
FPGA Cluster based high performance Cryptanalysis framework

Abhishek Bajpai
Computer Division,

Bhabha Atomic Research Centre,
Mumbai, India

Email: abbajpai@barc.gov.in

S V Kulgod
Computer Division,

Bhabha Atomic Research Centre,
Mumbai, India

Email: svkulgod@barc.gov.in

Abstract—In this paper a ‘FPGA cluster’ based framework
for high performance Cryptanalysis has been proposed. The
framework abstracts underlying networked FPGA cluster into
a unified acceleration resource. It does so by implementing
requested amount of computation kernels (crypto-graphic mod-
ules) and managing efficient distribution of the network band-
width between the inter-FPGA and intra-FPGA computation
kernels. Further agile methodology for developing such net-
worked computation kernels with use of a high level language
(Python) based HDL library and seamless integration with a
user space crypt analysis application have been discussed. 40-
bit partial key attack over AES256 has been demonstrated as
a capability demonstration. Performance higher than clustered
CPUs and GPUs at lower costs and power is reported.

Keywords-FPGA; cryptanalysis; cluster; framework; high
performance computing;

I. INTRODUCTION

Cryptanalysis is a study of characterising a cryptographic
algorithm for its weaknesses and using these weaknesses
to decipher the ciphertext without knowing the secret key.
Sometimes the weakness is not in the cryptographic algo-
rithm itself, but rather in the implementation or the protocol,
that makes cryptanalysis successful. An attacker may have
very limited goals as well, like gaining just small part of
the information or just distinguishing the algorithm itself.
Characterisation of a cryptographic algorithm is generally
based on mathematical and statistical observations. Often
Statistical observation based characteristic discovery is used
as a primary tool in the cryptanalysis followed by math-
ematical observations and vice versa. For example, Roos
biases for the first few bytes of RC4 were first observed
by Andrew Roos and proved by Goutam Paul et. al. [1]
Later Nadhem AlFardan et. al. [2] statistically searched
similar biases for first 256 bytes of the keystream. Present
day cryptography heavily relies on such high-throughput
statistical techniques for algorithm characterisation. Most
of these characterisation techniques require running parallel
instances of simpler algorithms over a large amount of data
for a large amount of time. Such characterisation techniques
include:

• High performance online Statistical test suit for ran-
domness test

• Bias discovery

• Linear Crypt-analysis
• Differential Crypt-analysis
• TMTO (Time Memory Trade Off), TMDTO (Time

Memory Data Trade Off) based attacks
• Collision Attacks

A. High-Performance Computing (HPC) systems

For HPC systems, clustered devices is a general approach
to begin with. Though clustering results in low communi-
cation bandwidth and high cost as compared to integrated
systems. Yet it is the fastest way to achieve the HPC
setup. Further, Heterogeneous High-Performance Computing
(HHPC) is about offloading CPU with an another comput-
ing component (accelerator) while maintaining a hardware-
software trade-off.

GPUs, because of their high count computing elements
and fine-grained architecture, staged as a good candidate
for HHPC accelerator. Though they are limited with SIMD
(Single instruction, multiple data) instructions set. Thus, sup-
ports simultaneous (parallel) computations, but only a single
process (instruction) at a given moment. These architectures
exploit data level parallelism, but not concurrency.

FPGAs are extremely fine grained and have massively
interconnected architecture. It’s basic computing element
(logic block) comprised of few small bit sized function
generators(LUTs). Thus, supports different simultaneous
computations with concurrency. These properties allow im-
plementing massively parallel pipelined cryptanalysis stages.
Our initial work on AES implementation [3] reports sig-
nificant advantage over processors based implementations.
The main drawback of this architecture is it’s difficult and
complex development cycle.

B. Related Work

In 2005 Chang, Wawrzynek et al. proposed a reusable,
modular, and scalable framework for high-end reconfig-
urable computers, the BEE2 project [4]. They also pro-
posed Mathworks Simulink based programming model. The
system was designed with tightly bounded latencies for
the in-system data transfers, BEE2 was well suited for
real-time applications requiring high integer or fixed-point
computational throughput. The BEE2 system was observed

to provide over 10 times more computing throughput than a
DSP-based system with similar power consumption and cost,
and over 100 times that of a microprocessor-based system.

EPCC (Edinburgh Parallel Computing Centre) a found-
ing member of the FPGA High-Performance Computing
Alliance (FHPCA), in 2007 developed a general-purpose
64-FPGA Supercomputer ”Maxwell” [5]. The system com-
prised of FPGAs interconnected in a two-dimensional torus
structure based on IBM Intel Xeon blades. Bacause of
fast FPGA-FPGA links it was highly suitable for nearest-
neighbour communication patterns.

In 2006, Kumar, Paar et al., [6] proposed COPACOBANA
”The Cost-Optimized Parallel Code Breaker”, based on
FPGA clusters and optimised for cryptanalysis applications.
The system comprised of DIMM modules, containing 6 Xil-
inx Spartan-3-1000 FPGAs, connected over a shared 64-bit
data bus on a DIMM backplane. In a 2007 implementation
proposed by Gneysu, Kasper et al. [7], the system running
at 136MHz could search a full 56-bit DES key space in
12.8 days. FPGA-specific modules pose many difficulties
like routeing, EMI problems of parallel buses and scalability
of design.

Cube, [8] a massively-parallel FPGA-based platform was
presented in 2009 by Mencer, Hung et al. The machine
comprised of 512 FPGA devices where 8x8 FPGAs arranged
on the baseboard and 8 similar boards stacked together
to form an 8x8x8 3D matrix (cube) structure. Fast inter-
FPGA communication network and a flexible programming
scheme resulted in a low power, high density and scalable
design supporting various large-scale parallel applications.
The design was demonstrated with an RC4 key search engine
implementation.

During same time A heterogeneous computer cluster
named Axel was proposed by Tsoi, Luk et al. [9]. Axel
was a collection of nodes including several accelerators
types such as FPGAs and GPUs (Graphics Processing
Units). They introduced a novel Map-Reduce framework
which maintains spatial and temporal locality in compu-
tation, through different types of processing elements and
communication channels. The Axel system is alleged to be
the first one which demonstrates FPGAs, GPUs and CPUs
running collaboratively for N-body simulation. They claimed
performance improvement from 4.4 times to 22.7 times
using their approach.

Recently in 2016 Zhang, Wu et al. [10] presented a
deeply pipelined multi-FPGA Cluster for Energy-Efficient
CNN (Convolution Neural Networks) Implementation. They
also proposed a dynamic programming algorithm to map the
CNN computing layers efficiently to different FPGA boards
connected over high-speed serial links. The experimental
results on AlexNet and VGG-16 showed that the prototype
can achieve up to 21X and 2X energy efficiency compared
to optimised multi-core CPU and GPU implementations,
respectively.

key contribution: In this work a generic and flexi-
ble framework have been proposed which supports FPGA
clusters in various network topologies. The size of a net-
work is expandable suiting the needs of applications. The
framework utilises high-speed interfaces and specifies basic
building blocks for interconnects. Framework supports var-
ious network configurations and specifies packet structures
and packet routeing protocols through the network. Further
the framework was developed over a high-level language
(python) in form of a library ”FHPClib”. As it is based
on Python, ”FHPClib” enables agile development cycles
reducing development time significantly.

Figure 1. Cluster

II. ARCHITECTURE

In this design, a couple of COTS (Component of the shelf)
FPGA board are connected to the host over PCIe and they
are also interconnected over a Multi-Gigabit Transceiver In-
terface (MGT) to form a local FPGA network (see figure:1).
Moreover, multiple such hosts are connected in a network
to form a cluster.

Further, each FPGA contains several crypto kernels
(crypto compute modules) which operate independently. The
number of such kernels is decided by the FPGA resources
consumed by each kernel.

The design follows a layered architecture abstracting
underlying network from the user level cryptanalysis appli-
cation and crypto kernels (compute modules) implemented
over FPGA cluster (see figure:2). The Data transfer takes
place in the form of packets between kernel to kernel
and host to kernel along these layers(see figure:3). These
packets route through the network via packet switches and
AXI4 buses arranged in different network topologies. The
architecture can be divided into two major parts from the
implementation point of view.

• Host (Software)
• FPGA Cluster (Hardware Core)

Figure 2. Architecture

Figure 3. Data Flow

A. Host (Software)

The host is responsible for control and communication of
job packets to the FPGA cluster and also for communication
between hosts. Host components comprised of three main
components.

1) User Level Crypt-analysis Application: User Level
Crypt-analysis Application is basically a user interface from
where a user can set various cryptanalysis parameters. It
further divides the main problem into finer multiple parallel
jobs and passes them to the FPGA Core Access Library.
It receives asynchronous responses (job results) from the
library and compiles them in a user-friendly diagrams/com-
piled results. A high-level language (Python) has been used
for faster development.

2) FPGA Core Access Library: FPGA Core Access Li-
brary is majorly responsible for providing abstract FPGA
core interface to user Application. It functionality includes

• Initialises FPGA clusters, underlying network and
Crypto Kernels

• Maintains a database of the methods provided by each
crypto kernel with their physical address

• Arrange asynchronous jobs from the user application

• Allocation of job numbers and packet encapsulation
of jobs with network headers, based on available free
crypto kernels

• Forward job packets to the PCIe FIFO (First In First
Out) bridge driver

• Mapping received response packets from the PCIe
driver with the corresponding job number

• Forwarding results/response to the user application via
callback interface for further result/data compilation

3) PCIe FIFO bridge driver: The PCIe driver has been
developed with a FIFO bridge configuration. Development
was based on Marcus et. al. [11] work. It is developed to
interface FPGA PCIe Packet FIFO Bridge Core. The driver
basically maps job packets memory buffers with the FPGA’s
internal FIFOs. Further, a driver is also responsible for re-
setting, configuring and status polling of various parameters
of the FPGA Cluster.

B. FPGA Cluster (Hardware Core)

FPGA Cluster architecture may further be divided into
three major design elements.

• Interfaces
• Network Elements
• Crypto Kernels

C. Interfaces

Various high speed interfaces have been developed in
order to achieve high throughput communication between
Host-FPGA and FPGA-FPGA networks.

1) PCIe Packet FIFO Bridge: PCIe FIFO Bridge core is
developed as a FIFO cache to forward job packets from
the host machine on a first in first out basis. For this
functionality PCIe’s TLP (Transaction Layer Packets) DMA
(Direct Memory Access) core is developed which maps host
memory blocks with its internal FIFO dynamically. Further
control/status logic is also developed to configure FPGA
Cluster and user application memory FIFOs. DMA (Direct
Memory Access) relieves the host processor by directly
fetching job packets and pushing results directly to the user
memory. It is developed in order to achieve high throughput
communication between crypt-analysis application running
on the host and the crypto kernel (compute module) on the
FPGA. With the present development, we have achieved 2.5
Gbps throughput over 4 lane PCIe interface.

2) MGT(Multi Gigabit Transceiver) Packet FIFO Bridge:
MGT(Multi-Gigabit Transceiver) is a Serializer/Deserializer
(SERDES) consists of Serial In Parallel Out (SIPO) and
Parallel In Serial Out (PISO). It can be available as a chip
or an IP core and is used for high-speed communication
with serial/differential interface. As compared to parallel
interfaces, routeing of SERDES differential signals is less
complex for equivalent data throughput. Thus, MGT is
preferred choice for inter-FPGA high-speed data commu-
nications.

MGT Packet FIFO Bridge core is developed to do inter-
FPGA packets transactions. With the present development,
we have achieved 2.5 Gbps throughput.

3) DDR3 (Double data rate type three SDRAM) Packet
FIFO Cache: DDR3 Packet FIFO Cache has been developed
to cache data packets locally on the FPGA board. This helps
in achieving bulk transfers by detaching high-speed paths
and the crypto kernels by behaving as an in transit buffer.
Because of this, high-speed paths don’t get overwhelmed
as crypto kernels internal buffers get full. Thus, high-speed
paths are always ready to accept packets.

D. Intra-FPGA Network Elements

Cryptanalysis computations are subdivided and formatted
into job packets and results of these intensive job com-
putations are not instant. Thus, jobs are processed in the
framework asynchronously. These job packets flow through
the network via various network elements as streams and
processed on first come first serve basis.

1) Modified AXI4 stream bus [12]: Intra-FPGA network
is designed to be based on AXI4 stream bus. AXI4 stream is
used for high-speed streaming data and is the part of ARM
Advanced Microcontroller Bus Architecture (AMBA) fam-
ily. It is an open-standard on-chip interconnect specification
used in system-on-a-chip (SoC) designs for the connection
and management of the functional blocks.

As AXI4 stream bus is having separate read and write
lanes, a master can simultaneously read and write streams
to/from slaves achieving higher throughput. Further slaves
(crypto kernels) are arranged down the stream bus in a
daisy-chained fashion(see figure:9). Pipelining is being im-
plemented at every kernel connection in order to reduce path
delays and achieve timing constraints.

The bus is configured in a single master and multiple slave
mode. Apart from other generic signals [13] (see table:I)
‘tuser’ of the read lane is customised for passing access
tokens among slaves by a bus master. Based on this access
token, slaves can send result packets back to the host or
further, forward job packets to another kernel.

Figure 4. AXI4 Master/Forwarder

Table I
AXI4 STREAM BUS SIGNALS

Signal Name Size Direction
Write Bus

tvalid 1 bit Master→ Slave
tready 1 bit Slave→Master
tdata 64 bit Master→ Slave
tkeep 8 bit Master→ Slave
tlast 1 bit Master→ Slave
tid 4 bit Master→ Slave

tdest 4 bit Master→ Slave
tuser 4 bit Master→ Slave

Read Bus
tvalid 1 bit Slave→Master
tready 1 bit Master→ Slave
tdata 64 bit Slave→Master
tkeep 8 bit Slave→Master
tlast 1 bit Slave→Master
tid 4 bit Slave→Master

tdest 4 bit Slave→Master
tuser 4 bit Master→ Slave

Figure 5. Modified AXI4 Ring

2) AXI4 bus Master/ forwarder: AXI4 bus Master/for-
warder controls job packet movement over the AXI4 bus.
Due to separate read and write buses Inter-slave commu-
nication is not possible by design. but with few tweaks,
inter-slave communication and local network broadcasting
are also made possible. For inter-slave communication, the
bus master is developed with an extra capability of bypass
switch between read and write bus lanes (see figure:4). When
master sense that a slave wants to communicates with the
other slave in the local network its sets itself into a bypass
mode. Bypass mode forward read bus lane packets coming
from slaves to the write bus lane so that it gets routed
to the destined slave. The only drawback is, while in this
mode, throughput drops to half as both the buses gets used
while single packet transactions. Typically bus masters are
connected with a high-speed interface like PCIe bridge or
MGT bridge but it can also be connected as slave on the
another AXI4 bus just to extend the network (see figure:6).
Such extensions don’t overload the root bus while local inter-

kernel communications.

Figure 6. Modified AXI4 Networked Rings

3) AXI4 Slaves: AXI4 slaves are supposed to receive job
packets from the master based on their unique identifier,
they can also receive broadcast packets if ‘tdest’ is set to
broadcast identifier. They are daisy chained on an AXI4
bus (see figure:7). Since a packet transaction, either in read
lane or write lane blocks that particular lane, further slave-
slave packet transaction blocks the whole lane, there is an
upper cap on slave counts on an AXI4 bus. A Large number
of slaves may introduce the communication bottlenecks
because of the large throughput requirement. For an efficient
slave to slave communication, one should place all the
interactive kernels on the same local bus.

Figure 7. Pipe-lined Slave connector over AXI4 bus

E. Crypto Kernel and other basic modules

Crypto Kernel is the smallest function (method) spe-
cific compute module of a larger granular design. It is
responsible for a simpler functionality which is needed
to be computed in a highly parallel fashion. Apart from
unified status/command get/set mechanisms, the framework

also specifies method/function declaration request/response
mechanism based on unique method/function identifiers.
Each kernel is allocated and identified by a unique network
address and unique method/function identifier based on its
functionality.

1) Packet FIFO (First In First Out) Buffer: Packet FIFO
(First In First Out) buffers are used as an endpoint receivers
as in slaves and also as intermediate transit queues to cache
the packets and forward it to the next hop as in bus masters
and high-speed bridges. They are preferred to dual port ram
buffers, as data flows in the form of packet streams in the
network. FIFO also reduces the routeing cost as address lines
are not required to be routed in contrast with ram buffer
design. Further reducing the design complexity.

2) Packet Parser: Packet Parser is a terminating node
in a network and abstracts kernel functionality. It exposes
kernel functions through data structures. It parses packets
from the network and extracts underlying data structure,
that is meant to be arguments for the kernel. It initializes
the kernel module with extracted arguments data and runs.
After execution, it fetches the result. Further, It composes the
result in a data structure, encapsulates it in a packet adding
header information and send it back to the host/source.

Figure 8. Packet Parser

F. Job Packet

Data communication between the kernel pairs and host-
kernel happens over a networked architecture in the form of
packets. These packets get generated in the application layer
where a cryptanalysis problem is subdivided into parallel
jobs with distinct methods and data arguments. Thus, indi-
vidual jobs get encapsulate into an application layer packets
and header contains compute methods, allocated kernel id,
job identifier (packet id) and various kernel configuration
parameters.

Further, in order to propagate over the complex network,
packets are appended with the network header containing

a length of packets, a destination identifier and a source
identifier.

In order to synchronise boundaries of each packet over
AXI4 bus and High-Speed bridges, one or more packets are
encapsulated in the data link layer packet. Data link header
presently comprised of a start of packet (see table:II).

Table II
PACKET STRUCTURE

7 6 5 4 3 2 1 0
dlnk
header Start of Packet

net.
header X X source sink length

App.
header packetid size mode nk enc Kid

Data Key 0
Key 1
Key 2
Key 3
Data 0
Data 1

III. HDL DEVELOPMENT

HDL(Hardware Descriptive Language) development is a
lengthy and time-consuming process and also considered to
be different from other programming languages. Because
of this disconnect, new computer science advancements
like unit test frameworks, agile development models etc
are not directly applicable to HDL development. MyHDL
[14](Python based HDL library) gives a new approach for
Hardware description and verification at the higher level
programming language. Such approach gives us an oppor-
tunity to bypass pre-synthesis functional analysis and also
enable us to push (automate) synthesis, area planning, design
implementation (translation, mapping, place and routeing),
bit generation and programming to the back-end. Further
making the whole design procedure fast and in-line with
rapid development methodologies. Because of the higher
level language (Python) and availability of rich library set,
complex yet complete (real life scenario) test-benches can be
created and verified for better test closures. Adding to it, we
have developed ‘FHPClib’ (FPGA based High-Performance
Computing Library) which encapsulates all the high-speed
interfaces core IPs for Host to FPGA and FPGA to FPGA
data communication and other basic building blocks IPs
of the FPGA Cluster based high-performance Computing
framework. Automatic creation of an intra-FPGA and an
inter-FPGA network of kernel modules over a predefined
cluster is carried out by the library. ‘FHPClib’ also have
bypass implementations of all of its complex interfaces for
faster functional simulations. Further, the library eases to
write host HPC applications even before the HDL imple-
mentation by abstracting host FPGA interface drivers. Thus
providing a seamless transition from simulation environment
to the actual HPC set-up.

IV. FHPCLIB

‘FHPClib’ gives an high-level abstract interface which
simplifies the network and node creation according to the
framework. For example in the figure:9 a small network over
AXI4 stream bus is created having one master node and five
slave nodes. PCIe FIFO Bridge is connected to the master
so that FPGA core access libraries can send/receive data
packets over AXI4 bus network. One MGT FIFO Bridge is
connected to a slave for inter-FPGA packet communication.
Further, four AES256 crypto kernels are added to rest of
slaves.

Figure 9. Network having AXI4 bus with PCIe FIFO bridge (master), 4
AES256 kernels (slaves) and 1 MGTX FIFO bridge(slave)

Listing:1 shows instantiation of such a network over ‘FH-
PClib’ library. The interesting part of Kernel instantiation
is that it can simply happen in a for-loop. A lot of port
declaration complexities, connection logics and cumbersome
module instantiations are being abstracted by ‘FHPClib’.

Listing 1. framework
M a s t e r i n s t = PCIeFIFOMaster (c lk ,

aXI4bus [0] ,
r s t ,
DATA=DATA,
WORDS=WORD,
I SIZE=I SIZE ,
D SIZE=D SIZE ,
U SIZE=U SIZE ,
Master ID= M a s t e r I d)

SlaveNum = 5
f o r i in range (SlaveNum−1):

S l a v e i n s t [i] = AXI4pktAES256Slave (c lk ,
aXI4bus [i] ,
aXI4bus [i + 1] ,
r s t ,
DATA=DATA,
WORDS=WORD,
I SIZE=I SIZE ,
D SIZE=D SIZE ,
U SIZE=U SIZE ,
Master ID= Mas te r Id ,

SlaveID = i +2 ,
SIMULATION=True)

S l a v e i n s t [−1] = AXI4MGTXBridgeSlave (c lk ,
aXI4bus [i] ,
aXI4bus [i + 1] ,
r s t ,
DATA=DATA,
WORDS=WORD,
I SIZE=I SIZE ,
D SIZE=D SIZE ,
U SIZE=U SIZE ,
Master ID = Mas te r Id ,
S laveID = i +2 ,
SIMULATION=True)

Further, this implementation can be extended with multi-
ple FPGA cluster (see fig:10) by arranging them in a ring
network of High-speed Multi-Gigabit Transceiver lanes.

Figure 10. Cluster

A. comparison with OpenCL

OpenCL (Open Computing Language) [15] [16] is a paral-
lel language specification aimed to provide portability across
different platforms in a heterogeneous computing system.
It consists of an API for coordinating computational and
communicational tasks with the accelerators and a language
based of C99 for describing the compute core at the finest
granularity. In the context of an FPGA, it is a standard multi-
core programming model that provides a higher-level layer
of abstraction for FPGA’s. The model has been studied and
compared with ‘FHPClib’ development framework.

Table III
‘FHPCLIB’ VS ‘OPENCL’

‘FHPClib’ ‘OpenCL’
Based on Python Based on C/C++ and OpenCL C
Uses Open Sourced MyHDL Uses Close Sourced libraries
Code is translated (one to one map-
ping no optimization)

Design is inferred from a high level
C code further optimized

Converted to readable
Verilog/VHDL then rely on
the vendor tools for generation of
bit files

Converted to low-level unreadable
RTL Design and further convert to
bit file via OpenCL compiler

Tight control on HDL optimization optimisation done via automated
tools

Framework is based on packet
switched network of kernels

Framework is based on memory
mapped kernels

Inter Kernel communication is pos-
sible

Inter Kernel communication not
possible

Supports only FPGA’s Supports any computing element
(Processor, GPU, DSP, FPGA)

Table IV
AES-256 CORE (CRYPTO KERNEL) SPECIFICATIONS

Device xc6vlx240t-1ff1156
Kernel AES-256 core

Latency 128 Clock Cycles
Channels 8

Clock 200 Mhz
Throughput 1.49 Gbits/Sec

∼ 11.02 Million Encryption/Sec
Slice Logic Utilization

Number of Slice Registers 4448 out of 301440 1%
Number of Slice LUTs 5467 out of 150720 3%

V. SETUP

As a capability demonstration application for such system,
40-bit partial key brute force on AES-256 was planned. Thus
we have implemented the proposed architecture using four
ML-605 Virtex-6 FPGA Board. The FPGAs were arranged
in a cluster formation as shown in a figure 10. For this setup
we have reused AES-256 core, developed under our previous
work [3] with the following specifications (see table:IV). In
order to utilize maximum resources without compromising
with timing issues we were able to accommodate 22 AES256
cryptographic kernel cores per FPGA with moderate device
utilization of 65% (see figure:11).

VI. RESULTS

Comparison have been done between developed FPGA
cluster with varying AES-256 crypto cores (kernels) and the
AES-256 ECB implementations over x86 processors (see
table:V).

Further, we have compared different architectures com-
prised of higher end GPUs, X86 Processors and this design.
Since there are large variations between costs and power
among these architectures, various normalised comparisons
based on cost, power, cost and power(see figure:12) are done

Table V
AES-256 CRYPTO CORES VS AES-256 ECB ON X86 PROCESSORS

Single AES
core on one
xc6vlx240t
FPGA board

Multiple AES cores
on one xc6vlx240t
FPGA board

Cluster with
4 xc6vlx240t
FPGA board

i3-3220 CPU @
3.30GHz

i3-3220 CPU @
3.30GHz AES-NI
crypto extension

Boards 1 1 4 1 1
cores 1 22 88 2 2
Design Latency 128 128 128 X X
Channels 8 8 8 X X
Clock 200Mhz 200Mhz 200Mhz 3.30Ghz 3.30Ghz
Throughput
Gbits/sec

1.49 31.04 124.2 0.71 1.80

Encryption
Throughput Million
block enc/sec

11.02 242.5 970.6 5.95 15.13

Table VI
AES 256 ENCRYPTION THROUGHPUT, COST, POWER FOR DIFFERENT ARCHITECTURES

s/n Thput
Gbps

Thput Gbps (Extrapo-
lated for AES256 ECB
14 rounds)

cost $ Power
watt(W)

Thput
/cost
Gbps/$

Thput
/Power
Gbp-
s/watt

Thput
/(cost *
Power)
Gbps/($ *
watt)

1 corei3 0.71 377 120 0.00188 0.00591 0.000015
2 corei3 ani 1.80 377 120 0.00477 0.01500 0.000039
3 Geforce GTX285 6.25 1 4.46 400 316 0.01116 0.01412 0.000035
4 Tesla C2050 60 2 42.85 5159 238 0.00830 0.18007 0.000034
5 vertex 6 FPGA3 31.04 1995 45 0.01556 0.69020 0.000345
1 AES128 ECB implementation with 10 rounds [17]
2 AES128 ECB implementation with 10 rounds [18]
3 Xilinx vertex 6 (xc6vlx240t-1ff1156) based AES256 implementation with 22 cores (this design)

Figure 11. FPGA (xc6vlx240t) Floor plan for implemented 22 core
AES256

(see table:VI). GPU results have been referred from the work
of Q. Li et al. [18] and Nishikawa et al. [17]. Since these
results were for AES-128 bit (10 rounds) implementation
thus the results have been extrapolated for AES-256 bit (14

rounds) for comparision.

With this cluster AES-256 40-bit partial key attack was
completed just under 10 minutes.

co
rei

3

co
rei

3a
ni

Gefo
rce

Tesl
a

ve
rte

x6

0

20

40

(a
)

G
bi

t/s
ec

co
rei

3

co
rei

3a
ni

Gefo
rce

Tesl
a

ve
rte

x6

0

1

·10−2

(b
)

G
bi

t/s
ec

/$

co
rei

3

co
rei

3a
ni

Gefo
rce

Tesl
a

ve
rte

x6

0

2

4
·10−4

(d
)

G
bi

t/s
ec

/$
/w

at
t

co
rei

3

co
rei

3a
ni

Gefo
rce

Tesl
a

ve
rte

x6

0
0.2
0.4
0.6
0.8

(c
)

G
bi

t/s
ec

/w
at

t

Figure 12. (a) Throughput, (b) Throughput/cost, (c) Throughput/power,
(d) Throughput/(cost x Power)

VII. CONCLUSION

We have reported a development framework library FH-
PClib for developing high-performance cryptanalysis appli-
cations based on FPGA cluster. This library accelerates the
design process by abstracting underlying low-level details
and provides high-level HDL programming interface. The
library can be further developed and generalised in such a
way that an end-user need not be required to know the finer
details of the cluster, framework or even underlying FPGA
technology.

Further we have also reported a scalable parallel FPGA
cluster framework for cryptanalysis applications. This frame-
work is suitable for many computation-intensive applications
of different sizes and complexity. The flexibility provided
enables it to be used with various FPGAs supporting dif-
ferent kind of high-speed interfaces. A user can configure
various cluster parameters and node counts according to the
computational requirements.

REFERENCES

[1] G. Paul, S. Rathi, and S. Maitra, “On non-negligible bias of
the first output byte of rc4 towards the first three bytes of the
secret key,” Designs, Codes and Cryptography, vol. 49, no.
1-3, pp. 123–134, 2008.

[2] N. J. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering,
and J. C. Schuldt, “On the security of rc4 in tls.” in Usenix
security, vol. 2013. Washington DC, USA, 2013.

[3] A. Bajpai, B. Bathe, S. Parulkar, and A. Apte, “Design and
development of an optimised hardware encryption module of
gigabit throughput base on composite glois field arithmetic
with feedback modes,” 2008.

[4] C. Chang, J. Wawrzynek, and R. W. Brodersen, “Bee2: a high-
end reconfigurable computing system,” in in IEEE Design &
Test of Computers, 2005, pp. 114–125.

[5] R. Baxter, “et al., maxwell - a 64 fpga supercomputer,” in in
Proceedings of NASA/ESA Conference on Adaptive Hardware
and Systems, 2007, pp. 287–294.

[6] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler,
“Breaking ciphers with copacobana – a cost-optimized par-
allel code breaker,” in Workshop on Cryptographic hardware
and embedded systems CHES 2006, Yokohama. Springer
Verlag, 2006, pp. 101–118.

[7] T. Gneysu, T. Kasper, M. Novotny, and C. Paar, “Crypt-
analysis with copacobana,” IEEE Transactions on computers,
vol. 57, no. 11, pp. 1498–1513, 2008.

[8] O. Mencer, K. H. Tsoi, S. Craimer, T. Todman, W. Luk, M. Y.
Wong, and P. H. W. Leong, “Cube: A 512-fpga cluster,” 2009.

[9] K. H. Tsoi, W. Luk, and S. Implementationgeneral, “Axel:
a heterogeneous cluster with fpgas and gpus,” in Journal of
Parallel and Distributed Computing, vol. 69, no. 6, 2009, pp.
532–545.

[10] C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, and J. Cong,
“Energy-efficient cnn implementation on a deeply pipelined
fpga cluster,” in Proceedings of the 2016 International Sym-
posium on Low Power Electronics and Design. ACM, 2016,
pp. 326–331.

[11] G. Marcus, W. Gao, A. Kugel, and R. Männer, “The mprace
framework: An open source stack for communication with
custom fpga-based accelerators,” in Programmable Logic
(SPL), 2011 VII Southern Conference on. IEEE, 2011, pp.
155–160.

[12] A. Stevens, “Introduction to amba 4 ace,” ARM whitepaper,
June, 2011.

[13] A. AMBA, “4 axi4-stream protocol,” 2010.

[14] J. Decaluwe, “Myhdl: a python-based hardware description
language,” Linux journal, vol. 2004, no. 127, p. 5, 2004.

[15] K. Opencl and A. Munshi, “The opencl specification version:
1.0 document revision: 48.”

[16] Altera, “Altera sdk for opencl,” 2016.

[17] N. Nishikawa, K. Iwai, and T. Kurokawa, “Granularity op-
timization method for aes encryption implementation on
cuda,” IEICE technical report. VLSI Design Technologies
(VLD2009-69), Tech. Rep., 2010.

[18] Q. Li, C. Zhong, K. Zhao, X. Mei, and X. Chu, “Imple-
mentation and analysis of aes encryption on gpu,” in High
Performance Computing and Communication 2012 IEEE 9th
International Conference on Embedded Software and Systems
(HPCC-ICESS), 2012 IEEE 14th International Conference
on, June 2012, pp. 843–848.

