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Abstract. In this paper, we consider a scenario where a bitcoin liquid-
ity provider sells bitcoins to clients. When a client pays for a bitcoin
online, the provider is able to link the client’s payment information to
the bitcoin sold to that client. To address the clients’ privacy concern,
it is desirable for the provider to perform the bitcoin transaction with
blind signatures. However, existing blind signature schemes are incom-
patible with the Elliptic Curve Digital Signature Algorithm (ECDSA)
which is used by most of the existing bitcoin protocol, thus cannot be
applied directly in Bitcoin. In this paper, we propose a new blind signa-
ture scheme that allows generating a blind signature compatible with the
standard ECDSA. Afterwards, we make use of the new scheme to achieve
bitcoin transaction anonymity. The new scheme is built on a variant of
the Paillier cryptosystem and its homomorphic properties. As long as
the modified Paillier cryptosystem is semantically secure, the new blind
signature scheme has blindness and unforgeability.
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1 Introduction

Bitcoin is a peer-to-peer payment system and digital currency introduced as open
source software by pseudonymous developer Satoshi Nakamoto [14]. In January
2009, the bitcoin network came into existence with the release of the first bitcoin
client and the issuance of the first bitcoins. Bitcoin is a cryptocurrency, so-called
because it uses cryptography to control the creation and transfer of money.
Bitcoin is the first decentralized digital currency, as the system works without
a central bank or single administrator. In this paper, we use the term “Bitcoin”
to refer to the technology and “bitcoin” to denote the currency unit of the
cryptocurrency.

In Bitcoin, the transactions take place between users directly, without an
intermediary. Users send payments, such as payer A sends m bitcoins to payee
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B, by broadcasting digitally signed messages to a peer-to-peer network of com-
municating nodes. Participating nodes, known as miners, verify, timestamp and
group newly broadcasted transactions into a new block of the chain, which is
then broadcasted to the network and verified by payee nodes. Currently, Elliptic
Curve Digital Signature Algorithm (ECDSA) is used by Bitcoin implementa-
tions.

An increasing number of online merchants now offer the option to pay using
bitcoins. One of the great promises of Bitcoin is anonymity: the transactions are
recorded and made public, but they are linked only with an electronic address
instead of real-world identity. Hence, whatever you buy with your bitcoins, the
purchase cannot be traced specifically to you.

Generally speaking, the aim of anonymization is to prevent attackers from
discovering the relationship between bitcoin wallet addresses and the real user
identity information through the Bitcoin network and the blockchain. The anonymity
feature of bitcoin transactions is by no means perfect.

Let us consider a scenario where a bitcoin liquidity provider sells bitcoins to
its clients. If a client pays to the provider for the bitcoin online, e.g., through
bank transfer, credit card, PayPal, or even Ali pay, the provider is able to link the
client’s payment information to the electronic address of the transacted bitcoin.
To address this privacy concern of the clients, it is desirable for the bitcoin
transactions to be performed by using blind signatures.

Blind signature, as introduced by Chaum [3], a form of digital signature in
which the content of a message is disguised (blinded) before it is signed. The
resulting blind signature can be publicly verified against the original, unblinded
message in the manner of a regular digital signature. A typical application of
blind signature is digital cash.

One of the key requirements for digital cash is anonymity: when you take
money out of the bank, the bank gives you the cash without knowing what you
intend to buy, and when you spend money, the merchant has no idea who you
are. In contrast, when you buy something with a credit card online, you have
to tell the merchant who you are, and also you have to tell the payment service
provider who you are making a purchase from. The potential for intrusion of
privacy is immense.

For the purposes of this construction, let us assume that all coins are worth
a dollar in real-world currency denomination. To withdraw a dollar from her
account, Alice generates a coin C, applies a public hash function H, and masks
the result by encrypting it with Ea. The bank signs Ea(H(C)) with Sb and
debits Alice’s bank account. Alice then computes Da(Sb(Ea(H(C)))) to strip
away her encryption, leaving her with a signature Sb(H(C)), and checks to make
sure Vb(Sb(H(C))) = H(C). To spend her coin, Alice then gives the signature
Sb(H(C)) and C to a merchant. The merchant then computes Vb(Sb(H(C)))
and compares that to H(C) in order to make sure that the coin was actually
signed by the bank. Then the merchant sends Sb(H(C)) and C to the bank,
which checks the validity of the signature, transfer fund to the merchant and
puts C on a list of coins that have already been spent.
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This scheme preserves Alice’s anonymity because blind signature prevents the
bank from linking the blinded message Ea(H(C)) it signs to a later un-blinded
version C that it may be called upon to verify.

The same kind of idea can be used to address the privacy concern of clients
when a bitcoin provider sells bitcoins to clients. The privacy requirement is that
the bitcoin provider cannot tell the relationship between the real identities of
clients and the transacted bitcoins in the blockchain. For example, assume that
the provider has sold bitcoins to n different clients (where n ≥ 2) who have
broadcast the transacted bitcoins in the blockchain. We require that the success
probability for the provider to guess the real identity of a transacted bitcoin
from the provider is not more than 1/n.

Our Contribution. In Bitcoin, the Elliptic Curve Digital Signature Algorithm
(ECDSA) is used to verify bitcoin transactions1. ECDSA offers a variant of the
Digital Signature Algorithm (DSA) [5] using the elliptic curve cryptography.
Existing blind signature schemes lack compatibility with the standard ECDSA
and thus cannot be used directly. This is mainly because existing blind signa-
ture schemes require different signature verification from that in the standard
ECDSA. In this paper, we propose a new blind signature scheme that allows
generating a blind signature which is compatible with the standard ECDSA in
the Bitcoin protocol. Afterwards, we make use of the new scheme to protect the
privacy of clients in Bitcoin.

The basic idea is: when a client buys a bitcoin from the bitcoin provider, he
pays the provider online at first and then runs a blind signature scheme with
the provider to obtain a blind ECDSA signature of the provider on a bitcoin
transaction in the same way as digital cash. The bitcoin transaction is created
by the client so that the provider does not know the address of the client in the
transaction when the provider signs the transaction. Later, the client broadcasts
the transaction to the network. The blind signature in the transaction can be
verified by everyone with the ECDSA. Since the blind signature is used, the
bitcoin provider cannot tell the relationship between the real identities of clients
and the transacted bitcoins in the blockchain.

The new blind signature is based on a variant of the Paillier cryptosystem.
We formally prove that the modified Paillier cryptosystem has semantic security.
Due to this, the blind signature scheme has blindness and unforgeability.

2 Related Work

In 1982, Chaum [3] gave the first blind signature scheme based on RSA [18]
and later used the blind signature scheme to construct the first electronic cash
scheme in [4].

Assume that a user, called a recipient, wishes a signer to sign a message m
without knowing the content of the message and the RSA public and private
key pair of the signer is ((n, e), d), where n is the product of two large distinct

1 https://bitcoin.org/en/glossary/signature
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primes p and q and ed = 1(mod (p− 1)(q− 1)). Chaum’s blind signature scheme
[3] can be described as follows:

– Step 1. The recipient randomly chooses an integer r from Z∗n and computes
m′ = rem (mod n) and sends the blinded message m′ to the signer.

– Step 2. Like the RSA signature scheme, the signer signs the blinded message
m′ with his private key d by computing s′ = m′d (mod n) and returns s′ to
the recipient.

– Step 3. The recipient unblinds the signed message to get the signature of the
signer on the message by computing

s = r−1s′ = r−1m′d = r−1(rem)d = r−1redmd = md (mod n)

where red = r(mod n) according to the Euler’s theorem.

In 1989, Schnorr [19] proposed a signature scheme based on the intractability
of certain discrete logarithm problems. The Schnorr signature scheme can also
be turned into a blind signature scheme [16, 17].

In the Schnorr signature scheme, there are two large primes p and q, such
that q|p − 1, an element g of order q modulo p, and a secure cryptographic
hash function H(·). The signer generates a pair of public and private keys (y, x),
such that y = gx(mod p), where the signer randomly chooses x from Z∗q . When a
recipient wishes the signer to blindly sign a message m, Schnorr’s blind signature
scheme can be described as follows:

– Step 1. The signer randomly chooses an integer k from Z∗q and computes

r = gk (mod p) and sends the commitment r to the recipient.
– Step 2. The recipient randomly chooses two integers α, β from Z∗q and com-

putes r′ = rg−αy−β(mod p), e′ = H(m, r′) and e = e′+β(mod q). Then the
recipient sends e to the signer.

– Step 3. The signer computes s = k− ex(mod q) and sends s to the recipient.
– Step 4 The recipient computes s′ = s− α. In the end, the recipient obtains

a valid Schnorr signature (e′, s′), such that e′ = H(m, gs
′
ye
′
(mod p)).

Bitcoin uses the Elliptic Curve Digital Signature Algorithm (ECDSA) to
verify transactions. The above blind signature schemes are not based on elliptic
curve cryptography and therefore cannot be used in Bitcoin. The ECDSA is
composed of four algorithms as follows.

– Parameter generation: The algorithm chooses an elliptic curve E and a group
generator G of prime order q over the elliptic curve. In addition, the algo-
rithm selects a cryptographic hash function H(·). The algorithm parameters
(E,G, q,H) are shared between different users.

– Key generation: The signer randomly chooses his private key sk from 2 to
q − 1 and computes and publishes his public key PK = skG.

– Signature generation: To sign a message M , the signer randomly chooses an
integer k from 2 to q − 1 and computes (Kx,Ky) = kG, s = k−1(H(M) +
kxsk)(mod q). The signature of the signer on the message M is (Kx, s).
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– Signature verification: Anyone has the public key PK of the signer can verify
the signature (Kx, s) by computing u = s−1H(M)(mod q), v = s−1Kx(mod q),
(K ′x,K

′
y) = uG+vPK and checking if K ′x = Kx. If so, the signature is valid.

If the signature is generated with the signature generation algorithm, we
have (K ′x,K

′
y) = uG + vPK = s−1H(M)G + s−1KxskG = (k−1(H(M) +

Kxsk))−1(H(M) +Kxsk)G = kG = (Kx,Ky). Therefore, we have K ′x = Kx.

In 2015, ShenTu and Yu [20] proposed a blind signature scheme for Bitcoin
based on elliptic curve cryptography. Their basic idea is the same as the Schnorr
signature scheme [19]. Assume that the scheme chooses an elliptic curve E, a
group generator G over E with a prime order q, and a cryptographic hash function
H(·). The public and private keys of the signer are (Y, x), where Y = xG. The
scheme can be described as follows.

– Step 1. The signer randomly chooses an integer k from Z∗q and computes
R = kG and sends the commitment R to the recipient.

– Step 2. The recipient randomly chooses two integers α, β from Z∗q and com-
putes R′ = R − αG − βY and takes the x-coordinate of R′ and let t = R′x.
Then the recipient computes e′ = H(m, t) and e = e′ + β(mod q) and sends
e to the signer.

– Step 3. The signer computes s = k− ex(mod q) and sends s to the recipient.
– Step 4 The recipient computes s′ = s− α(mod q). In the end, the recipient

obtains a valid Schnorr signature (e′, s′), such that s′G + e′Y = R and
H(m, t) = e′, where t = R′x.

The blind signature scheme over elliptic curve proposed in [20] is not di-
rectly applicable in implementing Bitcoin transactions because the proposed
blind signature is different from that of ECDSA signature. Before Bitcoin ap-
peared, Metet [11] had given a blind signature scheme compatible with DSA and
ECDSA in 2004 on the basis of [12]. The scheme is based on the Paillier cryp-
tosystem [15]. In 2012, Ladd [10] used Metet’s scheme for a bitcoin transaction
anonymity. The Paillier cryptosystem can be described as follows.

– Key generation: A user randomly choose two large distinct primes p, q and
an element g of Z∗N2 whose order is a nonzero multiple of N = pq, publishes
the public keys (N, g), and keeps the private keys (p, q) secret.

– Encryption: Given the public key (N, g) of the user, one can encrypt a mes-
sage m, where m is a positive integer less than N , by randomly choosing
r from Z∗N2 and computing c = E(m) = gmrN (mod N2), where c is the
ciphertext of m. Since r is randomly chosen, the ciphertext c of a message
m is random. Therefore, Paillier cryptosystem is a probabilistic encryption.

– Decryption: The user can decrypt the ciphertext c with the private key

(p, q) by computing m = cλ(mod N2)−1
N (p − 1)−1(q − 1)−1(mod N) where

λ = lcm(p− 1, q − 1).

Paillier cryptosystem has two homomorphic encryption properties as follows:
E(m1)E(m2) = E(m1 +m2), E(m)a = E(am) for any m1,m2,m, a ∈ ZN .
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In [11, 10], assume that ECDSA chooses an elliptic curve E and a group
generator G of prime order q, the public and private keys of the signer are
(A, xa), such that A = xaG. When the recipient wishes to get the signer’s blind
signature on a message h (a hash value), the blind signature scheme can be
described as follows.

– Step 1. The recipient begins by picking a Paillier cryptosystem with a public
key n, whose size is between q6 and q7, and sends n to the signer.

– Step 2. The signer randomly chooses an integer ka in the range [1, q−1] and
sends kaG to the recipient.

– Step 3. The recipient randomly chooses an integer kb and computes kb(kaG).
Let t be the x-coordinate of that point, and let za = 1/ka and zb = 1/kb.
Then the recipient sends Paillier encryptions c1 = E(tzb(mod q)) and c2 =
E(hzb(mod q)) along with a proof as in [2] that c1 and c2 are encryptions of
integers less than q and greater than 1.

– Step 4. The Paillier cryptosystem is additively homomorphic and permits
efficient multiplication of plaintexts by constants. Multiplying ciphertexts is
addition of the plaintext values, and exponentiation is multiplication by a
constant. Based on the properties, the signer computes c = cxaza1 cza2 E(rq),
where r is a random integer in the range [1, q5], and returns c to the recipient.

– Step 5. The recipient decrypts c to obtain s, the other half of the signa-
ture, after taking it modulo q. As the public key is large enough to prevent
overflow, this gives the correct answer.

This scheme is compatible with the ECDSA in the bitcoin protocol, but
the proof that c1 and c2 are Paillier encryptions of integers less than q and
greater than 1 has not been provided. In addition, the recipient can obtain
not only s = (kakb)

−1(h + txa)(mod q) but also k−1a (mod q)(k−1b H)(mod q) +
k−1a (mod q)(k−1b t(mod q))xa + dq. It is unclear if this has any impact on the
security of the signature scheme.

3 New Blind Elliptic Curve Digital Signature Algorithm
(ECDSA)

3.1 Modified Paillier Cryptosystem

The proposed blind ECDSA will be built on a variant of the Paillier cryptosys-
tem. In this section, we describe the modified Paillier cryptosystem.

Given a large prime q (a public parameter of ECDSA), the modified Paillier
cryptosystem is described as follows.

– Key Generation: A user randomly choose two large distinct primes p, t, such
that gcd(p− 1, q) = 1 and gcd(t− 1, q) = 1, and computes

N = pqt (1)

g = (1 +N)pt(mod N2) (2)

and publishes the public keys (N, g), and keeps the private keys (p, t) secret.
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– Encryption: Given the public key (N, g) of the user, one can encrypt a mes-
sage m, where m is a positive integer less than q, by randomly choosing r
from Z∗N2 and computing

C = gmrN (mod N2) (3)

C is the ciphertext of m. Since r is randomly chosen, the ciphertext C of a
message m looks like a random number.

– Decryption: The user can decrypt the ciphertext C with the private key (p, t)
by computing

D = C(p−1)(q−1)(t−1)(mod N2) (4)

m′ = [(D − 1)/(Npt)][(p− 1)(q − 1)(t− 1)]−1(mod q) (5)

Like the original Paillier cryptosystem, the modified scheme also has the
homomorphic encryption properties.

Next, we show that the decryption algorithm can recover a ciphertext pro-
duced by the encryption algorithm to a plaintext.

Theorem 1 (Correctness). If C is computed as above, we have m′ = m.

Proof. Since g = (1 +N)pt(mod N2), we have

gq = (1 +N)pqt = (1 +N)N = 1(mod N2).

Therefore,

D = C(p−1)(q−1)(t−1)

= gm(p−1)(q−1)(t−1)(mod q)rN(p−1)(q−1)(t−1)

= (1 +N)pt[m(p−1)(q−1)(t−1)(mod q)](mod N2)

= 1 + pt[m(p− 1)(q − 1)(t− 1)(mod q)]N

where pt[m(p− 1)(q − 1)(t− 1)(mod q)] < N . Note that according to the Euler

theorem, Xφ(N2) = 1(mod N2) for any non-zero integer X, where φ(N2) =
N(p− 1)(q − 1)(t− 1).

In view of this, we have

pt[m(p− 1)(q − 1)(t− 1)(mod q)] = (D − 1)/N.

Therefore, we have

m(p− 1)(q − 1)(t− 1)(mod q) = (D − 1)/(Npt),

from which we can obtain

m = [(D − 1)/(Npt)][(p− 1)(q − 1)(t− 1)]−1(mod q).

Based on Eq. (5), we can see m′ = m. Therefore, the theorem is true. 4
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3.2 New Blind ECDSA

Based on the modified Paillier cryptosystem described in the above section, we
propose a blind ECDSA.

Suppose that the group generator G of the elliptic curve used by the elliptic
curve digital signature algorithm (ECDSA) has a large prime order q. Assume
that the recipient wishes the signer (with the public key PK = skG) to produce
a blind signature on the hash value h of his message (e.g., his public key for
signature verification), the blind ECDSA between the recipient R and the signer
S can be described as follows:

– Step 1: The signer S randomly chooses an integer k1 from 2 to q − 1 and
computes

K1 = k1G (6)

and sends it to the recipient R.
– Step 2: After receiving K1 from the signer, the recipient R randomly chooses

an integer k2 from 2 to q − 1 and computes

K = (Kx,Ky) = k2K1 (7)

Next, the recipient R follows the modified Paillier cryptosystem, described
in the last session, to chooses two distinct large primes p, t, and computes the
public key (N, g). Next, he encrypts h and Kx, respectively, i.e., he randomly
chooses r1, r2 from Z∗N2 and computes

C1 = ghrN1 (mod N2) (8)

C2 = gKxrN2 (mod N2) (9)

and submits (N, g, C1, C2) to the signer S.
In addition, the recipient R needs to prove to the signer that the encryp-
tions are constructed correctly by zero-knowledge proof. The interactive
zero-knowledge proof is described as follows: To prove a ciphertext C =
gmrN (mod N2) to be constructed according to the scheme, the recipient R
randomly chooses m′ ∈ Zq and r′ ∈ Z∗N2 , computes C ′ = gm

′
r′
N

(mod N2)
and submits C ′ to the signer S, who randomly selects a bit b ∈ {0, 1} and
returns b to the recipient R. If b = 0, the recipient R is required to submit
m′, r′ to the signer S, who checks if C ′ = gm

′
r′
N

(mod N2). If b = 1, the re-
cipient R is required to submit m′′ = m+m′(mod q) and r′′ = rr′(mod N2)

to the signer, who checks if CC ′ = gm
′′
r′′
N

(mod N2). The above process is
repeated for ` times between the recipient R and the signer S. If the recipi-
ent R answers all questions correctly, the signer S is sure that the ciphertext
C is constructed correctly with a probability 1− 1/2`. The interactive zero-
knowledge proof can be transferred to a non-interactive protocol according
to [6].
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– Step 3: After receiving (N, g, C1, C2) and verifying that (C1, C2) are con-
structed correctly, the signer S randomly choose r from 2 to N and computes

C = (C1C
sk
2 )k

−1
1 (mod q)rN (mod N2) (10)

and sends C to the recipient R.
– Step 4: After receiving C, the recipient R computes

s = k−12 D(C, (p, t))(mod q) (11)

where D(C, (p, t)) stands for the decryption algorithm. In the end, the re-
cipient R obtains a blind signature (Kx, s).

Theorem 2 (Correctness). IfK1,K,C1, C2, C, s are computed as above, (Kx, s)
is a valid ECDSA signature of the signer.

Proof. Because C1 = ghrN1 (mod N2), C2 = gKxrN2 (mod N2), we have

C = (C1C
sk
2 )k

−1
1 (mod q)rN

= (ghrN1 (gKxrN2 )sk)k
−1
1 rN

= gk
−1
1 (h+Kxsk)(mod q)(r

k−1
1

1 r
k−1
1 sk

2 r)N (mod N2)

Note that gq = (1 +N)pqt = (1 +N)N = 1(mod N2).
Therefore, we have

s = k−12 D(C, (p, t)) = k−12 k−11 (h+Kxsk)(mod q).

In addition,

K = (Kx,Ky) = k2K1 = k2(k1G) = k1k2G

According to the ECDSA, (Kx, s) is a valid ECDSA signature. 4

4 Anonymous Bitcoin Transaction Based on Blind
ECDSA

In this section, we address the anonymity requirement by applying the proposed
blind ECDSA to achieve anonymity in Bitcoin transaction. We assume that the
bitcoin provider B has a number of bitcoins with the same public key PKB ,
where PKB = skBG and skB is the corresponding signing key of the provider
B. When a client C buys a bitcoin from the provider B, the client C and the
provider B interact as follows:

– Step 1. The client C pays the provider B the amount of a bitcoin by bank
transfer, credit card payment, or some other payment methods. Usually, the
client C is required to pay slightly more than the amount of a bitcoin to the
provider B, e.g., an extra exchange fee.
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– Step 2. The client C generates his ECDSA public and private key pair
(PkC , skC), such that PKC = skcG, which will be used for next round
of transaction, and computes the hash value of his public key, denoted as
h = H(PKC).

– Step 3. The client C (as the recipient) and the provider B (as the signer) run
the blind ECDSA as described in the last section. In the end, the client C
obtains a blind ECDSA signature (Kx, s) of the provider B on h.

– Step 4. Later, the client C broadcasts {PKc, (Kx, s)} in the network of bitcoin
nodes and miners. Each node or miner is able to verify the signature of the
provider B on the public key PKC of the client C on the basis of the public
key PKB of the provider. Note that one signature of the provider B implies
to transfer only one bitcoin to a client C from the provider B.

– Step 5. According to the public key PKC of the client C, a transaction is
constructed, such as the provider B transfers one bitcoin to the client C.
After the transaction, the number of bitcoins of the provider B is reduced
by one, and the client C has one bitcoin.

Remark. When the client C pays the provider B the amount of a bitcoin in the
first step, the provider B may know the identity of the client C. However, when
the client C broadcasts the transaction in Step 4, the provider B can only know
that the client C is one of those clients who bought bitcoins from the provider,
but the provider B cannot tell whom he is.

5 Security Analysis

First of all, we analyze the semantic security of the modified Paillier cryptosys-
tem. We begin by briefly introducing composite degree residues as a natural
instance of higher degree residues, and give some basic related facts. The origi-
nality of our setting resides in using of a square number as modulus. The modulus
is the product of three distinct primes, i.e, N = pqt.

Definition 1. An integer z is said to be a N -th residue modulo N2 if there is
an integer y such that z = yN (mod N2).

The set of N -th residues is a multiplicative subgroup of Z∗N2 of order φ(N) =
(p−1)(q−1)(t−1). Each N -th residue z has exactly N roots of degree N , among
which exactly one is strictly smaller than N . The N -th roots of unity are the
numbers of the form (1 +N)x = 1 + xN(mod N2).

The problem of deciding N -th residuosity, i.e. distinguishing N -th residues
from non N -th residues will be denoted by CR[N ].

As for prime residuosity [1, 13], deciding p-th residuosity is believed to be
computationally hard. Accordingly, we assume that:

Conjecture. There exists no polynomial time distinguisher for N -th residues
modulo N2, i.e. CR[N ] is intractable.

This intractability hypothesis is referred to as the Decisional Composite
Residuosity Assumption (DCRA) throughout this following discussion.
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We now proceed to describe the number-theoretic framework underlying the
modified Paillier cryptosystem introduced in sections 4.1. Let g = (1 +N)pt and
denote by E(m, r) the integer-valued function defined by

E(m, r) = gmrN (mod N2)

where m ∈ Zq and r ∈ Z∗N2 . Note that gq = 1(mod N2).

Definition 2. We call Composite Residuosity Class Problem the computational
problem Class[N ] defined as follows: for a given C = E(m, r) ∈ Z∗N2 where
m ∈ Zq and r ∈ Z∗N2 , compute m.

Associated to the computation problem, we define the decisional problem as
follows:

Definition 3. Associated to Class[N ], we call the decisional problemD-Class[N ]
defined as: given C = E(m, r) ∈ ZN2 and x ∈ Zq, decide if x = m.

Based on the above definitions, we have

Theorem 3. There exists the following computational hierarchy

CR[N ] = D-Class[N ]⇐ Class[N ]

Proof. The hierarchy D-Class[N ]⇐ Class[N ] comes from the general fact that
it is easier to verify a solution than to compute it.

Let us prove the left-side equivalence.
(⇒) Assume that C = gmrN (mod N2) and submit Cg−x = gm−xrN (mod N2)

to the oracle solving CR[N ]. In case of N -th residuosity detection, there exists an

integer r′ such that Cg−x = r′
N

(mod N2). Therefore, we have gm−x(r/r′)N =
1(mod N2). Raising two sides to the same power (p− 1)(q − 1)(t− 1), we have
g(m−x)(p−1)(q−1)(t−1)(mod q) = 1(mod N2), i.e., 1 + pt[(m− x)(p− 1)(q − 1)(t−
1)(mod q)]N = 1(mod N2). Because (m − x)(p − 1)(q − 1)(t − 1)(mod q) < q,
we have x = m. Therefore, the answer is “Yes”. Otherwise, the answer is “No”.

(⇐) Submit the pair (z = E(m, r), x = 0) to the oracle solving D-Class[N ].
Return the oracle’s answer without change.

Therefore, the theorem is proved. 4
Remark. In the above proof, we consider some special cases of CR[N ], that
is, z = E(m, r) = gmrN (mod N2) instead of any z ∈ ZN2 . However, since we
assume that CR[N ] is intractable, it must be intractable in any case.

Based on the above facts, we now analyze the semantic security of the mod-
ified Paillier cryptosystem. The semantic security of a public key crytosystem is
commonly defined by the following experiment [7, 8].

– A random public and private pair (pk, sk) are generated by running Gen(1N ).
– A probabilistic polynomial time-bounded adversary is given the public key
pk, which it may use to generate any number of ciphertexts (within polyno-
mial bounds).
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– The adversary generates two equal-length messages m0 and m1, and trans-
mits them to a challenge oracle along with the public key. The challenge
oracle selects one of the messages by flipping a fair coin (selecting a random
bit b ∈ {0, 1}), encrypts the message mb under the public key, and returns
the resulting challenging ciphertext c to the adversary.

The underlying public key cryptosystem is semantically secure under chosen
plaintext attack if the adversary cannot determine which of the two messages
was chosen by the oracle, with probability significantly greater than 1/2 (the
success rate of random guessing).

Theorem 4. The modified Paillier cryptosystem is semantically secure if CR[N ]
is intractable.

Proof. Since CR[N ] is intractable, D-Class[N ] is also intractable according
to Theorem 3. Therefore, given m0,m1, and E(mb, r), the adversary cannot
determine which of the two messages was chosen by the oracle, with probability
significantly greater than 1/2. The theorem is proved. 4

Next, we analyze the security of the proposed blind signature based on the
modified Paillier cryptosystem. According to [9], a blind digital signature scheme
is secure if it has blindness and unforgeability.

Blindness. Intuitively, blindness of a blind signature means that the recipient
R does not reveal to the signer S any information about the signature during
the generation of the signature.

In the proposed blind signature scheme, the information relevant to the
signature include h and (Kx, s). During the signature generation, both h and
Kx are encrypted by the recipient R with the modified Paillier cryptosystem.
Based on Theorem 4, the modified Paillier cryptosystem is semantically secure.
Therefore, without knowing the decryption key, the signer S cannot distin-
guish h,Kx from random integers in Zq. In addition, although the encryption
of k−11 (h + Kxsk)(mod q) is computed by the signer S based on the homomor-
phic property of the Paillier cryptosystem, the signer S, without knowing the
decryption key, cannot distinguish s = k−12 [k−11 (h+Kxsk)](mod q) from a ran-
dom integer in Zq. If the signer S returns an encryption of a known integer α
instead of k−11 (h + Kxsk)(mod q) to the recipient R, it can be detected by the
recipient R because (Kx, s), where s = k−12 α, is usually not a valid signature
of the signer. Even if (Kx, k

−1
2 α) happens to be a valid signature, the signer S

cannot trace the signature (Kx, k
−1
2 α) with α because he has no knowledge of

k2 in the signature.
In summary, the recipient R does not reveal to the signer S any information

about the blind signature. Therefore, the proposed blind signature has blindness.

Unforgeability. Intuitively, unforgeability of a blind signature means that the
recipient R cannot forge any new blind signature if given some blind signatures.

In the proposed blind signature scheme, when the recipient R submits to the
signer S the encryptions of h and Kx, he is required to provide zero-knowledge
proof that the encryptios are constructed correctly. This ensure that C1 =
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ghrN1 (mod N2) and C2 = gKxrN2 (mod N2). Therefore, C = (C1C
sk
2 )k

−1
1 (mod q)rN

(mod N2) = E(k−11 (h+Kxsk)(mod q)) from which the recipient R can only ob-
tain s = k−12 k−11 (h + Kxsk)(mod q) and then a blind signature (Kx, s) on h.
Note that the recipient R may not obtain a valid signature if he does not follow
the scheme to send the encryptions of h and Kx to the signer S.

Since the ECDSA has been assumed to be unforgeable, given some blind
ECDSA signatures, the recipient R cannot forge any new blind ECDSA signa-
ture.

In summary, the proposed blind signature scheme has unforgeability if the
ECDSA is unforgeable.

6 Performance Analysis

In this section, we analyze the computation and communication complexities
required by the new blind signature scheme, where the recipient R and the
signer S interact to generate the blind signature (Kx, s) on a hash value h.

With reference to Section 4.2, the scheme is described with 4 steps. We
will analyze the computation and communication complexities required for the
recipient R and the signer S, respectively, in each step as follows.

Steps Recipient Comp. Signer Comp. 2-Party Comm. (bits)

Step 1 1 mp 2|q|
Step 2 1 mp+2 exp.+2` exp. 2` exp. (4` + 2)|N2| + 2`|q|
Step 3 3 exp. 1 |N2|
Step 4 1 exp.

Total 1 mp+(2` + 3) exp. 1 mp+(2` + 3) exp. (4` + 3)|N2|+(2` + 2)|q|
Table 1. Computation and Communication Complexities for Recipient and Signer

In Table 1, mp represents a point multiplication over an elliptic curve, exp.
denotes a modular exponentiation with the modulo N2, ` is the number of
interactions between the recipient R and the signer S for zero-knowledge proof,
and |x| stands for the bit length of an integer x.

Note that in the performance analysis, we have not considered the com-
plexities of computing modular additions and multiplications in the above anal-
ysis because they are relatively small compared to the complexities of com-
puting point multiplications and modular exponentiations. In addition, because
g = (1 +N)pt(mod N2), so gm = (1 +mptN)(mod N2) and therefore the com-
putation of C = gmrN (mod N2) needs only one modular exponentiation instead
of two.

From Table 1, it is interesting to see that the computation complexities of
the recipient and the signer are the same.

If we run the proposed blind ECDSA (|p| = 512, |q| = 256, |t| = 512) on
the Skylake Core-i5 test platform with 2.7e+09 Hz CPU frequency, according
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to Crypto++ 6.0.0 benchmarks2, one modular exponentiation with modulo N2,
where |N2| = 2560, takes less than 2 ms and one point multiplication with
modulo q, where |q| = 256, takes less than 1 ms. In case that ` = 20, the total
computation time for the recipient and the signer to generate a blind signature
is less than 175 ms, and the total communication overload is less than 28 kbytes.

In the case that a bitcoin provider sells 100 bitcoins to 100 clients in the same
time with the proposed blind signature for bitcoin transaction anonymity, the
total computation time of the signer is less than 100×175/2 = 8750 ms = 8.75 s.

We can improve the performance of our scheme by using the Chinese Re-
minder Theorem (CRT) to compute the modular exponentiation ax(mod N2)
whereN = pqt. The recipient, knowing p, q, t, can compute ax(mod p2), ax(mod q2)
and ax(mod t2) at first and then ax(mod N2) with CRT. The signer, knowing pt
and q, can compute ax(mod p2t2) and ax(mod t2) at first and then ax(mod N2)
with CRT.

We can significantly improve the performance of our scheme by eliminating
the zero-knowledge proof. To protect the signing key sk of the signer against the
malicious recipient, we can modify Eq. (10) as follows:

C = (C1C
sk
2 )k

−1
1 (mod q)+r′qrN (mod N2) (12)

where the signer randomly chooses r′ from Z∗q , and the recipient still computes
s as Eq. (11). This change brings about the computation complexities of both
the recipient and the signer being reduced to only 1 point multiplication plus
3 modular exponentiations and the communication overload being reduced to
only 3|N2|+ 2|q|. Although this change improves the performance significantly,
we have not provided a rigorous security proof so far.

At last, let us compare our scheme with the blind ECDSA suggested in [10,
11]. In [10, 11], the size of the modulo n for Pillier cryptosystem is set between q6

and q7. When |q| = 256, the average size of n is 1664 and therefore |n2| = 3328,
which is larger than that in our scheme when |p| = 512, |q| = 256, |t| = 512 and
|N2| = 2560. In this case, the computation of a modular exponentiation in [10,
11] takes longer time than that in our scheme. In addition, Metet [11] has not
provided any security proof of the suggested blind signature scheme.

7 Conclusion

In the bitcoin protocol, it is hard to hide the identity of a client who buys
a bitcoin from a bitcoin provider when the client pays the provider by bank
transfer, credit card, PayPal, or even Ali pay. In this paper, we proposed a
new blind ECDSA scheme to achieve bitcoin transaction anonymity. With the
new blind ECDSA scheme, the client can pay the provider by any payment
approach to exchange a blind signature of the provider on the transaction and
later broadcast it in the bitcoin network. The bitcoin provider cannot tell the

2 https://www.cryptopp.com/benchmarks.html
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relationship between the real identities of clients and the sold bitcoins in the
blockchain.

We have provided a rigorous security proof that the proposed blind signature
scheme has blindness and unforgeability on the basis of the semantic security
of the modified Paillier cryptosystem. Performance analysis has shown that our
scheme is feasible and can be used by a bitcoin provider to sell bitcoins to
multiple client in the same time.

Our future work is to study if we can remove the zero-knowledge proof to
improve the performance of our scheme.
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