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Abstract. A new proof is given for the correctness of the powers of two de-

scent method for computing discrete logarithms. The result is slightly stronger
than the original work, but more importantly we provide a unified geometric

argument, eliminating the need to analyse all possible subgroups of PGL2(Fq).

Our approach sheds new light on the role of PGL2, in the hope to eventually
lead to a complete proof that discrete logarithms can be computed in quasi-

polynomial time in finite fields of fixed characteristic.

1. Introduction

In this paper we prove the following result.

Theorem 1.1. Given a prime power q, a positive integer d, coprime polynomials
h0 and h1 in Fqd [x] of degree at most two, and an irreducible degree ` factor I of
h1x

q − h0, the discrete logarithm problem in Fqd` ∼= Fqd [x]/(I) can be solved in

expected time qlog2 `+O(d).

It was originally proven in [GKZ18] when q > 61, q is not a power of 4, and
d ≥ 18. Even though we eliminate these technical conditions, the main contribution
is the new approach to the proof. The theorem represents the state of the art of
provable quasi-polynomial time algorithms for the discrete logarithm problem (or
DLP) in finite fields of fixed characteristic. The obstacle separating Theorem 1.1
from a full provable algorithm for DLP is the question of the existence of a good
field representation: polynomials h0, h1 and I for a small d. A direction towards
a full provable algorithm would be to find analogues of this theorem for other field
representations, but this may require in the first place a good understanding of why
Theorem 1.1 is true.

The integers q, d and `, and the polynomials h0, h1 and I are defined as in
the above theorem for the rest of the paper. The core of that result is Proposi-
tion 1.3 below, which essentially states that elements of Fqd` represented by a good
irreducible polynomial in Fqd [x] of degree 2m can be rewritten as a product of
good irreducible polynomials of degrees dividing m — a process called degree two
elimination, first introduced for m = 1 in [GGMZ13].

Definition 1.2 (Traps and good polynomials). An element τ ∈ Fq for which
[Fqd(τ) : Fqd ] is an even number 2m and h1(τ) 6= 0 is called

(1) a degenerate trap root if h0

h1
(τ) ∈ Fqdm ,

(2) a trap root of level 0 if it is a root of h1x
q − h0, or

(3) a trap root of level dm if it is a root of h1x
qdm+1 − h0.

Analogously, a polynomial in Fq[x] that has a trap root is called a trap. A polyno-
mial is good if it is not a trap.

1
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Proposition 1.3 (Degree two elimination). Given an extension k/Fqd of degree m
such that dm ≥ 23, and a good irreducible quadratic polynomial Q ∈ k[x], there is
an algorithm which finds a list of good linear polynomials (L0, . . . , Ln) in k[x] such
that n ≤ q + 1 and

Q ≡ h1L−10 ·
n∏
i=1

Li mod I,

and runs in expected polynomial time in q, d and m.

The difficulty of proving Theorem 1.1 lies mostly in Proposition 1.3. We recall
briefly in Section 1.2 how the proposition implies the theorem. The main con-
tribution of the present paper is a new proof of Proposition 1.3, which hopefully
provides a better understanding of the degree two elimination method, the under-
lying geometry, and the role of traps. The action of PGL2 on the polynomial xq−x
became a crucial ingredient in the recent progress on the discrete logarithm prob-
lem for fields of small characteristic, since [Jou13] (and implicitly in [GGMZ13]).
While the proof in [GKZ18] resorted to an intricate case by case analysis enumer-
ating through all possible subgroups of PGL2(Fq), we provide a unified geometric
argument, shedding new light on the role of PGL2.

1.1. Degree two elimination algorithm. The key observation allowing degree
two elimination is that a polynomial of the form αxq+1 + βxq + γx+ δ has a high
chance to split completely over its field of definition. Furthermore, we have the
congruence

(1.1) αxq+1 + βxq + γx+ δ ≡ h−11 (αxh0 + βh0 + γxh1 + δh1) mod I,

and the numerator of the right-hand side has degree at most 3. Consider the Fq-

vector space V spanned by xq+1, xq, x and 1 in Fq[x], and the linear subspace

VQ = {αxq+1 + βxq + γx+ δ ∈ V | αxh0 + βh0 + γxh1 + δh1 ≡ 0 mod Q}.
As long as Q is a good irreducible polynomial, VQ is of dimension two. The al-
gorithm simply consists in sampling uniformly at random elements f ∈ VQ(k) (or
equivalently in its projectivisation P1

Q(k)) until f splits completely over k into good

linear polynomials (L1, . . . , Ldeg f ). Since f ∈ VQ, the polynomial Q divides the
numerator of the right-hand side of (1.1), and the quotient is a polynomial L0 of
degree at most 1. The algorithm returns (L0, . . . , Ldeg f ).

To prove that the algorithm terminates in expected polynomial time, we need
to show that a random polynomial in VQ(k) has good chances to split into good
linear polynomials over k. In this paper, we prove this by constructing a morphism
C → P1

Q where C is an absolutely irreducible curve defined over k, such that the
image of any k-rational point of C is a polynomial that splits completely over k.
This construction is the object of Section 4. The absolute irreducibility implies that
C has a lot of k-rational points, allowing us to deduce that a lot of polynomials in
P1
Q(k) split over k. This is done in Section 5.

1.2. Proof of Theorem 1.1. We briefly explain in this section how Proposition 1.3
implies Theorem 1.1. Consider the factor base

F = {f ∈ Fqd [x] | deg f ≤ 1, f 6= 0} ∪ {h1}.
First, the following proposition extends the degree two elimination to a full descent
algorithm from any polynomial down to the factor base.



A NEW PERSPECTIVE ON THE POWERS OF TWO DESCENT 3

Proposition 1.4. Suppose d ≥ 23. Given a polynomial F ∈ Fqd [x], there is an
algorithm that finds integers (αf )f∈F such that

F ≡
∏
f∈F

fαf mod I,

and runs in expected time qlog2 `+O(d).

Proof. This is essentially the zigzag descent presented in [GKZ18]. We recall the
main idea for the convenience of the reader. First, one finds a good irreducible
polynomial G ∈ Fqd [x] of degree 2e such that F ≡ G mod I (this can be done
for e = dlog2(4` + 1)e, see [Wan97, Th. 5.1] and [GKZ18, Lem. 2]). Over the
extension Fqd2e−1 , the polynomial G splits into 2e−1 good irreducible quadratic

polynomials, all conjugate under Gal(Fqd2e−1 /Fqd). Let Q be one of them, and

apply the algorithm of Proposition 1.3 to rewrite Q in terms of linear polynomials
(L0, . . . , Ln) in Fqd2e−1 [x] and h1. For any index i, let L′i be the product of all the

conjugates of Li in the extension Fqd2e−1/Fqd . Then,

F ≡ h2
e−1

1 L′−10 ·
n∏
i=1

L′i mod I,

and each L′i factors into good irreducible polynomials of degree a power of 2 at
most 2e−1. The descent proceeds by iteratively applying this method to each L′i
until all the factors are in the factor base F. �

Then, as in [GKZ18, Sec. 2], the descent algorithm of Proposition 1.4 can be
used to compute discrete logarithms, following ideas from [EG02] and [Die11]. To
compute the discrete logarithm of an element h in base g, the idea is to collect
relations between g, h, and elements of the factor base by applying the descent
algorithm on gαhβ for a few uniformly random exponents α and β. That proves
Theorem 1.1 for d ≥ 23. To remove the condition on d, suppose that d ≤ 22, and
let d′ ≤ 44 be the smallest multiple of d larger than 22. Let I ′ be an irreducible
factor of I in Fqd′ [x]. The DLP can be solved in expected time qlog2(deg I

′)+O(d′) =

qlog2 `+O(1) in Fqd′ [x]/(I ′), and therefore also in the subfield Fqd [x]/(I).

2. The action of PGL2 on xq − x

As already mentioned, a crucial fact behind degree two elimination is that a
polynomial of the form αxq+1 + βxq + γx+ δ has a high chance to split completely
over its field of definition. This fact is closely related to the action of 2×2 matrices
on such polynomials.

Definition 2.1. We denote by ? the action of invertible 2×2 matrices on univariate
polynomials defined as follows:(

a b
c d

)
? f(x) = (cx+ d)deg ff

(
ax+ b

cx+ d

)
.

Consider the Fq-vector subspace V spanned by xq+1, xq, x, and 1 in Fq[x]. The
above action induces an action of the group PGL2 on the projective space P(V ),
which we also write ?. Parameterizing the polynomials in P(V ) as αxq+1 + βxq +
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γx + δ, let S be the quadratic surface in P(V ) defined by the equation αδ = βγ.
This surface is the image of the morphism

ψ : P1 ×P1 −→ P(V ) : (a, b) 7−→ (x− a)(x− b)q.

Note that to avoid heavy notation, everything is written affinely, but we naturally
have ψ(∞, b) = (x − b)q, ψ(a,∞) = x − a and ψ(∞,∞) = 1. More generally, we
say that f(x) ∈ V has a root of degree n at infinity if f is of degree q+ 1−n. Now,
the following lemma shows that apart from the surface S, the polynomials of P(V )
form exactly one orbit for PGL2.

Lemma 2.2. We have P(V ) \ S = PGL2 ? (xq − x).

Proof. First notice that both S and P(V ) \S are closed under the action of PGL2.
In particular, PGL2 ? (xq − x) ⊆ P(V ) \ S. Let f(x) ∈ P(V ) \ S. Suppose by
contradiction that f(x) has a double root r ∈ P1, and let g ∈ PGL2 be a linear
transformation sending 0 to r. The polynomial g ? f(x) has a double root at 0, so
has no constant or linear term, and must be of the form αxq+1 + βxq, so it is in S,
a contradiction. Therefore f(x) has q + 1 distinct roots. Let g ∈ PGL2 send 0, 1
and ∞ to three of these roots. Then, g ? f(x) has a root at 0 and at ∞ so is of the
form βxq + γx, and since it also has a root at 1, it can only be xq − x. �

This result implies that most polynomials of P(V ) are of the form g ? (xq − x),
which splits completely over the field of definition of the matrix g.

3. The role of traps

Consider a finite field extension k/Fqd of degree m. Let Q be an irreducible

quadratic polynomial in k[x] coprime to h1. Let a1 and a2 be the roots of Q in Fq.
The degree two elimination aims at expressing Q modulo h1x

q − h0 as a product
of linear polynomials. To do so, we study a variety P1

Q ⊂ P(V ) parameterizing

polynomials that can possibly lead to an elimination of Q (i.e., such that Q divides
the right hand side of (1.1)). In this section, we define P1

Q and show how the
notion of traps and good polynomials determine how it intersects the surface S
from Lemma 2.2.

Recall that V is the Fq-vector subspace V spanned by xq+1, xq, x, and 1 in Fq[x].
Consider the linear map

(3.1) ϕ : V −→ Fq[x][h−11 ] :


1 7−→ 1,

x 7−→ x,

xq 7−→ h0/h1,

xq+1 7−→ xh0/h1.

We want P1
Q to parameterise the polynomials f ∈ V such that ϕ(f) is divisible byQ.

For any P ∈ Fq[x] coprime with h1, write ϕP = πP ◦ ϕ where πP : Fq[x][h−11 ] →
Fq[x]/P is the canonical projection. We can now define P1

Q as

(3.2) P1
Q = P(kerϕQ).

The variety P1
Q is the intersection of the two planes P(kerϕx−a1) and P(kerϕx−a2).

Lemma 3.1. If Q is not a degenerate trap, then |(P1
Q ∩ S)(Fq)| = 2, and these

two points are of the form ψ(a1, b1) and ψ(a2, b2), with a1 6= a2 and b1 6= b2.
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Proof. For a ∈ {a1, a2}, we have

P(kerϕx−a) ∩ S = ψ
(
{a} ×P1

)
∪ ψ

(
P1 ×

{
h0
h1

(a)1/q
})

.

Since the polynomial Q is irreducible, we have a1 6= a2. Furthermore, assuming
that Q is not a degenerate trap, we have h0

h1
(a1) 6∈ k, and thereby h0

h1
(a1) 6= h0

h1
(a2).

Therefore P1
Q ∩ S is equal to

P(kerϕx−a1) ∩P(kerϕx−a2) ∩ S =

{
ψ

(
a1,

h0
h1

(a2)1/q
)
, ψ

(
a2,

h0
h1

(a1)1/q
)}

.

�

In particular, when Q is not a degenerate trap, P1
Q is exactly the line passing

through the two points s1 = ψ(a1, b1) and s2 = ψ(a2, b2). We get a k-isomorphism
P1 → P1

Q : α 7→ s1 − αs2. For this reason the two points s1 and s2 play a central
role in the rest of the analysis, and the following proposition shows that they behave
nicely when Q is a good polynomial.

Proposition 3.2. Suppose Q is a good polynomial. Then, (P1
Q∩S)(Fq) = {s1, s2},

where s1 = (x− a1)(x− b1)q, and s2 = (x− a2)(x− b2)q, and the roots a1, a2, b1
and b2 are all distinct.

Proof. From Lemma 3.1, we can write (P1
Q ∩ S)(Fq) = {s1, s2} with a1 6= a2 and

b1 6= b2. If a1 = b2 or a2 = b1, then Q divides xqh1 − h0, a trap of level 0. Now,
suppose a1 = b1 (the case a2 = b2 is similar). Since a1 and a2 are the two roots
of Q, and Q divides (x − a1)(h0 − aq1h1), then a2 is a root of h0 − aq1h1. We get

that h0(a2) = aq1h1(a2), so a2 is a root of h1x
qdm+1 − h0, a trap of level dm. �

4. Irreducible covers of P1
Q

In this section we suppose that Q is a good polynomial, and we consider the
polynomials s1 = (x−a1)(x− b1)q and s2 = (x−a2)(x− b2)q as defined in Proposi-
tion 3.2, where a1, a2, b1 and b2 are all distinct. Consider the variety P1

Q from (3.2).

Recall that our goal is to prove that a significant proportion of the polynomials
of P1

Q(k) splits completely over k. As mentioned in Section 1.1, our method consists

in constructing a morphism C → P1
Q where C is an absolutely irreducible curve

defined over k, such that the image of any k-rational point of C is a polynomial
that splits completely over k. The absolute irreducibility is crucial as it implies
that C has a lot of k-rational points. The idea is to consider the algebraic set

C = {(u, r1, r2, r3) | the ri’s are three distinct roots of u} ⊂ P1
Q ×P1 ×P1 ×P1,

and the canonical projection C → P1
Q.

Proposition 4.1. If (u, r1, r2, r3) ∈ C(k), then u splits completely over k.

Proof. Suppose that (u, r1, r2, r3) is a k-rational point of C. From Lemma 2.2, we
get u = g ? (xq − x) where g is the matrix g ∈ PGL2(k) sending the three points
r1, r2 and r3 to 0, 1 and ∞. In particular, the set of roots of u is g−1(P1(Fq))
which are all in P1(k). �
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In the rest of this section, we prove that C is absolutely irreducible (Proposi-
tion 4.6). The strategy is the following. Instead of considering directly C, which
encodes three roots for each polynomial of P1

Q, we start with the variety

X = {(u, r) | u(r) = 0} ⊂ P1
Q ×P1,

which considers a single root for each polynomial. We can then “add” roots by
considering fibre products. Recall that given two covers ν : Z → Y and µ : Z ′ →
Y , the geometric points of the fibre product Z ×Y Z ′ are pairs (z, z′) such that
ν(z) = µ(z′). In particular, the fibre product over the projection X → P1

Q is

X ×P1
Q
X = {((u1, r1), (u2, r2)) | u1(r1) = 0, u2(r2) = 0, u1 = u2}
∼= {(u, r1, r2) | u(r1) = 0, u(r2) = 0}.

This product X ×P1
Q
X contains a trivial component, the diagonal, corresponding

to triples (u, r, r). The rest is referred to as the non-trivial part, and we prove that
it is an absolutely irreducible curve (Corollary 4.3). Iterating this construction, the
fibre product (X×P1

Q
X)×X (X×P1

Q
X) (over the projection X×P1

Q
X → X to the

first component) encodes quadruples (u, r1, r2, r3). Therefore the curve C naturally
embeds into the non-trivial part of this product. We prove that this non-trivial part
is itself an absolutely irreducible curve (Lemma 4.5).

Instead of the projection X → P1
Q, we work with an isomorphic cover θ. It is

easy to see that the canonical projection X → P1 is an isomorphism, with inverse
r 7→ (s2(r)s1 − s1(r)s2, r). Through the isomorphisms X ∼= P1 and P1

Q
∼= P1,

this projection is isomorphic to the cover θ in the following commutative diagram
(where, again, the morphisms are written affinely for convenience):

(u, r) � // u

(u, r)
_

��

X //

o
��

P1
Q

o
��

s1 − αs2_

��
r P1 θ // P1 α

r � // s1(r)/s2(r).

For convenience, consider θ as a cover X1 → X0 where X0 = X1 = P1. As a
first step, we study the induced fibre product X1 ×X0 X1. It contains the diagonal
∆1, isomorphic to X1. We wish to show that Y2 = X1 ×X0

X1 \∆1 is absolutely
irreducible. The second step consists in showing that X2 ×X1

X2 \ ∆2 is also
absolutely irreducible, where X2 is a desingularisation of Y2 and ∆2 is the diagonal.
The following lemma provides a general method used in both steps.

Lemma 4.2. Let Y and Z be two absolutely irreducible, smooth, complete curves
over k, and consider a cover η : Z → Y . If there exists a point a ∈ Z such that η is
not ramified at a and #(η−1(η(a))) = 2, then Z ×Y Z \∆ is absolutely irreducible,
where ∆ is the diagonal component.

Proof. By contradiction, suppose that Z ×Y Z \ ∆ is not absolutely irreducible,
and can be decomposed as two components A ∪B. Let pr : Z ×Y Z → Z be
the projection on the first factor. Since Z ×Y Z is complete, both A and B are
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complete, so we have pr(A) = pr(B) = pr(∆) = Z. Observe that pr−1(a) consists
of #(η−1(η(a))) = 2 points, so one of them must belong to two of the components
A, B and ∆. That point must therefore be singular in Z ×Y Z, contradicting the
fact that η is not ramified at a (recall that a point (z1, z2) ∈ Z ×Y Z is singular if
and only if η is ramified at both z1 and z2). �

Corollary 4.3. The curve Y2 = X1 ×X0 X1 \∆1 is absolutely irreducible.

Proof. First observe that θ is ramified only at b1 and b2 (as can be verified from the
explicit formula θ(r) = s1(r)/s2(r)). In particular, it is not ramified at a1. Since
#(θ−1(θ(a1))) = #{a1, b1} = 2, we apply Lemma 4.2. �

Lemma 4.4. The desingularisation morphism ν : X2 → Y2 is a bijection between
the geometric points.

Proof. It is sufficient to prove that for any singular point P on Y2, and ϕ : Ỹ2 → Y2
the blowing-up at P , the preimage ϕ−1(P ) consists of a single smooth point. Up to
a linear transformation of X1 = P1, we can assume that s1 and s2 are of the form
s1(x) = (x− 1)xq and s2(x) = x− a, for some a 6= 0, 1. The intersection A of the
curve Y2 with the affine patch A2 ⊂ P1 ×P1 is then defined by the polynomial

f(x, y) =
s1(x)s2(y)− s1(y)s2(x)

x− y
=
xq(x− 1)(y − a)− yq(y − 1)(x− a)

x− y
.

It remains to blow up A at the singularity (0, 0) (which corresponds to (b1, b1)
through the linear transformation), and check the required properties. This is
easily done following [Har77, Ex. 4.9.1], and we include details for the benefit of
the reader. Let ψ : Z → A2 be the blowing-up of A2 at (0, 0). The inverse image
of A in Z is defined in A2 ×P1 by the equations f(x, y) = 0 and ty = xu (where t
and u parameterize the factor P1). It consists of two irreducible components: the

blowing-up Ã of A at (0, 0) and the exceptional curve ψ−1(0, 0). Suppose t 6= 0,
so we can set t = 1 and use u as an affine parameter (since f is symmetric, the
case u 6= 0 is similar). We have the affine equations f(x, y) = 0 and y = xu, and
substituting we get f(x, xu) = 0, which factors as

f(x, xu) = xq−1
(x− 1)(xu− a)− uq(xu− 1)(x− a)

1− u
.

The blowing-up Ã is defined on t = 1 by the equations g(x, u) = f(x, xu)/xq−1 = 0
and y = xu. It meets the exceptional line only at the point u = 1, which is
non-singular. �

The projection X1 ×X0
X1 → X1 on the first component induces another cover

θ2 : X2 → X1, through which we build the fibre product X2 ×X1 X2. As above, it
contains a diagonal component ∆2 isomorphic to X2.

Lemma 4.5. The curve Y3 = X2 ×X1
X2 \∆2 is absolutely irreducible.

Proof. Let ν : X2 → Y2 be the bijective morphism from Lemma 4.4. Since θ1 is
only ramified at b1 and b2, the cover θ2 is ramified at most at the points ν−1(bi, bi)
and ν−1(ai, bi) (for i ∈ {1, 2}). In particular, it is not ramified at ν−1(b1, a1). Since
#(θ−12 (θ2(ν−1(b1, a1)))) = #{ν−1(b1, a1), ν−1(b1, b1)} = 2, we apply Lemma 4.2.

�

Proposition 4.6. The curve C is absolutely irreducible.



8 THORSTEN KLEINJUNG AND BENJAMIN WESOLOWSKI

Proof. Let ν : X2 → Y2 be the morphism from Lemma 4.4. It is an isomorphism
away from the singularities of Y2, so

C −→ Y3 : (u, r1, r2, r3) 7−→ (ν−1(r1, r2), ν−1(r1, r3))

is a morphism. It is an embedding, and the result follows from Lemma 4.5. �

5. Counting split polynomials in P1
Q

Recall that we wish to prove Proposition 1.3 by showing that P1
Q(k) contains a

lot of polynomials that split into good polynomials over k. The results of Section 4
allow us to prove in Theorem 5.1 that a lot of polynomials in P1

Q(k) do split. We
then show in Proposition 5.2 that all these polynomials are coprime, which implies
that bad polynomials cannot appear too often.

Theorem 5.1. Let k/Fqd be a field extension of degree m, and Q be a good irre-
ducible quadratic polynomial in k[x] coprime to h1. If dm ≥ 23, there are at least
#k/2q3 polynomials in P1

Q that split completely over the field k.

Proof. Let Θ : Y3 → P1
Q be the cover resulting from the composition of the succes-

sive covers of Section 4. Let S3 = Θ−1(P1
Q ∩ S). The embedding C → Y3 from

Proposition 4.6 has image Y3 \ S3. The morphism

µ : Y3 → P1 ×P1 ×P1 : (ν−1(r1, r2), ν−1(r1, r3)) 7→ (r1, r2, r3)

restricts to an embedding of Y3 \ S3. Let A be the intersection of µ(Y3) with the
affine patch A3. The curve A is a component of the (reducible) curve defined by
the equations θ(r1) = θ(r2) and θ(r1) = θ(r3). Therefore A is of degree at most
4(q + 1)2. If B is the closure of A in P3, then [Bac96, Th. 3.1] shows that

|#B(k)−#k − 1| ≤ 16(q + 1)4
√

#k.

Since Y3 is complete, µ(Y3) is closed, so all the points of B \ A are at infinity, and
there are at most deg(B) ≤ 4(q + 1)2 of them. Also, at most 2(q3 − q) points of B
are in µ(S3) (because #S = 2 and Θ is of degree q3 − q). Therefore

#C(k) = #(Y3 \ S3)(k) ≥ #k + 1− 16(q + 1)4
√

#k − 4(q + 1)2 − 2(q3 − q).

Since q ≥ 2 and dm ≥ 23, we get #C(k) ≥ #k/2. From Proposition 4.1, and the
fact that the map Θ is q3 − q to one, we get that at least #k/2q3 polynomials in
P1
Q split completely over k. �

Let ϕ be the morphism defined in (3.1).

Proposition 5.2. Suppose Q is a good polynomial. For any two distinct polyno-
mials f and g in P1

Q(Fq), we have gcd(f, g) = 1 and gcd(h1ϕ(f), h1ϕ(g)) = Q.

Proof. Let s1 and s2 be as in Proposition 3.2. They have no common root. Since f
and g are distinct, all the polynomials of P1

Q are of the form αf+βg for (α : β) ∈ P1.

Then, if r is a root of f and g, r is a root of all the polynomials of P1
Q. In particular,

it is a root of both s1 and s2, a contradiction. This shows that gcd(f, g) = 1.
Similarly, if a polynomial h divides h1ϕ(f) and h1ϕ(g), it must also divide both

h1ϕ(s1) = (x− a1)(h0 − bq1h1), and h1ϕ(s2) = (x− a2)(h0 − bq2h1). Since h0 − bq1h1
and h0 − bq2h1 are coprime, h must divide Q. �
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Proof of Proposition 1.3. As discussed in Section 1.1, it is sufficient to prove
that a uniformly random element of P1

Q(k) has a good probability to lead to an

elimination into good polynomials. A polynomial f ∈ P1
Q(k) leads to an elimination

into good polynomials if f splits completely over k into good linear polynomials,
and ϕ(f) is itself a good polynomial.

Let A be the set of polynomials of P1
Q(k) that split completely over k. From

Theorem 5.1, A contains at least qdm−3/2 elements. Trap roots τ occurring in A

or ϕ(A) must be roots of h1x
q − h0, or of h1x

qdn+1 − h0 for n | m/2, or satisfy
h0

h1
(τ) ∈ Fqdm/2 . There are at most q

dm
2 +3 such trap roots. From Proposition 5.2,

any trap root can only occur once in A and in ϕ(A). So there are at most 2q
dm
2 +3

polynomials in A for which trap roots appear. Therefore the number of elements
in A leading to a good reduction is at least

1

2
qdm−3 − 2q

dm
2 +3 ≥ 1

2

(
qdm−3 − 4qdm−8

)
≥ 1

4
qdm−3,

using dm ≥ 23. Since P1
Q(k) contains qdm+1 elements, the probability of a random

element to lead to a good elimination is 1/O(q3). �
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