security. To ensure correctness,

we must set the size of the modulus a constant factor larger than the largest noise, say 5 · κ2(2d).
Note that the NLinFE construction from PrgFE is oblivious to the distribution of the noise term εi
since it uses a brute force flooding argument.

7.2.4 Interfacing with known constructions of quadratic functional encryption

Existing constructions [Lin17, BCFG17] of quadratic functional encryption (QuadFE) suffer from
output size restriction, namely, decryption only works if the output is restricted to a bounded
polynomial size interval. Instantiating PrgFE in our construction using the QuadFE of [Lin17,
BCFG17] and conjectured 2 block local PRG then poses a challenge, since our PrgFE is required
to compute a quadratic function of super-polynomial size. This is because, as discussed above, we
require that the bound Bfld on the norm of elements in RBd must be super-polynomially larger than
‖εi‖ where εi = 〈z0

i − z1
i , v〉.

To resolve this mismatch between known constructions of QuadFE and our construction, the
cleanest way is to choose the flooding noise to be polynomial instead of super-polynomial and rely
on the generic security amplification theorem of Ananth et al. [AJKS18]. As a warm-up, consider
our construction restricted to the case of degree 5 polynomials. Here, by choosing the initial noise
in level 1 encodings to some polynomial Binit, we can easily bound the noise in degree 5 encodings
by some fixed polynomial, say Bfinal. We shall choose the size of the flooding noise Bfld such that
Bfld > P (κ) · Bfinal for some polynomial P . Now, it is easy to see by the proof of Lemma 7.4, that
hybrids (i, 2) and (i, 3) are distinguishable with probability 1/P (κ). All other arguments hold as-is,
resulting in an overall construction of FE for NC1 with distinguishing probability of 1/ poly(κ).

52

At this stage, we may apply the security amplification theorem of Ananth et al. [AJKS18],
which states the following.

Theorem 7.6 (Security Amplification of FE). [AJKS18, Sec 12] Assuming subexponential LWE
and sublinear FE for NC1 with 1/ poly distinguishing probability, there exists sublinear FE for NC1

with negligible distinguishing probability.

To bootstrap directly to NC1 rather than via NC0 as discussed above, the noise growth presents
a hurdle, as we may no longer bound the noise by a fixed polynomial as above. To overcome
this issue, we rely on the Chinese Remainder Theorem (CRT) to split the computation of the
above large output (of size O(2κ), say) into κ computations of bounded size, each of which are
performed in parallel using a fresh QuadFE scheme. In more detail, recall that we must compute
a function 〈z, vi〉+Gqi (s) ∈ Rp. For our application, we may choose the modulus p composite as
a product of κ distinct small primes p1, . . . , pκ, where each |pi| = O(1). Then, by CRT, we have
that the map x mod p→ (x mod p1, . . . , x mod pκ) defines a ring homomorphism. Hence, any
computation modulo p may be performed independently in each “slot” modulo pi, and the outputs
of the computation along each slot may be combined using the isomorphism from right to left (i.e.
in “reverse”) to obtain the output modulo p. Thus, our computation may be decomposed along
the CRT basis into κ components each of bounded size, each of which is implemented using a fresh
QuadFE scheme. The encryptor as well as the key generator decompose their inputs z,v into vectors
of constant sized elements according to the CRT representation and compute the noisy inner product
for each CRT slot using a new QuadFE scheme. To ensure that the output size is bounded, the noise
term used for flooding is polynomial in size as in the case of degree 5 computation discussed above.
It is then straightforward to verify that the distinguishing probability for each QuadFE instance
may be bounded above by 1/P (κ) for some polynomial P and therefore, applying the union bound,
overall by κ/P (κ). By choosing P to be a sufficiently large polynomial we again obtain FE for NC1

with 1/ poly distinguishing probability, and can now invoke the security amplification theorem as
above.

We remark that our construction may be instantiated using either ring LWE or 1 dimensional
LWE15. In the case of ring LWE, the underlying ring is a polynomial ring with integer coefficients, i.e.
of the form R = Z[x]/f(x), whereas the QuadFE constructions [Lin17, BCFG17] support message
space Z. However, this does not create an incompatibility, since a product of two polynomials in R
(and Rp) can be represented as a matrix vector product in Z (and Zq). This is a standard fact, see
for instance [LPR10] for an illustration.

7.3 Symmetric Key Noisy Linear Functional Encryption

In this section, we rely on function hiding symmetric key FE for degree L polynomials, where L is
the blockwise locality of a CNG. The construction is almost the same as above, except that we do
not require Sym to encrypt the value of y in the function key – we may program the value of y in
the function key directly, and use function hiding of the FE scheme to hide it.

NLinFE.Setup(1κ, 1w): Upon input the security parameter and length of input message, choose

15It is also possible to instantiate it using the more standard polynomial dimensional LWE, but in this case we
cannot support bootstrapping to NC1 directly, we must bootstrap to NC0 and then rely on randomized encodings to
bootstrap further to NC1.

53

the CNG family G : Rn → Rm. Invoke (PK,MSK) ← CngFE.Setup(1κ, 1w+n+1) and output
(PK,MSK).

NLinFE.Enc(MSK, z): Upon input the master secret key MSK and a vector z ∈ Rwq , do the following:

1. Sample a seed s← Dnseed for the CNG.

2. Compute CngFE.Enc
(
MSK, (z, s,mode = 0)

)
.

NLinFE.KeyGen(MSK,v): Upon input the master secret key MSK and a vector v ∈ Rwq , do the
following:

1. Let y∗ = 0.

2. Choose the CNG smudging polynomial Gv depending on v as described in Definition 5.1.
We define functionality Gv,y∗ in Figure 7.3.

3. Output CngFE.KeyGen(MSK, Gv,y∗)

Functionality Gv,y∗(z, s,mode)

If mode = 0, output 〈z, v〉+Gv(s) else output y∗.

NLinFE.Dec(PK,CTz,SKv): Upon input the public key PK, a ciphertext CTz and a function key
SKv, compute CngFE.Dec(PK,CTz,SKv) and output it.

Correctness and Efficiency. We have by correctness of CngFE that decryption recovers 〈z, v〉+
Gv(s) as desired. By pre-processing the seed exactly as in Section 7.2.1, we obtain a polynomial of
degree equal to the blockwise locality of the CNG that computes functionality Gv,y∗(·).

7.3.1 Proof of Security

Next, we argue that the NLinFE scheme constructed above is secure.

Theorem 7.7. Assume that CngFE is an FE scheme that supports evaluation of degree L polynomials
and satisfies IND based security as in Definition 2.4. Assume that Gv is a secure CNG of blockwise
locality L as in Definition 5.1. Then the NLinFE scheme described in Section 7.3 satisfies Noisy-IND
security as in Definition 3.4.

Proof. The proof proceeds via a sequence of hybrids. Let us say the adversary submits Q challenge
message pairs (z0

i , z
1
i) for i ∈ [Q]. We construct Q hybrids, one corresponding to each challenge

message pair. In hybrid 0, all messages are encrypted as in the real world with bit b = 0. In hybrid
i for i ∈ [Q], the first i challenge messages correspond to bit b = 1, namely {(z1

j , sj ,mode = 0)} for

j ∈ [i] and {(z0
j , sj ,mode = 0)} for j ∈ [i+ 1, Q]. Thus, hybrid Q corresponds to the real world with

bit b = 1. Between Hybrids i and i+ 1, we define 4 sub-Hybrids as follows.

Hybrid (i, 0): In this world, the encoded message in the first i challenge ciphertexts is (z1
j , sj ,mode =

0) for j ∈ [i], the value of y∗ in the key SKv is 0. The remaining Q − i ciphertexts encode
(z0
j , sj ,mode = 0) for j ∈ [i, Q].

54

Hybrid (i, 1) : In this world, we change the value of y∗ hardwired in the key SKv to y∗ =
〈z0
i+1, v〉+Gv(si+1).

Hybrid (i, 2): In this world, we change the mode of the i+ 1st ciphertext, i.e. message encoded is
(⊥,⊥,mode = 1).

Hybrid (i, 3): In this world, we change the value of y∗ in the key to y∗ = 〈z1
i+1, v〉+Gv(si+1).

Hybrid (i, 4): In this world, we change the mode of the i+ 1st ciphertext, message encoded is
(z1
i+1, si+1,mode = 0).

Hybrid (i, 5): In this world, we change the value of y∗ in the key back to 0. In this world, the
encoded message in the first i+ 1 challenge ciphertexts is (z1

j , sj ,mode = 0), for j ∈ [i+ 1].

Note that hybrid (i, 5) is the same as hybrid (i+ 1, 0). Clearly, hybrid (0, 0) corresponds to the real
world with bit b = 0 and hybrid (Q− 1, 5) = (Q, 0) corresponds to the real world with bit b = 1.

Now, we argue that consecutive hybrids are indistinguishable.

Claim 7.8. Hybrids (i, 0) and (i, 1) are indistinguishable due to function hiding of CngFE.

Proof. Note that the only difference between hybrids (i, 0) and (i, 1) is that the value of y∗ that is
hardwired in the function key is different. However, note that this value is hidden by the function
hiding property of CngFE. To see this, consider an adversary A who can distinguish between Hybrids
0 and 1. Then we construct an adversary B against the function hiding of CngFE. B does the
following:

1. Ciphertext Queries. When A requests a ciphertext corresponding to a message z, B samples
seed s, obtains a CngFE encryption of (z, s,mode = 0) from the CngFE challenger and returns
this to A.

2. Challenge Ciphertexts. When A outputs the challenge messages (z0
j , z

1
j) for j ∈ [Q], B

samples sj for j ∈ [Q], obtains CngFE encryptions of (z1
j , sj ,mode = 0) from the CngFE

challenger for j ∈ [i], and of (z0
j , sj ,mode = 0) for j ∈ [i+ 1, Q] and returns these to A.

3. Key Requests. When A outputs a key request for v, B submits the circuit pair (Gv,y0 , Gv,y1)
where y0 = 0 and y1 = 〈z0

i+1, v〉 + Gv(si+1) to the CngFE challenger. It receives a key for
Gv,yb where b is a randomly chosen bit. It returns this to A.

4. Guess. When A outputs a bit b′, B outputs the same.

Note that B is an admissible CngFE adversary because Gv,y0(z0
i+1, si+1, 0) = Gv,y1(z0

i+1, si+1, 0).
This is because even though the programmed value for y∗ is different for the two keys, this value
does not participate in decryption since mode = 0. Now, if b = 0, A sees the distribution in Hybrid
0, else in Hybrid 1. The advantage of A translates directly to an advantage of B.

The indistinguishability of remaining hybrids is argued as in the proof of Theorem 7.1. In more
detail, we have:

Lemma 7.9. Hybrids (i, 1) and (i, 2) are indistinguishable by security of CngFE.

55

Proof. Given an adversary A that distinguishes between hybrids (i, 1) and (i, 2), we may construct
an adversary B to break the security of CngFE as follows.

1. Ciphertext Queries. To answer a ciphertext query for z, it samples s , obtains a CngFE
encryption of (z, s,mode = 0) from the CngFE challenger and returns this to A.

2. Challenge Ciphertexts. When A submits challenge message pairs (z0
i , z

1
i) for i ∈ [Q], B

samples sj for j ∈ [Q] \ (i + 1), obtains CngFE encryptions of (z1
j , sj ,mode = 0) from the

CngFE challenger for j ∈ [i], of (z0
j , sj ,mode = 0) for j ∈ [i+ 2, Q], and of (⊥,⊥,mode = 1)

for j = i+ 1, and returns these to A.

3. Key Requests. To answer key requests, B computes y∗ as described, forwards key requests
to CngFE challenger and obtains function keys which it relays to A.

4. Guess. When A outputs a bit b′, B outputs the same.

Note that B is an admissible adversary in the CngFE game, hence the advantage of A translates to
the advantage of B.

Lemma 7.10. Hybrids (i, 2) and (i, 3) are indistinguishable by security of CNG.

Proof. The only difference between hybrids (i, 2) and (i, 3) is that the in the former y∗ = 〈z0
i+1, v〉+

Gv(si+1), and in the latter y∗ = 〈z1
i+1, v〉+Gv(si+1). By security of CNG, these are indistinguishable.

In more detail, given an adversary A who can distinguish between hybrids (i, 2) and (i, 3), we
construct an adversary B against CNG as follows:

1. B invokes NLinFE.Setup and returns the public key to A.

2. A outputs challenge message pairs (z0
j , z

1
j) for j ∈ [Q]. B constructs the challenge ciphertexts

honestly for (z1
j , sj ,mode = 0) when j ∈ [i], for message (⊥,⊥,mode = 1) when j = i+ 1 and

for (z0
j , sj ,mode = 0) when j ∈ [i+ 2, Q] It returns these to A.

3. A makes a function query v upon which B does the following:

• Note that by admissibility of the NLinFE adversary, 〈z0
i+1, v〉− 〈z1

i+1, v〉 = fv(DNFE) for
some fixed distribution DNFE and function fv ∈ FNFE. We denote εi+1,v = (〈z0

i+1, v〉 −
〈z1
i+1, v〉).

• B sends
(
fv, εi+1,v

)
to CNG challenger. The challenger chooses a corresponding

“smudging polynomial” Gv and a random bit b. If b = 0, it returns εi+1,v +Gv(si+1) else
it returns Gv(si+1). Set yb = 〈z1

i+1, v〉+Gv(si+1) + (1− b) · εi+1,v.

• B constructs the function key honestly using yb. This key is returned to A.

• When the adversary A outputs a guess bit, B does the same.

We note that when b = 0, we are in Hybrid (i, 2), and when b = 1 we are in Hybrid (i, 3).
Also, note that B is a valid adversary against CNG. Hence, if A succeeds in distinguishing
between hybrids (i, 2) and (i, 3), then B succeeds in breaking the security of CNG.

Indistinguishability between hybrids (i, 3) and (i, 4) is argued as in Lemma 7.9 and between
hybrids (i, 4) and (i, 5) as in Lemma 7.8. This completes the proof.

56

7.3.2 Putting it all together.

Our construction of NLinFE from CngFE is instantiated similarly to the PrgFE based construction
discussed in Section 7.2.3. The only difference is that since we use CNG rather than PRG for the
noise smudging, the distribution of εi becomes relevant. This distribution is analysed in Section 6.4.
Again, we must choose the range of CNG so that it smudges the functional noise term but is small
relative to the modulus so that decryption is possible. Since CNG is a new primitive that generalises
PRG, we do not yet have constructions (other than those of PRG), so we do not instantiate the CNG
concretely here.

8 Direct Construction: Noisy Linear Functional Encryption

In this section we will provide a construction for succinct noisy functional encryption, denoted by
NLinFE. Our construction is inspired from the construction for linear functional encryption (denoted
by LinFE) by [ABCP15, ALS16]. Below, we outline the LinFE construction which is our starting
point.

Recap: Linear Functional Encryption. Recall that in LinFE, the encryptor wishes to encrypt a
message z ∈ Rwp1 , the key generator provides a key for vector v ∈ Rwp1 and the decryptor must recover
〈z,v〉 ∈ Rp1 . [ABCP15, ALS16] provide a construction of LinFE based on the LWE assumption.
This construction can be readily adapted to rely on RLWE, which may be described as follows:

1. Public Key. Let us choose w ∈ Rmp2 and a ∈ Rwp2 as the public key and a short Gaussian

matrix E ∈ Rm×w such that E>w = a as the master secret key.

2. Encryption.The encryptor given a vector z ∈ Rwp1 , samples a small secret s ∈ Rp2 as well as
small noise terms ν ∈ Rm, µ ∈ Rw according to some fixed distribution, and computes:

c = w · s+ p1 · ν ∈ Rmp2 , b = a · s+ p1 · µ + z ∈ Rwp2

3. Key Generation. The key for a vector v ∈ Rwp1 is computed as ev = E · v.

4. Decryption. Decryption proceeds as:

v>b− e>v c = v>(a · s+ p1 · µ + z)− v>E>(w · s+ p1 · ν)

= v>a · s+ p1 · (v>µ) + v>z− v>a · s− p1 · (v>E>ν)

= v>z mod p1

Generalizing to Noisy Linear Functional Encryption. The above construction already
supports computing linear equations, hence provides a natural starting point for computing noisy
linear equations. Recall that our bootstrapping theorem (see Section 6 and Section 7.3) shows that
compact FE supporting the following functionality suffices for constructing compact FE for NC1:

〈z,v〉+G(β) ∈ Rp1

where the encryptor has input message z, samples β as the seed of a correlated noise generator
G, and encrypts (z‖β) ∈ Rw+n

p1 , and the key generator given input v ∈ Rwp1 provides a key for the
above polynomial.

57

Our Approach. Our approach is to follow the LinFE blueprint provided above to compute 〈z,v〉,
augmenting it with a method that allows computing an encoding of the term G(β) on the fly. In
more detail, suppose we had a method of enabling the decryptor to compute

d = h · s+ η +G(β)

where h is known to the key generator, then (b‖d) can be viewed as an encryption of (z‖G(β)) and
the key generator could provide a key for the vector (v‖1) so as to enable the decryptor to recover
〈z,v〉+G(β) as desired16.

Of course, the primary difficulty is in designing a method to compute a fresh RLWE encoding of
G(β) given only encodings of β, in a way that the RLWE label h is computable by the key generator.
At present, we do not know how to overcome the above difficulty from RLWE (or other standard
assumptions).

In this work, we turn the question around and ask: if we cannot compute what we would like to,
can we make do with what we can compute? Since designing compact FE to support evaluation of
G appears difficult, our approach is to introduce the minimal principled strengthening of the NTRU
and RLWE assumptions that allow us to compute some structured high degree noise terms which
we shall use as an approximation of G(β). Here, we crucially leverage the fact that G is a CNG
whose only purpose is to smudge leaky, correlated noise terms; this permits us to be relaxed about
correctness of the computation.

For ease of exposition, we outline a simpler variant of our construction than described in Section
1: this does not include the trick of adding noise terms jointly generated by the key generator and
encryptor. The general construction is provided in Appendix B.

Construction. We proceed to describe the construction NLinFE. For ease of exposition, we
let G(β) =

∑
1≤j≤i≤n

v′ijβiβj be a quadratic polynomial, generalizing the idea to higher degree is

straightforward and discussed in Section 8.2. The construction exactly mimics the LinFE construction
described above for computing the inner product. To illustrate the new ideas, parts of the scheme
below which differ from LinFE are highlighted in purple.

Notation. Our construction uses two prime moduli p1 and p2 with p1 << p2. Our message
and function vectors will be chosen from Rp1 while the public key and ciphertext are from Rp2 .
The function G used to compute the noise term is represented by a vector v× = (v′ij) ∈ RLp1 for
L = |1 ≤ j ≤ i ≤ n|. As in most lattice based cryptographic constructions, we will collect noise
terms as the computation proceeds, and will be required to bound the final noise term relative to the
modulus in order for decryption to succeed. For better readability, we club together all low norm
elements under the general term small where their precise value is not important. Our construction
will make use of the fact that elements in Rp1 are small in Rp2 and that elements sampled from the
discrete Gaussian distribution, denoted by D, are small in Rp2 .

NLinFE.Setup(1κ, 1w): On input a security parameter κ, a parameter w denoting the length of the
function and message vectors, do the following:

16Note that a “brute force” approach would be to hard code a fresh noise term for each key into the ciphertext and
force the decryptor to add this into the decryption equation. This intuition is formalized in Appendix D. However,
this approach leads to non-compact ciphertext, and does not suffice for our purpose.

58

1. Sample w← Rmp2 with a trapdoor Tw using the algorithm TrapGen as defined in Section
2.7.

2. Sample E ∈ Dm×w and set a = ETw ∈ Rwp2 .

3. For i ∈ {1, . . . , w}, ` ∈ {1, . . . , k}, sample f `1i, f
`
2i ← D and g`1, g

`
2 ← D. If g`1, g

`
2 are not

invertible over Rp2 , resample. Set

h`1i =
f `1i
g`1
, h`2i =

f `2i
g`2
∈ Rp2

4. Sample a PRF seed, denoted as seed.

Output

MSK =
(

w,Tw,a,E,
{
f `1i, f

`
2i

}
i∈[w],`∈[k]

,
{
g`1, g

`
2}`∈[k]

}
, seed

)
NLinFE.Enc(MSK, z): On input public key MSK, a message vector z ∈ Rwp1 , do:

1. Construct Message Encodings. Sample ν ← Dm, η ← Dw and t1, t2 ← D. Set
s = t1 · t2. Compute:

c = w · s+ p1 · ν ∈ Rmp2 , b = a · s+ p1 · η + z ∈ Rwp2

2. Sample Structured Noise. To compute encodings of noise, do the following:

(a) Define lattices:

Λ`1
def
= g`1 ·R, Λ`2

def
= g`2 ·R

(b) Sample noise terms from the above lattices as:

e`1i ← D̂(Λ`2), ẽ`1i ← D̂′(Λ`2), e`2i ← D̂(Λ`1), ẽ`2i ← D̂′(Λ`1) ∀i ∈ [w], ` ∈ [k]

Here D̂(Λ`1), D̂′(Λ`1) are discrete Gaussian distributions on Λ`1 and D̂(Λ`2), D̂′(Λ`2) are
discrete Gaussian distributions on Λ`2.

3. Compute Encodings of Noise.

(a) Let
d`1i = h`1i · t1 + p1 · ẽ`1i + p0 · e`1i ∈ Rp2

Here, p1 · ẽ`1i behaves as noise and p0 · e`1i behaves as the message. Let d`1 = (d`1i).

(b) Similarly, let
d`2i = h`2i · t2 + p1 · ẽ`2i + p0 · e`2i ∈ Rp2

Here, p1 · ẽ`2i behaves as noise and p0 · e`2i behaves as the message. Let d`2 = (d`2i).

4. Output Ciphertext. Output message encodings (c,b) and noise encodings (d`1,d
`
2) for

` ∈ [k].

59

NLinFE.KeyGen(MSK,v): On input the master secret key MSK, and a NLinFE function vector
v ∈ Rwp1 , do the following.

1. Sampling Basis Preimage vectors.

(a) Sample short eij ∈ Rm using SamplePre (please see Section 2.7) with randomness
PRF(seed, ij) such that

〈w; eij〉 = hij , where hij
def
=
∑
`∈[k]

h`1ih
`
2j + p0 ·∆ij + p1 · ∆̃ij

Above ∆ij , ∆̃ij ← D ∈ R for 1 ≤ j ≤ i ≤ n.

Let E× = (eij) ∈ Rm×L, h× = (hij) ∈ RLp2

where L = |1 ≤ j ≤ i ≤ n|.

2. Combining Basis Preimages to Functional Preimage. Define

kv = E · v + E× · v× ∈ Rm (8.1)

3. Output (kv,v).

NLinFE.Dec(CTz,SKv): On input a a ciphertext CTz =
(

c,b, {d`1,d`2}`∈[k]

)
and a secret key kv

for function v, do the following

1. Compute encoding of noise term on the fly as:

d×
def
= (

∑
`∈[k]

d`1i · d`2j) ∈ RLp2

2. Compute functional ciphertext as:

bv = vTb + (v×)Td× ∈ Rp2

3. Compute bv − kT
vc mod p1 and output it.

Correctness. In this section, we establish that the above scheme is correct. We walk through the
steps performed by the decrypt algorithm:

1. We compute an encoding of a correlated noise term on the fly as described in Figure 8.1.

Thus, we get that d× = h× · s+ p1 · small + p0 · small

2. The decryption equation is:

bv − kT
vc = (vTb + (v×)Td×)− kT

vc

3. Recall that b = a · s+ p1 · η + z ∈ Rwp2 . Hence,

vTb = vTa · s+ p1 · small + vTz

60

4. Since d× = h× · s+ p1 · small + p0 · small and v× ∈ RLp1 is small in Rp2 , we have

(v×)Td× = (v×)Th× · s+ p1 · small + p0 · small

Hence we have

vTb + (v×)Td× = (vTa + (v×)Th×) · s+ p1 · small + p0 · small + vTz

5. Next, note that

kT
vw = vTa + (v×)Th = av ∈ Rp2

6. Recall that c = w · s+ p1 · ν hence,

kT
vc = av · s+ p1 · 〈ν,kv〉

= (vTa + (v×)Th) · s+ p1 · small

7. Hence, bv − kT
vc mod p1 = vTz + p0 · small as long we set the modulus p2 to be large enough

so that the cumulative noise terms p1 · small may be bounded below p2
5 (say). This is a

standard requirement in lattice based constructions and can be ensured by appropriate choice
of parameters, please see Section 9.

61

Computing Encoding of Correlated Noise Term

We compute d`1i · d`2j . Recall that

d`1i = h`1i · t1 + p1 · ẽ`1i + p0 · e`1i ∈ Rp2

d`2j = h`2j · t2 + p1 · ẽ`2j + p0 · e`2j ∈ Rp2
We claim that for all i, j ∈ [w], we have :

h`2j · e`1i = small, h`2j · ẽ`1i = small, h`1j · e`2i = small, h`1j · ẽ`2i = small, s = t1 · t2

To see this, recall that e`1i, ẽ
`
1i are sampled from lattice Λ`2 and e`2i, ẽ

`
2i are sampled from lattice Λ`1.

Let e`1i = g`2 · ξ`1i, ẽ`1i = g`2 · ξ̃`1i (8.2)

Hence, h`2i · e`1j = f `2i · ξ`1j , h`2i · ẽ`1j = f `2i · ξ̃`1j ∀ i, j ∈ [w], ` ∈ [k] (8.3)

Let e`2i = g`1 · ξ`2i, ẽ`2i = g`1 · ξ̃`2i (8.4)

Hence, h`1i · e`2j = f `1i · ξ`2j , h`1i · ẽ`2j = f `1i · ξ̃`2j ∀ i, j ∈ [w], ` ∈ [k] (8.5)

Now, we may compute:

d`1i · d`2j =
(
h`1i · t1 + p1 · ẽ`1i + p0 · e`1i

)
·
(
h`2j · t2 + p1 · ẽ`2j + p0 · e`2j

)
= h`1i · h`2j(t1t2) + p21 ·

(
ẽ`1i · ẽ`2j

)
+ p1 · p0

(
ẽ`1i · e`2j + e`1i · ẽ`2j

)
+ p20

(
e`1i · e`2j

)
+ h`1i · t1 · (p1 · ẽ`2j + p0 · e`2j) + h`2j · t2 · (p1 · ẽ`1i + p0 · e`1i)

= h`1i · h`2j(t1t2) + p21 ·
(
g`2 · ξ̃`1i · g`1 · ξ̃`2j

)
+ p1 · p0

(
g`2 · ξ̃`1i · g`1 · ξ`2j + g`2 · ξ`1i · g`1 · ξ̃`2j

)
+ p20

(
g`2 · ξ`1i · g`1 · ξ`2j

)
+ p1 ·

(
h`1i · ẽ`2j · t1 + h`2j · ẽ`1i · t2

)
+ p0 ·

(
h`1i · e`2j · t1 + h`2j · e`1i · t2

)
= h`1i · h`2j(t1t2) + p21 ·

(
g`2 · ξ̃`1i · g`1 · ξ̃`2j

)
+ p1 · p0

(
g`2 · ξ̃`1i · g`1 · ξ`2j + g`2 · ξ`1i · g`1 · ξ̃`2j

)
+ p20

(
g`2 · ξ`1i · g`1 · ξ`2j

)
+ p1 ·

(
f `1i · ξ̃`2j · t1 + f `2j · ξ̃`1i · t2

)
+ p0 ·

(
f `1i · ξ`2j · t1 + f `2j · ξ`1i · t2

)
= h`1i · h`2j (t1t2)︸ ︷︷ ︸

s

+p1 ·
(
p1 · (g`2 · ξ̃`1i · g`1 · ξ̃`2j) + p0 · (g`2 · ξ̃`1i · g`1 · ξ`2j + g`2 · ξ`1i · g`1 · ξ̃`2j)︸ ︷︷ ︸

small

+ (f `1i · ξ̃`2j · t1 + f `2j · ξ̃`1i · t2)
)

︸ ︷︷ ︸
small

+p0 ·
(
p0 · (g`2 · ξ`1i · g`1 · ξ`2j) + (f `1i · ξ`2j · t1 + f `2j · ξ`1i · t2)

)
︸ ︷︷ ︸

small

(8.6)

Above, we highlight in blue the terms in the noise that will remain fixed across all ciphertexts.

Thus,
∑
`∈[k]

d`1i · d`2j =
(∑
`∈[k]

h`1i · h`2j
)
· s+ p1 · small + p0 · small (8.7)

Figure 8.1: Computing encoding of noise term as polynomial of encodings.

62

8.1 Security of Succinct Symmetric Key NLinFE

In this section, we reason about the security of our scheme. Our new construction combines
and extends the Ring LWE and NTRU assumptions prevalent in lattice based constructions
[LPR10, HPS98].

The following assumptions are necessary for the security of our scheme, in that if violated, will
lead to an attack against our scheme. In our opinion, cryptanalysis effort must focus first on these
assumptions.

Necessary Assumptions. We assume that for 1 ≤ i ≤ j ≤ w, ` ∈ [k],

1. NTRU with same denominator. The terms {h`1i}, {h`2i} rely on the NTRU assumption, with
the important distinction that the denominator in all samples in one set is the same, namely
g`1 and g`2 respectively. Recall that vanilla NTRU requires the denominator to be chosen afresh
for each sample, i.e. h`1i (resp. h`2i should be constructed using denominator g`1i (resp. g`2i) for
i ∈ [w]. As discussed in Section 1 and Section 2, this problem was studied by Peikert [Pei16]
as the NTRU learning problem.

2. Ring LWE with structured noise. The terms d`1i = h`1i · t1 + p1 · ẽ`1i + p0 · e`1i, d`2j =

h`2j · t2 + p1 · ẽ`2j + p0 · e`2j which are RLWE samples with structured noise, namely noise that
lives in a fixed, private ideal instead of the entire ring. We assume that these samples appear
pseudorandom.

3. GPV signatures for correlated messages. The terms eij are sampled in KeyGen to satisfy
〈w; eij〉 =

∑
`∈[k] h

`
1ih

`
2j + p0 · ∆ij + p1 · ∆̃ij . These elements are akin to GPV signatures

[GPV08], albeit for correlated as against uniform messages. Note that by [GPV08], it is secure
to release many short preimages/signatures eij such that 〈w; eij〉 = uij when uij are uniform.
But in our case, the uij are not uniform but rather correlated as ui · uj (in the simplest case).
We do not know how to handle this in a proof, but also do not know how to exploit correlated
images in an attack.

4. Semantic Security of d`1,d
`
2 in presence of noise revealed by decryption. Most importantly,

the elements eij are embedded in the secret key and participate in decryption of the challenge
ciphertext. Decryption of the challenge ciphertext results in noise that may be analyzed as
follows. Grouping equation 8.6 differently, we have:

d`1i · d`2j = h`1i · h`2j · s2 + p1 · g`2 · g`1 ·
(
p1 · (ξ̃`1i · ξ̃`2j) + p0 · (ξ̃`1i · ξ`2j + ξ`1i · ξ̃`2j)

)
+ p0 · g`2 · g`1 ·

(
p0 · (ξ`1i · ξ`2j)

)
+ p1 · (f `1i · ξ̃`2j · t1 + f `2j · ξ̃`1i · t2)

+ p0 · (f `1i · ξ`2j · t1 + f `2j · ξ`1i · t2)

63

Thus,
∑
`∈[k]

d`1i · d`2j =
(∑
`∈[k]

h`1i · h`2j
)
· s2 + p1 ·

∑
`∈[k]

g`2 · g`1 ·
(
p1 · (ξ̃`1i · ξ̃`2j) + p0 · (ξ̃`1i · ξ`2j + ξ`1i · ξ̃`2j)

)
+ p1 ·

∑
`∈[k]

(f `1i · ξ̃`2j · t1 + f `2j · ξ̃`1i · t2) + p0 ·
∑
`∈[k]

g`2 · g`1 ·
(
p0 · (ξ`1i · ξ`2j)

)
+ p0 ·

∑
`∈[k]

(f `1i · ξ`2j · t1 + f `2j · ξ`1i · t2)

The final p0 noise term recovered after decryption (i.e. after the mod p1 operation) is

p0 ·

[∑
`∈[k]

(
g`2 · g`1 ·

(
p0 · (ξ`1i · ξ`2j)

)
+
(
f `1i · ξ`2j · t1 + f `2j · ξ`1i · t2

))
+ ∆ij · s1 + ∆̃ij · s2

]
(8.8)

Above, the terms in blue are fixed, while the remaining terms are chosen afresh for each
computation. For semantic security of d`1,d

`
2, we require that the fixed terms g`1, g

`
2, f

`
1i, f

`
2j

are hidden in the above quadratic polynomial.

Recall that
e`1i ← D̂(Λ`2), ẽ`1i ← D̂′(Λ`2), e`2i ← D̂(Λ`1), ẽ`2i ← D̂′(Λ`1)

where

Λ`1
def
= g`1 ·R, Λ`2

def
= g`2 ·R

e`1i = g`2 · ξ`1i, ẽ`1i = g`2 · ξ̃`1i e`2i = g`1 · ξ`2i, ẽ`2i = g`1 · ξ̃`2i

We choose the distributions D̂(Λ`
2), D̂′(Λ`

2), D̂(Λ`1), D̂′(Λ`1) to output spherical discrete
Gaussians of size 2κ. For a discussion of relevant attacks, please see Section 8.1.1.

8.1.1 Security against Known Attacks: A Discussion

In this section, we give a brief overview on how our construction sidesteps the attacks that are
problematic in the setting of multilinear maps.

Zeroizing Attacks and Annihiliation Attacks. First, we note that the so called “zeroizing
attacks” that are the main difficulty in the context of multilinear maps do not apply to our setting,
since we do not give out anything analogous to encodings of zero. However, the adversary does
recover a high degree noise term in the end that lives over the ring R and we must argue that the
more general annihilation attacks [MSZ16] do not apply to this setting.

To begin, we recap the principle of annihilation attacks. The GGH13 encodings [GGH13a]
contain two secret elements: a “small” element g, where R/gR forms the plaintext space, and a
uniformly random denominator z ∈ Rq. In the setting of annihilation attacks, the attacker gets
access to “top-level” encodings of zero, which along with the zero testing parameter yield polynomials
of the form

f = h(γ1 + gγ2 + . . . , gk−1γk)

Given multiple polynomials of the above form, say f, f ′, f ′′, the idea of annihilation attacks is to
construct a polynomial Q(f, f ′, f ′′) which evaluates to an element in the ideal < hg >. These

64

elements are then exploited to construct attacks, but the details of these are not important. Indeed,
in the weak multilinear map model [GMM+16], the authors declare that if the adversary succeeds in
just generating an element in the above ideal, the adversary has won.

Next, consider how the element in < hg > is constructed. Intuitively, the terms f, f ′, f ′′ have only
one term that is not a multiple of g, namely the leading term γ1, and the annihilating polynomial
Q is constructed so that Q(γ, γ′, γ′′) = 0. By applying the same polynomial to f, f ′, f ′′, one may
obtain an element in < hg >.

Here, it is crucial to the design of the scheme that g is unique and secret, and recovering elements
that are multiples of g leads to attack. On the contrary in our case, the polynomial that the
adversary recovers, even in its most oversimplified form, has the shape

∑
p`(·)g` for ` ∈ [k]. Thus,

the multiple secret terms g` in our case are “spread” over the entire ring, and the attacker never
recovers any polynomial in a single g` alone.

Secondly, the annihilation attack of [MSZ16] relies crucially on the structure of the γ1 that it
must annihilate. [MSZ16] observe that each polynomial γ1 will be linear in the entries of a term ~r
and potentially non-linear in the entries of terms ~α. Here, the ~r variables are totally unstructured
and unique to each encoding given out, and therefore present an obstacle to the kind of analysis that
will enable them to find an annihilating polynomial. Thus, the linearity of the unique, unstructured
variables ~r is important in [MSZ16]. On the contrary, in our setting, there are fresh nonlinear terms
in top level encodings, and these are moreover a mixture across many ideals. Finally, [MSZ16] do a
“change of variables, so that the resulting set of polynomials has a constant number of variables,
for which exhaustive search works”. Such a change of variables causing reduction in the number of
variables does not seem to apply to our construction.

We observe that while annihilation attacks are significantly more general than zeroizing attacks,
they nevertheless exploit certain structure specific to multilinear map based constructions, which do
not apply to our setting. Moreover, annihilation attacks can only mount attack on a small class
of matrix branching programs and do not apply to the original iO candidate [GGH+13c] due to
the extra defenses they apply [MSZ16]. Thus, these attacks can be mitigated even in the setting of
multilinear maps, via additional randomization. They do not seem to apply to our construction to
begin with, and moreover, our construction already appears to contain significant randomization to
render them ineffective.

Perspective. Overall, the resultant noise seen by the adversary is a high degree polynomial mixed
across many ideals, with additional randomizers and unstructured linear terms to make it look as
unstructured as possible. Moreover, additional tricks are possible to randomize the noise, which we
did not include (for instance, the present key vector can itself be made to sit within an LWE encoding
with special noise – decryption will still work). Note that PRGs admit low degree constructions, so
our overarching design goal is to have the noise seen by the adversary mimic a PRG polynomial so
that what the adversary sees is akin to a PRG output.

Basic Attacks: Linearization and Statistical Attacks. The simplest attacks against any
system non-linear polynomials is evidently linearization: namely, treat every non-linear term as a
fresh linear term and solve the system of linear equations. This attack can be easily mitigated by
ensuring that the number of unique monomials used in the system of equations is much larger than
the number of equations. Another class of attacks that require care are statistical attacks [DP17].
To prevent these, we choose all small elements in our construction to have size 2κ. Moreover, the

65

noise terms are all sampled using spherical discrete Gaussians that do not leak the geometry of the
special ideals.

Gröbner Basis Attacks. Since the attacker recovers polynomial equations over the entire ring R,
the ability to solve systems of multivariate polynomial equations would lead to recovery of the secret
terms. Fortunately, this is a notoriously hard problem in the worst case, and involves computation of
Gŕ’obner Basis in general. The complexity of these problems have received a great deal of attention,
please see [MI88, BFP09, BFSS13, BFS03, Wol05, DY09, YDH+15, WP05, TW10, AHKI+17] and
this problem has formed the basis of several cryptosystems, please see [DY09] for a survey. While
one cannot rule out the possibility that there is some special structure to our particular sets of
equations that make these easier to solve than the general case, and serious cryptanalytic effort is
required to rule out this possibility, it is reassuring that the view of the adversary captures a well
studied hard problem, at least in its general case.

Gentry-Szydlow, Statistical Attacks and the Principal Ideal Problem. Since our noise
terms are all sampled using spherical discrete Gaussians, the Gentry-Szydlow attack [GS02] does
not apply to our setting, please see [GGH13b] for an overview of this attack. A potentially relevant
problem is the principal ideal problem: given a basis of a principal ideal that is guaranteed to
have a “rather short” generator, find such a generator. In our setting, the adversary does recover
polynomials that contain elements from principal ideals, however these are “mixed” in the sense
that the polynomials are a linear combination of monomials that each lie in different ideals. Hence,
the adversary does not recover samples in a single ideal, sidestepping the principal ideal problem
[Gen09, CDPR16]. We defer a more detailed description of lattice attacks to the full version of the
paper.

In Appendix C, we formulate an assumption under which security of our scheme can be proven.
We view this as a first step to provable security. We feel that our assumption does not accurately
capture the security of the scheme, as discussed in Section C but hope that it can be improved in
future work.

8.2 Propagating Computation on Noise

In this section, we describe how to propagate computation on noise terms. Since we are concerned
with constant degree polynomials, it suffices to compute all monomials first, followed by a linear
combination at the last step. We leverage the fact that the encodings of quadratic noise at level 2,
computed after a single multiplication, look exactly like encodings of linear noise terms at level 1,
provided by the encryptor.

Let us recall our basic encodings of noise from Section 8. For ease of exposition, let us assume
k = 1 to begin with. Let

h1i =
f1i

g1
, h2i =

f2i

g2
∈ Rp2

Then, we have:
d1i = h1i · t1 + p1 · g2 · ξ̃1i

d2j = h2j · t2 + p1 · g1 · ξ̃2j

66

Thus, d1i · d2j =
(
h1i · h2j

)
· s+ p1 · small (8.9)

Observe that h1i · h2j =
f1i f2j
g1·g2 .

Now, let us say we repeat the above setup so that:

d′1i = h′1i · t′1 + p1 · g′2 · ξ̃′1i

d′2j = h′2j · t′2 + p1 · g′1 · ξ̃′2j

Thus, d′1i · d′2j =
(
h′1i · h′2j

)
· s′ + p1 · small′ (8.10)

Again, we have that h′1i · h′2j =
f ′1i f

′
2j

g′1·g′2
. Let us denote as g2

1 = g1 · g2 and g2
2 = g′1 · g′2.

Then, if we now ensure that the noise in d1i · d2j contains factor g2
2 and noise in d′1i · d′2j contains

factor g2
1, then we have samples that look exactly like level 1 samples, namely:

d1i · d2j =
(f1i f2j

g2
1

)
· s+ p1 · g2

2 · small

d′1i · d′2j =
(f ′1i f ′2j

g2
2

)
· s′ + p1 · g2

1 · small′

Now, we may repeat the above method to multiply encodings and propagate the computation.

Note that it is straightforward to ensure the above by simply multiplying the requisite terms
into the noise of the original samples, as:

d1i = h1i · t1 + p1 · g2 · g2
2 · ξ̃1i

d2j = h2j · t2 + p1 · g1 · g2
2 · ξ̃2j

d′1i = h′1i · t′1 + p1 · g′2 · g2
1 · ξ̃′1i

d′2j = h′2j · t′2 + p1 · g′1 · g2
1 · ξ̃′2j

Thus, by doubling the number of encodings at each level, we can ensure that computation is
propagated down the circuit.

9 Parameters

In this section, we discuss the parameters for our constructions. The parameters for the constructions
in Sections 4 and 6 are inherited from [AR17]. We denote the magnitude of noise used in the
level i encodings by Bi. We require Bi ≤ O(pi/4) at every level for correct decryption. We have
that the message space for level 1 encodings E1 is Rp0 and encoding space is Rp1 . Then message
space for E2 is O(p2

0 + B2
1) = O(B2

1) since the noise at level 1 is a multiple of p0. Then, p2 must
be chosen as O(B2

1). At the next multiplication level, i.e. level 4, we have the message space as

O(p2
2 +B2

2) = O(B4
1). In general, for d levels, it suffices to set pd = O(B2d).

We may set p0 = n with initial noise level as B1 = poly(n) and any Bi, pi = O(B2i
1). Also, the

number of encodings provided at level d is Ld = O(2d), so in general we may let d = O(log n), thus
supporting the circuit class NC1.

67

For the heuristic construction in Section 8, we employ the following basic strategy: choose all
distributions D, D̂ and D̂′ so that the “small” elements sampled have magnitude 2κ (i.e. of κ bits
each). As mentioned above, D̂ and D̂′ are set to be spherical discrete Gaussians on the appropriate
ideal lattices, so that the geometry of the samples do not reveal the generators g`1, g`2. The choice of
all small elements to have size 2κ is to prevent statistical attacks [DP17]. We set n = κ2.

Since p0 = O(poly(κ)), and each small element is size O(2κ), the small cummulative noise in the
correctness equations 8.6 is of size approximately O(poly(κ) · 24κ). For correctness of decryption,
we just need to set p2 sufficiently larger, also O(poly(κ) · 24κ).

10 Conclusions

Several questions arise from our work. We summarize some of the most important ones below.

1. Existence of Degree 2 Block Local PRG. The first and most important one is: do there
exist 2 block local PRG with input size n, block size b and stretch Ω(n · 2b(1+ε))? If so, then
we will obtain iO from block local PRG, bilinear maps and LWE.

2. Existence of Degree 2 non-Boolean PRG or CNG. Second, do non-Boolean PRGs
and/or correlated noise generators admit constructions with arithmetic degree 2? These
randomness generators are a natural generalization of pseudorandom generators and it would
be useful to understand whether new constructions can be found. Additionally, it would
be interesting to explore whether they have other applications, particularly in lattice based
cryptography.

3. Security of our new candidate FE. Next, can we find an attack or a better proof of
security for our direct construction for NLinFE? Our construction needs to be subject to
thorough cryptanalysis before confidence can be gained in its security.

4. New constructions following our template. Are there other constructions that could
be inspired by this approach? Our work exploits the structure of NTRU lattices to perform
computation on succinct encodings of noise. Are there methods other than those developed in
this work to compute on noise? Arguably, this question is much simpler than computing on
messages, and we believe other solutions are likely to exist. We believe our work can be seen
as a conceptual framework to compute on noise by using nested ideals and combining them
randomly to destroy structure. We hope that our methods lead to new solutions which may
be shown secure even if ours succumb to attack.

5. Making it Post-Quantum. While at the moment, iO from any well understood hardness
assumptions would be a big relief, looking ahead, we would like for the construction to be
post-quantum secure. iO is a primitive “of the future”, in the sense that applications of
this primitive may take several years (in the best case scenario) to penetrate the real world.
Given its tremendous power and applicability in theory, we are hopeful that a robust and
efficient candidate can create significant real world impact. However, the rapid advancements
in the development of quantum computers necessitate cryptographic primitives to be based on
hardness assumptions that are quantum-safe. To this end, we would like to base iO on well
understood hardness assumptions that are known to resist quantum attacks. Several of the
tools used in this work, such as LWE and MQ are believed to be quantum safe, and our direct

68

construction of Section 8 is also based on lattices and may be conjectured quantum secure if
proved classically secure. However a significantly better understanding on the post quantum
security of our scheme is called for. We also hope other constructions, ideally based entirely
on LWE and possibly MQ are discovered.

Acknowledgements. We are grateful to Damien Stehlé for being a generous oracle for any
number of arbitrarily distributed queries about lattices. We thank Andrej Bogdanov for discussions
about correlated noise generators, Zvika Brakerski for clarifying some aspects of [BBKK17] and
Huijia (Rachel) Lin for thought provoking conversations. We are also grateful to Leo Ducas, Alice
Pellet-Mary, Gottfried Herold, Bruno Salvy and Damien Stehlé for generously spending their time
trying to break our construction and providing insights about the hardness of MQ and Gröbner
basis computation. We thank Chris Peikert for telling us about the NTRU learning problem as well
as for spending time thinking about our new problem of RLWE with structured noise.

69

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the
standard model. In EUROCRYPT, pages 553–572, 2010.

[ABCP15] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple
functional encryption schemes for inner products. Cryptology ePrint Archive, Report
2015/017, 2015. http://eprint.iacr.org/ To appear in PKC’15.

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From
selective to adaptive security in functional encryption. In CRYPTO, 2015.

[ADGM16] Daniel Apon, Nico Döttling, Sanjam Garg, and Pratyay Mukherjee. Cryptanalysis of
indistinguishability obfuscations of circuits over ggh13. eprint 2016, 2016.

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional
encryption for inner product predicates from learning with errors. In Asiacrypt, 2011.

[Agr17] Shweta Agrawal. Stronger security for reusable garbled circuits, new definitions and
attacks. In Crypto, 2017.

[AHKI+17] Benny Applebaum, Naama Haramaty-Krasne, Yuval Ishai, Eyal Kushilevitz, and Vinod
Vaikuntanathan. Low-Complexity Cryptographic Hash Functions . In Christos H.
Papadimitriou, editor, 8th Innovations in Theoretical Computer Science Conference
(ITCS 2017), volume 67 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 7:1–7:31, 2017.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private
randomizing polynomials and their applications. Computational Complexity, 15(2):115–
162, 2006.

[AIK11] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic circuits.
In IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011,
Palm Springs, CA, USA, October 22-25, 2011, pages 120–129, 2011.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part I, pages 308–326, 2015.

[AJKS18] Prabhanjan Ananth, Aayush Jain, Dakshita Khurana, and Amit Sahai. Indistinguisha-
bility obfuscation without multilinear maps: io from lwe, bilinear maps, and weak
pseudorandomness. Cryptology ePrint Archive, Report 2018/615, 2018.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Achieving compactness
generically: Indistinguishability obfuscation from non-compact functional encryption.
IACR Cryptology ePrint Archive, 2015:730, 2015.

[Ajt99] Miklos Ajtai. Generating hard instances of the short basis problem. In ICALP, volume
1644 of LNCS, pages 1–9. Springer, 1999.

70

http://eprint.iacr.org/

[ALS16] Shweta Agrawal, Benoit Libert, and Damien Stehle. Fully secure functional encryption
for linear functions from standard assumptions, and applications. In Crypto, 2016.

[AP09] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. In
STACS, pages 75–86, 2009.

[AR16] Shweta Agrawal and Alon Rosen. Online offline functional encryption for bounded
collusions. Eprint/2016, 2016.

[AR17] Shweta Agrawal and Alon Rosen. Functional encryption for bounded collusions,
revisited. In TCC, 2017.

[AS17] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and
indistinguishability obfuscation from degree-5 multilinear maps. In EUROCRYPT,
2017.

[BBKK17] Boaz Barak, Zvika Brakerski, Ilan Komargodski, and Pravesh Kothari. Limits on
low-degree pseudorandom generators (or: Sum-of-squares meets program obfuscation),
2017.

[BCFG17] Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain Gay.
Practical functional encryption for quadratic functions with applications to predicate
encryption. In Crypto, 2017.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing.
In CRYPTO, pages 213–229, 2001.

[BFP09] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Hybrid approach for solving
multivariate systems over finite fields. Journal of Mathematical Cryptology, 3(3), jan
2009.

[BFS03] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. Complexity of Gröbner basis
computation for Semi-regular Overdetermined sequences over F 2 with solutions in
F 2. Research Report RR-5049, INRIA, 2003.

[BFSS13] Magali Bardet, Jean-Charles Faugere, Bruno Salvy, and Pierre-Jean Spaenlehauer. On
the complexity of solving quadratic boolean systems. Journal of Complexity, 29(1):53 –
75, 2013.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev,
Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic
encryption, arithmetic circuit ABE and compact garbled circuits. In EUROCRYPT,
pages 533–556, 2014.

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang.
On the (im)possibility of obfuscating programs. In CRYPTO, 2001.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct
randomized encodings and their applications. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR,
USA, June 14-17, 2015, pages 439–448, 2015.

71

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In ITCS, pages 309–325, 2012.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Proceedings of the Forty-fifth Annual
ACM Symposium on Theory of Computing, STOC ’13. ACM, 2013.

[BNPW16] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From cryptomania
to obfustopia through secret-key functional encryption. In TCC (B2), volume 9986 of
Lecture Notes in Computer Science, pages 391–418, 2016.

[BPW16] Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the edge of
chaos - trapdoor permutations from indistinguishability obfuscation. In Theory of
Cryptography - 13th International Conference, TCC 2016-A, Tel Aviv, Israel, January
10-13, 2016, Proceedings, Part I, pages 474–502, 2016.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based
encryption. In IEEE Symposium on Security and Privacy, pages 321–334, 2007.

[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private
constrained prfs (and more) from lwe. In Theory of Cryptography Conference (TCC),
2017.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 97–106,
2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-
lwe and security for key dependent messages. In Advances in Cryptology - CRYPTO
2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2011. Proceedings, pages 505–524, 2011.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. FOCS, 2015:163, 2015.

[BW06] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption
(without random oracles). In CRYPTO, pages 290–307, 2006.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In TCC, pages 535–554, 2007.

[CDPR16] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short generators
of principal ideals in cyclotomic rings. In EUROCRYPT, 2016.

[CFL+] Jung Hee Cheon, Pierre-Alain Fouque, Changmin Lee, Brice Minaud, and Hansol Ryu.
Cryptanalysis of the new clt multilinear map over the integers. Eprint 2016/135.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrede Lepoint, Hemanta K
Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing

72

without low-level zeroes: New mmap attacks and their limitations. In Advances in
Cryptology–CRYPTO 2015, pages 247–266. Springer, 2015.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct
garbling and indistinguishability obfuscation for RAM programs. In Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, pages 429–437, 2015.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. In EUROCRYPT, pages 523–552, 2010.

[CHL+15] J.-H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé. Cryptanalysis of the multilinear
map over the integers. In Proc. of EUROCRYPT, volume 9056 of LNCS, pages 3–12.
Springer, 2015.

[CIJ+13] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and
Giuseppe Persiano. On the achievability of simulation-based security for functional
encryption. In CRYPTO, 2013.

[CJL] Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An algorithm for ntru problems
and cryptanalysis of the ggh multilinear map without a low level encoding of zero.
Eprint 2016/139.

[CLLT16] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi.
Zeroizing attacks on indistinguishability obfuscation over clt13. Eprint 2016, 2016.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I, pages 476–493, 2013.

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation of
probabilistic circuits and applications. In Theory of Cryptography - 12th Theory of
Cryptography Conference, TCC, 2015.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In
IMA Int. Conf., pages 360–363, 2001.

[DP17] Léo Ducas and Alice Pellet-Mary. On the statistical leak of the GGH13 multilinear
map and some variants. IACR Cryptology ePrint Archive, 2017:482, 2017.

[DY09] Jintai Ding and Bo-Yin Yang. Multivariate Public Key Cryptography, pages 193–241.
Springer Berlin Heidelberg, 2009.

[FHHL18] Pooya Farshim, Julia Hesse, Dennis Hofheinz, and Enrique Larraia. Graded encoding
schemes from obfuscation. In PKC, 2018.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

73

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In EUROCRYPT, 2013.

[GGH13b] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Athens,
Greece, May 26-30, 2013. Proceedings, pages 1–17, 2013.

[GGH+13c] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, 2013. http://eprint.iacr.org/.

[GGH+13d] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-
based encryption for circuits from multilinear maps. In CRYPTO, 2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In Theory of Cryptography - 12th Theory of Cryptography Conference,
TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part II, pages 498–527,
2015.

[GGHZ14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure functional
encryption without obfuscation. In IACR Cryptology ePrint Archive, volume 2014,
page 666, 2014.

[GGHZ16] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryption
without obfuscation. In Eyal Kushilevitz and Tal Malkin, editors, Theory of
Cryptography, 2016.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
STOC, pages 555–564, 2013.

[GKPV10] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan.
Robustness of the learning with errors assumption. In ITCS, 2010.

[GMM+16] Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan, and
Mark Zhandry. Secure obfuscation in a weak multilinear map model. In Martin Hirt
and Adam Smith, editors, Theory of Cryptography, pages 241–268, Berlin, Heidelberg,
2016. Springer Berlin Heidelberg.

[Gol00] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, New York, NY, USA, 2000.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In ACM Conference
on Computer and Communications Security, pages 89–98, 2006.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, pages 197–206, 2008.

74

http://eprint.iacr.org/

[GS02] Craig Gentry and Mike Szydlo. Cryptanalysis of the revised ntru signature scheme. In
EUROCRYPT. Springer Berlin Heidelberg, 2002.

[GTKP+13] S. Goldwasser, Y. Tauman Kalai, R. Popa, V. Vaikuntanathan, and N. Zeldovich.
Reusable garbled circuits and succinct functional encryption. In Proc. of STOC, pages
555–564. ACM Press, 2013.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions from multiparty computation. In CRYPTO, 2012.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute based encryption
for circuits. In STOC, 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for
circuits from lwe. In Crypto, 2015.

[HJ15] Y. Hu and H. Jia. Cryptanalysis of GGH map. Cryptology ePrint Archive: Report
2015/301, 2015.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. Ntru: A ring-based public
key cryptosystem. In Joe P. Buhler, editor, Algorithmic Number Theory: Third
International Symposiun, ANTS-III Portland, Oregon, USA, June 21–25, 1998
Proceedings, 1998.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In 41st Annual Symposium on
Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach,
California, USA, pages 294–304, 2000.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via
perfect randomizing polynomials. In Automata, Languages and Programming, 29th
International Colloquium, ICALP 2002, Malaga, Spain, July 8-13, 2002, Proceedings,
pages 244–256, 2002.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability
obfuscation for turing machines with unbounded memory. In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015, pages 419–428, 2015.

[KMN+14] Ilan Komargodski, Tal Moran, Moni Naor, Rafael Pass, Alon Rosen, and Eylon Yogev.
One-way functions and (im)perfect obfuscation. In 55th IEEE Annual Symposium on
Foundations of Computer Science, FOCS, 2014.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In EUROCRYPT, pages
146–162, 2008.

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In Proceedings
of the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC ’12,
2012.

75

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes. In Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, May 8-12, 2016, Proceedings, Part I, pages 28–57, 2016.

[Lin17] Huijia Lin. Indistinguishability obfuscation from sxdh on 5-linear maps and locality-5
prgs. In Crypto, 2017.

[LM18] Huijia Lin and Christian Matt. Pseudo flawed-smudging generators and their application
to indistinguishability obfuscation. Cryptology ePrint Archive, Report 2018/646, 2018.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and
Brent Waters. Fully secure functional encryption: Attribute-based encryption and
(hierarchical) inner product encryption. In EUROCRYPT, pages 62–91, 2010.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. In EUROCRYPT, volume 6110, 2010.

[LPST16] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Output-compressing
randomized encodings and applications. In Theory of Cryptography - 13th International
Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part I,
pages 96–124, 2016.

[LSS14] Adeline Langlois, Damien Stehlé, and Ron Steinfeld. Gghlite: More efficient multilinear
maps from ideal lattices. In Advances in Cryptology - EUROCRYPT 2014 - 33rd
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages 239–256,
2014.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps
and block-wise local prgs. In Crypto, 2017.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from ddh-like
assumptions on constant-degree graded encodings. In FOCS, 2016.

[LV17] Alex Lombardi and Vinod Vaikuntanathan. On the non-existence of blockwise 2-local
prgs with applications to indistinguishability obfuscation. IACR Cryptology ePrint
Archive, http://eprint.iacr.org/2017/301, 2017.

[MI88] Tsutomu Matsumoto and Hideki Imai. Public quadratic polynomial-tuples for
efficient signature-verification and message-encryption. In Advances in Cryptology —
EUROCRYPT ’88, pages 419–453, Berlin, Heidelberg, 1988. Springer Berlin Heidelberg.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Cambridge,
UK, April 15-19, 2012. Proceedings, pages 700–718, 2012.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
gaussian measures. SIAM Journal on Computing (SICOMP), 37(1):267–302, 2007.
extended abstract in FOCS 2004.

76

http://eprint.iacr.org/2017/301

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over ggh13. In Crypto, 2016.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem.
In STOC, pages 333–342, 2009.

[Pei16] Chris Peikert. A Decade of Lattice Cryptography, volume 10, pages 283–424. 03 2016.

[PM18] Alice Pellet-Mary. Quantum attacks against indistinguishablility obfuscators proved
secure in the weak multilinear map model. In Advances in Cryptology - CRYPTO,
2018.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J.ACM, 56(6), 2009. extended abstract in STOC’05.

[SS11] Damien Stehlé and Ron Steinfeld. Making ntru as secure as worst-case problems over
ideal lattices. In Proceedings of the 30th Annual International Conference on Theory and
Applications of Cryptographic Techniques: Advances in Cryptology, EUROCRYPT’11,
2011.

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient public
key encryption based on ideal lattices. In Advances in Cryptology - ASIACRYPT
2009, 15th International Conference on the Theory and Application of Cryptology and
Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings, pages 617–635,
2009.

[SW] Amit Sahai and Brent Waters. Functional encryption:beyond public key cryptography.
Power Point Presentation, 2008. http://userweb.cs.utexas.edu/˜bwaters/presentations/
files/functional.ppt.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
pages 457–473, 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable
encryption, and more. In STOC, 2014. http://eprint.iacr.org/2013/454.pdf.

[TW10] Enrico Thomae and Christopher Wolf. Solving systems of multivariate quadratic
equations over finite fields or: From relinearization to mutantxl, 2010.

[Wat12] Brent Waters. Functional encryption for regular languages. In Crypto, 2012.

[Wol05] Christopher Wolf. Multivariate Quadratic Polynomials In Public Key Cryptography.
PhD thesis, KATHOLIEKE UNIVERSITEIT LEUVEN, 2005.

[WP05] Christopher Wolf and Bart Preneel. Taxonomy of public key schemes based on the
problem of multivariate quadratic equations, 2005.

[YDH+15] Takanori Yasuda, Xavier Dahan, Yun-Ju Huang, Tsuyoshi Takagi, and Kouichi
Sakurai. Mq challenge: Hardness evaluation of solving multivariate quadratic problems.
Cryptology ePrint Archive, Report 2015/275, 2015. https://eprint.iacr.org/2015/
275.

77

http://eprint.iacr.org/2013/454.pdf
https://eprint.iacr.org/2015/275
https://eprint.iacr.org/2015/275

Appendices

A Quadratic Functional Encryption from CNG and NLinFE

Formally, quadratic polynomials will be represented by a circuit with a multiplication layer, followed
by an addition layer. For the construction below, we will require two prime moduli p0 < p1 where
p0 serves as the message space for the quadratic scheme, and p1 serves as the message space for
the NLinFE scheme. Below, the distribution D0 is a discrete Gaussian with width σ0 and D1 is a
discrete Gaussian with width σ1. Parameters are instantiated in Appendix 9. Our construction will
make use of the following ingredients:

1. Correlated noise generator CNG. We will require an correlated noise generator CNG as
defined in Section 5. We will denote (x0,µ)← D1

CNG when x ∈ Rwp0 is chosen arbitrarily, and
µ← Dw0 . Define F1

CNG : R2w → R as F1
CNG = {fij}1≤j≤i≤w where,

fij(x,µ) = p0 ·
(
p0 · µiµj + xiµj + xjµi

)
∀ 1 ≤ j ≤ i ≤ w

Let (G,Dseed) be an (F1
CNG,D1

CNG)-CNG with seed β ← Dnseed. We denote by Gij ∈ G the
function chosen to smudge the function fij ∈ F1

CNG, namely the joint distribution {fij(x,µ) +
Gij(β)}i,j will be indistinguishable from {Gij(β)}i,j to any P.P.T adversary for all 1 ≤ j ≤
i ≤ w. We will informally refer to Gij as smudging polynomials.

To support the addition layer following multiplication, we let D2
CNG = D1

CNG and let F2
CNG

contain functions of the form
∑

1≤j≤i≤w
gijfij for some gij ∈ Rp0 . However, linear combinations

can be smudged by taking the same linear combinations of the corresponding smudging
polynomials, i.e. if {fij(x,µ) +Gij(β)}i,j is indistinguishable from {Gij(β)}i,j , then it follows
that { ∑

1≤j≤i≤w
gij
(
fij(x,µ) +Gij(β)

)}
i,j

c
≈
{ ∑

1≤j≤i≤w
gij Gij(β)

}
i,j

2. Noisy linear functional encryption NLinFE. We require a (DNFE,FNFE, BNFE)-NLinFE
scheme where (i). (x0,µ,β) ← DNFE when (x0,µ) ← D1

CNG and β ← Dseed (ii). FNFE ={ ∑
1≤j≤i≤w

gij hij
}

1≤j≤i≤w with hij(x,µ,β) = fij(x,µ) + Gij(β) and (iii) BNFE is chosen

superpolynomially larger than any
∣∣ hij(x0,µ,β)

∣∣. For parameters, please see Appendix 9.

Construction. We proceed to describe the construction, denoted by QuadFE.

QuadFE.Setup(1κ, 1w) : On input a security parameter κ and a parameter w denoting the length
of message vectors, do:

1. Invoke NLinFE.Setup(1κ, 1w+2) to obtain NLinFE.PK and NLinFE.MSK.

2. Sample u← Rwp1 and sample the seed of an CNG as β ← Dnseed.

3. For 1 ≤ j ≤ i ≤ w, compute keyij as follows:

• For 1 ≤ j ≤ i ≤ w, and let p0 · µ̃ij = Gij(β).

• Sample uniform ti ← Rp1 for i ∈ [0, w].

78

• Define
keyij = uiujt0 − ujti − uitj − p0 · µ̃ij

Set key = (keyij)1≤j≤i≤w ∈ RL where L = |{i, j : 1 ≤ j ≤ i ≤ w}|17.

4. Output PK = (NLinFE.PK,u), MSK = (NLinFE.MSK,key).

QuadFE.Enc(PK,x): On input public parameters PK, and message vector x ∈ Rwp0 do:

1. Sample s1 ← Rp1 and µ← Dw0 , and compute the encoding of the message

c = u · s1 + p0 · µ + x ∈ Rwp1 .

2. Let b = NLinFE.Enc (s2
1, c1s1, . . . , cws1, 0).

3. Output CT = (c,b)

QuadFE.KeyGen(PK,MSK,g): On input the public parameters PK, the master secret key MSK,
and a function g =

∑
1≤j≤i≤w

gijxixj , represented as a coefficient vector (gij) ∈ ZLp0 do:

1. Compute keyg =
∑

1≤j≤i≤w
gijkeyij ∈ Rp1 .

2. Compute

ug =
∑

1≤j≤i≤w
gij (uiuj , 0....0,−ui, 0...0,−uj , 0...0) ∈ Rw+1

p1 .

3. Compute SKg = NLinFE.KeyGen
(
MSK, (ug|keyg)

)
and output it.

QuadFE.Dec(PK,SKg,CTx): On input the public parameters PK, a secret key SKg for polynomial∑
1≤j≤i≤w

gijxixj , and a ciphertext CTx = (c,b), compute

∑
1≤j≤i≤w

gijcicj + NLinFE.Dec(b,SKg) mod p0

and output it.

Ciphertext Size. The ciphertext in the above scheme is comprised of:

c = u · s1 + p0 · µ + x ∈ Rwp1 , b = NLinFE.Enc (s2
1, c1s1, . . . , cws1, 0)

Clearly, c enjoys linear efficiency. Additionally, note that the message size in b is linear, hence
efficiency of QuadFE ciphertext is inherited from that of NLinFE ciphertext.

17We remark that key plays no role in correctness of the real system and will only be used in the proof.

79

Correctness. We show correctness of the quadratic FE scheme.

Theorem A.1. If NLinFE is correct, then the QuadFE is correct.

Proof. Let 1 ≤ j ≤ i ≤ w. By definition

xi + p0 · µi = ci − uis1, xj + p0 · µj = cj − ujs1

Let
µij = xiµj + xjµi + p0µiµj (A.1)

xixj + p0 · µij = cicj − ciujs1 − cjuis1 + uiujs
2
1 (A.2)

We denote the noise corresponding to monomial xixj , added by the scheme NLinFE by p0 · ρij .
We note that the noise added by NLinFE can easily be chosen to be a multiple of p0, since this is
chosen by the encryptor of the NLinFE scheme, please see Section 8 for details.

By correctness of the linear scheme NLinFE, we have that

NLinFE.Dec(b, SKg) =
∑

1≤j≤i≤w
gij
(
− ciujs1 − cjuis1 + uiujs

2
1 + p0 · ρij

)
∑

1≤j≤i≤w
gijcicj + NLinFE.Dec(b,SKg) =

∑
1≤j≤i≤w

gij

(
cicj − ciujs1 − cjuis1 + uiujs

2
1 + p0 · ρij

)
=

∑
1≤j≤i≤w

gij
(
xixj + p0 · µij + p0 · ρij

)
=

∑
1≤j≤i≤w

gij xixj mod p0 as long as p0 · (µij + ρij) ≤
p1

5
.

Note that the error recovered in decryption is p0 · (µij + ρij).

A.1 Indistinguishability Based Security

Theorem A.2. Assume the noisy linear FE scheme NLinFE satisfies semi-adaptive indistinguisha-
bility based security as in Definition 3.4. Assume that G is a secure CNG as defined in Definition
5.1. Then, the construction QuadFE in Section 4 achieves semi-adaptive indistinguishability based
security as in Definition 2.4.

Proof. We will prove the theorem via a sequence of hybrids, where the first hybrid is the real world
with challenge x0 and the last hybrid is the real world with challenge x1.

The Hybrids. Our Hybrids are described below.

80

Hybrid 0. This is the real world with message x0. In hybrid 0, keyg is picked as follows:

1. Sample t0, . . . , tw ← Rp1 and p0 · µ̃ij = Gij(β).

2. For 1 ≤ j ≤ i ≤ w, set keyij =
(
uiujt0 − ujti − uitj − p0 ·Gij(β)

)
mod p1

3. Let keyg =
∑

1≤j≤i≤w
gijkeyij mod p1.

Hybrid 1. In this hybrid, the only thing that is different is that the challenger picks keyg to
depend on the challenge ciphertext (c1, . . . , cw) and the function value g(x). Specifically,

1. Sample t0, . . . , tw ← Rp1 . Let p0 · µ̃ij
def
= Gij(β) .

2. Set

keyij =
(
xixj − cicj

)
−
(
uiujt0 − ujti − uitj)− p0 · µ̃ij ∀ 1 ≤ j ≤ i ≤ w

keyg =
∑

1≤j≤i≤w
gijkeyij mod p1

Hybrid 2. In this hybrid, we change the input for NLinFE.Enc to (t0, t1, . . . , tw, 1) where ti are
chosen uniformly in Rp1 for i ∈ {0, . . . , w}.

Hybrid 3. In this hybrid, we change the message vector in c to x1.

Hybrids 4 and 5. In Hybrid 4 we change the input to NLinFE.Enc to (s2
1, c1s1, . . . , cws1, 0) as in

Hybrid 1. In Hybrid 5, we change keyg to be chosen independent of the ciphertext as in Hybrid 0.
This is the real world with message x1.

Indistinguishability of Hybrids. Below we establish that consecutive hybrids are indistinguish-
able.

Claim A.3. Hybrid 0 and Hybrid 1 are indistinguishable assuming the security of the CNG Gij.

Proof. The only difference between Hybrid 0 and Hybrid 1 is in the way keyg is sampled.
In Hybrid 0, we have:

1. Sample t0, . . . , tw ← Rp1 and β ← Dnseed. Define p0 · µ̃ij
def
= Gij(β).

2. Set keyij = uiujt0 − ujti − uitj − p0 · µ̃ij

3. Set keyg =
∑

1≤j≤i≤w
gijkeyij .

In Hybrid 1, keyg is picked as follows:

1. Sample t0, . . . , tw ← Rp1 and β ← Dnseed. Let p0 · µ̃ij ← Gij(β).

2. Let keyij =
(
xixj − cicj

)
−
(
uiujt0 − ujti − uitj)− p0 · µ̃ij for 1 ≤ j ≤ i ≤ w.

81

3. Set keyg =
∑

1≤j≤i≤w
gijkeyij .

To argue that keyij (and hence keyg) are indistinguishable, we rely on the security of CNG. Assume
that an adversary A distinguishes Hybrid 0 and Hybrid 1. Then we construct an adversary B to
break the security of CNG as follows.

1. B samples the public key honestly and returns this to A. A outputs two challenges x0,x1, to
which B encrypts x0 honestly and returns this to A.

2. B samples t0, . . . , tw ← Rp1 . Say A requests a key for monomial xixj for some i, j ≤ w. B
does the following. Set

y1
ij =

(
xixj − cicj

)
−
(
uiujt0 − ujti − uitj

)
Now, note that by Equation 4.2,

xixj + p0 ·
(
p0 · µiµj + xiµj + xjµi

)
= cicj − ciujs1 − cjuis1 + uiujs

2
1

Hence,

y1
ij =

(
uiujs

2
1 − uicjs1 − ujcis1 − p0 · (p0 · µiµj + xiµj + xjµi)

)
−
(
uiujt0 − ujti − uitj

)
= uiuj(s

2
1 − t0)− ui(cjs1 − tj)− uj(cis1 − ti)− p0 · (p0 · µiµj + xiµj + xjµi)

Recall µij = p0 · µiµj + xiµj + xjµi, and let t′0 = s2
1 − t0, t′i = cis1 − ti, ∀ i ∈ [w]

Let y0
ij = uiujt

′
0 − uit′j − ujt′i, y1

ij = uiujt
′
0 − uit′j − ujt′i − p0 · µij

Let fij(x,µ) = p0 ·
(
p0 · µiµj + xiµj + xjµi

)
. Return (fij , fij(x,µ))ij to the CNG challenger.

3. The challenger for CNG sets p0 · µ̃ij = Gij(β) where β ← Dnseed and returns (1− b)fij(x,µ) +
p0 · µ̃ij for random bit b. B sets keyij = y1

ij + p0 · µ̃ij + (1 − b)fij(x,µ) and computes the
function key for monomial xixj honestly using this value of keyij . This key is returned to A.

4. When the adversary outputs a guess for b, output the same.

Note that the reduction B is a valid adversary against the CNG. Additionally, if b = 0, we are in
Hybrid 0, else in Hybrid 1.

Indistinguishability of remaining hybrids is argued as in Section 4.3.

B Direct Construction of NLinFE: The General Case

In this section, we provide the general heuristic construction for noisy linear functional encryption
that incorporates all the ideas discussed in Section 1. We will use the special message and function
vectors that occur in the construction of QuadFE from NLinFE as described in Section 4.

82

Construction. We proceed to describe the construction NLinFE.

Setup(1κ, 1w+2): On input a security parameter κ, a parameter w + 2 denoting the length of the
function and message vectors18, do the following:

1. Choose uniformly random w← Rmp2 with a trapdoor Tw.

2. For i ∈ {0, . . . , w + 1}, choose uniformly random ai ∈ Rp2 . Denote a = (ai) ∈ Rw+2
p2 .

3. Sample u ← Rwp1 and sample the seed of an CNG as β ← Dnseed. Recall that n =
O(w,poly(κ)).

4. For 1 ≤ j ≤ i ≤ w, compute keyij as follows19:

• For 1 ≤ j ≤ i ≤ w, and let p0 · µ̃ij = Gij(β).

• Sample uniform ti ← Rp1 for i ∈ [0, w].

• Define
keyij = uiujt0 − ujti − uitj − p0 · µ̃ij

Set key = (keyij)1≤j≤i≤w ∈ RL where L = |{i, j : 1 ≤ j ≤ i ≤ w}|.

5. For i ∈ {1, . . . , w}, ` ∈ {1, . . . , k}, sample f `1i, f
`
2i ← D2 and g`1, g

`
2 ← D2. If g`1, g

`
2 are not

invertible over Rp2 , resample. Set

h`1i =
f `1i
g`1
, h`2i =

f `2i
g`2
∈ Rp2

6. Sample a PRF seed, denoted as seed.

Output

MSK =
(

w,Tw,a,u,
{
f `1i, f

`
2i

}
i∈[w],`∈[k]

,
{
g`1, g

`
2}`∈[k]

}
, seed

)
Enc(MSK, z): On input public key MSK, a message vector z = (z0, z1, . . . , zw, 0) ∈ Rw+2

p1 , do:

1. Sample noise terms ν1,ν2 ← Dm2 , η ← Dw+2
2 and secret t1, t2 ← D2 ∈ Rp2 . Set s = t1 · t2.

Choose s1 ← D2 and let s2 = s− s1.

2. Compute the randomness encodings

c00 = w · s1 + p1 · ν1 ∈ Rmp2 .
c01 = w · s2 + p1 · ν2 ∈ Rmp2 .

3. Compute the message encoding

b = a · s+ p1 · η + z ∈ Rw+2
p2

18We use w + 2 to be the length of the function and message vectors to be consistent with the usage of NLinFE in
Section 4.

19Steps 3 and 4 are to be consistent with function vectors in Section 4, to provide a concrete candidate of QuadFE
for cryptanalysis.

83

4. Let D̂(Λ`1), D̂′(Λ`1) be spherical discrete Gaussian distributions with parameter σ on

Λ`1
def
= g`1 ·R and D̂(Λ`2), D̂′(Λ`2) be spherical discrete Gaussian distributions with parameter

σ on Λ`2
def
= g`2 ·R. Sample the noise terms as:

(a) For i ∈ [w], ` ∈ [k], sample e`1i ← D̂(Λ`2), ẽ`1i ← D̂′(Λ`2).

Let e`1i = g`2 · ξ`1i, ẽ`1i = g`2 · ξ̃`1i (B.1)

Hence, h`2i · e`1j = f `2i · ξ`1j , h`2i · ẽ`1j = f `2i · ξ̃`1j ∀ i, j ∈ [w], ` ∈ [k] (B.2)

(b) For i ∈ [w], ` ∈ [k], sample e`2i ← D̂(Λ`1), ẽ`2i ← D̂′(Λ`1).

Let e`2i = g`1 · ξ`2i, ẽ`2i = g`1 · ξ̃`2i (B.3)

Hence, h`1i · e`2j = f `1i · ξ`2j , h`1i · ẽ`2j = f `1i · ξ̃`2j ∀ i, j ∈ [w], ` ∈ [k] (B.4)

5. Compute the noise encodings as:

(a) Let
d`1i = h`1i · t1 + p1 · ẽ`1i + p0 · e`1i ∈ Rp2

Here, p1 · ẽ`1i behaves as noise and p0 · e`1i behaves as the message. Let d`1 = (d`1i).

(b) Similarly, let
d`2i = h`2i · t2 + p1 · ẽ`2i + p0 · e`2i ∈ Rp2

Here, p1 · ẽ`2i behaves as noise and p0 · e`2i behaves as the message. Let d`2 = (d`2i).

6. Output randomness and message encodings (c00, c01,b) and noise encodings (d`1,d
`
2) for

` ∈ [k].

KeyGen(MSK,g): On input the master secret key MSK, and a NLinFE function vector (please see
Section 4)

∑
1≤j≤i≤w

gij
(
uiuj , 0....0,−ui, 0...0,−uj , 0...0, keyij

)
∈ Rw+2

p1 , do the following.

1. For 1 ≤ j ≤ i ≤ w, compute

uij = uiuja0 − uiaj − ujai + keyijaw+1 +
∑
`∈[k]

h`1ih
`
2j ∈ Rp2 (B.5)

2. Using the trapdoor Tw, using randomness PRF(seed, i) for i ∈ [0, . . . , w + 1], b ∈ {0, 1},
sample short vectors eb0, e

b
i , e

b
j , e

b
w+1 ∈ Rm such that

〈w; eb0〉 = a0, 〈w; ebi〉 = ai,

3. For 1 ≤ j ≤ i ≤ w, b ∈ {0, 1}, sample ∆b
ij , ∆̃

b
ij ← D2 ∈ Rp2 .

4. Sample short ebij ∈ Rm using randomness PRF(seed, b, ij) such that

〈w; ebij〉 =
∑
`∈[k]

h`1ih
`
2j + p0 ·∆b

ij + p1 · ∆̃b
ij

84

5. Let kbij = uiuje
b
0 − uiebj − ujebi + keyije

b
w+1 + ebij ∈ Rm. Note that

〈w; kbij〉 = uij + p0 ·∆b
ij + p1 · ∆̃b

ij ∈ Rp2 (B.6)

6. Compute

ug =
∑

1≤j≤i≤w
gijuij ∈ Rp2

7. Compute kbg ∈ Rm as kbg =
∑

1≤j≤i≤w
gijk

b
ij . Note that

〈w; kbg〉 = ug +
∑

1≤j≤i≤w
gij
(
p0 ·∆b

ij + p1 · ∆̃b
ij ∈ Rp2

)
∈ Rp2

8. Output (k0
g,k

1
g,g,u) where g = (gij)1≤j≤i≤w and u = (ui)i∈[w].

Dec(CTz, SKg): On input a a ciphertext CTz =
(

c00, c01,b, {d`1,d`2}`∈[k]

)
and a secret key

(k0
g,k

1
g,g,u) for function g = (gij)1≤j≤i≤w, do the following

1. Compute

bij = uiujb0 − ujbi − uibj + keyijbw+1 +
∑
`∈[k]

d`1i · d`2j ∈ Rp2

2. Compute bg =
∑

1≤j≤i≤w
gijbij

3. Compute bg −
(
〈c00, k0

g〉+ 〈c01, k1
g〉
)

mod p1 and output it.

Correctness. In this section, we establish that the above scheme is correct. We walk through the
steps performed by the decrypt algorithm. In what follows, we will constantly collect small noise
terms under the umbrella “small” without keeping track of the precise values. This is because for
correctness, the noise terms must merely be maintained below a certain value so that they can be
modded out in the end. Their precise shape will be analysed when we discuss security.

1. We compute d`1i · d`2j . Recall that

d`1i = h`1i · t1 + p1 · ẽ`1i + p0 · e`1i ∈ Rp2

d`2j = h`2j · t2 + p1 · ẽ`2j + p0 · e`2j ∈ Rp2
Now, since for all i, j ∈ [w], we chose :

h`2j · e`1i = small, h`2j · ẽ`1i = small, h`1j · e`2i = small, h`1j · ẽ`2i = small, s = t1 · t2

we have that e`1i = g`2 · ξ`1i, ẽ`1i = g`2 · ξ̃`1i, e`2j = g`1 · ξ`2j , ẽ`2j = g`1 · ξ̃`2j
and h`2i · e`1j = f `2i · ξ`1j , h`2i · ẽ`1j = f `2i · ξ̃`1j h`1i · e`2j = f `1i · ξ`2j , h`1i · ẽ`2j = f `1i · ξ̃`2j

85

Now, we may compute:

d`1i · d`2j =
(
h`1i · t1 + p1 · ẽ`1i + p0 · e`1i

)
·
(
h`2j · t2 + p1 · ẽ`2j + p0 · e`2j

)
= h`1i · h`2j(t1t2) + p2

1 ·
(
ẽ`1i · ẽ`2j

)
+ p1 · p0

(
ẽ`1i · e`2j + e`1i · ẽ`2j

)
+ p2

0

(
e`1i · e`2j

)
+ h`1i · t1 · (p1 · ẽ`2j + p0 · e`2j) + h`2j · t2 · (p1 · ẽ`1i + p0 · e`1i)

= h`1i · h`2j(t1t2) + p2
1 ·
(
g`2 · ξ̃`1i · g`1 · ξ̃`2j

)
+ p1 · p0

(
g`2 · ξ̃`1i · g`1 · ξ`2j + g`2 · ξ`1i · g`1 · ξ̃`2j

)
+ p2

0

(
g`2 · ξ`1i · g`1 · ξ`2j

)
+ p1 ·

(
h`1i · ẽ`2j · t1 + h`2j · ẽ`1i · t2

)
+ p0 ·

(
h`1i · e`2j · t1 + h`2j · e`1i · t2

)
= h`1i · h`2j(t1t2) + p2

1 ·
(
g`2 · ξ̃`1i · g`1 · ξ̃`2j

)
+ p1 · p0

(
g`2 · ξ̃`1i · g`1 · ξ`2j + g`2 · ξ`1i · g`1 · ξ̃`2j

)
+ p2

0

(
g`2 · ξ`1i · g`1 · ξ`2j

)
+ p1 ·

(
f `1i · ξ̃`2j · t1 + f `2j · ξ̃`1i · t2

)
+ p0 ·

(
f `1i · ξ`2j · t1 + f `2j · ξ`1i · t2

)
= h`1i · h`2j (t1t2)︸ ︷︷ ︸

s

+p1 ·
(
p1 · (g`2 · ξ̃`1i · g`1 · ξ̃`2j) + p0 · (g`2 · ξ̃`1i · g`1 · ξ`2j + g`2 · ξ`1i · g`1 · ξ̃`2j)︸ ︷︷ ︸

small

+ (f `1i · ξ̃`2j · t1 + f `2j · ξ̃`1i · t2)
)

︸ ︷︷ ︸
small

+p0 ·
(
p0 · (g`2 · ξ`1i · g`1 · ξ`2j) + (f `1i · ξ`2j · t1 + f `2j · ξ`1i · t2)

)
︸ ︷︷ ︸

small

(B.7)

Above, we highlight in blue the terms in the noise that will remain fixed across all ciphertexts.

Thus,
∑
`∈[k]

d`1i · d`2j =
(∑
`∈[k]

h`1i · h`2j
)
· s+ p1 · small + p0 · small (B.8)

2. Recall that by definition B.5, we have:

uij = uiuja0 − uiaj − ujai + keyijaw+1 +
∑
`∈[k]

h`1ih
`
2j ∈ Rp2

and that 〈w; kbg〉 = ug +
∑

1≤j≤i≤w
gij
(
p0 · ∆b

ij + p1 · ∆̃b
ij ∈ Rp2

)
∈ Rp2 . Recall that c0b =

w · sb + p1 · νb, hence,

〈c0b, kbg〉 =
(
ug +

∑
1≤j≤i≤w

gij
(
p0 ·∆b

ij + p1 · ∆̃b
ij

)
· sb + p1 · (νT

bk
b
g)

= ug · sb + p1 · small + p0 · small

〈c00, k0
g〉+ 〈c01, k1

g〉 = ug · (s0 + s1) + p1 · small + p0 · small

= ug · s+ p1 · small + p0 · small

Above, the second step follows because the term
∑

1≤j≤i≤w
gij
(
p0 ·∆b

ij +p1 · ∆̃b
ij , as well as secrets

s1 and s2 are small by design.

86

Recall that b = a · s+ p1 · η + z ∈ Rw+2
p2 . Now, let

bij = uiujb0 − ujbi − uibj + keyijbw+1 +
∑
`∈[k]

d`1i · d`2j

=
(
uiuja0 − ujai − uiaj + keyijaw+1 +

∑
`∈[k]

h`1ih
`
2j

)
s+ p1 · small+

(
uiuj · z0 − uj · zi − ui · zj + keyij · 0 + p0 · small

)
= uij · s+ p1 · small +

(
uiuj · z0 − uj · zi − ui · zj + p0 · small

)
∴

∑
1≤j≤i≤w

gijbij = ug · s+
(∑

1≤j≤i≤w
gij(uiuj · z0 − uj · zi − ui · zj)

)
+ p1 · small + p0 · small

Hence,

bg −
(
〈c00, k0

g〉+ 〈c01, k1
g〉
)

mod p1 =
(∑

1≤j≤i≤w
gij(uiuj · z0 − uj · zi − ui · zj)

)
+ p0 · small

Thus, we may recover the required linear function plus noise, as long we set the modulus p2 to
be large enough so that the cumulative noise terms p1 · small may be bounded below p2

5 (say).

C Towards a Proof of Security for the construction in Section 8

In this section, we formulate an assumption, under which a proof of security may be provided for our
scheme. The resultant assumption does not accurately capture some important aspects of the real
system, and therefore, while sufficient, is not necessary for security of our scheme. We emphasize
that we view our attempt in this section as a first step, and hope for improvements in future works.

Theorem C.1. The construction of NLinFE provided in Section 8 satisfies Full-Sel security
(Definition 2.4) under the following two assumptions:

1. Distributions DistrL and DistrR defined in Figure C.1 and C.2 are indistinguishable.

2. Distribution seen by the adversary defined in Figure C.3 hides the bit b.

Proof. We argue the proof via a sequence of hybrids, described below.

Hybrid 0: This is the real world with message zb where b← {0, 1}.

Hybrid 1: This is the same as Hybrid 0, except for the way in which b is generated.

Let b = ETc + p1 · η + zb ∈ Rwp2

Hybrid 2: This is the same as Hybrid 1 except:

1. Sample all relevant elements from DistrR, namely, for i, j ∈ [w] and ` ∈ [k],(
c d`1, d`2, E×

)
← DistrR

87

Distribution DistrL

1. Sample w uniformly from Rmp2

2. Sample noise terms ν ← Dm and secret t1, t2 ← D ∈ Rp2 . Set s = t1 · t2.

3. Set c = w · s+ p1 · ν.

4. For i ∈ {1, . . . , w}, ` ∈ {1, . . . , k}, sample f `1i, f
`
2i ← D and g`1, g

`
2 ← D. If g`1, g

`
2 are not

invertible over Rp2 , resample. Set

h`1i =
f `1i
g`1
, h`2i =

f `2i
g`2
∈ Rp2

5. For i ∈ [w], ` ∈ [k], sample

e`1i ← D̂(Λ`2), ẽ`1i ← D̂′(Λ`2) where Λ`2
def
= g`2 ·R. Let e`1i = g`2 · ξ`1i, ẽ`1i = g`2 · ξ̃`1i.

e`2i ← D̂(Λ`1), ẽ`2i ← D̂′(Λ`1) where Λ`1
def
= g`1 ·R. Let e`2i = g`1 · ξ`2i, ẽ`2i = g`1 · ξ̃`2i.

6. For i ∈ [w], ` ∈ [k], compute

d`1i = h`1i · t1 + p1 · ẽ`1i + p0 · e`1i ∈ Rp2
d`2i = h`2i · t2 + p1 · ẽ`2i + p0 · e`2i ∈ Rp2

Let d`1 = (d`1i) and d`2 = (d`2i).

7. Sample short vectors eij so that

〈w; eij〉 =
∑
`∈[k]

h`1ih
`
2j . Let E× = (eij) ∈ Rm×L

8. Output (
c {d`1, d`2}`∈[k], E×

)

Figure C.1: Distribution DistrL

Indistinguishability of Hybrids We now argue that consecutive hybrids are indistinguishable.

Claim C.2. We claim that Hybrid 0 and 1 are indistinguishable.

Proof. The only difference between the two hybrids is in how (a,b,E) are generated. We argue
these are indistinguishable. Note that a is distributed identically in Hybrids 0 and 1 by [GPV08,
Lem 5.2]. Similarly, E is distributed identically in both Hybrids by [GPV08, Sec 5.3.2]. It remains
to argue that b is indistinguishable in both worlds. This is a standard argument in LWE based

88

Distribution DistrR

1. Sample c uniformly from Rmp2 with a trapdoor T using TrapGen.

2. For ` ∈ [k], sample ṽ` with trapdoor T` using TrapGen.

3. For ` ∈ [k], sample g`1, g
`
2 ← D (re-sample if any is not invertible).

4. For ` ∈ [k], use trapdoor T to sample Ẽ` ← Dm×m such that c>Ẽ` = (ṽ`)T · 1
g`1

.

5. For ` ∈ [k], sample f `11, f
`
21, . . . f

`
1w, f

`
2w,← D.

6. Let d̃`1i =
f`
1i

g`1
and Ei =

∑
`∈[k]

f `1i · Ẽ` for i ∈ [w].

7. Sample e1, . . . , ew ← Dm using trapdoor T` such that (ṽ`)Tej =
f`
2j

g`2

Note that, cT Ei =
∑
`∈[k]

f `1i · cT Ẽ` =
∑
`∈[k]

f `1i
g`1
· (ṽ`)T =

∑
`∈[k]

d̃`1i · (ṽ`)T

Hence, cT
(
Ei ej

)
=
∑
`∈[k]

(
d̃`1i · (ṽ`)T

)
ej =

∑
`∈[k]

d̃`1i d̃
`
2j ∈ Rp2

8. We let eij = Eiej . Let E× = (eij) ∈ Rm×L for 1 ≤ j ≤ i ≤ w.

9. Let d`1i = d̃`1i + p1 · ẽ`1i + p0 · e`1i. Similarly let, d`2j = d̃`2j + p1 · ẽ`2i + p0 · e`2i. Here, ẽ`1i, e
`
1i, ẽ

`
2i,

e`2i are as chosen in Figure C.1.

10. Output (
c {d`1, d`2}`∈[k], E×

)

Figure C.2: Distribution DistrR

constructions, and proceeds as follows. In Hybrid 0, we have

b = ETc + p1 · η + z0

= ET
(
w · s+ p1 · ν

)
+ p1 · η + z0

= a · s+ p1 · (ETν + η) + z0

= a · s+ p1 · η + z0 as long as SD(η,ETν + η) = negl(κ)

as in Hybrid 1.

Claim C.3. Hybrid 1 and Hybrid 2 are indistinguishable.

This follows directly from the assumption. Note that answering the key queries and construction
of challenge ciphertext remains the same in both hybrids. Note that decryption works correctly in
Hybrid 2.

89

Advantage of the Adversary. It remains to argue that the adversary has negligible advantage
in winning the game in Hybrid 2. We examine the view of the adversary in Figure C.3.

View of the Adversary

The adversary sees the following:

1. Ciphertext:

c, b = ETc + p1 · η + zb, d`1i =
f `1i
g`1

+ p1 · (g`2 · ξ̃`1i) + p0 · (g`2 · ξ`1i)

d`2j =
f `2j
g`2

+ p1 · (g`1 · ξ̃`2j) + p0 · (g`1 · ξ`2j) for ` ∈ [k], 1 ≤ j ≤ i ≤ w.

2. Keys: E · v + E× · v× where each column of E× is eij =
∑
`∈[k]

f `1i · Ẽ`ej .

Note that cT(Eiej) =
∑
`∈[k]

f`
1i

g`1

f`
2j

g`2
as required for decryption.

Figure C.3: View of the Adversary

Note that the noise in the product encoding
∑
`∈[k]

d`1id
`
2j is:

βij =
∑
`∈[k]

(
p1 · g`2 · g`1 ·

(
p1 · (ξ̃`1i · ξ̃`2j) + p0 · (ξ̃`1i · ξ`2j + ξ`1i · ξ̃`2j)

)

+ g`2 · g`1 · p2
0 · ξ`1i · ξ`2j + p0 · (f `1iξ`2j + f `2jξ

`
1i) + p1 · (f `1iξ̃`2j + f `2j ξ̃

`
1i)

)

Letting β× = (βij)1≤j≤i≤w, the total noise recovered by the adversary is (v×)Tβ×. Thus, decryption
reveals a high degree polynomial in noise terms. For security, we require:

1. The secret terms g`1, g`2, f `1i, f
`
2j should not be recoverable from the above polynomial (v×)Tβ×.

Note that in general this equation can be of degree larger than 2, as discussed in Section 8.2.
More broadly, the semantic security of d`1, d`2 must not be compromised by learning these
noise terms.

2. The noise recovered above must be sufficient to computationally flood the correlated noise
term that occurs in the difference of challenge message decryptions, as described in Section 4.

3. The function keys are of the form E · vi + E× · v×i for i ∈ [`]. Note that if we could argue that
E was hidden, then we could apply the leftover hash lemma to argue that b = ETc+p1 ·η+zb
hides zb. This is indeed the approach taken in [ALS16]. However, since E× contains correlated
entries, we cannot hope that E retain entropy after polynomially many keys are seen by
the adversary. Instead, one may hope that E retain sufficient entropy in the view of a

90

computationally bounded adversary even given the leakage of the function keys, so that ETc
appears random to her.20

Conjecture C.4. We conjecture that the distribution in Figure C.3 hides the bit b.

Under this assumption, we have that the advantage of the adversary in the Full-Sel game against
our construction is negligible.

Limitations of our assumption.

We remark that the simulated distribution described in Figure C.2 does not accurately capture some
important aspects of the real world distribution in Figure C.1. In the real world, the matrix E× can
be constructed by sampling each column eij independently to satisfy E×

T
w = h + p0 ·∆ + p1 · ∆̃.

This relation ensures that E×
T
c ≈ d× for all ciphertexts, enabling decryption to succeed for all

requested ciphertexts.

In the simulation, to be able to support multiple ciphertexts, decryption requires that the relation
E×

T
c ≈ d× should hold for any ciphertext (c, {d`1,d`2}`∈[k]) and d× constructed from {d`1,d`2}`∈[k].

Traditional proofs in LWE based constructions handle this by having the simulator sample the short
preimage E× first and compute d× accordingly. The resultant distribution of d× thus obtained is
uniform [GPV08].

In our setting, the distribution of the vector d× is not uniform, and the above trick does not
apply. To get around this, we design the columns eij in E× to be correlated as Eiej and design the
ciphertext so that the decryption equation holds. This approach results in us re-using some elements
chosen while constructing Ei in the construction of the ciphertext. In particular, this results in
multiple ciphertexts re-using the numerators f `1i. Thus, multiple elements in a single ciphertext
have the same denominator and all elements in a given position across multiple ciphertexts have
the same numerator in the simulated ciphertexts. This does not accurately reflect the real system,
which does not require such a re-use, and is a severe limitation of our current assumption and proof
technique.

Moreover, since the ciphertext d`1,d
`
2 must have a special form to permit decryption, our

assumption relies on a trapdoor for c. This is also quite dissatisfying, since a trapdoor for c is much
more powerful than what we require – intuitively we are required to sample a short vector that
maps c to an element of the shape small

small , which by NTRU is indistinguishable from uniform. Here, it
is crucial to note that any element from the NTRU distribution would suffice for our purposes. But
we do not know any method to achieve this other than using a full trapdoor for c, which enables
sampling a short vector to map c to any arbitrary element. Note that the adversary learning a full
trapdoor for c would surely compromise security but we do not believe the trapdoor is really being
leaked since we are only using it for sampling pre-images of random looking images.

Lastly, our construction contains additional randomizers ∆ij and ∆̃ij (please see Section 8),
which we could not incorporate into our assumption. These randomizers add noise terms into the
decryption equation which are jointly generated by the key and the ciphertext and serve to further
offset the ideal structure of the constructed noise.

In conclusion, we feel that our assumption does not capture the security of the real system very
well, and may be false without compromising the security of the real system. Nevertheless, we view

20Note that the correlated values of E× cause the system of equations seen by the adversary to be over-defined.
However, in general the system of equations is of high degree multivariate polynomials and these are not sufficiently
many to yield to linearization attacks.

91

this as a first step, and hope that more sophisticated trapdoor sampling techniques and more careful
“programming” will lead to more accurate assumptions on which future constructions can be based.

D Non-Succinct NLinFE from LinFE

In this section, we construct a noisy functional encryption scheme for linear functions which supports
Q queries for a fixed polynomial Q. Security posits that an adversary cannot distinguish between
encryptions of z0 and z1 as long as |gi(z0)− gi(z1)| ≤ ε for every key gi requested, as long as the
number of requested keys is less than Q. We emphasize that Q can be greater than the dimension
of the message/key vectors, namely w – indeed this is the case we will be interested in.

To support Q > w queries so as to achieve the security definition stated above, we artificially
add noise to decryption, so that any two messages whose decryption under a key is equal upto ε
noise, will decrypt to only approximately correct values but will have indistinguishable ciphertexts.

For ease of notation, our description below assumes a stateful keygen. We may get rid of this
restriction using standard tricks as described in [AR17].

D.1 Construction.

The algorithms for the noisy linear FE scheme, denoted by NLinFE are defined as follows.

Setup(1κ, 1Q, 1w, p1): On input a security parameter κ, a parameter w denoting the length of
the function and message vectors, a parameter Q denoting the number of queries supported
and a modulus p1 denoting the space of the message and function vectors, set (PK,MSK) =
LinFE.Setup(1w+1+Q).

KeyGen(MSK,g, i): On input MSK, a function vector g ∈ Zwp1 and an index i ∈ [Q] denoting query
number, do:

1. Sample γi ← D1, where D1 is a discrete Gaussian of width large enough to flood ε.

2. Output SKg = LinFE.KeyGen(g‖γi‖ei) where ei ∈ ZQ is the ith unit vector. Note that
the LinFE key explicitly contains the vector (g‖γi‖ei).

Enc(PK, z): On input public key PK, a message vector z ∈ Zwp1 , do:

1. Sample δ ← DQ2 and µ← D subject to the following constraints:

• D2 is a discrete Gaussian of width large enough to flood D1. Thus, it will hold that
δi + γi ≈ δi, where γi is chosen by keygen.

• D has width large enough so that µ is distributed indistinguishably from µ+ 1.

2. Let CTz = LinFE.Enc(z‖µ‖δ)

Dec(SKgi ,CTz): On input a secret key SKgi for function gi, and a ciphertext CTz:

1. Compute LinFE.Dec(CTz, SKgi) to recover gT
i z + µ · γi + δi.

Appropximate correctness is evident since we recovered the correct value upto noise µ · γi + δi.

92

D.2 Security.

Next, we argue that the above scheme is secure. We have that for every key query gi, i ∈ [Q], it
holds that gT

i (z0 − z1) = εi. We argue via a sequence of hybrids.

Hybrid 0. This is the real world with message z0. The challenge CT encrypts y0 = (z0‖µ‖δ).

Hybrid 1. In this world, we generate the challenge CT for the message y0 = (z0‖µ‖δ̂ + δ) where
δ floods δ̂. For the keys, we set γ = δ̂.

Hybrid 2. In this world, the noise in the Q keys changes to γ = δ̂ + ε.

Hybrid 3. In this world, we change the message in the challenge CT to y1 = (z1‖µ+ 1‖δ).

Hybrid 4. In this world, we rewrite the message in the challenge CT as y1 = (z1‖µ‖δ). This is
the real world with message z1.

Indistinguishability of Hybrids. It is evident that Hybrids 0 and 1 are statistically
indistinguishable, since δ floods δ̂. By the same argument, Hybrid 1 and 2 are statistically
indistinguishable since δ̂ floods ε and Hybrid 3 and Hybrid 4 are statistically indistinguishable since
µ is distributed indistinguishably from µ + 1. The chief transition that must be argued is that
between Hybrids 2 and 3, which we argue now.

Claim D.1. If the exact linear scheme is AD-IND secure, then Hybrids 2 and 3 are indistinguishable.

Proof. Given an adversary A who can distinguish between Hybrids 2 and 3, we will construct an
adversary B who will break the security of the exact linear scheme. B plays the AD-IND game with
the LinFE challenger, denoted by C.

1. The LinFE challenger C outputs the public key PK, which B forwards to A.

2. A requests a key gi for i ∈ [`1], where `1 ≤ Q. B chooses γi as in the real world and requests
a key for ĝi = (g‖γi‖ei) to the LinFE challenger C. The challenger returns LinFE.SK(ĝi) which
B gives A.

3. A outputs two challenges z0, z1 ∈ Zwp1 . B checks that gT
i (z0 − z1) = εi ≤ ε for all queries gi

requested so far. If this condition does not hold, output ⊥ and abort.

4. B chooses δ̂i = γi − εi for i ∈ [`1]. The remaining δ̂`1+1 . . . δ̂Q it chooses as in the real world.

Next, it constructs ŷ0 = (z0‖µ‖δ̂) and ŷ1 = (z1‖µ + 1‖0) and returns these to the LinFE
challenger C as the challenge messages.

5. A may request more keys gi so that gT
i (z0 − z1) = εi. B chooses γi = δ̂i + εi and requests a

key for ĝi = (g‖γi‖ei) to the LinFE challenger. The challenger returns LinFE.SK(ĝi), which B
gives A.

93

6. C outputs the challenge ciphertext CT(ŷb). B adds noise δ to the last Q coordinates and
returns this to A as the challenge CT. Thus, A sees an encryption of either y0 = (z0‖µ‖δ̂ + δ)
or y1 = (z1‖µ+ 1‖δ).

7. When A outputs a guess for bit b, B outputs the same.

Observe that the query ĝi is an admissible query for the LinFE challenger because:

ĝT
i ŷ0 = gT

i z0 + µ · γi + δ̂i

ĝT
i ŷ1 = gT

i z1 + µ · γi + γi

= gT
i z0 − εi + µ · γi + δ̂i + εi

= gT
i z0 + µ · γi + δ̂i

= ĝT
i ŷ0

If the LinFE challenger C returns an encryption of ŷ0, then A sees an encryption of y0 =
(z0‖µ‖δ̂ + δ), otherwise it sees an encryption of y1 = (z1‖µ+ 1‖δ). In the former case we obtain
the distribution of Hybrid 2, in the latter case of Hybrid 3.

Hence, we argued that for Q (for Q > w) queries, our noisy linear FE scheme satisfies (ε,Q)
NsyAD-IND security as per Definiton 3.4.

E Public Key and Ciphertext Evaluation Algorithms

In this section, we recap the tools provided by [AR17] to extend our construction for quadratic
polynomials to NC1. This section is taken verbatim from [AR17].

Throughout this section, we assume circular security of LWE. This is for ease of exposition as
well as efficiency. This assumption can be removed by choosing new randomness si for each level
i as in levelled fully homomorphic encryption. Since the intuition was discussed in Section 1, we
proceed with the technical overview and construction.

Notation. To begin, it will be helpful to set up some notation. We will consider circuits of depth
d, consisting of alternate addition and multiplication layers. Each layer of the circuit is associated
with a modulus pk for level k. For an addition layer at level k, the modulus pk will be the same as
the previous modulus pk−1; for a multiplication layer at level k, we require pk > pk−1. This results
in a tower of moduli p0 < p1 = p2 < p3 = . . . < pd. The smallest modulus p0 is associated with the
message space of the scheme.

We define encoding functions Ek for k ∈ [d] such that Ek : Rpk−1
→ Rpk . At level k, the encryptor

will provide Lk encodings Ck for some Lk = O(2k). For i ∈ [Lk] we define

Ek(yi) = uki · s+ pk−1 · ηki + yi mod pk

Here uki ∈ Rpk , η
k
i ← χk and yi ∈ Rpk−1

. The RLWE secret s is reused across all levels as
discussed above, hence is chosen at the first level, i.e. s← Rp1 . We will refer to Ek(yi) as the Regev
encoding of yi. At level k, the decryptor will be able to compute a Regev encoding of fk(x) where
fk is the circuit f restricted to level k.

94

It will be convenient for us to denote encodings of functional values at every level, i.e. fk(x) by
ck, i.e. ck = Ek

(
fk(x)

)
. Here, ck are encodings computed on the fly by the decryptor whereas Ck

(described above) are a set of level k encodings provided by the encryptor to enable the decryptor
to compute ck. We will denote the public key or label of an encoding Ek(·) (resp. ck) by PK(Ek(·))
(resp. PK(ck)).

In our construction, we will compose encodings, so that encodings at a given level are messages
to encodings at the next level. We refer to such encodings as nested encodings. In nested encodings
at level k + 1, messages may be level k encodings or level k encodings times the RLWE secret s. We
define the notions of nesting level and nested message degree as follows.

Definition E.1 (Nesting level and Nested Message Degree.). Given a composition of successive
encodings, i.e. a nested encoding of the form Ek

(
Ek−1

(
. . . (E`+1(E`(y) · s) · s) . . . · s

)
· s
)
, we will

denote as nesting level the value k − `, the nested message of the encoding as y, and the nested
message degree of the encoding as the degree of the innermost polynomial y.

Note that in the above definition of nested message, we consider the message in the innermost
encoding and ignore the multiplications by s between the layers.

We prove the following theorem.

Theorem E.2. There exists a set of encodings Ci for i ∈ [d], such that:

1. Encodings have size sublinear in circuit. ∀i ∈ [d] |Ci| = O(2i).

2. Efficient public key and ciphertext evaluation algorithms. There exist efficient
algorithms EvalPK and EvalCT so that for any circuit f of depth d, if PKf = EvalPK(PK, f) and
CT(f(x)) = EvalCT(∪

i∈[d]
Ci, f), then CT(f(x)) is a “Regev encoding” of f(x) under public key

PKf . Specifically, for some LWE secret s, we have:

CT(f(x)) = PKf · s+ pd−1 · ηd−1
f + µf(x) + f(x) (E.1)

where pd−1 · ηd−1
f is RLWE noise and µf(x) + f(x) is the desired message f(x) plus some noise

µf(x)
21. Here, µf(x) = pd−2 · ηd−2

f + . . . p0 · η0
f for some noise terms ηd−2

f , . . . , η0
f .

3. Ciphertext and public key structure. The structure of the functional ciphertext is as:

CTf(x) = Polyf (C1, . . . , Cd−1) + 〈Linf , Cd〉 (E.2)

where Polyf (C1, . . . , Cd−1) ∈ Rpd−1
is a high degree polynomial value obtained by computing a

public f-dependent function on level k ≤ d − 1 encodings {Ck}k∈[d−1] and Linf ∈ RLdpd is an
f -dependent linear function. We also have

f(x) + µf(x) = Polyf (C1, . . . , Cd−1) + 〈Linf ,Md〉 (E.3)

where Md are the messages encoded in Cd and µf(x) is functional noise. The public key for

the functional ciphertext is structured as:

PK
(
CTf(x)

)
=
〈
Linf ,

(
PK(Cd1), . . . ,PK(CdLd)

)〉
(E.4)

21Here µf(x) is clubbed with the message f(x) rather than the RLWE noise pd−1 · ηd−1
f since µf(x) + f(x) is what

will be recovered after decryption of CTf(x), whereas pd−1 · ηd−1
f will be removed by the decryption procedure. This is

merely a matter of notation.

95

The Encodings. We define Ck recursively as follows:

1. C1 def
= {E1(xi), E1(s)}

2. If k is a multiplication layer, Ck = {Ek(Ck−1), Ek(Ck−1 · s), Ek(s2)}. If k is an addition layer,
let Ck = Ck−1.

We prove that:

Lemma E.3. Assume that k is a multiplication layer. Given Ck for any 2 < k < d,

1. Level k encodings Ek(ck−1 · s) and Ek(ck−1) may be expressed as quadratic polynomials in level
k − 1 encodings and level k advice encodings Ck. In particular, the polynomials are linear in
terms Ck and quadratic in level k − 1 encodings Ek−1(yi)Ek−1(yj). The messages yi, yj of the
form ck−3

` or ck−3
` · s for some level k − 3 ciphertext ck−3

` .

Since the exact value of the coefficients is not important, we express this as:

Ek(ck−1 · s), Ek(ck−1) = LinComb
(
Ck, Ek−1(yi)Ek−1(yj)

)
∀ i, j (E.5)

2. We can compute ck and ck+1 as a linear combination of quadratic terms in level k−1 encodings
and linear in level k encodings Ck. In particular,

ck = CT(fk(x) + µkf(x)) = 〈Linfk , Ck〉+ LinComb
(
Quad(Ek−1(yi) Ek−1(yj))

)
= 〈Linfk , Ck〉+ Polyfk

(
C1, . . . , Ck−1

)
Proof by induction.

Base Case. While the quadratic scheme described in Section 4 suffices as a base case, we work
out an extended base case for level 4 circuits, since this captures the more general case. Moreover
polynomials of degree 4 suffice for computing randomized encodings of circuits in P [IK02], which
we use in our general construction.

We claim that C4 defined according to the above rules, permits the evaluator to compute :

1. E4(c3 · s) and E4(c3) by taking linear combinations of elements in C4 and adding to this a
quadratic term of the form E3(yi)E3(yj) where E3(yi)E3(yj) ∈ C3 = C2. We note that since
k − 1 is an addition layer, C3 = C2.

2. Encodings of level 4 functions of x, namely c4.

Note that our level 2 ciphertext may be written as:

c2
i,j = E2(xixj + p0 · µij) = E2

(
c1
i c

1
j + u1

iu
1
j (s

2)− u1
j (c

1
i s)− u1

i (c
1
js)
)

= E2(xixj + p0 · µij) = c1
i c

1
j + E2

(
u1
iu

1
j (s

2)− u1
j (c

1
i s)− u1

i (c
1
js)
)

= c1
i c

1
j + u1

iu
1
j E2(s2)− u1

j E2(c1
i s)− u1

i E2(c1
js) ∈ Rp2 (E.6)

In the above, the first equality follows by additive malleability of RLWE: here, c1
i c

1
j ∈ Rp1 is a

message added to the encoding E2(u1
iu

1
j (s

2)− u1
j (c

1
i s)− u1

i (c
1
js)) . The second equality follows by

additive homomorphism of the encodings.

96

Additionally, the public key and the noise of the resultant encoding may be computed as:

u2`
def
= PK

(
E2(xixj + p0 · µij)

)
= u1iu

1
j PK

(
E2(s2)

)
− u1j PK

(
E2(c1i s)

)
− u1i PK

(
E2(c1js)

)
Nse2`

def
= Nse

(
E2(xixj + p0 · µij)

)
= u1iu

1
j Nse

(
E2(s2)

)
− u1j Nse

(
E2(c1i s)

)
− u1i Nse

(
E2(c1js)

)
Above, Nse(E2(·)) refers to the noise level in the relevant encoding. Note that even though u1

i
are chosen uniformly in Rp1 , they do not blow up the noise in the above equation since the above
noise is relative to the larger ring Rp2 . This noise growth can be controlled further by using the bit
decomposition trick [BV11a, BGV12] – we do not do this here for ease of exposition.

The Quadratic Method. Thus, we may compute a level 2 encoding as:

E2(xixj + p0 · µij) = E1(xi)E1(xj) + u1
iu

1
j E2(s2)− u1

j E2(E1(xi) · s)− u1
i E2(E1(xj) · s) (E.7)

Note that the above equation allows us to express the encoding of the desired product at level 2,
namely (a noisy version of) xixj , as a quadratic polynomial of the following form: level 1 encodings
are in the quadratic terms and level 2 encodings are in the linear terms. This equation will be used
recursively in our algorithms below, and will be referred to as the “quadratic method”.

The key point is that our level 2 ciphertext has the exact same structure as a level 1 encoding,
namely it is a Regev encoding using some secret s, some label and noise as computed in equations
E.7. Thus, letting y` = xixj , we may write

E2(y`) = u2
` · s+ Nse2

` + y` ∈ Rp2 (E.8)

Addition (Level 3). To add two encoded messages y` = xixj+p0 ·µij and y`′ = xi′xj′+p0 ·µi′j′ ,
it is easy to see that adding their encodings suffices. The resultant public key and noise is just the
summation of the individual public keys and noise terms. Thus, if the `th wire is the sum of the ith

and jth wires, we have:
c3
` = c2

i + c2
j (E.9)

and
PK(c3

`) = PK(c2
i) + PK(c2

j) (E.10)

Multiplication (Level 4). The nontrivial case is that of multiplication. We next compute an
encoding for the product of y` = xixj + xmxt + p0 · µ4

` and y`′ = xi′xj′ + xm′xt′ + p0 · µ4
`′ where

µ4
` , µ

4
`′ are level 4 noise terms computed as µ4

` = µij + µmt (analogously for µ4
`′). Let c3

` and c3
`′

denote the encodings of y` and y`′ computed using the first three levels of evaluation. As before, we
have by the quadratic method:

c4
t = E4(y`y`′) = c3

`c
3
`′ + E4

(
u3
`u

3
`′(s

2)− u3
`′(c

3
`s)− u3

` (c
3
`′s)
)
∈ Rp4

= c3
`c

3
`′ + u3

`u
3
`′ E4(s2)− u3

`′ E4(c3
`s)− u3

` E4(c3
`′s) (E.11)

By correctness of first three levels of evaluation as described above, the decryptor can compute
the encoding of y`, namely c3

` correctly, hence the quadratic term c3
`c

3
`′ may be computed. It remains

to compute the terms E4(c3
`s). Note that the encryptor may not provide the encodings E4(c3

`s)
directly and preserve succinctness because c3

` = E2(xi xj + p0 · µij) + E2(xm xt + p0 · µmt) and
E2(xi xj + p0 · µij) contains the cross term c1

i c
1
j as shown by Equation E.6.

97

Consider the term E4(c3
`s). In fact, we will only be able to compute a noisy version of this

encoding, i.e. E4(c3
`s+ p1 · µ3

`) for some p1 · µ3
` .

E4(c3
`s) = E4

(
(E2(xi xj + p0 · µij) + E2(xm xt + p0 · µmt)) · s

)
= E4

((
c1
i c

1
j + u1

iu
1
j E2(s2)− u1

j E2(c1
i s)− u1

i E2(c1
js)
)
· s
)

+ E4
((
c1
mc

1
t + u1

mu
1
t E2(s2)− u1

t E2(c1
ms)− u1

m E2(c1
t s)
)
· s
)

= E4(c1
i c

1
js) + E4

(
u1
iu

1
j E2(s2) s

)
− E4

(
u1
j E2(c1

i s) s
)
− E4

(
u1
i E2(c1

js) s
)

+ E4
(
c1
mc

1
t s) + E4

(
u1
mu

1
t E2(s2) s

)
− E4

(
u1
t E2(c1

ms)s
)
− E4

(
u1
m E2(c1

t s) s
)

= E4(c1
i c

1
js) + u1

iu
1
j E4

(
E2(s2) s

)
− u1

j E4
(
E2(c1

i s) s
)
− u1

i E4
(
E2(c1

js) s
)

+ E4
(
c1
mc

1
t s) + u1

mu
1
t E4

(
E2(s2) s

)
− u1

t E4
(
E2(c1

ms)s
)
− u1

m E4
(
E2(c1

t s) s
)

(E.12)

Thus, to compute E4(c3
`s) by additive homomorphism, it suffices to compute the encodings

E4(c1
i c

1
js), E4

(
E2(s2) s

)
and E4

(
E2(c1

js) s
)

for all i, j. Note that by definition of C4, we have that
for m ∈ [w], {

E4
(
E2(s2) s

)
, E4

(
E2(c1

ms)s
)}
⊆ C4 (E.13)

Note that since level 3 is an addition layer, E3 = E2.

The only terms above not accounted for are E4(c1
i c

1
js) and E4

(
c1
mc

1
t s), which are symmetric.

Consider the former. To compute this, we view c1
i c

1
js as a quadratic term in c1

i and c1
j ·s and re-apply

the quadratic method given in Equation E.7. This will enable us to compute a noisy version of
E4(c1

i c
1
js), namely E4(c1

i c
1
js+ p1 · µ2

ij) for some noise µ2
ij .

Applying the Quadratic Method (Equation E.7): Given E2(c1
i), E2(c1

j · s) along with

E4
(
E2(c1

i) s
)

and E4
(
E2(c1

j · s) s
)

we may compute E4(c1
i c

1
js+ p1 · µ2

ij) using the quadratic method.
In more detail, we let

di
def
= E2(c1i) , hj

def
= E2(c1j · s) ∈ Rp2 and d̂i

def
= E4

(
E2(c1i) s

)
, ĥj

def
= E4

(
E2(c1j · s) s

)
∈ Rp4

Then, we have:

E4(c1i c
1
js+ p1 · µ2

ij) = dihj + PK
(
E2(c1i)

)
PK
(
E2(c1j · s)

)
E4(s2) (E.14)

− PK
(
E2(c1i)

)
ĥj − PK

(
E2(c1j · s)

)
d̂i ∈ Rp4

where µ2
ij = c1

i · Nse(E2(c1
j · s)) + c2

j · s · Nse(E2(c1
i)) + p1 · Nse(E2(c1

j · s)) · Nse(E2(c1
i)).

Again, note that though ci are large in Rp1 , they are small in Rp2 upwards, and may be clubbed
with noise terms as done above.

Also, the public key for E4(c1
i c

1
js+ p1 · µ2

ij) may be computed as:

PK
(
E4(c1i c

1
js+ p1 · µ2

ij)
)

= PK
(
E2(c1i)

)
PK
(
E2(c1j · s)

)
PK
(
E4(s2)

)
(E.15)

− PK
(
E2(c1i)

)
PK(ĥj)− PK

(
E2(c1j · s)

)
PK(d̂i)

98

Thus we have, E4(c3
`s+ p1 · µ3

`) is a Regev encoding with public key

PK
(
E4(c3`s+ p1 · µ3

`))

= PK
(
E4(c1i c

1
js+ p1 · µ2

ij) + u1iu
1
j E4

(
E2(s2) s

)
− u1j E4

(
E2(c1i s) s

)
− u1i E4

(
E2(c1js) s

)
+ E4(

(
c1mc

1
t s+ p1 · µ2

mt) + u1mu
1
t E4

(
E2(s2) s

)
− u1t E4

(
E2(c1ms)s

)
− u1m E4

(
E2(c1t s) s

))
= PK

(
E4(c1i c

1
js+ p1 · µ2

ij)
)

+ u1iu
1
j PK

(
E4
(
E2(s2) s

))
− u1j PK

(
E4
(
E2(c1i s) s

))
− u1i PK

(
E4
(
E2(c1js) s

))
+ PK

(
E4(
(
c1mc

1
t s+ p1 · µ2

mt)
)

+ u1mu
1
t PK

(
E4
(
E2(s2) s

))
− u1t PK

(
E4
(
E2(c1ms)s

))
− u1m PK

(
E4
(
E2(c1t s) s

))
(E.16)

Above PK
(
E4(c1

i c
1
js+ p1 · µ2

ij)
)

may be computed by Equation E.15 and the remaining public

keys are provided in C4 as described in Equation E.13. Also, we have µ3
` = µ2

ij + µ2
mt.

By equations E.12, E.13 and E.14, we may compute E4(c3
`s+ p1 · µ3

`) for any `.

Note that,

E4(c3
`s+ p1 · µ3

`) = LinComb
(
E2(c1

i) · E2(c1
j · s), E4

(
E2(c1

i) s
)
, E4

(
E2(c1

j · s) s
))

= 〈Linf4 , C4〉+ Quad
(
E2(c1

i) · E2(c1
j · s)

)
for some linear function Linf4 .

E.1 Ciphertext and Public Key Structure.

By Equation E.11, we then get that

c4
t = c3

` c
3
`′ + u3

` u
3
`′E4(s2)− u3

`

(
〈Lin′f4 , C4〉+ Quad′

(
E2(c1

i) · E2(c1
j · s)

))
− u3

`′

(
〈Lin′′f4 , C4〉+ Quad′′

(
E2(c1

i) · E2(c1
j · s)

))
= 〈Lin′′′f4 , C4〉+ Polyf4(C1, C2, C3)

for some linear functions Lin′f4 , Lin
′′
f4 , Lin

′′′
f4 and quadratic functions Quad′, Quad′′ and polynomial

Polyf4 .

Thus, we have computed E4(c3
`s+ p1 · µ3

`) and hence, c4 by Equation E.11. The final public key
for c4 is given by:

PK(c4) = u3
`u

3
`′ PK(E4(s2))− u3

`′ PK(E4(c3
`s))− u3

` PK(E4(c3
`′s)) (E.17)

E4(c3) and E4(c1
i c

1
j) are computed analogously. Thus, we have established correctness of the

base case.

Note. In the base case, we see that each time the quadratic method is applied to compute an
encoding of a product of two messages, we get an encoding of the desired product plus noise.

Induction Step. Assume that the claim is true for level k − 1. Then we establish that it is true
for level k.

By the I.H, we have that:

99

1. We can compute Ek−1(ck−2 · s) and Ek−1(ck−2) by taking linear combinations of elements in
Ck−1 and quadratic terms of the form Ek−2(yi)Ek−2(yj) for some yi, yj of the form ck−4

i , ck−4
j s.

2. We can compute ck−1.

To compute ck using the quadratic method, it suffices to compute Ek(ck−1 · s).

Computing Ek(ck−1 · s). We claim that:

Claim E.4. The term Ek(ck−1
` s) (hence ck) can be computed as a linear combination of elements

in Ck and quadratic terms of the form Ek−1(·) · Ek−1(·).

Proof. The term Ek(ck−1 · s) may be written as:

Ek(ck−1 · s)

= Ek
((
ck−2i ck−2j − uk−2i Ek−1(ck−2j · s)− uk−2j Ek−1(ck−2i · s) + uk−2i uk−2j Ek−1(s2)

)
· s
)

= Ek(ck−2i ck−2j s)− uk−2i Ek
(
Ek−1(ck−2j · s) · s

)
− uk−2j Ek

(
Ek−1(ck−2i · s) · s

)
+ uk−2i uk−2j Ek

(
Ek−1(s2) · s

)
(E.18)

Consider Ek
(
Ek−1(s2) · s

)
. Since Ek−1(s2) ∈ Ck−1 and Ek

(
Ck−1 · s

)
is contained in Ck, we have

that Ek
(
Ek−1(s2) · s

)
∈ Ck.

Consider the term Ek(ck−2
i ck−2

j s). We may compute Ek(ck−2
i ck−2

j s) using the quadratic method

with messages ck−2
i and ck−2

j s as:

Ek(ck−2i ck−2j s)

=
(
Ek−1(ck−2i) · Ek−1(ck−2j · s)

)
+ PK

(
Ek−1(ck−2i)

)
PK
(
Ek−1(ck−2j · s)

)
Ek(s2)

− PK
(
Ek−1(ck−2i)

)(
Ek
(
Ek−1(ck−2j · s) · s

))
− PK

(
Ek−1(ck−2j · s)

)(
Ek
(
Ek−1(ck−2i) · s

))
(E.19)

Thus, to compute Ek(ck−1 · s), it suffices to compute the term Ek(ck−2
i ck−2

j s) since the additional

terms such as Ek
(
Ek−1(ck−2

i · s) · s
)

that appear in Equation E.18 also appear in Equation E.19 and

will be computed in the process of computing Ek(ck−2
i ck−2

j s).

Note. We observe that in Equation E.19, by “factoring out” the quadratic term Ek−1(ck−2
i) ·

Ek−1(ck−2
j · s) (which can be computed by I.H.), we reduce the computation of Ek(ck−1 · s) to

Ek
(
Ek−1(ck−2

j · s) · s
)

where the latter value has half the nested message degree (ref. Definition E.1)
of the former at the cost of adding one more level of nesting and a new multiplication by s. By
recursively applying Equation E.19, we will obtain O(k) quadratic encodings in level k − 1 and a
linear term in level k advice encodings Ck.

Proceeding, we see that to compute Ek(ck−2
i ck−2

j s), we are required to compute the following
terms:

1. Ek−1(ck−2
i) and Ek−1(ck−2

j · s). These can be computed by the induction hypothesis using

linear combinations of elements in Ck−1 and quadratic terms of the form Ek−2(yi)Ek−2(yj) for

100

some yi, yj . Since the precise linear coefficients are not important, we shall denote:

Ek−1(ck−2
j · s) = LinComb

(
Ck−1, Ek−2(·)Ek−2(·)

)
(E.20)

2. Ek
(
Ek−1(ck−2

i) · s
)

and Ek
(
Ek−1(ck−2

j · s) · s
)
: Consider the latter term (the former can be

computed analogously).

By the induction hypothesis,

Ek
(
Ek−1(ck−2j · s) · s

)
= Ek

(
LinComb

(
Ck−1, Ek−2(·)Ek−2(·)

)
· s
)

= Ek
(
LinComb

(
Ck−1 · s

))
+ Ek

(
LinComb

(
Ek−2(ya)Ek−2(yb) · s

))
= LinComb

(
Ek
(
Ck−1 · s

))
+ LinComb

(
Ek
(
Ek−2(ya)Ek−2(yb) · s

))
(E.21)

Again, we note that the terms Ek
(
Ck−1 · s

)
∈ Ck by definition hence it remains to construct

Ek
((
Ek−2(ya)Ek−2(yb)

)
· s
)

for some ya, yb ∈ {ck−3
a , ck−3

b · s}.

To proceed, again, we will consider za = Ek−2(ya) and zb = Ek−2(yb) · s as messages and apply
the quadratic method to compute an encoding of their product. In more detail,

Ek
((
Ek−2(ya)Ek−2(yb)

)
· s
)

= LinComb
(
Ek−1(Ek−2(ya)) · Ek−1(Ek−2(yb) · s),

Ek
(
Ek−1(Ek−2(ya)) · s

)
, Ek

(
Ek−1(Ek−2(yb) · s) · s

))
(E.22)

Thus, we are required to compute:

(a) Ek−1(Ek−2(ya)), Ek−1(Ek−2(yb) · s): These can be computed via the induction hypothesis.

(b) Ek
(
Ek−1

(
Ek−2(ya)

)
· s
)

and Ek
(
Ek−1(Ek−2(yb) · s) · s

)
: Consider the latter term (the

former may be computed analogously). Note that

Ek−2(yb) = LinComb
(
Ck−2, Ek−3(·)Ek−3(·)

)
∴ Ek

(
Ek−1(Ek−2(yb) · s) · s

)
= Ek

(
Ek−1(LinComb

(
Ck−2, Ek−3(·)Ek−3(·)

)
· s) · s

)
Again, Ek(Ek−1(Ck−2 · s) · s) ∈ Ck so we are left to compute:

Ek
(
Ek−1(Ek−3(·)Ek−3(·) · s) · s

)
= Ek

(
LinComb

(
Ek−2

(
Ek−3(·) · s

)
· Ek−2(Ek−3(·)

)
,

Ek−1
(
Ek−2

(
Ek−3(·) · s

)
· s
)))

= LinComb
(
Ek−1

(
Ek−2

(
Ek−3(·) · s

))
· Ek−1

(
Ek−2

(
Ek−3(·) · s

)
· s
)
,

Ek
(
Ek−1

(
Ek−2

(
Ek−3(·) · s

)
· s
)
· s
)
· s
)

101

Thus, again by “factoring out” quadratic term Ek−1
(
Ek−2

(
Ek−3(·)·s

))
·Ek−1

(
Ek−2

(
Ek−3(·)·

s
)
·s
)
, we have reduced computation of Ek

(
Ek−1(Ek−2(yb)·s)·s

)
to Ek

(
Ek−1

(
Ek−2

(
Ek−3(·)·

s
)
· s
)
· s
)
· s
)

which has half the nested message degree of the former at the cost of one

additional nesting (and multiplication by s)22.

Proceeding recursively, we may factor out a quadratic term for each level, to be left with
a term which has half the nested message degree and one additional level of nesting. At
the last level, we obtain nested encodings which are contained in Ck by construction.
Hence we may compute Ek(ck−1 ·s) as a linear combination of quadratic terms of the form
Ek−1(·)Ek−1(·) and linear terms in Ck. Please see Figure E.1 for a graphical illustration.

Note that the public key PK(Ek(ck−1 · s)) can be computed as a linear combination of
the public keys PK(Ck), as in Equation E.16.

PK(Ek(ck−1 · s)) = LinComb(PK(Ck)) (E.23)

Note that for the public key computation, the higher degree encoding computations are
not relevant as these form the message of the final level k encoding.

Computing level k ciphertext. Next, we have that:

ckt = ck−1
` ck−1

`′ + Ek
(
uk−1
` uk−1

`′ (s2)− uk−1
`′ (ck−1

` s)− uk−1
` (ck−1

`′ s)
)

= ck−1
` ck−1

`′ + uk−1
` uk−1

`′ Ek(s2)− uk−1
`′ Ek(ck−1

` s)− uk−1
` Ek(ck−1

`′ s) (E.24)

Similarly,

PK(ckt) = uk−1
` uk−1

`′ PK(Ek(s2))− uk−1
`′ PK

(
Ek(ck−1

` s)
)
− uk−1

` PK
(
Ek(ck−1

`′ s)
)

(E.25)

Public Key, Ciphertext and Decryption Structure. From the above, we claim:

Claim E.5. The public key for ckt (for any t) is a publicly computable linear combination of public
keys of level k encodings PK(Ek(s2)) and PK

(
Ek(ck−1

` s)
)

for all `.

Regarding the ciphertext, since we computed Ek(ck−1
` s) from Ck above, and ck−1 may be

computed via the induction hypothesis, we may compute ck as desired. Moreover, since Ek(ck−1
` s) is

linear in level k encodings and has quadratic terms in level k − 1 encodings, we get by unrolling the
recursion that Ek(ck−1

` s) and hence level k ciphertext ck is linear in level k encodings and polynomial
in lower level encodings C1, . . . , Ck−1. Hence, we have that:

ck = CT(fk(x) + µkf(x)) = 〈Linfk , Ck〉+ LinComb
(
Quad(Ek−1(yi) Ek−1(yj))

)
= 〈Linfk , Ck〉+ Polyfk

(
C1, . . . , Ck−1

)
22We note that the multiplication by s does not impact the nested message degree, number of nestings or growth of

the expression as we proceed down the circuit.

102

Figure E.1: Computing level k functional ciphertext ck encoding fk(x) using induction. A term in
any node is implied by a quadratic polynomial in its children, quadratic in the terms of the left child,
and linear in the terms of the right child. The solid arrows on the left indicate quadratic terms that
are computed by the induction hypothesis. The dashed arrows to the right point to terms whose
linear combination suffices, along with the high degree terms in the left sibling, to compute the
parent. The terms in the right child may be further decomposed into quadratic polynomials in its
children, quadratic in left child terms and linear in right child terms, until we reach the last level,
where the terms in the right child are provided directly by the encryptor as advice encodings Ck.
The functional ciphertext at level k, namely the root ck is thus ultimately linear in Ck, while being
high degree in lower level encodings C1, . . . , Ck−1.

Moreover, note that the computation of the functional message embedded in a level k ciphertext
ck can be viewed as follows. By equation E.6, we see that the message embedded in ck equals the
encoding in the left child plus a linear combination of the messages embedded in the right child. At
the next level, we see that the message in the right child at level 2 (from the top) again equals the
encoding in the left child plus a linear combination of the messages embedded in the right child.
At the last level, we get that the message embedded in ck is a quadratic polynomial in all the left
children in the tree, and a linear combination of level k messages Mk. Thus, we have as desired
that:

f(x) ≈ Polyf (C1, . . . , Cd−1) + 〈Linf ,Md〉

The Public Key and Ciphertext Evaluation Algorithms. Our evaluation algorithms EvalPK

and EvalCT are defined recursively, so that to compute the functional public key and functional

103

ciphertext at level k, the algorithms require the same for level k− 1. Please see Figures E.2 and E.3
for the formal descriptions.

Algorithm EvalkPK(∪
i∈[k]

PK(Ci), `)

To compute the label for the `th wire in the level k circuit, do:

1. If the `th wire at level k is the addition of the ith and jth wire at level k − 1, then do the following:

• If k = 3 (base case), then compute PK(c3`) = PK(c2i) + PK(c2j) as in Equation E.10.

• Let PKk−1i = Evalk−1PK (∪
j∈[k−1]

PK(Cj), i) and PKk−1j = Evalk−1PK (∪
i∈[k−1]

PK(Ci), j),

• Let PKk` = PKk−1i + PKk−1j

2. If the `th wire at level k is the multiplication of the ith and jth wire at level k−1, then do the following:

• If k = 4 (base case), then compute PKk` as described in Equation E.17.

• Let uk−1i = Evalk−1PK (∪
j∈[k−1]

PK(Cj), i) and uk−1j = Evalk−1PK (∪
i∈[k−1]

PK(Ci), j)

• Let PK(ck`) = uk−1i uk−1j PK(Ek(s2))−uk−1j PK
(
Ek(ck−1i s)

)
−uk−1i PK

(
Ek(ck−1j s)

)
as in Equation

E.25.
Here PK(Ek(s2)), PK

(
Ek(ck−1i s)

)
and PK

(
Ek(ck−1j s)

)
are computed using Ck as described in

Equation E.16, E.23.

Figure E.2: Algorithm to evaluate on public key.

E.2 Error Analysis.

As discussed in Section 6, we have the level 2 encoding E2(xixj + p0 · µij) is computed as

E2(xixj + p0 · µij) = E2(cicj − uicjs− ujcis+ uiujs
2)

= cicj − uiE2(cjs)− ujE2(cis) + uiujE2(s2)

Thus, computing a level 2 encoding of xixj from level 1 encodings of xi and level 2 encodings
E2(ci · s) entails:

1. Adding noise to the message xixj itself: The level 2 encoding that gets computed is for the
message xixj + p0 · µij not purely xixj . This noise µij results from the BV FHE evaluation
process.

2. Adding noise to protect the encoding: Above, the encoding noise for the noisy message
xixj + p0 · µij is the linear combination

Nse
(
E2(xixj + p0 · µij)

)
= uiNse

(
E2(cjs)

)
− ujNse

(
E2(cis)

)
+ uiujNse

(
E2(s2)

)
Now, we have an encoding of a noisy functional value at level 2, which has the same structure as
level 1 and we may propagate the computation up the circuit.

Thus, at each level, there are two types of noise within an encoding:

104

Algorithm EvalkCT(∪
i∈[k]
Ci, `)

To compute the encoding for the `th wire in the level k circuit, do:

1. If the `th wire at level k is the addition of the ith and jth wire at level k − 1, then do the following:

• If k = 3 (base case), then compute c3` = c2i + c2j as in Equation E.9.

• Let CTk−1i = Evalk−1CT (∪
j∈[k−1]

Cj , i) and CTk−1j = Evalk−1CT (∪
i∈[k−1]

Ci, j),

• Let CTk` = CTk−1i + CTk−1j

2. If the `th wire at level k is the multiplication of the ith and jth wire at level k−1, then do the following:

• If k = 4 (base case) then compute c4` (for any `) using Equations E.11 and E.12.

• Let ck−1i = Evalk−1CT (∪
j∈[k−1]

Cj , i) and ck−1j = Evalk−1CT (∪
i∈[k−1]

Ci, j),

• Let ck` = ck−1i ck−1j + uk−1i uk−1j Ek(s2)− uk−1j Ek(ck−1i s)− uk−1i Ek(ck−1j s) as in Equation E.24.

Here, the terms Ek(s2), Ek(ck−1i s) and Ek(ck−1j s) are computed using Ck as described in claim
E.4

Figure E.3: Algorithm to evaluate on ciphertext.

1. The noise that is used to protect the encoding (this may be viewed as the noise within an
RLWE sample). For an encoding at level k, this noise is a multiple of pk−1. We refer to this
noise as “encoding noise”.

2. The noise that is added to the message as part of the FHE evaluation procedure, which takes
place within the message space of the encoding. We refer to this noise as “message noise”.

We observe that message noise is a quadratic function of the encoding noise terms of the previous
level. We may compute the resultant noise term in the challenge ciphertext by proceeding bottom-up,
computing the message noise created by each quadratic operation.

At the level 3 addition layer, for any gate the noise terms of the input gates are added. To
compute the function f4

g for a multiplication gate g at the 4th layer, which takes as input wires a
and b at layer 3, note that we may compute:

1. Encodings of level 3 messages, i.e. encodings c3 of messages the form y = xkxk′ + p0 · µkk′ +
x`x`′ + p0 · µ``′

2. Encodings of advice terms E4(c3
a · s+ p1 ·µ3

a) and E4(c3
b · s+ p1 ·µ3

b) for some noise terms µ3
a, µ

3
b .

When we compute an encoding of product ya · yb where ya, yb are constructed as y above, we
obtain an encoding of the desired value (xixj + xi′xj′)(xkx` + xk′x`′) plus noise which is computed
as the sum of:

1. Noise created by FHE decryption given encodings of ya and yb. This noise has the form

ya Nse(E3(yb)) + yb Nse(E3(ya)) + p2 · Nse(E3(yb)) · Nse(E3(ya))

105

2. Noise created by applying the quadratic method to compute the advice, as discussed in detail
in the base case analysis. For instance, the encoding of advice E4(c3

`s) is only computed as
E4(c3

`s+ p1 · µ2
`) where µ2

` = µ2
ij + µ2

mt. Please see Equations E.15 and E.16 for more details.

3. ya · yb is itself only a noisy version of the desired value, since

ya · yb =
(
xkxk′ + p0 · µkk′ + x`x`′ + p0 · µ``′

)(
xmxm′ + p0 · µmm′ + xtxt′ + p0 · µtt′

)
Constructing Message Noise for Ed(f(x)). We have by Lemma E.3 that the encodings Ek(ck−1·
s) may be expressed as quadratic polynomials in level k−1 encodings and the level k advice encodings
Ck. Each quadratic k − 1 encoding induces a quadratic noise term, which is a product of level k − 2
encoding noise terms (a multiple of pk−2). Since there are at most k − 1 quadratic encodings of
level k − 1, the noise terms are added together to give the message noise for ck−1 · s.

When these are combined to construct the level k encoding ck, the BV FHE decryption equation
for fk(x) adds additional noise to the message, where the noise is a again a quadratic polynomial in
the encoding noise terms in level k− 1 encodings (analogous to noise µij at level 2). Thus, the total
message noise at level k is LinComb(Nse(Ek−1(·)Ek−1(·)), where the linear combination depends on
the function f being computed.

Starting at level 2, we proceed up the circuit f to compute noise as a function of noise terms in
the encodings. The function applied to the noise terms is related to but not exactly the same as the
function f , as discussed above.

106

	Introduction
	Bootstrapping, the Ideal.
	Instantiation: the Ideal.
	Our Techniques: Bootstrapping
	Related Work: Bootstrapping
	Our Techniques: Direct Construction of NLinFE
	Related Work: Instantiation
	Putting it together.
	Organization of the paper

	Preliminaries
	Pseudorandom Generators
	Indistinguishability Obfuscation
	Functional Encryption
	Function Hiding Symmetric Key Encryption
	Lattice Preliminaries
	Hardness Assumptions.
	Sampling and Trapdoors

	Noisy Linear Functional Encryption
	Warm-up: Quadratic Functional Encryption
	Construction
	Correctness.
	Indistinguishability Based Security
	Instantiating The Ingredients.

	Broader Classes of Randomness Generators
	Correlated Noise Generators
	Non Boolean Pseudorandom Generators

	Functional Encryption for NC1
	Construction
	Ciphertext Size
	Proof of Security.
	Instantiating CNG and NLinFE

	Constructing Noisy Linear Functional Encryption
	PRG with non-Boolean output.
	Public Key Noisy Linear Functional Encryption
	Shrinking Degree of Functionality.
	Proof of Security.
	Putting it all together.
	Interfacing with known constructions of quadratic functional encryption

	Symmetric Key Noisy Linear Functional Encryption
	Proof of Security
	Putting it all together.

	Direct Construction: Noisy Linear Functional Encryption
	Security of Succinct Symmetric Key NLinFE
	Security against Known Attacks: A Discussion

	Propagating Computation on Noise

	Parameters
	Conclusions
	Quadratic Functional Encryption from CNG and NLinFE
	Indistinguishability Based Security

	Direct Construction of NLinFE: The General Case
	Towards a Proof of Security for the construction in Section 8
	Non-Succinct NLinFE from LinFE
	Construction.
	Security.

	Public Key and Ciphertext Evaluation Algorithms
	Ciphertext and Public Key Structure.
	Error Analysis.

