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Abstract

Function Secret Sharing (FSS), introduced by Boyle et al. (Eurocrypt 2015), provides a way
for additively secret-sharing a function from a given function family F . More concretely, an
m-party FSS scheme splits a function f : {0, 1}n → G, for some abelian group G, into functions
f1, . . . , fm, described by keys k1, . . . , km, such that f = f1 + . . .+ fm and every strict subset of
the keys hides f . A Distributed Point Function (DPF) is a special case where F is the family of
point functions, namely functions fα,β that evaluate to β on the input α and to 0 on all other
inputs.

FSS schemes are useful for applications that involve privately reading from or writing to
distributed databases while minimizing the amount of communication. These include different
flavors of private information retrieval (PIR), as well as a recent application of DPF for large-
scale anonymous messaging.

We improve and extend previous results in several ways:

• Simplified FSS constructions. We introduce a tensoring operation for FSS which is
used to obtain a conceptually simpler derivation of previous constructions and present our
new constructions.

• Improved 2-party DPF. We reduce the key size of the PRG-based DPF scheme of Boyle
et al. roughly by a factor of 4 and optimize its computational cost. The optimized DPF
significantly improves the concrete costs of 2-server PIR and related primitives.

• FSS for new function families. We present an efficient PRG-based 2-party FSS scheme
for the family of decision trees, leaking only the topology of the tree and the internal node
labels. We apply this towards FSS for multi-dimensional intervals. We also present a
general technique for obtaining more expressive FSS schemes by increasing the number of
parties.

• Verifiable FSS. We present efficient protocols for verifying that keys (k∗1 , . . . , k
∗
m), ob-

tained from a potentially malicious user, are consistent with some f ∈ F . Such a ver-
ification may be critical for applications that involve private writing or voting by many
users.
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1 Introduction

In this work we continue the study of Function Secret Sharing (FSS), a primitive that was
recently introduced by Boyle et al. [8] and motivated by applications that involve private access
to large distributed data.

Let F be a family of functions f : {0, 1}n → G, where G is an abelian group. An m-party
FSS scheme for F provides a means for “additively secret-sharing” functions from F . Such
a scheme is defined by a pair of algorithms (Gen,Eval). Given a security parameter and a
description of a function f ∈ F , the algorithm Gen outputs an m-tuple of keys (k1, . . . , km),
where each key ki defines the function fi(x) = Eval(i, ki, x). The correctness requirement is that
the functions fi add up to f , where addition is in G; that is, for any input x ∈ {0, 1}n we have
that f(x) = f1(x) + . . . + fm(x). The security requirement is that every strict subset of the
keys computationally hides f . A naive FSS scheme can be obtained by additively sharing the
entire truth-table of f . The main challenge is to obtain a much more efficient solution, ideally
polynomial or even linear in the description size of f .

The simplest nontrivial special case of FSS is a Distributed Point Function (DPF), introduced
by Gilboa and Ishai [24]. A DPF is an FSS for the family of point functions, namely functions
fα,β : {0, 1}n → G for α ∈ {0, 1}n and β ∈ G, where the point function fα,β evaluates to β
on input α and to 0 on all other inputs. Efficient constructions of 2-party DPF schemes from
any pseudorandom generator (PRG), or equivalently a one-way function (OWF), were presented
in [24, 8]. This was extended in [8] to more general function families, including the family of
interval functions f[a,b] that evaluate to 1 on all inputs x in the interval [a, b] and to 0 on all
other inputs. For m ≥ 3, the best known PRG-based DPF construction is only quadratically
better than the naive solution, namely the key size grows linearly with

√
N where N = 2n [8].

We consider here the case m = 2 by default.
On the high end, efficient FSS schemes for arbitrary polynomial time functions can be based

on the Learning with Errors (LWE) assumption by using threshold or key-homomorphic variants
of fully homomorphic encryption [8, 18]. (Alternatively, they can be based on indistinguisha-
bility obfuscation and one-way functions [8].) In the mid-range, FSS schemes for log-space or
NC1 functions (with inverse polynomial error) are implied by the Decisional Diffie-Hellman as-
sumption [9]. In the present work we mainly consider PRG-based FSS schemes, which have far
better concrete efficiency and are powerful enough for the applications we describe next.

FSS schemes are motivated by two types of applications: ones that involve privately reading
from a database held by m servers, and ones that involve privately writing (or incrementing) an
array which is secret-shared among m servers. In both cases, FSS can be used to minimize the
communication complexity. We illustrate two concrete application scenarios below and refer the
reader to Appendix A for more details and additional examples.

For a typical “reading” application, consider the problem of 2-server Private Information
Retrieval (PIR) [14, 12]. In the basic flavor of 2-server PIR, the two servers hold a database of
N strings (x1, . . . , xN ), where xi ∈ {0, 1}`, and a client wishes to retrieve xα without revealing
α to either of the two servers. PIR in this setting can be implemented by having the client
distribute the point function fα,1 : [N ] → Z2 between the servers. Concretely, the client
generates a pair of keys (k1, k2) which define additive shares f1, f2 of fα,1, and sends each key

to a different server. On input ki, server i sends back the sum
∑N
j=1 xjfi(j), where each xj is

viewed as an element in Z`2. The client can recover xα by taking the exclusive-or of the two
`-bit strings it receives. See Appendix B for a survey of alternative approaches to PIR.

Still relying only on a standard DPF, the above application to PIR can be directly generalized
to private search by keywords (returning the payload associated with a private n-bit keyword,
see Appendix A), private search on streaming data [35, 21, 8], and more. FSS for interval
functions can be used to privately search values in a secret range. Realizing similar private search
functionalities using standard PIR protocols requires the use of suitable data structures, which
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incur a significant additional overhead in round complexity, storage, and cost of updates [13]. In
general, FSS for a function family F can be directly used to perform private searches defined by
predicates from F . By additionally using data structures and coding techniques, data structures
and coding techniques, the power of FSS for simple function families F can be significantly
boosted. For instance, the recent “Splinter” system [38] efficiently supports a rich class of private
search queries by building only on FSS schemes for point functions and interval functions.

For a typical “writing” application, consider the following example from [8]. Suppose that
we want to collect statistics on web usage of mobile devices without compromising the privacy
of individual users, and while allowing fast collection of real-time traffic data for individual web
sites. A DPF provides the following solution. An array of counters is additively shared between
2 servers. A client who visits URL α can now secret-share the point function f = fα,1 over a
sufficiently large group G = ZM into f = f1 + f2. Each server i updates its shared entry of each
URL αj by locally adding fi(αj) to its current share of αj . Note that the set of URLs αj used
to index entries of the array does not need to include the actual URL α visited by the client,
and in fact it can include only a selected watchlist of URLs which is unknown to the client.
A different “writing” application for DPF was proposed in the context the Riposte system for
anonymous messaging [15]. In this system, messages from different clients are mixed by having
each client privately write the message to a random entry in a distributed array.

1.1 Our Contribution

Motivated by applications of FSS, we continue the study of efficient constructions that can be
based on any PRG. We improve and extend previous results from [8] in several directions.

Simplified FSS constructions. We introduce a conceptually simple “tensoring” operation
for FSS, which we use both to rederive previous constructions and obtain some of the new
constructions we describe next.

Improved 2-party DPF. We reduce the key size of the PRG-based DPF scheme from [8]
roughly by a factor of 4 and optimize its computational cost. In an AES-based implementation,
the key size of a DPF is equivalent to roughly a single AES key per input bit. We provide further
optimizations for the case of DPF with a single-bit output and for reducing the computational
cost of evaluating the DPF on the entire domain (as needed, for instance, in the PIR application
described above). The optimized DPF can be used to implement 2-server PIR protocols in which
the communication overhead is extremely small (e.g., roughly 2.5K bits are sent to each server
for retrieving from a database with 225 records) and the computation cost on the server side
is typically dominated by the cost of reading and computing the XOR of half the data items.
More concretely, the additional computational cost of expanding the DPF key for an N -record
database consists of roughly N/64 AES operations. In the case of private keyword search,
retrieving the payload associated with an 80-bit keyword requires the client to send less than
10K bits to each server, and each server to send back a string of the same length as the payload.
The server computation in this case is dominated by 73 AES invocations per keyword. See
Table 1 for more details on the concrete efficiency of our DPF construction and Appendix B
for more details on the PIR application and a comparison with alternative approaches from the
literature.

FSS for new function families. We present an efficient PRG-based 2-party FSS scheme for
the family of decision trees, leaking only the topology of the tree (i.e., the shape of the graph)
and the internal node labels (i.e., which input variable labels each node). Our construction hides
the labels of edges and leaves. We apply this towards PRG-based FSS for multi-dimensional
intervals, e.g., capturing conjunction queries or search restricted to a geographical region. We
also present a general technique for extending the expressive power of FSS schemes by increasing
the number of parties. Concretely, we show how to obtain FSS schemes for the family of all
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products of pairs of functions from two given families that are realized by FSS. This can be
applied towards more efficient solutions for multi-dimensional intervals, though with a larger
number of parties.

Verifiable FSS. In both types of applications of FSS discussed above, badly formed FSS keys
can enable a malicious client to gain an unfair advantage. The effect of malicious clients can
be particularly devastating in the case of “writing” applications, where a single badly formed
set of keys can corrupt the entire data. We present efficient protocols for verifying that keys
(k∗1 , . . . , k

∗
m) are consistent with some f ∈ F . Our verification protocols make black-box use

of the underlying FSS scheme, and avoid the cost of general-purpose secure computation tech-
niques. The protocols make a novel use of sublinear verification techniques (including special-
purpose linear sketching schemes and linear PCPs) and combine them with MPC protocols that
exploit correlated randomness from an untrusted client for better efficiency. These techniques
may be applicable beyond the context of verifiable FSS.

A verification protocol for DPF was previously proposed in the context of the Riposte system
for anonymous messaging [15]. Compared to our verification protocols, the protocol from [15]
requires an additional party, its communication complexity is higher, and it only applies to a
special (and relatively inefficient) DPF implementation.

Organization. Useful definitions appear in Section 2. Several FSS constructions, including
the tensor product generalization, optimized DPF and evaluating a DPF on the entire domain,
are presented in Section 3. Definitions and protocols for verifiable FSS are the focus of Section 4.
The appendices contain further discussion on applications of FSS and the concrete efficiency of
PIR, as well as some proofs.

2 Preliminaries

We extend the definition of function secret sharing from [8] by allowing a general specification of
the allowable leakage, namely the partial information about the function that can be revealed.
We also give a more explicit treatment of how functions and groups are represented.

Modeling function families. A function family is defined by a pair F = (PF , EF ), where

PF ⊆ {0, 1}∗ is an infinite collection of function descriptions f̂ , and EF : PF ×{0, 1}∗ → {0, 1}∗
is a polynomial-time algorithm defining the function described by f̂ . Concretely, each f̂ ∈ PF
describes a corresponding function f : Df → Rf defined by f(x) = EF (f̂ , x). We assume by
default that Df = {0, 1}n for a positive integer n (though will sometimes consider inputs over
non-binary alphabets) and always require Rf to be a finite Abelian group, denoted by G. When

there is no risk of confusion, we will sometimes write f instead of f̂ and f ∈ F instead of
f̂ ∈ PF . We assume that f̂ includes an explicit description of both Df and Rf as well as a size
parameter Sf̂ .

Representing groups and their elements. We restrict the attention to Abelian groups
G of the form Zu1

× · · · × Zu` , for positive integers u1, . . . , u`, and represent such a group by
the sequence (u1, . . . , u`). A group element y ∈ G is naturally described by a sequence of `
non-negative integers.

Modeling leakage. We capture the allowable leakage by a function Leak : {0, 1}∗ → {0, 1}∗,
where Leak(f̂) is interpreted as the partial information about f̂ that can be leaked. When Leak
is omitted it is understood to output the input domain Df and the output domain Rf . This will
be sufficient for most classes considered in this work; for more general classes, one also needs to
leak the size Sf̂ .

Output representation. As in [8], we consider by default an “additive” representation of
the output (i.e., an output y is split into group elements y1, . . . , ym that add up to y). However,
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in the 2-party case it will be sometimes convenient to use a subtractive FSS, where an output
y is represented by a pair of group elements (y1, y2) such that y1 − y2 = y. In the multi-party
case it is also useful to consider a further generalization to linear representations captured by
arbitrary linear secret sharing schemes, such as Shamir’s scheme, but we do not pursue this
generalization here.

Definition 2.1 (FSS: Syntax). An m-party function secret sharing (FSS) scheme is a pair of
algorithms (Gen,Eval) with the following syntax:

• Gen(1λ, f̂) is a PPT key generation algorithm, which on input 1λ (security parameter)

and f̂ ∈ {0, 1}∗ (description of a function f) outputs an m-tuple of keys (k1, . . . , km).

We assume that f̂ explicitly contains an input length 1n, group description G, and size
parameter S (see above).

• Eval(i, ki, x) is a polynomial-time evaluation algorithm, which on input i ∈ [m] (party
index), ki (key defining fi : {0, 1}n → G) and x ∈ {0, 1}n (input for fi) outputs a group
element yi ∈ G (the value of fi(x), the i-th share of f(x)).

When m is omitted, it is understood to be 2. When m = 2, we sometimes index the parties by
i ∈ {0, 1} rather than i ∈ {1, 2}.

Definition 2.2 (FSS: Security). Let F = (PF , EF ) be a function family and Leak : {0, 1}∗ →
{0, 1}∗ be a function specifying the allowable leakage. Let m (number of parties) and t (secrecy
threshold) be positive integers. An m-party t-secure FSS for F with leakage Leak is a pair
(Gen,Eval) as in Definition 2.1, satisfying the following requirements.

• Correctness: For all f̂ ∈ PF describing f : {0, 1}n → G, and every x ∈ {0, 1}n, if

(k1, . . . , km)← Gen(1λ, f̂) then Pr [
∑m
i=1 Eval(i, ki, x) = f(x)] = 1.

• Secrecy: For every set of corrupted parties S ⊂ [m] of size t, there exists a PPT algorithm

Sim (simulator), such that for every sequence f̂1, f̂2, . . . of polynomial-size function descrip-
tions from PF , the outputs of the following experiments Real and Ideal are computationally
indistinguishable:

– Real(1λ): (k1, . . . , km)← Gen(1λ, f̂λ);
Output (ki)i∈S .

– Ideal(1λ): Output Sim(1λ, Leak(f̂λ)).

When Leak is omitted, it is understood to be the function Leak(f̂) = (1n, Sf̂ ,G) where 1n, Sf̂ ,

and G are the input length, size, and group description contained in f̂ . When t is omitted it is
understood to be m−1. Finally, for m = 2 we define a subtractive FSS in the same way as above,
except that in the correctness requirement the predicate Eval(1, k1, x) + Eval(2, k2, x) = f(x) is
replaced by Eval(1, k1, x)− Eval(2, k2, x) = f(x).

Definition 2.3 (Distributed Point Function). A point function fα,β , for α ∈ {0, 1}n and β ∈ G,
is defined to be the function f : {0, 1}n → G such that f(α) = β and f(x) = 0 for x 6= α. We
will sometimes refer to a point function with |β| = 1 (resp., |β| > 1) as a single-bit (resp.,
multi-bit) point function. A Distributed Point Function (DPF) is an FSS for the family of all

point functions, with the leakage Leak(f̂) = (1n,G).

To illustrate our representation conventions, a point function fα,β for α ∈ {0, 1}50 and

β ∈ G = Z3
100 is described by (a binary encoding of) f̂ = (50, (100, 100, 100), α, β).

Indistinguishability vs. simulation. The security requirement in the FSS definition from [8]
(see Appendix D) appears to be weaker than the above because it refers to indistinguishability
instead of efficient simulation. However, the two flavors are equivalent for every function family
F and leakage function Leak for which Leak can be efficiently inverted; that is, given Leak(f̂)
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one can efficiently find f̂ ′ such that Leak(f̂ ′) = Leak(f̂). Such an inversion algorithm exists for
all instances of F and Leak considered in this work.

A concrete security variant. For the purpose of describing and analyzing some of our
FSS constructions, it will be convenient to consider a finite family F of functions f : Df → Rf
sharing the same (fixed) input domain and output domain, as well as a fixed value of the security
parameter λ. We say that such a finite FSS scheme is (T, ε)-secure if the computational indistin-
guishability requirement in Definition 2.2 is replaced by (T, ε)-indistinguishability, namely any
size-T circuit has at most an ε advantage in distinguishing between Real and Ideal. When con-
sidering an infinite collection of such finite F , parameterized by the input length n and security
parameter λ, we require that Eval and Sim be each implemented by a (uniform) PPT algorithm,
which is given 1n and 1λ as inputs.

Remark 2.4 (Function Secret Sharing vs. Homomorphic Secret Sharing). FSS can be thought
of as a dual of the notion of Homomorphic Secret Sharing (HSS) defined in [9], where the roles
of the function and the input are reversed. Whereas FSS considers the goal of secret-sharing a
function f (represented by a program) in a way that enables compact evaluation on any given
input x via local computation on the shares of f , HSS considers the goal of secret-sharing an
input x in a way that enables compact evaluation of any given function f via local computation
on the shares of x. While any FSS scheme can be viewed as an HSS scheme for a suitable class
of programs and vice versa, the notion of FSS is more liberal in that it allows the share size to
grow with the size of the program computing f . Our results for decision trees make essential
use of this relaxation. Furthermore, the FSS view is more natural for the function classes and
applications considered in this work. We refer the reader to [9, 18] for constructions of HSS
and FSS schemes for broader classes of programs under stronger assumptions. In particular,
multi-party HSS and FSS schemes for circuits (resp., 2-party schemes for branching programs)
can be based on the LWE (resp., DDH) assumption.

3 New FSS Constructions From One-Way Functions

In this section, we present a collection of new FSS constructions that can be based on any
pseudorandom generator (PRG), or equivalently a one-way function. At the core of our new
results is a new procedure for combining FSS schemes together via a “tensoring” operation, to
obtain FSS for a more expressive function class. A direct iterative execution of this operation
with two different recursion parameters reproduces both the DPF constructions of Gilboa and
Ishai [24] and the (seemingly quite different) tree-based DPF construction of Boyle et al. [8].

Further exploring this operation, we make progress in two directions:

• Improved efficiency. We demonstrate new optimizations for the case of DPFs, yielding
concrete efficiency improvements over the state-of-the-art constructions from [8] (for both
DPF and FSS for interval functions), dropping the key size of an n-bit DPF from 4n(λ+1)
down to just n(λ + 2) bits. We also provide a new procedure for efficiently performing a
full domain DPF evaluation (i.e., evaluating on every element of the input domain), a task
which occurs frequently within PIR-style applications.

• Extended expressiveness. Then, by exploiting a generalization of the tensoring operation,
we construct an efficient FSS scheme for decision trees (leaking the tree topology and node
labels). This enables applications such as multi-dimensional interval queries.

We also demonstrate an orthogonal means of obtaining increased FSS expressibility, achiev-
ing FSS for the product of two supported function classes, in exchange for requiring a larger
number of parties m.
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3.1 DPF Tensor Operation

Given the following three tools: (1) a DPF scheme FSS• = (Gen•,Eval•) for the class of multi-
bit point functions F• (supporting output length at least (λ + 1) bits), (2) an FSS scheme
(GenF ,EvalF ) for an arbitrary class of functions F whose keys are pseudorandom bit-strings,
and (3) a pseudorandom generator, we construct an FSS scheme for the tensor of the function
family F with the class of single-bit point functions: that is, the class of functions

F• ⊗F := {gα,f : fα,1 ∈ F•, f ∈ F} , where

gα,f (x, y) := fα,1(x) · f(y) =

{
f(y) if x = α

0 otherwise
.

Note that if F• supports n1-bit inputs and F supports n2-bit inputs then the resulting
function class F• ⊗ F takes (n1 + n2)-bit inputs. As we will later see, the key size of the
resulting FSS (Gen⊗,Eval⊗) will correspond to size⊗(n1 + n2, λ) = size•(n1, λ) + 2sizeF (n2, λ).

Remark 3.1. In the case when F is itself a class of (multi-bit) point functions F•, the result
of this tensor F•n1

⊗F•n2
will correspond directly to another class of (multi-bit) point functions

F•n1+n2
with larger input domain. Repeating this process iteratively by doubling the input

bit-length in each step (n1 = n2) yields a construction isomorphic to that from [24], with key
size O(nlog2 3) bits. Alternatively, repeating this process with n2 = 1 at each step yields the
construction from [8], with key size 4n(λ+ 1) bits.

Intuitively, the transformation works as follows. We use the DPF to generate keys for a
function which on the special input α outputs s||1, a random seed concatenated with the bit
1, and 0 everywhere else. This means (viewing the scheme with “subtractive” reconstruction,
for simplicity) that when evaluating at x = α the parties reach independent random output
seeds s0, s1 (whose sum is s), and disagreeing bits t0 = 1 − t1, whereas everywhere else their
outputs will agree. The sb’s can then be used to generate long(er) masks (via a PRG) to hide
information from the other party. In the tensor construction, the masks are used to hide FSS
keys from the second scheme: the parties are both given both keys to the second FSS, but with
one masked by the PRG-output of s0 and the other masked by the PRG-output of s1. These are
the “correction words.” The bit tb tells the party which of the correction words to use. When
t0 = t1 and s0 = s1, the parties will perform identical actions, and thus their final output will
be the same. For the special input α, they will exactly remove the masks and evaluate using the
revealed FSS keys. The pseudorandomness of the F FSS keys means the parties cannot identify
which input is the special one.

Note that new keys have the form of one key from the DPF and two elements in the key
space of the second FSS: that is, the resulting key size size⊗(n1 + n2, λ) is indeed size•(n1, λ) +
2sizeF (n2, λ).

Theorem 3.2. There exists a polynomial p(n) and constant c > 1 such that, if the following
tools exist:

1. Distributed Point Function: (T, εDPF)-secure FSS scheme (Gen•,Eval•) for multi-bit
point function family F• = {fα,β}α,β : {0, 1}n1 → {0, 1}λ+1, with key size size•(n1, λ)

2. FSS with Pseudorandom Keys:1 FSS scheme (GenF , EvalF ) for arbitrary function
family F : {0, 1}n2 → G, with key size sizeF (n2, λ), satisfying:

• Key group structure: The key space K is endowed with an additive group structure.

• (T, εFSS)-key-pseudorandomness: ∀f ∈ F , b ∈ {0, 1}, for every adversary A running in
time no greater than T , the advantage of A in distinguishing between the distributions
{kb : (k0, k1)← Gen(1λ, f)} and {u : u← K} is bounded by εFSS.

1Note that key-pseudorandomness implies standard FSS security.
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3. Pseudorandom generator: (T, εPRG)-secure PRG : {0, 1}λ → K.

then there exists a (T ′, ε′)-secure FSS (Gen⊗,Eval⊗) with key size size⊗(n1+n2, λ) = size•(n1, λ)+
2sizeF (n2, λ) for the family of functions G = F• ⊗ F := {gα,f : {0, 1}n1 × {0, 1}n2 → G

∣∣ α ∈
{0, 1}n1 , f ∈ F}, specified by

gα,f (x1, x2) := f•α,1(x1) · f(x2) =

{
f(x2) if x1 = α

0 else
,

for T ′ = T − p(n1 + n2) and ε′ = εDPF + 2 · εFSS + 2 · εPRG.

We provide a full proof of Theorem 3.2 within the Appendix.

3.2 Optimized DPF

For input length n, security parameter λ, and 1-bit outputs, the best previous DPF construc-
tion [8] achieved key size 4n(λ + 1) bits. We now present an optimized DPF construction
stemming from the tensor approach, which drops the key size down to n(λ+ 2) bits.

We obtain savings in two different ways. First, we modify the generic tensor transformation
(accordingly, the scheme of [8]) so that instead of needing two correction words for each level,
we can suffice with one. The reason this is possible here is because the “second” FSS scheme
in this instance is a single-bit-input DPF, which is simply a secret shared string of the truth
table. For such FSS we do not need to enforce full control over the unmasked key values that the
parties will compute in order to guarantee correct evaluation, but rather only over the difference
between the values. This saves us one factor of 2.

Second, we are able to shrink the size of each correction word by roughly a factor of 2
(explicitly, from 2(λ+1) bits to (λ+2)). Recall that the goal of the correction word is to shift a
(pseudo-)random string (a1, a2) so that it agrees with a second pseudo-random string (b1, b2) on
one half i ∈ {0, 1}, and remains independent on the other half. Previous constructions achieved
this via shifting by a correction word (c1, c2), where ci = ai ⊕ bi, and c1−i was a random offset.
We observe that the introduced randomness in the latter shift is unnecessary, and instead shift
both halves by the same offset. Since a1−i and b1−i were (pseudo-)random and independent to
begin with, conditioned on ai, bi, this property will be preserved with the shift ai ⊕ bi. This
provides us with our second saved factor of 2.

3.2.1 An informal description

The above overview describes our optimized DPF as a refinement of the construction obtained
via the generic tensor transformation. We now give an alternative and self-contained description
of the construction, which provides intuition for the more formal description that will follow.
For simplicity, consider first the case of a DPF with a single-bit output β = 1.

At a high level, each of the two keys defines a GGM-style binary tree [25] with 2n leaves,
where the leaves are labeled by inputs x ∈ {0, 1}n. We will refer to a path from the root to a
leaf labeled by x as the evaluation path of x, and to the evaluation path of the special input α
as the special evaluation path. Each node v in a tree will be labeled by a string of length λ+ 1,
consisting of a control bit t and a λ-bit seed s, where the label of each node is fully determined by
the label of its parent. The function Eval• will compute the labels of all nodes on the evaluation
path to the input x, using the root label as the key, and output the control bit of the leaf.

We would like to maintain the invariant that for each node outside the special path, the two
labels (on the two trees) are identical, and for each node on the special path the two control
bits are different and the two seeds are indistinguishable from being random and independent.
Note that since the label of a node is determined by that of its parent, if this invariant is met
for a node outside the special path then it is automatically maintained by its children. Also, we
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can easily meet the invariant for the root (which is always on the special path) by just explicitly
including the labels in the keys. The challenge is to ensure that the invariant is maintained also
when leaving the special path.

Towards describing the construction, it is convenient to view the two labels of a node as a
mod-2 additive secret sharing of its label, consisting of shares [t] = (t0, t1) of the control bit t
and shares [s] = (s0, s1) of the λ-bit seed s. That is, t = t0⊕t1 and s = s0⊕s1. The construction
employs two simple ideas.

1. In the 2-party case, additive secret sharing satisfies the following weak homomorphism:
If G is a PRG, then G([s]) = (G(s0), G(s1)) extends shares of the 0-string s = 0 into
shares of a longer 0-string S = 0, and shares of a random seed s into shares of a longer
(pseudo-)random string S, where S is pseudo-random even given one share of s.

2. Additive secret sharing is additively homomorphic: given shares [s], [t] of a string s and a
bit t, and a public correction word CW , one can locally compute shares of [s ⊕ t · CW ].
We view this as a conditional correction of the secret s by CW conditioned on t = 1.

To maintain the above invariant along the evaluation path, we use the two types of homo-
morphism as follows. Suppose that the labels of the i-th node vi on the evaluation path are
[s], [t]. To compute the labels of the (i + 1)-th node, the parties start by locally computing
[S] = G([s]) for a PRG G : {0, 1}λ → {0, 1}2λ+2, parsing [S] as [sL, tL, sR, tR]. The first two
values correspond to labels of the left child and the last two values correspond to labels of the
right child.

To maintain the invariant, the keys will include a correction word CW for each level i. As
discussed above, we only need to consider the case where vi is on the special path. By the
invariant we have t = 1, in which case the correction will be applied. Suppose without loss of
generality that αi = 1. This means that the left child of vi is off the special path whereas the
right child is on the special path. To ensure that the invariant is maintained, we can include
in both keys the correction CW (i) = (sL, tL, sR ⊕ s′, tR ⊕ 1) for a random seed s′. Indeed,
this ensures that after the correction is applied, the labels of the left and right child are [0], [0]
and [s′], [1] as required. But since we do not need to control the value of s′, except for making
it pseudo-random, we can instead use the correction CW (i) = (sL, tL, sL, tR ⊕ 1) that can be
described using λ + 2 bits. This corresponds to s′ = sL ⊕ sR. The n correction values CW (i)

are computed by Gen• from the root labels by applying the above iterative computation along
the special path, and are included in both keys.

Finally, assuming that β = 1, the output of Eval• is just the shares [t] of the leaf corresponding
to x. A different value of β (from an arbitrary Abelian group) can be handled via an additional
correction CW (n+1).

3.2.2 The construction

We proceed with a formal description of the optimized DPF construction, whose pseudocode is
given in Figure 1.2

Theorem 3.3 (Optimized DPF). Suppose G : {0, 1}λ → {0, 1}2(λ+1) is a pseudorandom gen-
erator. Then the scheme (Gen•,Eval•) from Figure 1 is a DPF for the family of point functions
fα,β : {0, 1}n → G with key size n · (λ + 2) + λ + dlog2 |G|e bits. The number of PRG invoca-

tions in Gen is at most 2(n + d log |G|
λ+2 e) and the number of PRG invocations in Eval is at most

n+ d log |G|
λ+2 e.

2A minor difference with respect to the conference version [10] is that the values of t
(0)
0 , t

(0)
1 are fixed determinis-

tically (Step 3), whereas in [10] they are selected at random; this does not affect security and results in reducing the
key size by one bit.
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Optimized Distributed Point Function (Gen•,Eval•)
Let G : {0, 1}λ → {0, 1}2(λ+1) be a pseudorandom generator.
Let ConvertG : {0, 1}λ → G be a map converting a random λ-bit string to a pseudorandom group
element of G. (See Figure 3.)

Gen•(1λ, α, β,G):

1: Let α = α1, . . . , αn ∈ {0, 1}n be the bit decomposition of α

2: Sample random s
(0)
0 ← {0, 1}λ and s

(0)
1 ← {0, 1}λ

3: Let t
(0)
0 = 0 and t

(0)
1 = 1

4: for i = 1 to n do
5: sL0 ||tL0

∣∣∣∣ sR0 ||tR0 ← G(s
(i−1)
0 ) and sL1 ||tL1

∣∣∣∣ sR1 ||tR1 ← G(s
(i−1)
1 ).

6: if αi = 0 then Keep← L, Lose← R
7: else Keep← R, Lose← L
8: end if
9: sCW ← sLose0 ⊕ sLose1

10: tLCW ← tL0 ⊕ tL1 ⊕ αi ⊕ 1 and tRCW ← tR0 ⊕ tR1 ⊕ αi
11: CW (i) ← sCW ||tLCW ||tRCW
12: s

(i)
b ← sKeepb ⊕ t(i−1)

b · sCW for b = 0, 1

13: t
(i)
b ← tKeepb ⊕ t(i−1)

b · tKeepCW for b = 0, 1
14: end for
15: CW (n+1) ← (−1)t

n
1 ·
[
β − Convert(s

(n)
0 ) + Convert(s

(n)
1 )
]
∈ G

16: Let kb = s
(0)
b ||CW

(1)|| · · · ||CW (n+1)

17: return (k0, k1)

Eval•(b, kb, x):

1: Parse kb = s(0)||CW (1)|| · · · ||CW (n+1), and let t(0) = b.
2: for i = 1 to n do
3: Parse CW (i) = sCW ||tLCW ||tRCW
4: τ (i) ← G(s(i−1))⊕ (t(i−1) ·

[
sCW ||tLCW ||sCW ||tRCW

]
)

5: Parse τ (i) = sL||tL
∣∣∣∣ sR||tR ∈ {0, 1}2(λ+1)

6: if xi = 0 then s(i) ← sL, t(i) ← tL

7: else s(i) ← sR, t(i) ← tR

8: end if
9: end for

10: return (−1)b ·
[
Convert(s(n)) + t(n) · CW (n+1)

]
∈ G

Figure 1: Pseudocode for optimized DPF construction for the class fα,β : {0, 1}n → G. The symbol
|| denotes string concatenation. Subscripts 0 and 1 refer to party id. All s values are λ-bit strings
and t values are a single bit.
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Remark 3.4 (Early termination optimization). For the case of small output group G (e.g.,
G = Z2), we can further improve the complexity of (Gen•,Eval•) via an “early termination”
optimization. For ν := log2(λ/ log2 |G|), this optimization reduces the key size by ν(λ+ 2) bits
and the number of calls to the psuedorandom generator by ν. See Section 3.2.3 for details.

Proof of Theorem 3.3. Correctness is argued similar to the tensor product case.
Security: We prove that each party’s key kb is pseudorandom. This will be done via a

sequence of hybrids, where in each step we replace another correction word CW (i) within the
key from being honestly generated to being random.

The high-level argument for security will go as follows. Each party b ∈ {0, 1} begins with a

random seed s
(0)
b that is completely unknown to the other party. In each level of key generation

(for i = 1 to n), the parties apply a PRG to their seed s
(i−1)
b to generate 4 items: namely, 2

seeds sLb , s
R
b and 2 bits tLb , t

R
b . This process will always be performed on a seed which appears

completely random and unknown given the view of the other party; because of this, the security
of the PRG guarantees that the 4 resulting values appear similarly random and unknown given
the view of the other party. The ith level correction word CW (i) will “use up” the secret
randomness of 3 of these 4 pieces: the two bits tLb , t

R
b , and the seed sLoseb for Lose ∈ {L,R}

corresponding to the direction exiting the “special path” α: i.e. Lose = L if α = 1 and Lose = R
if α = 0. However, given this CW (i), the remaining seed sKeepb for Keep 6= Lose still appears
random to the other party. The argument then continued in similar fashion to the next level,
beginning with seeds sKeepb .

For each j ∈ {0, 1, . . . , n+1}, we will consider a distribution Hybj defined roughly as follows:

1. s
(0)
b ← {0, 1}λ chosen at random (honestly), and t

(0)
b = b.

2. CW (1), . . . , CW (j) ← {0, 1}λ+1 chosen at random.

3. For i ≤ j, s(i)
b ||t

(i)
b computed honestly, as a function of s

(0)
b ||t

(0)
b and CW (1), . . . , CW (j).

4. For j, the other party’s seed s
(j)
1−b ← {0, 1}λ is chosen at random, and t

(j)
1−b = 1− t(j)b .

5. For i > j: the remaining values s
(i)
b ||t

(i)
b , s

(i)
1−b||t

(i)
1−b, CW

(i) all computed honestly, as a
function of the previously chosen values.

6. The output of the experiment is kb := s
(0)
b ||CW (1)|| · · · ||CW (n+1).

Formally, Hybj is fully described in Figure 2. Note that when j = 0, this experiment corresponds
to the honest key distribution, whereas when j = n+ 1 this yields a completely random key kb.
We claim that each pair of adjacent hybrids j − 1 and j will be indistinguishable based on the
security of the pseudorandom generator.

The proof of Theorem 3.3 follows from the following four claims:

Claim 3.5. For every b ∈ {0, 1}, α ∈ {0, 1}n, β ∈ G, it holds that

{kb ← Hyb0(1λ, b, α, β)} ≡ {kb : (k0, k1)← Gen•(1λ, fα,β)}.

Claim 3.6. For every b ∈ {0, 1}, α ∈ {0, 1}n, β ∈ G, it holds that

{kb ← Hybn+1(1λ, b, α, β)} ≡ {kb ← U}.

Note that Claims 3.5 and 3.6 follow directly by construction of Hybj .

Claim 3.7. There exists a polynomial p′ such that for any (T, εPRG)-secure pseudorandom gen-
erator G, then for every j ∈ [n], every b ∈ {0, 1}, α ∈ {0, 1}n, β ∈ G, and every nonuniform
adversary A running in time T ′ ≤ T − p′(λ), it holds that∣∣∣Pr[kb ← Hybj−1(1λ, b, α, β); c← A(1λ, kb) : c = 1]

− Pr[kb ← Hybj(1
λ, b, α, β); c← A(1λ, kb) : c = 1]

∣∣∣ < εPRG.
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Hybj(1
λ, b, α, β):

1: Let α = α1, . . . , αn ∈ {0, 1}n be the bit decomposition of α

2: Sample s
(0)
0 , s

(0)
1 ← {0, 1}λ, and let t

(0)
0 = 0 and t

(0)
1 = 1.

3:

4: for i = 1 to n do
5: Compute sLb ||tLb

∣∣∣∣sRb ||tRb = G(s
(i−1)
b ).

6: if αi = 0 then Set Keep← L, Lose← R. else, Set Keep← R, Lose← L
7:

8: if i < j then
9: Sample CW (i) ← {0, 1}λ+2.

10: else
11: if i = j then Sample s

(j−1)
1−b ← {0, 1}

λ and let t
(j−1)
1−b = 1− t(j−1)

b . end if

12: Expand sL1−b||tL1−b
∣∣∣∣sR1−b||tR1−b = G(s

(i−1)
1−b ).

13: CW (i) = ComputeCW(i, αi, [s
L
0 ||tL0

∣∣∣∣sR0 ||tR0 ], [sL1 ||tL1
∣∣∣∣sR1 ||tR1 ]).

14: (s
(i)
1−b, t

(i)
1−b) = ComputeNextST(1− b, i, t(i−1)

1−b , s
Keep
1−b ||t

Keep
1−b , CW

(i))
15: end if
16:

17: (s
(i)
b , t

(i)
b ) = ComputeNextST(b, i, t

(i−1)
b , sKeepb ||tKeepb , CW (i))

18: end for
19:

20: if j = n+ 1 then
21: CW (n+1) ← G
22: else
23: CW (n+1) ← (−1)t

n
1 ·
[
β − Convert(s

(n)
0 ) + Convert(s

(n)
1 )
]
∈ G

24: end if
25: Let kb = s

(0)
b ||CW

(1)|| · · · ||CW (n+1)

26: return kb

ComputeCW(i, αi, [s
L
0 ||tL0

∣∣∣∣sR0 ||tR0 ], [sL1 ||tL1
∣∣∣∣sR1 ||tR1 ]):

1: if αi = 0 then Keep← L, Lose← R. else, Keep← R, Lose← L
2: sCW ← sLose0 ⊕ sLose1

3: tLCW ← tL0 ⊕ tL1 ⊕ αi ⊕ 1 and tRCW ← tR0 ⊕ tR1 ⊕ αi
4: return CW (i) ← sCW ||tLCW ||tRCW

ComputeNextST(x, i, t
(i−1)
x , sKeepx ||tKeepx , CW (i)):

1: Parse CW (i) = sCW ||tLCW ||tRCW .

2: s
(i)
x ← sKeepx ⊕ t(i−1)

x · sCW
3: t

(i)
x ← tKeepx ⊕ t(i−1)

x · tKeepCW

4: return (s
(i)
x , t

(i)
x ).

Figure 2: Hybrid distribution j, in which the first j correction words are sampled completely at
random, and the remaining correction words are computed honestly.
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Proof. Fix an arbitrary j ∈ [n], b ∈ {0, 1}, α ∈ {0, 1}n, β ∈ G. Given a Hyb-distinguishing
adversary A with advantage ε for these values, we construct a corresponding PRG adversary
B. Recall that in the PRG challenge for G, the adversary B is given a value r that is either
computed by sampling a seed s ← {0, 1}λ and computing r = G(s), or is sampled truly at
random r ← {0, 1}2λ+2.

PRG adversary B(1λ, (j, b, α, β), r):

1: Let α = α1, . . . , αn ∈ {0, 1}n be the bit decomposition of α

2: Sample s
(0)
b ← {0, 1}λ, and let t

(0)
b = b.

3:

4: for i = 1 to (j − 1) do
5: CW (i) ← {0, 1}λ+2.

6: Expand sLb ||tLb
∣∣∣∣sRb ||tRb = G(s

(i−1)
b ).

7: if αi = 0 then Set Keep← L, Lose← R. else, Set Keep← R, Lose← L

8: (s
(i)
b , t

(i)
b ) = ComputeNextST(b, i, t

(i−1)
b , sKeepb , tKeepb , CW (i)).

9: Take t
(i)
1−b = 1− t(i)b .

10: end for
11:

12: Expand sLb ||tLb
∣∣∣∣sRb ||tRb = G(s

(i−1)
b ) and set sL1−b||tL1−b

∣∣∣∣sR1−b||tR1−b = r (the PRG challenge).

13: CW (j) = ComputeCW(j, αj , [s
L
0 ||tL0

∣∣∣∣sR0 ||tR0 ], [sL1 ||tL1
∣∣∣∣sR1 ||tR1 ]).

14: if αj = 0 then Set Keep← L, Lose← R. else, Set Keep← R, Lose← L

15: Compute (s
(j)
x , t

(j)
x ) = ComputeNextST(x, j, t

(j−1)
x , sKeepx ||tKeepx , CW (j)), for both x ∈ {0, 1}.

16:

17: Compute (CW (j+1)|| · · · ||CW (n+1)) =

RemainingKey(α, j, CW (1)|| · · · ||CW (j), t
(j)
0 , t

(j)
1 , [sL0 ||tL0

∣∣∣∣sR0 ||tR0 ], [sL1 ||tL1
∣∣∣∣sR1 ||tR1 ]).

18: return kb = s
(0)
b ||CW (1)|| · · · ||CW (n+1).

RemainingKey(α, j, CW (1)|| · · · ||CW (j), t
(j)
0 , t

(j)
1 , [sL0 ||tL0

∣∣∣∣sR0 ||tR0 ], [sL1 ||tL1
∣∣∣∣sR1 ||tR1 ]):

1: for i = (j + 1) to n do

2: Expand sLx ||tLx
∣∣∣∣sRx ||tRx = G(s

(i−1)
x ) for both x ∈ {0, 1}.

3: if αi = 0 then Set Keep← L, Lose← R. else, Set Keep← R, Lose← L
4: CW (i) = ComputeCW(i, αi, [s

L
0 ||tL0

∣∣∣∣sR0 ||tR0 ], [sL1 ||tL1
∣∣∣∣sR1 ||tR1 ]).

5: Compute (s
(i)
x , t

(i)
x ) = ComputeNextST(x, i, t

(i−1)
x , sKeepx ||tKeepx , CW (i)), for both x ∈ {0, 1}.

6: end for
7:

8: CW (n+1) ← (−1)t
n
1 ·
[
β − Convert(s

(n)
0 ) + Convert(s

(n)
1 )
]
∈ G

9: return (CW (j)||CW (j+1)|| · · · ||CW (n+1))

Now, consider B’s success in the PRG challenge as a function of A’s success in distinguish-
ing Hybj−1 from Hybj . If r is computed pseudorandomly, then it is clear the generated kb is

distributed as Hybj−1(1λ, b, α, β).
It remains to show that if r was sampled at random then the generated kb is distributed as

Hybj(1
λ, b, α, β). That is, if r is random, then the corresponding computed values of s

(j)
1−b and

CW (j) are distributed randomly conditioned on the values of s
(0)
b ||t

(0)
b ||CW (1)|| · · · ||CW (j−1),

and the value of t
(j)
1−b is given by 1− t(j)b . Note that all remaining values (for “level” i > j) are

computed as a function of the values up to “level” j.
First, consider CW (j), computed in three parts:

• sCW = sLoseb ⊕ sLose1−b.

• tLCW = tLb ⊕ tL1−b ⊕ αj ⊕ 1.
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• tLCW = tLb ⊕ tL1−b ⊕ αj .

In the case that r is random, then sLose1−b, t
L
1−b, and tR1−b (no matter the value of Lose ∈ {L,R}) are

each perfect one-time pads, and so CW (j) = sCW ||tLCW ||tRCW is indeed distributed uniformly.

Now, condition on CW (j) as well, and consider the value of s
(j)
1−b. Depending on the value

of t
(j−1)
1−b , s

(j)
1−b is selected either as sKeep1−b or sKeep1−b ⊕ sCW . However, sKeep1−b is distributed uniformly

conditioned on the view thus far, and so in either case the resulting value is again distributed
uniformly.

Finally, consider the value of t
(j)
1−b. Note that both t

(j)
b and t

(j)
1−b are computed as per

ComputeNextST, as a function of t
(j−1)
1 and t

(j−1)
1−b , respectively (and t

(j−1)
1−b was set to 1−t(j−1)

b ).
In particular,

t
(j)
b ⊕ t

(j)
1−b = (tKeepb ⊕ t(i−1)

b · tKeepCW )⊕ (tKeep1−b ⊕ t
(i−1)
1−b · t

Keep
CW )

= tKeepb ⊕ tKeep1−b ⊕ (t
(i−1)
b ⊕ t(i−1)

1−b ) · tKeepCW

= tKeepb ⊕ tKeep1−b ⊕ 1 · (tKeep0 ⊕ tKeep1 ⊕ 1)

= 1

Combining these pieces, we have that in the case of a random PRG challenge r, the resulting
distribution of kb as generated by B is precisely distributed as is Hybj(1

λ, b, α, β). Thus, the
advantage of B in the PRG challenge experiment is equivalent to the advantage ε of A in
distinguishing Hybj−1(1λ, b, α, β) from Hybj(1

λ, b, α, β). The runtime of B is equal to the runtime
ofA plus a fixed polynomial p′(λ). Thus for any T ′ ≤ T−p′(λ), it must be that the distinguishing
advantage ε of A is bounded by εPRG.

Claim 3.8. There exists a polynomial p′ such that for any (T, εConvert)-secure pseudorandom
Convert : {0, 1}λ → G, then for every b ∈ {0, 1}, α ∈ {0, 1}n, β ∈ G, and every nonuniform
adversary A running in time T ′ ≤ T − p′(λ), it holds that∣∣∣Pr[kb ← Hybn(1λ, b, α, β); c← A(1λ, kb) : c = 1]

− Pr[kb ← Hybn+1(1λ, b, α, β); c← A(1λ, kb) : c = 1]
∣∣∣ < εConvert.

Proof. Fix an arbitrary b ∈ {0, 1}, α ∈ {0, 1}n, β ∈ G. In a similar fashion to the previous
claim, an adversary A who distinguishes between the corresponding distributions Hybn and
Hybn+1 with advantage ε directly yields a corresponding adversary B for the pseudo-randomness
of Convert with the same advantage, and only polynomial additional runtime p′(λ). Namely,

B samples s
(n)
b ← {0, 1}λ and all values CW (1), . . . , CW (n) ← {0, 1}λ+2 at random, and then

embeds the Convert challenge by setting CW (n+1) = (−1)t
n
1 ·[β+(−1)1−b·Convert(s(n)

b )+(−1)b·r].
In the case that r is generated pseudo-randomly as the output of Convert(s

(n)
1−b) for random s

(n)
1−b,

this is precisely the distribution generated by Hybn. In the case that r is truly random, then
it directly acts as a one-time pad on the remaining terms and thus CW (n+1) is distributed
uniformly, precisely as per Hybn+1. The claim follows.

This concludes the proof of Theorem 3.3.

Remark 3.9 (Public vs. local information). Note that in the keys generated by Gen• in Figure 1,
most of the information consists of correction words which are common to both keys and do not

need to be kept secret, and only the initial seeds s
(0)
0 and s

(0)
1 need to be kept secret. This may

be helpful for further reducing the cost of communicating or storing the DPF keys.
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ConvertG(s):

1: Let u← |G|.
2: if u = 2m for an integer m then
3: if m ≤ λ then
4: Return the group element represented by the first m bits of s.
5: else
6: Return the group element represented by the first m bits of G(s) for a PRG
7: G : {0, 1}λ → {0, 1}m+λ.
8: end if
9: else

10: Return the group element corresponding to G(s) mod u.
11: end if

Figure 3: Pseudocode for converting a string s ∈ {0, 1}λ to an element in a group G. If s is random
then ConvertG(s) is pseudo-random.

Input Output Key length Eval• PRG Eval• AES Gen• PRG Gen• AES
Domain Domain in bits operations operations operations operations

{0, 1}n G ν(λ+ 2) + 2λ ν ν 2ν 4ν

{0, 1}16 {0, 1} 1544 10 10 20 40
{0, 1}127 2318 16 16 32 64

{0, 1}25 {0, 1} 2705 19 19 38 76
{0, 1}127 3479 25 25 50 100

{0, 1}40 {0, 1} 4640 34 34 68 136
{0, 1}127 5414 40 40 80 160

{0, 1}80 {0, 1} 9800 74 74 148 296
{0, 1}127 10574 80 80 160 320

{0, 1}160 {0, 1} 20120 154 154 308 612
{0, 1}127 20894 160 160 320 640

Table 1: Performance of the optimized DPF construction from Figure 1. We use the additional
early termination optimization, which ends the path that Gen• and Eval• follow at level ν =
min{dn − log λ

log |G|e, n} of the tree. With this optimization, the key length is ν(λ + 2) + 2λ. The

PRG G expanding s ∈ {0, 1}127 to 256 bits can be implemented either by AES in counter mode,
i.e. G(s) = AESs||0(0)||AESs||0(1) or by the fixed-key implementation proposal of [38] using the
compression function of [32], i.e. G(s) = (AESk0(s||0) ⊕ s||0)||(AESk1(s||0) ⊕ s||0) for two fixed
keys k0, k1. In either case, Gen• requires two AES operations per PRG expansion since it uses the
whole expanded string, but Eval• requires only one AES operation per PRG invocation since the
evaluation uses either the left or the right half of the expanded string, depending on the next bit
of x.
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3.2.3 Full Domain Evaluation

Some applications of DPF require running the evaluation algorithm Eval• on every element of
the input domain. This is the case, for instance, for the application to 2-server PIR described in
the Introduction, or “writing” applications such as the private updates application described in
Appendix A (see also [34]). For input domain of size N = 2n, a straightforward implementation
uses N independent invocations of Eval•, once for each input. In this section we present a more
efficient scheme that uses the tree structure of our DPF to reduce the total cost by roughly a
factor of n.

Notation 3.10. Let G be a group, β ∈ G and let j, i be two integers such that 0 ≤ j < i. For
any sequence a ∈ Gi we denote by a[j] the j-th element in the sequence. We denote by eij,β ∈ Gi

the sequence of i group elements such that eij,β [j] = β and eij,β [j′] is the unit element for any

j′ 6= j. If i = 1 then eij,β is simply β. For any two sequences γ0, γ1 ∈ Gi let γ0 + γ1 ∈ Gi denote
the component-wise addition of elements over the group.

Definition 3.11. In the same setting as Definition 2.2 we say that a protocol (Gen,EvalAll) is
a full domain evaluation protocol for F if the secrecy property is identical to Definition 2.2 and

• Correctness: For all f̂ ∈ PF describing f : {0, 1}n → G, and every x ∈ {0, 1}n, if

(k1, . . . , km)← Gen(1λ, f̂) then ∀i EvalAll(i, ki) ∈ G2n and

Pr

[
m∑
i=1

EvalAll(i, ki)[x] = f(x)

]
= 1.

Similarly to Definition 2.2 for m = 2 we define a subtractive full domain evaluation pro-
tocol in the same way as above, except that m ranges over 0 and 1 and EvalAll(0, k0)[x] −
EvalAll(1, k1)[x] = f(x).

We present a protocol (Gen•,∗,EvalAll•) for full domain evaluation of a two-party DPF,
improving on the computational complexity of the näıve solution by a factor of O(n). We
leverage the structure of our particular DPF scheme to optimize the construction in two ways.

Consider a rooted binary tree whose leaves are the inputs x ∈ {0, 1}n and the path from the
root to a leaf x reflects the binary representation x. More concretely, if xi = 0 (resp., xi = 1),
then the i-th step in the path moves from the current node to its left (resp., right) child. In our
DPF construction, a single invocation of Eval•(b, kb, x) traverses the path from the root to a leaf
x, and so the näıve algorithm for full domain evaluation traverses each of these paths, requiring a
total of O(nN) invocations of the PRG. The first improvement is based on the observation that
for every node i in the tree there is a unique τ (i) value computed by any execution of Eval• that
traverses the node. Since the τ values and the correction words are sufficient to compute the
output of Eval• on every single input, full domain evaluation can be carried out by computing
the τ values for each node in the tree, requiring only O(N) PRG invocations.

A second improvement is the early termination optimization for small output groups. The
correction word CW (n+1) in Gen• is the output β masked by the expansion of two seeds. If the
representation of β is short then several output values can be “packed” into CW (n+1). For any
node V of depth ν in the tree there are 2n−ν leaves in its sub-tree, or 2n−ν input elements with
a shared prefix that ends at V . If the size of CW (ν+1) is at least 2n−ν times the output length
then the main loop of both Gen• and Eval• can terminate at level ν instead of at level n. In this
case CW (ν+1) will be a sequence of group elements masked by the two expanded seeds. The
sequence will have the output β in the location specified by the last n− ν bits of α and the unit
element of G in every other location.

In order to achieve the early termination optimization, the Convert algorithm in Figure 3
needs to be slightly modified to return a sequence of group elements instead of a single element.
We refer to the modified algorithm as Convert∗G(s). The only difference between Convert∗ and
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Convert is that in Line 4 Convert∗ returns bλ/mc group elements defined by the first bλ/mc
blocks of m bits in s.

The pseudo-code in Figure 4 describes Gen•,∗ and EvalAll•. Gen•,∗ makes the necessary
adjustments to Gen• enabling early termination. EvalAll• performs full domain evaluation and
outputs a sequence of 2n group elements. The construction implies Theorem 3.12.

Full Domain Evaluation (Gen•,∗,EvalAll•)
Let G : {0, 1}λ → {0, 1}2(λ+1) be a pseudorandom generator.

Gen•,∗(1λ, α, β,G):

1: Let α = α1, . . . , αn ∈ {0, 1}n be the bit decomposition of α.
2: Let ν = min{dn− log λ

log |G|e, n}.
3: Sample random s

(0)
0 ← {0, 1}λ and s

(0)
1 ← {0, 1}λ

4: Let t
(0)
0 = 0 and t

(0)
1 = 1

5: Run the main loop of Gen•(1λ, α, β,G) for i = 1, . . . , ν and obtain CW (1), . . . , CW (ν) and

s
(ν)
0 , s

(ν)
1 , t

(ν)
1 .

6: Let α̂ = αν+1, . . . , αn. // α̂ indicates the location of α in the sub-tree with root at level n−ν.

7: Let CW (ν+1,∗) ← (−1)t
(ν)
1
[
e2n−ν
α̂,β − Convert∗G(s

(ν)
0 ) + ConvertG(s

(ν)
1 )].

8: Let kb = (s
(0)
b ||n||CW

(1)|| · · · ||CW (ν)||CW (ν+1,∗)).
9: return (k0, k1).

EvalAll•(b, kb):

1: Parse kb = (s(0)||n||CW ) for CW = CW (1)|| · · · ||CW (ν)||CW (ν+1,∗).
2: Let t(0) = b.
3: Return Traverse(s(0), t(0), n, CW, ν + 1, 1, b).

Traverse(s, t, n, CW, i, j):

1: if i > 0 then
2: i← i− 1
3: Parse CW (i) = sCW ||tLCW ||tRCW .
4: Let τ (i) ← G(s)⊕ t ·

[
sCW ||tLCW ||sCW ||tRCW

]
.

5: Parse τ (i) = sL||tL
∣∣∣∣ sR||tR ∈ {0, 1}2(λ+1).

6: Return Traverse(sL, tL, n, CW, i− 1, j)||Traverse(sR, tR, n, CW, i− 1, j + 2n−ν+i−1).
7: else // i = 0
8: Let Pj′ = Convert∗G(s+ t · CW (ν+1,∗))[j′] for j′ = j, . . . , j + 2n−ν − 1.
9: Return Pj || . . . ||Pj+2n−ν−1.

10: end if

Figure 4: Pseudocode for optimized DPF evaluation on the entire input domain.

Theorem 3.12 (Full domain evaluation). Let λ be a security parameter, let G : {0, 1}λ →
{0, 1}2(λ+1) be a PRG and let G be a group. The scheme (Gen•,∗,EvalAll•) in Figure 4 is a full
domain evaluation protocol for the family of point functions from {0, 1}n to G. The keys that
Gen•,∗ outputs are of size at most ν(λ+2)+λ+log n+max{λ, log |G|} bits, the number of PRG

invocations in Gen•,∗ is at most 2ν + 2d log |G|
λ+2 e and the number of PRG invocations in EvalAll•

is at most 2ν(1 + d log |G|
λ+2 e) for ν = min{dn− log λ

log |G|e, n}.
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Proof. The security of the protocol follows immediately from the security of the protocol in
Figure 1 since the keys produced by Gen•,∗(1λ, α, β,G) are identical to the keys generated by

Gen•(1λ, (α1, . . . , αν), e2n−ν

α̂,β ,G2n−ν ), where (α1, . . . , αν) is the ν-bit prefix of α.
To prove the correctness of the protocol we observe that for every x ∈ {0, 1}n, every i < ν

and any b, the value τ (i) that EvalAll•(b, kb) generates for the tree node associated with the
i-bit prefix of x is identical to the τ (i) value that Eval•(b, kb, x) produces. For any 1 ≤ i < ν
and any x that does not have a shared i-bit prefix with α, the invocations Eval•(0, k0, x) and
Eval•(1, k1, x) produce the same values τ (j) for any i ≤ j ≤ ν. Therefore

EvalAll•(0, k0)[x]− EvalAll•(1, k1)[x] = 0.

If x shares a prefix of length ν with α then the choice of CW ν+1,∗ and the fact that t
(ν)
0 ⊕

t
(ν)
1 = 1 ensure that EvalAll•(0, k0)[x]− EvalAll•(1, k1)[x] = 0 for x 6= α and EvalAll•(0, k0)[α]−
EvalAll•(1, k1)[α] = β.

Each key kb includes the values s
(0)
b and n which are of length λ + log n together and the

ν + 1 strings CW (1), . . . , CW (ν), CW (ν+1,∗). CW (i) is of length λ + 2 for i = 1, . . . , ν and
the length CW (ν+1,∗) is |CW (ν+1,∗)| = max{λ, log |G|}. Therefore, the key size is at most
ν(λ+ 2) + λ+ log n+ max{λ, log |G|}.

Gen•,∗ executes the PRG G twice for each i = 1, . . . , ν expanding the seeds s
(i−1)
0 , s

(i−1)
1 and

runs two Convert operations on s
(ν)
0 , s

(ν)
1 , which is together 2ν+ 2d log |G|

λ+2 e PRG operations. The

tree that EvalAll• traverses has 2ν leaves and 2ν−1 internal nodes. There is one PRG operation

per internal node and at most d log |G|
λ+2 e operations per each leaf, which completes the proof.

Remark 3.13. In the useful case of |G| = 2k elements for k ≤ λ, Theorem 3.12 overestimates
the number of PRG invocations in EvalAll• by a factor of two since ConvertG(s) for each element
in level ν of the tree does not require additional PRG operations. For the same reason, in
this case the number of PRG operations in Gen•,∗ is exactly 2ν and the key size is at most
ν(λ+ 2) + 2λ+ log n.

3.3 FSS for Decision Trees

We now describe how the tensoring approach can be utilized to provide FSS for the broader
class of decision trees. A decision tree is defined by: (1) a tree topology, (2) variable labels on
each node v (where the set of possible values of each variable is known; we denote this set for
the variable of node v by Sv), (3) value labels on each edge (the possible values from Sv), and
(4) output labels on each leaf node.

In our construction, the key size is roughly λ · |V | bits, where V is the set of nodes, and
evaluation on a given input requires |V | executions of a pseudorandom generator, and a compa-
rable number of additions. The FSS is guaranteed to hide the secret edge value labels and leaf
output labels (which we refer to as “Decisions”), but (in order to achieve this efficiency) reveals
the base tree topology and the identity of which variable is associated to each node (we refer to
this collective revealed information as “Tree”).

As a simple illustrative example, consider a decision tree representation of the OR function
on n bits xi. The tree topology includes a length-n chain of nodes (each labeled by a unique
input variable xi), with edges all labeled by 0, ending in a terminal output node (labeled by 0).
In addition, from each internal node there is a second outgoing edge, labeled by 1, terminating
in a leaf labeled by 1. (See Figure 5(a).) In this example, the leaked information “Tree” consists
of the structure of the tree and the n node labels xi; the hidden information “Decisions” consists
of the choice of condition labels 0,1 on each edge, as well as the 0,1 leaf output labels. In
particular, the resulting FSS key cannot be distinguished from the analogous FSS key for the
AND function, which has an identical structure but with the 0 and 1 roles reversed.
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Figure 5: (a) Decision tree for OR function on input x1, . . . , xn. Revealed information: Tree consists
of graph topology and labels of nodes by input variables xi. Hidden information: Decisions includes
edge labels (boxed) and leaf output labels (circled). (b) Depiction of v-extension tree.

A richer sample application is the class of constant-dimension intervals. Direct application
of our FSS for decision trees construction yields FSS for d-dimensional interval functions on
input size n with key size O(λ · nd).

In the following three subsections, we present notation and syntax for decision trees, describe
our construction of FSS for decision trees, and further discuss the implications to constant-
dimension intervals.

3.3.1 Decision Tree Preliminaries

We begin with a formal definition of the decision tree model.

Definition 3.14 (Decision Trees: Syntax). Let a decision tree be specified by a tuple

Πtree = (n, (1`i)i∈[n],G,Tree,Decisions)

consisting of the following information:

1. n ∈ N, indicating the number of input variables to the program, which are denoted by
x1, . . . , xn.

2. For each i ∈ [n], the domain size `i of the ith variable, specified in unary.

3. A description of the output group G. (See Section 2 for discussion.)

4. Description Tree = (Γ, var) of tree structure:

• Directed tree Γ = (V,E).

• Labeling var : V → [n] of each internal node in the tree v ∈ V by an input variable
index.

The degree of each node v must be ≤ `i for which var(v) = i. (We sometimes denote this
value by `v.)

5. Decision labels Decisions = (D, output) of two kinds:

• For each directed edge (u, v) ∈ E from parent to child, a label D(u, v) ∈ Z`u , with
the property that D(u, v) 6= D(u, v′) for v 6= v′ (i.e., each of the outgoing edges have
distinct labels in Z`u).

• Output labels for each leaf node u in the tree, denoted output(u) ∈ G.

Let v ← root(Γ) output the root of the tree, b← IsLeaf(v) output a bit identifying whether v is
a leaf node, `← deg(v) return the degree (number of children) of node v, u← parent(v) output
the parent of v, v ← child(u, a) output the child node of u that corresponds to value a ∈ Z`u of
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its input variable, and {va}a ← siblings(v) output the set of all siblings of v (including v itself).
Let x← input(v) output an input value x ∈ Z`1×· · ·×Z`n which leads to node v: i.e., for which
xvar(u) = D(u,w) for every edge (u,w) from root(Γ) to v.

Definition 3.15 (Decision Trees: Semantics). A decision tree Πtree = (n, (1`i)i∈[n],G,Tree,Decisions)
computes the function fΠ : Z`1 × · · · × Z`n → G which evaluates on an input (x1, . . . , xn) as:

1: Let u← root(Tree) and i← var(u)
2: while IsLeaf(u) = 0 do
3: Let u← child(u, xi)
4: end while
5: return output(u).

In our FSS construction, it will be helpful to consider the following notion of extending a
tree by adding a collection of new children to an originating leaf node (see Figure 5(b)).

Definition 3.16 (v-Extension). For given n, (1`i)i∈[n] and G, we say that Tree′ is a v-extension
of Tree if:

• The directed graph Γ = (V,E) is formed by adding an additional level of children to the
leaf node v in Γ = (V,E). That is, V ′ = V ∪ {wj}j∈Z` and E ⊆ E′ ⊆ E ∪ {(v, wj)}j∈`,
where ` = `i for some i ∈ [n].

• The labeling of internal nodes as per Tree′ is consistent with Tree: ∀u ∈ {u ∈ V :
IsLeaf(u) = 0}, var(u) = var′(u). Further var(v) = i ∈ [n] for the `i as above.

3.3.2 Constructing FSS for Decision Trees

Note that FSS for decision trees could be attained directly from a linear combination of separate
DPFs: for each leaf node, simply include an additional corresponding DPF. However, this
approach results in key size and evaluation time comparable to

∑
v∈V depth(v) instead of |V |,

corresponding to an overhead of the average depth. Instead, we show how to “reuse the shared
backbone” of the tree. In particular, our DPF constructions have the property that a DPF key
contains within it explicitly DPF keys for each of its prefixes. Our construction thus directly
applies the tensoring approach to “append” each node onto the backbone structure, one by one.

More specifically, our construction is recursive on the tree graph topology, starting with
the root and iteratively appending children. In each step, we begin with an FSS scheme
(GenTree,EvalTree) for the class of decision trees

{Π = (n, (1`i)i∈[n],G = {0, 1}λ+1,Tree,Decisions)}Decisions

for a given n, (1`i)i∈[n] and with structure as specified by some fixed value of Tree (dictating
tree topology and variable node labeling), but varying over all possible choices of the secret
values Decisions. Further, the FSS evaluation decomposes into the following special structure:
EvalTree(b, x) is computed as a sum of separate contributions for each leaf node v,

EvalTree(b, x) =
∑

v:IsLeaf(v)

EvalTreev (b, x),

(with addition in G), for which EvalTreev (b, x) = 0 for all v except (at most) one, such that x
leads to node v in the labeled tree. We will refer to this as a leaf-decomposable FSS for decision
trees. Note that this structure can be trivially achieved for the base case of a single-node tree
by directly secret sharing the single-output truth table.

Given such a leaf-decomposable FSS (GenTree,EvalTree), we will extend to an FSS for the
analogous class of functions on a “v-extension” graph Tree′ of Tree, i.e. adding an additional
level of children to a leaf node v ∈ Tree, as in Definition 3.16. Note for every leaf v′ 6= v in the
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original Tree, the v′-function EvalTree
′

v′ = EvalTreev′ will remain unchanged. The task is to convert

EvalTreev for the special leaf v′ (now an internal node) into a collection of new functions EvalTree
′

w ,
one for each newly introduced leaf w. Let i = var(v) be the input variable index that v is labeled
with in Decisions′, let ` be the corresponding specified domain size, and let w1, . . . , w` be the

new children nodes of v in Tree′. Note that we must specify ` new functions EvalTree
′

w , where
each is of the form [x ∈ input(v)] · [xi = D′(v, w)] · output′(w): that is, if the input x agrees with
the path down to v, and further down to leaf w, then output the value output′(w) specified by

Decisions′; otherwise output 0. Collectively, all ` of the EvalTree
′

w functions can be described by

[x ∈ input(v)] ·
(

[xi = D′(v, w1)] · output′(w1)

∣∣∣∣∣∣∣∣ · · · ∣∣∣∣∣∣∣∣[xi = D′(v, w`)] · output′(w`)
)
,

where [x ∈ input(v)] and [xi = val] denote predicates on x and xi, respectively. This overall
expression can be viewed as a special form of tensor product, as in the sense of Section 3.1.

Recall the tensor approach of Section 3.1 combines a DPF together with an FSS for an
arbitrary function class G, yielding FSS for a tensor product of the two function classes. In
our setting, the function EvalTreev will serve as the DPF (indeed, it evaluates to 0 everywhere
except a single specific path in the tree). The second function class G will be chosen to encode
the concatenated functions in the parentheses above, corresponding to the newly added set of
leaves w1, . . . , w`. Namely, each function [xi = D′(v, w)] · output′(w) admits a simple FSS,
corresponding to a secret shared truth table for all ` possible values of the input xi. The size
of each such truth table is (`)(log |G|), as there are ` inputs and each output is an element of
G. Collectively, an FSS of the concatenated functions [xi = D′(v, w1)] · output′(w1)|| · · · ||[xi =
D′(v, w`)] · output′(w`), which forms the second function class G, has size (`)2(log |G|), since
there are ` concatenated copies.

A description of the resulting FSS scheme (GenDT,EvalDT) is given in Figure 6. For simplicity,
in the figure we describe the case where the output group G is {0, 1}λ+1, i.e., where a final G
correction stage is not needed.

Iteratively performing the above-described appending procedure results in the following main
theorem.

Theorem 3.17 (FSS for Decision Trees). Fix `max ∈ N. There exists a polynomial p such

that given a (T, ε)-secure pseudorandom generator G : {0, 1}λ → {0, 1}(λ+1)`2max , there exists a
(T ′, ε′)-secure FSS for the class of decision trees

{Πtree = (n, (1`i)i∈[n],G = {0, 1}λ+1,Tree,Decisions)}n,(`i≤`max)i∈[n],Tree,Decisions,

with leakage function Leak(Πtree) = (n, (1`i)i∈[n],G,Tree), for T ′ = T + p(n) and ε′ = |V | · εPRG,
with key size

λ+
∑

v∈V :¬IsLeaf(v)

(λ+ 1)`vdeg(v) +
∑

v∈V :IsLeaf(v)

log |G|,

whose evaluation on an input x requires |V | − |{v ∈ V : IsLeaf(v)}| calls to G.

For instance, for the special case of binary decision trees ` = 2 with output G = {0, 1}λ, the
corresponding key size is bounded by 2|V |(λ+ 1) bits.

Proof. We prove by induction on the tree structure, growing up via v-extensions. Namely, the
proof of Theorem 3.17 follows directly from the following two sub-claims.

Claim 3.18 (Base Case). There exists a (T, 0)-secure FSS scheme (for any T ) for the trivial
class of decision trees whose topology consists of a single root node (which is also a leaf node) v:{

Πtree = (n, (1`i)i∈[n],G,Tree,Decisions)
∣∣Γ = (V = {v}, E = ∅)

}
n,(`i≤`max)i∈[n],Decisions

,

with leakage function Leak(Πtree) = (n, (1`i)i∈[n],G,Tree), and with key size log |G| bits.
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Proof. Follows from the trivial FSS scheme. The size of the truth table of any program Πtree as
above is precisely log |G| bits: namely, the description of one group element. (Note that this is
precisely the class of constant functions.)

Claim 3.19 (Recursive Step). Let Tree′ = (Γ′, var′) be a v-extension of Tree = (Γ, var) for some
leaf node v ∈ Γ. There exists a polynomial p such that the following holds. If there exist

• (T, εPRG)-secure pseudorandom generator G : {0, 1}λ → {0, 1}(λ+1)`2max ,

• (T, εFSS)-secure FSS for class of decision trees with structure Tree{
ΠTree = (n, (1`i)i∈[n],G = {0, 1}λ+1,Tree,Decisions)

}
n,(`i≤`max)i∈[n],Decisions

,

for the fixed tree structure Tree, with leakage function Leak(ΠTree) = (n, (1`i)i∈[n],G,Tree),
and with key size s(λ, n, (`i)i∈[n]), requiring t(n) PRG calls for evaluation,

then there exists a (T ′, ε′)-secure FSS for the class of decision trees with topology Tree′:{
ΠTree′ = (n, (1`i)i∈[n],G = {0, 1}λ+1,Tree′,Decisions)

}
n,(`i≤`max)i∈[n],Decisions

,

with leakage function Leak(ΠTree′) = (n, (1`i)i∈[n],G,Tree′) for T ′ = T+p(n) and ε′ = εPRG+εFSS,
with key size s(λ, n, (`i)i∈[n]) + `v log |G|, requiring t(n) + 1 PRG calls for evaluation.

Proof. Follows by the correctness and security analyses of the tensor operation (Section 3.1).

This concludes the proof of Theorem 3.17.

3.3.3 Constant-Dimension Intervals

A sample application of our FSS construction for decision trees is for constant d-dimensional
interval queries: that is, functions f(x1, . . . , xd) which evaluate to a selected nonzero value
precisely when ai ≤ xi ≤ bi for some secret interval ranges (ai, bi)i∈[d]. (See, e.g., [37] for
supporting a similar functionality in the context of searching on encrypted data.) For n-bit
inputs of length ` we achieve FSS for d-dimensional intervals with key size and computation
time O(nd). For small values of d, such as d = 2 for supporting a conjunction of intervals, this
yields solutions with reasonably good concrete efficiency.

Corollary 3.20. For d ∈ N there exists FSS for the class of d-dimensional intervals (ai, bi)i∈[d]

with key size O(λ · nd).

The construction can be achieved as follows. First, we reduce from general d-dimensional
intervals to the problem of 2d “special” intervals, whose left-boundary ai is equal to 0. This
can be done by means of a linear combination of special intervals via inclusion-exclusion (and
recalling that FSS schemes combine linearly [8]).

To illustrate the construction of FSS for these special d-dimensional intervals, consider the
case of d = 1 and 2. Observe that a 1-dimensional special interval for n-bit inputs can be
expressed directly as a decision list; that is, a decision tree with one long length-n path u1, . . . , un
with edges (ui, ui+1), and single terminal edges with appropriate 0/1 output labels departing
from each node along the path. (Namely, a generalization of the OR function construction
discussed earlier).

To extend to 2 dimensions, the 0/1 terminal edges from nodes ui are each replaced by a
length-n decision list (as above), this time labeled by the corresponding bits of the second
input y. Departing from the primary path corresponds to either falling outside the x-dimension
interval (in which case the final leaf will be labeled 0) or within it, in which case the leaf will
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FSS For Decision Trees (GenDT,EvalDT) for bounded `max

Let G : {0, 1}λ → {0, 1}(λ+1)`2max be pseudorandom generator.
Let Convert : {0, 1}λ → G be a map converting a random λ-bit string to a pseudorandom group
element of G (see Figure 3).

GenDT(1λ, (n, (1`i)i∈[n],G = {0, 1}λ+1, (Γ = (V,E), var), (D, output))):

1: while ∃v ∈ V st (v 6= root(Γ)) ∧ ∀w ∈ siblings(v) (IsLeaf(w)) do
2: u← parent(v)
3: V ′ ← V \ siblings(v), E′ ← E \ {(u,w) : w ∈ siblings(v)}
4: Let var′, D′ be restrictions of var, D to Γ′ = (V ′, E′)
5: For v 6= w ∈ V ′, let output′(w)← output(w)
6: Sample random s← {0, 1}λ. Set output′(v)← [s||1] ∈ {0, 1}λ+1

7: Generate FSS key (σ
(u)
0 , σ

(u)
1 )← GenDT(1λ, (n, (1`i)i∈[n],G, (Γ′, var′), (D′, output′)))

8: Let x← input(u) be an input leading to node v in the tree
9: Compute sb||tb ← EvalDT(b, σb, x) for b ∈ {0, 1} // Corresponds to EvalDT

u

10: Let i = var(u), `u the corresponding domain size, and siblings(v) = {w1, . . . , wdeg(u)}
11: For each w ∈ siblings(v), denote by fw(xi) := [xi = D(v, w)] · output(w)
12: Let cw(u) ← TruthTable(fw1 ||fw2 || · · · ||fwdeg(u)

) ∈ {0, 1}(λ+1)`udeg(u)

13: Let CW (u) ← (−1)t1 [cw(v) − G(s0) + G(s1)], with addition in {0, 1}(λ+1)`udeg(u) (ignoring
extra output bits of G if `udeg(u) < `2max).

14: end while
15: Let kb ← σ

(root(Γ))
b ,Γ, var, (CW (v))v∈V

16: return (k0, k1)

EvalDT(b, kb, x):

1: Parse kb = σ
(root(Γ))
b ,Γ, var, (CW (v))v∈V . (We will reference Γ, var, and (CW (v))v∈V globally)

2: Parse σ
(root(Γ))
b = s

(root(Γ))
b ||t(root(Γ))

b

3: return EvalNode(root(Γ), s
(root(Γ))
b , t

(root(Γ))
b , CW (root(Γ)))

EvalNode(v, s(v), t(v), CW (v)):

1: Let τ (v) ← G(s(v))⊕ (t(v) ∧ CW (v))
2: Parse τ (v) = (σ(w1)||σ(w2)|| · · · ||σ(wdeg(v))). (σ(w) is a secret share of TruthTable(fw), as above)
3: Let i = var(v)
4: for w ∈ children(v) do
5: if IsLeaf(w) then
6: FnOutput(w) ← σ(w)(xi) // i.e., secret share of fw(xi) as given by σ(w). This is EvalDT

w .
7: else
8: let s(w)||t(w) ← σ(w)(xi).
9: FnOutput(w) ← EvalNode(w, s(w), t(w), CW (w))

10: end if
11: end for
12: return

∑
w∈children(v) FnOutput

(w) ∈ G

Figure 6: Pseudocode for FSS (GenDT,EvalDT) for Decision Trees. GenDT generates the key iter-
atively, peeling off one set of siblings at a time. EvalDT recursively calls the EvalNode subroutine,
from the root down.
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be labeled based on the 1-dimensional y interval. A similar approach can be taken to extend to
general d dimensions, for constant d.

We remark that revealing the topology and node labels of the utilized d-dimension decision
tree (as is the case in our FSS for decision trees construction) does not adversely affect security,
since this structure is identical across any choice of secret interval boundaries. Rather, the only
thing that differs in the construction is the choice of edge and leaf node labels, which is precisely
what is hidden by our FSS construction.

3.4 A Product Operator for FSS

In this section we present a simple technique for increasing the expressive power of FSS by
increasing the number of parties. We consider here function families F for which the output
domain of each f ∈ F is equipped with a ring structure Rf . For two functions f1, f2 with the
same input domain Df1 = Df2 and output ring Rf1 = Rf2 , we naturally define the product
f = f1 · f2 by f(x) = f1(x)f2(x).

Definition 3.21 (Product of function families). Let F1,F2 be function families. Define

F1 · F2 = {f1 · f2 : f1 ∈ F1, f2 ∈ F2, Df1 = Df2 , Rf1 = Rf2}

The product operator can be used for expressing function classes that capture conjunctions.
For instance, if the input x is partitioned into (x1, x2) and F1,F2 are the classes of interval
functions applied to x1 and x2 respectively, the class F1 · F2 is the class of all two-dimensional
intervals. Compared with the solution based on decision trees, we will get better efficiency
(linear in the bit-length of the input instead of quadratic) at the cost of using a larger number
of parties.

We now describe the implementation of the FSS product operator, using (m, t)-FSS as an
abbreviation for an m-party t-secure FSS scheme.

Theorem 3.22. Let (Gen1,Eval1) be an (m1, t)-FSS for F1 and (Gen2,Eval2) be an (m2, t)-FSS
for F2. Then there exists an (m1m2, t)-FSS (Gen,Eval) for F = F1 · F2 in which the size of the
key produced by Gen on f1 · f2 is the sum of the key sizes of Gen1 on f1 and Gen2 on f2.

Proof. We label the m1m2 parties by pairs in [m1]× [m2] and define (Gen,Eval) as follows.

• Gen(1λ, f1 · f2) lets (k1
1, . . . , k

1
m1

) ← Gen1(1λ, f1) and (k2
1, . . . , k

2
m2

) ← Gen2(1λ, f2). It
outputs the keys ki1,i2 = (k1

i1
, k2
i2

) for (i1, i2) ∈ [m1]× [m2].

• Eval((i1, i2), ki1,i2 , x) outputs Eval1(i1, ki1 , x) · Eval2(i2, ki2 , x).

Correctness follows from the fact that
(∑

i1
fi1
)
·
(∑

i2
fi2
)

=
∑
i1,i2

fi1 · fi2 . The t-secrecy
property follows from the t-secrecy of Gen1 and Gen2, noting that every set of t party indices
(i1, i2) covers at most t distinct i1 indices and t distinct i2 indices.

As a corollary, one can compose a 2-party FSS scheme for F with itself d ≥ 2 times, obtaining
a (2d, 1)-FSS for Fd with comparable per-party efficiency. Combining with a simple closure
under addition [8], one can similarly obtain a (2d, 1)-FSS for the class of degree-d multivariate
polynomials in functions of F .

Finally, we show how to reduce the number of parties required by the product operator by
lowering the security threshold. We focus here on the simplest special case, where the given
FSS schemes have a full security threshold and the same number of parties.

Theorem 3.23. Let (Geni,Evali) be an (m,m− 1)-FSS for Fi, for 1 ≤ i ≤ m− 1. Then, there

exists an (m, 1)-FSS (Gen,Eval) for F =
∏m−1
i=1 Fi in which the size of the key produced by Gen

on f1 · f2 · · · fm−1 is m− 1 times the total key sizes of Geni on fi.
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Proof. We define (Gen,Eval) as follows.

• Gen(1λ, f1 · f2 · · · fm−1) lets (ki1, . . . , k
i
m)← Geni(1

λ, fi), for 1 ≤ i ≤ m− 1. It outputs the
keys ki = (kij)j 6=i.

• Eval(i, (kij)j 6=i, x) is defined by assigning each monomial of the form
∏m−1
j=1 fj,ij to the first

party i such that i 6∈ {i1, . . . , im−1} (such i exists because there are m parties and only
m− 1 indices ij). Eval outputs the sum of the products of all monomials assigned to it on

the input x, where fj,ij (x) = Eval(ij , k
ij
j , x).

Correctness again follows by expressing a product of m− 1 sums as a sum of monomials, noting
that each monomial is added to exactly one output of Eval. The 1-secrecy property follows
from the fact that each party gets m − 1 out of the m keys produced by each Geni and the
(m− 1)-security of Geni.

As a concrete instance, using a 3-party PRG-based DPF construction from [8] (which achieves
a quadratic improvement over a naive solution), one can get a nontrivial PRG-based (3, 1)-FSS
that supports private searches involving a conjunction of two keywords or ranges.

4 Verifiable FSS: Handling Malicious Clients

As discussed in the Introduction, FSS schemes are motivated by two types of applications: ones
that involve privately reading from a database stored at two or more servers, and ones that
involve privately writing into a secret-shared array. In both types of applications, badly formed
FSS keys can enable a malicious client to gain an unfair advantage.

Consider, for example, an application of DPF for maintaining a secret data histogram, say
for the purpose of website traffic analytics. The histogram count of each bin x ∈ [N ] is additively
secret-shared between two servers over a large group G = Zp. A valid “increment α” query for
a (hidden) bin α should correspond to secret shares of the point function fα,1 that evaluates to
1 at α and 0 at all other points. However, since each server sees only one share of the function
(to hide the identity of α), neither server on its own has a way of verifying that the given shares
really do encode such a “proper” point function. A malicious client may just as easily encode a
function that increments item α by 100, effectively casting a “heavy” vote. Even worse, it may
encode a “garbage” function f∗ that increments every bin by some random amount—effectively
erasing all the prior existing counts. We seek efficient procedures for the servers to verify the
validity of the function shared by the client before it is being processed, by using a small amount
of server-to-server communication.

4.1 Modeling Verifiable FSS

We consider an FSS scheme where the m keys are generated by a potentially malicious client,
but are processed by semi-honest servers, to which we will also refer as parties. That is, the
parties honestly follow the prescribed protocol, but try to infer as much information as possible
about an honest client’s secret function f from their view. We allow the parties to communicate
over secure point-to-point channels, but try to minimize the communication to the extent pos-
sible. (Some form of communication between the parties is clearly necessary for verifying the
consistency of the keys.) Finally, we make the simplifying assumption that parties can generate
a common source of randomness which is unpredictable to the clients, and do not count this
randomness towards the communication. In practice, this common source of randomness can
be realized by having one of the parties pick a random PRF key and communicate it to all
other parties. The same PRF key can be used to verify many FSS instances, as long as it is
independent of the FSS keys.
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We are interested in verification protocols that minimize communication between parties,
do not involve the client beyond the initial key distribution, and do not involve any additional
parties. In contrast, a previous verification protocol from [15], which applies to a specific DPF
scheme, involves an additional party, and has a relatively high asymptotic communication com-
plexity (roughly the square root of the domain size).

We would like our verification protocols to only make a black-box use of the underlying FSS
scheme. Combined with our concrete FSS schemes, this implies that the protocols make a black-
box use of a PRG. The latter requirement (which is also satisfied by the verification protocol
from [15]) is meant to rule out protocols that involve a generic use of secure computation for
verifying that the keys form a valid output of Gen. To the end of realizing such a black-box
verification, we are willing to slightly relax the goal by settling for the validity of the keys with
respect to a given set of inputs. That is, the verification protocol is given a subset D′ of the input
domain D = zon as an additional input. The set D′ represents the set of inputs on which the
function f will actually be evaluated, and hence may not be known to the client. The distinction
between D and D′ is motivated by applications such as secure keyword search or range queries,
where D′ is typically a tiny subset of D. It is also motivated by “writing” applications where
only a strict subset of the input space is being updated. This is the case, for example, for the
web usage statistics example described in the Introduction. However, in other applications of
FSS, including PIR, private updates (see Appendix A) and distributed histograms, it is typically
the case that D′ = D.

We allow the running time of the verification protocol, but not its communication complexity,
to grow with the size of D′. In fact, all verification protocols we present invoke Eval on every
x ∈ D′. This is typically not an efficiency bottleneck, since these evaluations are anyway
necessary for the application. We expect our solutions to beat the concrete efficiency of applying
practical general-purpose MPC protocols to the function defined by Gen except, perhaps, when
D′ is very large.

The verification protocol should have the following soundness property: If the verification
protocol is successful, then the parties are essentially convinced that the function f∗ effectively
shared by the client is consistent with some f ∈ F on the domain D′. Of course, the verification
protocol should not reveal to the parties any information about the function f∗ beyond its
validity.

We formalize the above requirements below. For simplicity we do not explicitly treat general
leakage, since we will present verification protocols for FSS with standard leakage, namely where
only the input length n and output group G are leaked. However, the definitions extend in a
straightforward way to the general case.

Definition 4.1 (Verifiable FSS). Let F be a class of functions. An (m, t)-verifiable FSS (VFSS)
for F is a triplet of algorithms (Gen,Eval,Ver) such that (Gen,Eval) is an FSS scheme for F as
in Definition 2.2, and there exists a negligible function negl for which the following additional
requirements hold.

• Syntax of Ver: Ver is an m-party interactive protocol. In the beginning of the protocol,
each party i has a local input ki (presumably an output of Gen). In addition, all parties
share the following common inputs: a security parameter 1λ, an input length 1n describing
an input domain D = {0, 1}n of (an unknown) f ∈ F , output group G for f , and a
subset D′ ⊆ D of relevant evaluation points. An empty D′ is interpreted as D′ = D.
We also assume that the parties have access to a common source of randomness picked
independently of the inputs, and do not count this randomness towards the communication
complexity. In the end of the protocol, each party outputs “Accept” or “Reject.”

• Completeness: If (k1, . . . , km) are valid outputs of Gen(1λ, f) for some f ∈ F with input
domain D = {0, 1}n and output group G, then for all D′ ⊆ D, in the execution of Ver on
local inputs (k1, . . . , km) and common inputs D,D′,G, all parties output “Accept” with
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probability 1.

• Soundness: Consider the following security experiment defined by an efficient non-
uniform adversary A running on input 1λ:

1: A(1λ) outputs an FSS input length n describing the input domainD = {0, 1}n, Abelian
group G, FSS keys (k∗1 , . . . , k

∗
m), and a set D′ ⊆ D (represented by an explicit list of

elements or ∅ to indicate that D′ = D).
2: The protocol Ver is executed on local inputs (k∗1 , . . . , k

∗
m) and common inputs 1λ, D,G, D′.

3: A wins if at least one party outputs “Accept” and moreover there is no function f ∈ F
with input domain D and output domain G for which f∗1 (x) + . . .+ f∗m(x) = f(x) for
all x ∈ D′ (where f∗i (x) := Eval(i, k∗i , x)).

The soundness requirement is that every PPT A can only win the above game with neg-
ligible probability in λ.

• Secrecy: Following the (honest) execution of Ver on keys (k1, . . . , km) generated by
Gen(1λ, f) (with an arbitrary D′ ⊆ D), the joint view of any t parties should not re-
veal anything about f except its input domain D and output group G. This is formalized
as in the secrecy requirement of Definition 2.2, except that the output of Real includes the
entire view of parties in S. When t is unspecified, it is understood to be m− 1.

Selective failure attacks. While allowing D′ to be a strict subset of D is useful, it may
also give rise to security vulnerabilities. First, the above soundness requirement does not rule
out a correlation between the set D′ of relevant evaluation points and the event of rejecting.3

While selective failure attacks can often be problematic, we would like to argue that they are
not a major concern in the context of natural applications of verifiable FSS. First, as discussed
earlier, verifiable FSS is most strongly motivated by “writing” scenarios, where we typically have
D′ = D and the client learns nothing from the event of rejection. Even if we use D′ ⊂ D, in
such scenarios the client does not need to be directly informed that an error has been detected,
and his vote can be silently discarded. In any case, the price of being caught cheating typically
outweighs the advantage of learning one bit of information about D′.

A second type of attack that may apply to the case where D′ ⊂ D is when an invalid function
shared by a malicious client coincides with a valid function when restricted to D′. For instance,
in a verifiable DPF protocol, a malicious client can share a function that has a nonzero output on
many points (say, simultaneously voting for many candidates) in the hope that the function will
have only one nonzero output on the (unknown) subset D′. Both types of attacks are irrelevant
to the case D′ = D, and they can be mitigated by incurring a penalty for being caught cheating.

4.2 Template for Verifiable FSS Protocols

We assume that the output domain G is of the form Z`p, for a prime p and positive integer `,
and view it as the additive group of the finite field Fp` . Our verification protocols typically
achieve soundness error of O(1/|F|) by communicating just a constant number of field elements.
To verify FSS over a small group, such as G = Z2, one can view G as a subgroup of the additive
group of a sufficiently large field, say F = F2λ , and apply a verification scheme for an FSS over
F. (This does not require any changes to Gen or Eval; it suffices to make Ver view each output
of Eval as an element of F.)

The high level idea of our verifiable protocols is the following. Let N = |D′|. Consider
the function family F ′ defined by restricting F to the evaluation points in D′. By locally
applying Eval on the inputs in D′, the parties obtain an additive secret sharing of a (long)

3In fact, such correlations are inherent to any solution that only makes a black-box access of Eval, which includes
all of the efficient solutions we present next. Indeed, there is no way to efficiently distinguish between, say, a random
point function on λ-bit inputs and a function that has a nonzero value on two random inputs.
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vector y ∈ FN consisting of the values (f∗(x))x∈D′ . The parties need to verify that y is valid,
namely it is consistent with F ′, using only a small amount of communication and without
revealing information about y. For instance, in the case of point functions the vector y should
satisfy the requirement that it has at most one nonzero entry.

The verification that y is well-formed is achieved via the following combination of randomized
linear sketching and special-purpose MPC. The parties use their common source of randomness
to pick a linear function L : FN → Fd, where d is a small constant. The function L (also referred
to as a “linear sketch”) is picked from a carefully chosen distribution L that has the following
properties:

1. Given z = L(y), one can decide (with negligible error probability over the choice of L)
whether y is valid, namely it is consistent with F ′;

2. This decision procedure is “MPC friendly” in the sense that there is a very efficient MPC
protocol ΠMPC for verifying that a secret-shared vector z ∈ Fd is of the right form.

Given a distribution L and an MPC protocol ΠMPC as above, the protocol Ver proceeds as
follows. Party i, holding a (long) additive share yi of y, locally compresses yi into zi = L(yi).
Then the parties run ΠMPC for deciding whether to accept y as being consistent with F ′.

To further improve the efficiency of ΠMPC, we let the FSS client distribute between the
parties correlated randomness that is consumed by ΠMPC. This correlated randomness can be
incorporated into the keys produced by Gen and does not require additional interaction with the
client. However, it is critical that the soundness of the verification hold even if this correlated
randomness is distributed by a malicious client. Our solutions for this type of “client-assisted
MPC” problems can be useful beyond the context of verifiable FSS.

To fully instantiate the above template, we need to specify the distribution L from which
L is picked, the verification predicate V applied to z, and the MPC protocol ΠMPC for (client-
assisted) computation of V on the shares of z. See Figure 7 for a formal description of a
verification protocol following this template. In Section 4.3 we will instantiate the sketching
distribution L and in Section 4.4 we will instantiate the MPC protocol ΠMPC.

4.3 Instantiating the Sketching Scheme (L,V)

In this section we propose several efficient instantiations of the sketching scheme (L,V) that
apply to useful function families F and support very efficient MPC protocols for V. All instanti-
ations rely on the standard Schwartz-Zippel (SZ) lemma, which we quote below for convenience.

Lemma 4.2 (Schwartz-Zippel [36, 40]). Let P be a nonzero N -variate polynomial over a field
F with total degree d and let S ⊆ F be a finite set. Then Prr∈SN [P (r) = 0] ≤ d/|S|.

We now separately consider different choices of function families F , starting with restricted
classes of point functions.

DPF fα,β with β ∈ {0, 1} and F of characteristic > 2. This is the most useful
case for applications that involve voting or counting, where each client can increment a single
counter by 1 or “abstain” by using β = 0. Here we use Lsq that picks random field elements
r1, . . . , rN and outputs the matrix L ∈ F2×N defined by L1,j = rj and L2,j = r2

j . That is,
each column of L contains a random field element and the square of this element. (In an actual
implementation, L can be generated using a short PRF key picked by one of the parties and
sent to all others.) The verification predicate Vsq, which will be realized by ΠMPC, checks that
the sketch z = (z1, z2) satisfies the condition Vsq(z1, z2) = z2

1 − z2 = 0.

Claim 4.3. Let F be a finite field of characteristic p > 2. If y ∈ FN is neither a unit vector
nor the all-0 vector, then

Pr
[
L← Lsq(F, N); (z1, z2)← L · y : z2 = z2

1

]
≤ 2/|F|.
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FSS Verification Template Ver(i, k∗i )
Common inputs:

- Security parameter 1λ;

- Input length 1n, of FSS input domain D = {0, 1}n;

- FSS output group G ⊆ F, where F is a finite field and |F| ≥ 2λ;
// Here λ can be taken to be a statistical security parameter.

- Subset D′ ⊆ D of size N . An empty D′ is interpreted as D′ = D;
// Running time is linear in N .

Given algorithms:

- FSS evaluation algorithm Eval;

- Matrix sampler L(F, N), outputting a matrix L ∈ Fd×N (for some constant d ≥ 1);

- Verification predicate V : Fd → Fd′ ;
- Client-assisted MPC protocol ΠMPC for V.

1: Picking matrix: Let L← L(F, N) using common randomness;
// Same L is used by all parties; L can be reused as long as it is independent of all k∗i .

2: Applying Eval: yi ← (Eval(i, k∗i , x))x∈D′ ; // yi ∈ FN
3: Local compression: Let zi ← L · yi; // zi ∈ Fd
4: Interactive verification: Run ΠMPC on input zi, possibly using k∗i as a source of correlated

randomness, to evaluate V(z). Accept if the output of ΠMPC is the all-0 vector, otherwise reject.

Figure 7: Template for FSS verification protocol.

Proof. Let y = (y1, . . . , yN ). The condition z2
1 − z2 = 0 can be written as N∑

j=1

yjrj

2

−
N∑
j=1

yjr
2
j =

N∑
j=1

(y2
j − yj)r2

j +
∑

1≤j<k≤N

(2yjyk) · rjrk = 0

We view the above expression as a degree-2 polynomial in r1, . . . , rN whose coefficients are
determined by y. Now, suppose y does not satisfy the assumption. Then either it has two
nonzero entries yj , yk, in which case the coefficient 2yjyk of the monomial rjrk is nonzero (here
we use the fact that p > 2) or y has an entry j such that yj 6∈ {0, 1}, in which case the coefficient
y2
j − yj of the monomial r2

j is nonzero. The conclusion now follows from the SZ lemma.

DPF fα,β with β ∈ {0, 1} and general F. We can eliminate the restriction on F by using
a sketch of d = 3 field elements: Lprod picks L ∈ F3×N as a random matrix whose third row is the
product of the first two. That is, L1,j = rj , L2,j = sj , and L3j = rjsj where the rj and sj are
random and independent field elements. The verification predicate is Vprod(z1, z2, z3) = z1z2−z3.
The proof of the following claim is very similar to that of Claim 4.3 and is thus omitted.

Claim 4.4. Let F be any finite field. Suppose y ∈ FN is neither a unit vector nor the all-0
vector. Then

Pr [L← Lprod(F, N); (z1, z2, z3)← L · y : z3 = z1z2] ≤ 2/|F|.

DPF fα,β with β ∈ {1,−1} and general F. Our next sketching procedure applies to
general fields and, like the first procedure, only requires a sketch of d = 2 field elements. An
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additional difference is that the set of possible β values is {1,−1} instead of {0, 1}. In the case
of fields of characteristic 2, this is equivalent to requiring that β = 1. Over other fields, one can
either view the extra possibility as a feature, e.g., for votes that involve “liking” or “disliking” a
candidate, or enforce the requirement that β = 1 as described below. Here we use Linv that picks
random nonzero field elements r1, . . . , rN and define L ∈ F2×N by L1,j = rj and L2,j = r−1

j .
That is, each column of L contains a random field element and its inverse. The verification
predicate is Vinv(z1, z2) = z1z2 − 1 = 0. While generating L using Linv is computationally more
expensive than Lsq, its cost can be amortized since the same L can be used to verify many DPF
keys.

Claim 4.5. Let F be any finite field. If y ∈ FN is neither a unit vector nor the negation of a
unit vector, then

Pr [L← Linv(F, N); (z1, z2)← L · y : z1z2 = 1] ≤ N/(|F| − 1).

Proof. The condition z1z2 = 1 can be written as N∑
j=1

yjrj

 ·
 N∑
j=1

yjr
−1
j

 = 1. (1)

Let R = ΠN
j=1rj and Rj,k = R · rj/rk (we view R and Rj,k as distinct formal monomials in

r1, . . . , rN ). Multiplying both sides of Eq. (1) by R and grouping monomials we get: N∑
j=1

y2
j − 1

 ·R+
∑

1≤j 6=k≤N

(yjyk) ·Rj,k = 0.

Now, suppose y satisfies the assumption and consider the following two cases. If y has at least
two nonzero entries j, k, then yjyk 6= 0, in which case the monomial Rj,k has nonzero coefficient.
If y has exactly one nonzero entry and this entry different from 1,−1, or alternatively if y is
the all-0 vector, then the coefficient of the monomial R is nonzero. The conclusion again follows
from the SZ lemma.

DPF fα,β with β = 1. The above sketching schemes allow β to take two possible values,
except for the scheme for β ∈ {1,−1} over fields of characteristic 2. For general fields, if we
want to ensure that β = 1, it suffices to additionally check that the sum of all entries in y is
equal to 1. Using our linear sketching framework, this can be done in both cases by adding to
L an additional all-1 row and extending the verification predicate V. For instance, for d = 2,
we extend V(z1, z2) into V ′(z1, z2, z3) = (V(z1, z2), z3 − 1).

A more direct approach is to use the following variant L′sq of Lsq. The matrix L ∈ F2×N is
defined by L1,j = rj and L2,j = (rj + 1)2. The verification predicate V ′sq checks that the sketch
z = (z1, z2) satisfies the condition V ′sq(z1, z2) = (z1 + 1)2 − z2 = 0.

Claim 4.6. Let F be a finite field of characteristic p > 2. If y ∈ FN is not a unit vector, then

Pr
[
L← L′sq(F, N); (z1, z2)← L · y : z2 = (z1 + 1)2

]
≤ 2/|F|.

Proof. Let y = (y1, . . . , yN ). The condition (z1 + 1)2 − z2 = 0 can be written as N∑
j=1

yjrj + 1

2

−
N∑
j=1

yj(rj + 1)2 =
N∑
j=1

(y2
j − yj)r2

j +
∑

1≤j<k≤N

(2yjyk) · rjrk −
N∑
j=1

yj + 1 = 0
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We view the above expression as a degree-2 polynomial in r1, . . . , rN whose coefficients are
determined by y. Now, suppose y does not satisfy the assumption. Then either (1) it has two
nonzero entries yj , yk, in which case the coefficient 2yjyk of the monomial rjrk is nonzero (here
we use the fact that p > 2), or (2) y has an entry j such that yj 6∈ {0, 1}, in which case the
coefficient y2

j − yj of the monomial r2
j is nonzero, or (3) y is the all-0 vector, in which case the

free coefficient is nonzero. The conclusion now follows from the SZ lemma.

Remark 4.7 (On the case D′ ⊂ D.). Note that the later two sketching schemes (namely, all
those that do not allow β = 0) are only useful when D′ = D. When D′ is a strict subset of
D, the verifiable FSS scheme obtained from these sketching schemes would fail to be complete
when α 6∈ D′, because in this case y is the all-0 vector which should be rejected.

DPF fα,β with unrestricted β ∈ F. The above sketching schemes natively support
useful restrictions of β, namely either β ∈ {0, 1}, β ∈ {1,−1}, or β = 1. However, in some
applications, such as “writing” applications in which a client is free to overwrite the entire
contents of a single entry of an array, it is useful to support a DPF fα,β where β can be an
arbitrary field element. To this end, we augment the general template in Figure 7 by allowing the
verification predicate V to be non-deterministic. That is, V may depend on an additional input
w ∈ F that is secret-shared by the client as part of Gen. Such a non-deterministic verification
procedure should satisfy the following requirements. First, given an honestly generated w, the
verification should succeed. Second, even a maliciously generated w should not increase the
probability of accepting an invalid y.

To verify an arbitrary point function fα,β , we augment the previous verification predicates
as follows:

• V ′sq(z1, z2, w) = z2
1 − z2w, where an honest client uses w = β.

• V ′prod(z1, z2, z3, w) = z1z2 − z3w, where an honest client uses w = β.

• V ′inv(z1, z2, w) = z1z2 − w, where an honest client uses w = β2.

Completeness is easy to verify. To argue soundness, one can modify the previous case analysis
to show that for any y with at least two nozero entries and for any fixed w ∈ F, the polynomial
V ′ still contains a monomial with a nonzero coefficient.

DPF fα,β with unrestricted β ∈ Fd. It is sometimes useful to verify a DPF whose range
is of the form Fd (namely, the additive group of length-d vectors over F). This easily reduces to
the previous case by viewing Fd as the additive group of the degree-d extension of F. However,
this reduction is computationally inefficient because due to the cost of multiplications in a big
field. Instead, one can use the following more efficient alternative. Viewing all outputs as a
d × N matrix, the goal is to verify that the matrix has at most one nonzero row. A natural
approach is to take a random linear combination of the rows and checks that the resulting vector
has at most one nonzero entry. But checking the latter using the procedure described above
requires the client to secret-share the value of the nonzero entry, which is not known a-priori
(since it depends on the linear combination).

One way around the problem is to reveal the linear combination to the client and then
have the client secret-share the nonzero value resulting from this linear combination. But this
adds more interaction that we would ideally like to avoid. A non-interactive alternative is the
following:

1. Check that every row has Hamming weight at most 1. This can be done by applying the
previous verification procedure (DPF fα,β with unrestricted β ∈ F) to each row (here one
can use the help of the client because the nonzero value is known to the client).

2. Check that the sum of every two consecutive rows has Hamming weight at most 1. This is
done by applying the previous procedure to the sum of every two consecutive rows. The
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above two conditions are not sufficient, since a malicious client can use all-zero rows to
violate soundness. This possibility is eliminated by the following condition.

3. Check that no row is an all-zero row. The latter can be done (for each row separately) by
having the servers reveal the sum of all entries, and further multiplied by a random field
element picked by the servers, multiplied by a secret random field element shared by the
client (where the latter product is computed using the client-assisted MPC protocol from
Section 4.4.1). The first multiplication is needed to ensure that a malicious client cannot
change a nonzero value to 0 (since the protocol from Section 4.4.1 allows a malicious client
to add a fixed value to the output). The second multiplication is needed to prevent the
servers from learning the nonzero value.

FSS for intervals. Denote by f[a,b] the interval function that evaluates to 1 on all x ∈ [a, b]
(where x is interpreted as an integer in [0, 2n − 1]) and evaluates to 0 on all other inputs. We
handle general intervals via a reduction to the class of special intervals of the form f[0,b]. In this
case, a valid y is of the form (1, 1, . . . , 1, 0, 0, . . . , 0). A sketching for special intervals can in turn
be reduced to a sketching for the family of point functions fα,β with β ∈ {0, 1} in the following
way. Let (L,V) be any sketching scheme for this family (e.g., (Lsq,Vsq) or (Lprod,Vprod) will do).
The sketching scheme for special intervals is (L′,V), where L′ is defined as follows:

• Sample L← L(F, N);

• Return L′ defined by L′1 = L1 and L′j = Lj − Lj−1 for 2 ≤ j ≤ N , where Lj is the jth
column of L and L′ is the matrix with columns L′j .

Let B be the set of N + 1 vectors of the form (1, . . . , 1, 0, . . . , 0). Completeness follows by
observing that L′y = L′(y− y′) where y′ is obtained from y by shifting it one entry to the left
and adding 0 on the right. If y ∈ B, then y − y′ is either a unit vector or the all-0 vector, as
required.

For soundness we argue that for any y 6∈ B, the probability that V(L′(y)) = 0 is bounded
by the soundness error of (L,V). This follows from the fact that every linear combination of the
columns of L can be uniquely described as a linear combination of the columns of L′. Hence,
every nontrivial linear combination of L′ whose coefficient vector is not in B is a nontrivial linear
combination of the columns of L whose coefficient vector is not a unit vector. The soundness
bound of (L,V) applies to this case.

Finally, to share a general interval f[a,b], the client generates keys for f[0,a−1] and f[0,b].
Once both keys are verified, the parties can use them to evaluate f[a,b] = f[0,b] − f[0,a−1]. Since
a malicious client can pick a, b such that a > b, this verification actually applies to an extended
function family F that also includes negative intervals of the form −f[a,b]. However, in the
context of applications that involve reading, which serve as the main motivation for FSS for
intervals, sharing a negative interval does not give the client any advantage.

When D′ = D, negative intervals can be eliminated by requiring the client to share between
the servers each bit in the binary representation of the interval length. Assuming that this
representation is d-bit long and the field characteristic is bigger than 2d + N , the sum of the
entries in a negative interval cannot coincide with a k-bit integer, even when summation is done
in F. Checking that the field elements shared by the client are indeed in {0, 1} and comparing
the integer represented by these bits to the sum of the entries in y can be done efficiently
(communicating only a constant number of field elements per party) using the previous sketching
techniques.

4.4 Instantiating the MPC Protocol ΠMPC

The previous sketching schemes reduce the verification that a long vector y is “well formed”
(i.e., belongs to some set B ⊆ FN defined by F and D′), to computing a simple, low-degree
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predicate V on a short vector z given an additive sharing z1, . . . , zm of z.
Given the simple nature of the predicates V we use, the parties could compute V on their

own. For instance, if there is an honest majority of parties (t < m/2) they could use a “BGW-
style” protocol [4], or if there is no honest majority they could use a “GMW-style” protocol [26]
or an arithmetic variant of this protocol [23, 30]. However, in the latter case, and in particular in
the 2-party case, such protocols make use of public-key cryptography and involve a considerable
computation and communication overhead. While this overhead can be amortized to some
extent over multiple instances (e.g., using OT extension techniques [2, 28]), we can obtain
better asymptotic and concrete efficiency by using the help of correlated randomness provided
by the client as part of its key generation.

We present two different MPC techniques that apply to different scenarios. The first applies
to the basic scenario of verifying predicates V for the simple sketching schemes described above.
It relies on Beaver’s circuit randomization technique [1] and its soundness exploits the fact that
if y is invalid, then the output of V is not only nonzero with high probability but it also has
a lot of entropy that cannot be eliminated even if the client provides badly formed correlated
randomness. The second technique is based on so-called linear PCPs and applies to a more
specialized verification scenario in which such entropy is not present.

4.4.1 MPC using shared products

Originating from Beaver’s circuit randomization technique [1], a common technique for speed-
ing up MPC protocols is by employing correlated randomness provided by a trusted dealer.
Alternatively, the correlated randomness can be securely generated using input-independent
preprocessing. In the case of semi-honest parties, Beaver’s technique is very efficient: it re-
quires the dealer to send 3 field elements to each party for each multiplication gate, and requires
each party to communicate to all other parties just a single field element for every input or
multiplication gate.

Naturally, when the dealer is malicious, the security guarantees of the protocol break down.
(The goal of protecting such protocols against a malicious dealer is orthogonal to the goal of
protecting them against malicious parties; see, e.g., [5, 16] for efficient solutions to the latter.)
In [22] it was observed that in natural protocols of this type, the effect of a malicious dealer
corresponds precisely to an additive attack on the circuit computed by the protocol, namely an
attack that can “blindly” add a field element to every internal wire in the arithmetic circuit
computed by the protocol. To protect against this type of attacks, the solution proposed in [22]
is to protect the computation against additive attack by using a special type of fault-tolerant
circuit called “AMD circuit.” While this approach can be used protect against a malicious
dealer with a constant overhead, this constant is quite large and the resulting protocols are
fairly complex.

Our main observation is that for the purposes of securely verifying V, the additive attacks
induced by badly formed correlated randomness are harmless, because the soundness of the
sketching scheme holds even in the presence of such attacks. As noted above, the high level
reason for this is that the attack cannot reduce the entropy of V(z) for a sketch z computed
from a badly formed y.

More concretely, the predicates V defined above only require either one or two multiplications,
where each multiplication of additively shared secrets a and b is implemented using Beaver’s
technique as follows:

• Inputs: Additive shares [a] = ([a]1, . . . , [a]m) and [b] = ([b]1, . . . , [b]m) of secrets a, b ∈ F.

• Outputs: Additive shares [c] = ([c]1, . . . , [c]m) of c = ab.

• Correlated randomness: Random additive shares [a′], [b′] of random and independent
secrets a′, b′ ∈ F, and random additive shares [c′] of c′ = a′b′.
// This correlated randomness is included in the keys output by Gen.
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• Communication: Party i locally computes [∆a]i = [a]i − [a′]i and [∆b]i = [b]i − [b′]i and
sends [∆a]i and [∆b]i to all other parties.

• Computing output: Party i computes ∆a =
∑m
j=1[∆a]j and ∆b =

∑m
j=1[∆b]j , and

outputs [c]i = ∆b[a]i + ∆a[b]i + [c′]i −∆a∆b.

To evaluate V on the shared sketch [z], we use the above procedure for evaluating each mul-
tiplication,4 where additions are implemented non-interactively, and the output is reconstructed
by simply exchanging shares of the output.

We now analyze the security of the FSS verification protocol obtained by combining the
above client-aided MPC protocol with the sketching schemes proposed above. First, since we
assume the parties to be semi-honest, the secrecy property follows from the semi-honest security
of the MPC protocol (i.e., the only information learned by the parites is that V(z) = 0, which is
always the case for an honest client). Consider the case of correlated randomness generated by a
malicious client. Since all predicates V we consider include only a single level of multiplications,
the effect of such bad randomness is limited to adding some χ ∈ F to each output. Indeed,
since every possible choice of [a′] and [b′] is valid, an inconsistency can always be viewed as
an error in the choice of c′, which is only added to the output. (If the computation involves
two multiplications followed by an addition, which is needed for some of the predicates V we
propose, the two errors χ1 and χ2 are added.)

The crucial point is that the additive error χ introduced by bad client-supplied randomness
is independent of the randomness of L. Hence, it suffices to observe that the soundness of the
sketching schemes (L,V) we propose holds also if the constant χ is added to the output of V.
This follows from the fact that soundness is argued via the Schwartz-Zippel Lemma applied to
polynomials whose degree is greater than 1, for which adding a constant does not change the
degree.5

4.4.2 MPC using linear PCPs

The soundness of the above MPC protocol crucially depends on the fact that the client cannot
predict the inputs for the protocol in case y is invalid. Here we put forward a different technique
for a natural application scenario in which this is not the case. Concretely, the technique applies
to the case where we need to verify that the value β of a point function fα,β , which is fully
known to the client, has a special structure. We start by explaining the motivation.

Consider the case of using a DPF for writing a value β ∈ F into a secret location α in a
secret-shared array. A natural approach is to share the point function f = fα,β and update each
entry by adding the corresponding value of f . If the array is initially empty, i.e., it contains 0 in
all of its entries, the value β can indeed be reconstructed from the shares of entry α. But what
if different values βj are written to the same entry α? In this case, the different values mix and
there is generally no way to recover them. Such a situation arises, for example, when applying
a DPF in the context of anonymous communication [15], where messages βj that originate from
different clients are mixed by writing them into random entries of an array which is shared
between the parties. Here we expect collisions to occur almost certainly when the number of
entries is less than quadratic in the number of messages, but the expected number of collisions
will not be large.

An effective way of handling a bounded number of collisions is by encoding each message βj
into a bigger message β̂j , such that given the sum of the encodings of up to d different messages,
all messages can be recovered. Such an encoding can be implemented efficiently via syndrome

4In fact, for the case of Vsq we can use a leaner variant that computes [a2] from [a].
5The only exception is the sketching scheme used for verifying that β = 1, where verification involves two polyno-

mials of which one has degree 1. In this case, the parties can compute the degree-1 polynomial directly, without the
help of the client, by using a simple (m− 1)-secure protocol for addition.
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decoding of linear error-correcting codes such as Reed-Solomon codes [21]. Perhaps the simplest

such encoding maps a message β ∈ F into a vector β̂ = (β, β2, . . . , βd) [7, 11, 15]. By using such
an encoding, data loss is prevented as long as there is no bin containing more than d messages.

So far we only considered the case of an honest client. Suppose a malicious client tries to
destroy the data in an array by using invalid DPF keys. The above verification techniques can
be used to ensure that a single “write” query can only change the value of a single entry of the
array, thus limiting the corruption power of the client. Concretely, we use the technique for
verifying a DPF for an arbitrary β, where we view β as an element of the extension field Fd
(alternatively, one can use the more efficient procedure for verifying DPF fα,β with unrestricted

β ∈ Fd describe above). However, one can hope to do much better: if we could ensure that β̂ is
indeed of the expected special form (β, β2, . . . , βd), for some β ∈ F, then the corruption power of
such an adversary can be decreased by up to a factor of d: to prevent the correct reconstruction
of an entry containing d′ < d messages of honest users, a malicious client will need more than
d− d′ queries.

To verify a point function fα,β̂ with the above special form, the m parties first check that

it is indeed a point function for some β̂, and then have the parties locally add their N entries
of yi. In the end of this step, the parties hold additive shares of d = 2` + 1 field elements
γ = (γ1, . . . , γd), and they need to check that γj = γj1 for j = 2, . . . , d. The previous approach
of using a simple client-assisted MPC protocol does not apply here, since the knowledge of the
values γi allows a malicious client to violate the soundness by using an additive attack that
directly changes the output.

Instead, we use the following client-assisted protocol, where the client helps the parties verify
the validity of γ by secret-sharing a suitable proof between the parties. The proof can be viewed
as a special case of the so-called Hadamard-PCP that has been previously used in the context
of sublinear-communication arguments for NP [29, 6], exploiting the simple algebraic structure
of the statement for better efficiency.

• Input: Parties hold additive shares [γ1], [γ2], . . . , [γd] of an input γ = (γ1, . . . , γd) ∈ Fd
known to the client.

• Output: Parties should output “Accept” if γj = γj1 for all 2 ≤ j ≤ d, otherwise they
should output “Reject” with overwhelming probability.

• Proof: Client computes π = (γd+1
1 , . . . , γ2d

1 ) and additively shares π between the parties.
Let π′ = (γ, π) ∈ F2d.
// Shares of π are included in the keys output by Gen.

• Verification: Parties use common randomness to pick random field elements rj , sk,
1 ≤ j, k ≤ D, and locally compute additive shares of the following linear combinations of
π′:

– z1 =
∑d
j=1 rjπ

′
j

– z2 =
∑d
k=1 skπ

′
k

– z3 =
∑

1≤j,k≤d rjskπ
′
j+k

// z3 can be computed in Õ(d) time using fast polynomial multiplication.

• Decision: Parties use client-assisted MPC to check that z3−z1z2 = 0 and accept or reject
depending on whether this predicate holds.

Completeness and secrecy are straightforward. Soundness can again be analyzed via the SZ
Lemma. Consider the following two cases:

1. For all 1 ≤ j, k ≤ d, we have π′j+k = π′jπ
′
k: Since π′j = γj for 1 ≤ j ≤ d, it follows that

γj+1 = γj · γ1 for 1 ≤ j ≤ d− 1, hence the input γ is well-formed.

2. For some 1 ≤ j, k ≤ d we have π′j+k 6= π′jπ
′
k: In this case, the monomial rjsk will have a

nonzero coefficient in the verification predicate, leading the parties to reject except with
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at most 2/|F| probability. As before, this holds even if the client-assisted computation of
z3 − z1z2 uses badly formed randomness.

Hence, the soundness error of the protocol is bounded by 2/|F|.

4.5 Putting the Pieces Together

We conclude by summarizing the type of FSS verifications enabled by combining the above
sketching schemes and MPC protocols.

Theorem 4.8 (Verifiable FSS). For each function family Fi specified below, the following holds.
For every m-party FSS scheme Π = (Gen,Eval) for Fi, there is an m-party verifiable FSS scheme
Π′ = (Gen′,Eval,Ver) for Fi with the following properties: (1) keys generated by Gen′ with output
field F include keys of Gen and a constant number of additional field elements, and (2) the
parties in Ver invoke Eval once on each x ∈ D′, perform O(|D′|) additional field operations, and
communicate a constant number of field elements with each other. The soundness error of the
protocol is O(1/|F|).

The function families Fi are:

• All point functions fα,β;

• All point functions fα,β with β ∈ {0, 1} (alternatively, with β = 1 or β ∈ {1,−1} if
D′ = D, where the soundness error in the latter case is O(|D′|/|F|));

• All interval functions f[a,b] and their negations −f[a,b];

• All point functions fα,β for β of the special form (γ, γ2, . . . , γd) ∈ Fd; here the keys
produced by Gen include O(d) additional field elements.
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A Applications of FSS

In this section we describe some representative applications of FSS beyond those described in
the Introduction. For simplicity we restrict attention to 2-party FSS.

Private keyword search. Suppose that each of two servers holds a database of keywords
with corresponding payloads X = {(x1, p1), . . . , (xN , pN )} where xj ∈ {0, 1}n and pj ∈ {0, 1}m.
We further assume that no payload pj is the all-0 string. The client would like to privately test
whether some secret keyword x is in the database, and obtain the corresponding payload if it
is. To this end, the client uses a DPF to split the point function fx,1 : {0, 1}n → Z2 into f1, f2,

sending each key to the corresponding server. Server i sends back the sum
∑N
j=1 pjfi(xj), where

each pj is viewed as an element in Zm2 and additions are performed in Zm2 . Let a1, a2 ∈ Zm2 be
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the answers received from the two servers. The client lets p = a1 + a2, and outputs “no match”
if p = 0 or p otherwise.

Generalized keyword search. In the case of a generalized keyword search, where the search
predicate f : {0, 1}n → {0, 1} is taken from a class F , the client can count the number of entries
j satisfying f(xj) = 1 by viewing the range of f as the group G = ZN+1. The client uses an

FSS scheme for F to split f into f1 +f2, server i returns
∑N
j=1 fi(xj), and the client can recover

the exact number of matches by adding the two answers in G. A bounded number of matching
payloads can be retrieved by using sketching or coding techniques [35, 21].

Private updates. Consider the following application scenario for a writing analogue of
PIR [34]. A client owns N files (x1, . . . , xN ) where xj ∈ {0, 1}m. For backup purposes, the
files are secret-shared between two cloud servers, namely every xj is split into xj,1 and xj,2
such that xj,1 ⊕ xj,2 = xj . The client would like to update file xα to a new version x′α without
revealing any information about the update (including the identity α of the file that has been
updated) to any individual server. To this end, the client lets β = xα ⊕ x′α and uses a DPF
to split the point function fα,β : [N ] → Zm2 into f1, f2, sending each key to the corresponding
server. Each server i updates its shares of the N files by letting x′j,i ← xj,i⊕fi(j), for 1 ≤ j ≤ N .

B Concrete Efficiency of PIR

In this section we give a brief overview of different approaches for Private Information Retrieval
(PIR) and compare their efficiency to the PIR protocols implied by this work. The first approach,
presented in the original PIR work of Chor, Goldreich, Kushilevitz, and Sudan [14], assumes
that the database is replicated in k ≥ 2 non-colluding servers and requires that the protocol be
information theoretically secure. The second, proposed by Chor and Gilboa [12], still assumes
k ≥ 2 non-colluding servers but relaxes the security requirement to hold against computationally
bounded servers. The third, introduced by Kushilevitz and Ostrovsky [31], assumes that the
database is held by a single server and security is again computational.

The theoretical study of PIR is mainly concerned with minimizing the communication cost.
However, in practice the performance of PIR can be dominated by either communication or
computation, depending on the size of the database, the type of computations that need to be
performed on the server side, and the execution environment.

In the application of DPF to PIR, as described in the Introduction, the query sent to each
server consists of the DPF key. Using our optimized DPF construction with the early termination
optimization, the key size is roughly λ · (n− log λ) for a database of size N = 2n records, where
λ = 128 for an AES-based implementation. This improves over the query size of the previous
best DPF-based construction from [8] by roughly a factor of 4. The size of the answer sent by
each server is equal to the record size. Using the optimized algorithm for full domain evaluation
(Theorem 3.12), expanding a DPF key into a binary vector of length N requires roughly N/64
AES operations. In addition to this cost, each server should take the inner product of a pseudo-
random N -bit vector with the database, effectively amounting to reading and computing the
XOR of roughly half the records in the database. The latter cost is common to all multi-server
PIR protocols that have 1-bit answers (for 1-bit records); the computational cost of other types
of PIR protocols is even worse.6

We now briefly compare the efficiency of our DPF-based protocol to alternative protocols. A
simple 2-server protocol from [14] requires the client to send N bits to every server and receive

6To simplify the exposition, when considering multi-server PIR we restrict our attention to protocols that have
1-bit answers, since these seem to be the most attractive from a concrete efficiency point of view. The recent protocol
of Dvir and Gopi [19] achieves the best known total asymptotic communication complexity for 2-server information-
theoretic PIR with unrestricted answer size.
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` bits in return, where ` is the record size.7 This protocol provides good concrete efficiency in
applications that involve a small number of records (e.g., see [27]). The optimized DPF protocol
in this paper leads to better communication complexity for databases that have 400 records or
more, and comparable computational complexity on the server side.

With k ≥ 3 servers, there are information-theoretic PIR protocol with low asymptotic com-
munication complexity and 1-bit answers [39, 20]. However, employing an additional server may
be costly. Moreover, even the best known protocols that are optimized for practical database
sizes (e.g., the 3-server protocol from [3] with communication complexity 14N1/4) have higher
communication than our protocols for large enough databases, e.g. four billion items for [3]. In
terms of computation, all multi-server PIR protocols require each server to expand a received
key to a vector of N ring elements and then compute the inner product of the database with the
expanded key. In the two-server solution of [14] the expanded vector is explicitly sent to each
server; other information-theoretic PIR protocols require several ring operations per database
bit to perform this expansion.

Single-server PIR protocols with sublinear communication are known to imply public-key
encryption [17]. Moreover, all known single-server PIR protocols require the server to perform
a large number of “public key” operations (typically, an additive homomorphic operation on
ciphertexts, for some additively homomorphic encryption, for each bit of the database). This is
typically several orders of magnitude slower than multi-server protocols such as ours. See [33]
and references therein for the state of the art on practical single-server PIR.

We finally note that all of the alternative approaches to PIR discussed above do not natively
generalize to more general types of searches, such as keyword search or range queries, without
a significant overhead introduced by the use of data structures. In contrast, the FSS-based
approach directly applies to these more general types of searches.

C Proof of Tensor Product Operation

In this section we provide the full proof of Theorem 3.2 of the security of the construction
(Gen⊗,Eval⊗).

We begin by presenting the formal construction.

Note that keys output by (Gen⊗,Eval⊗) have the form of one key from (Gen•,Eval•) and two
elements in the key space K of (GenF ,EvalF ): that is, the resulting key size size⊗(n1 + n2, λ) is
indeed size•(n1, λ) + 2sizeF (n2, λ).

C.1 Proof of Theorem 3.2

Proof. We address the correctness and then security of the proposed construction (Gen⊗,Eval⊗).

Claim C.1 (Correctness). The resulting scheme (Gen⊗,Eval⊗) is correct: i.e., for all gα,f ∈
F• ⊗F and every input (x1, x2) ∈ {0, 1}n1 × {0, 1}n2 ,

Pr[(k0, k1)← Gen⊗(1λ, gα,f ) : Eval⊗(k0, 0, (x1, x2))− Eval⊗(k1, 1, (x1, x2)) = gα,f (x1, x2)] = 1.

Proof. Recall the keys are of the form kb = σb||CW0||CW1, where (σ0, σ1)← Gen•(1λ, fα,sα||1)

for random value sα ∈ {0, 1}λ, and the correction words satisfy CWtbα
= rb + PRG(sbα), where

7This protocol can be viewed as utilizing a näıve DPF scheme that secret-shares the entire truth-table. Different
flavors of DPF are implicitly used in other PIR protocols from the literature. In particular, the first non-trivial
2-party DPF is implicit in the 2-server computational PIR scheme of Chor and Gilboa [12]. However, the key size
of this DPF is super-polynomial in n. Similarly, a k-party DPF for k ≥ 3 implicitly serves as the basis of most
information-theoretic PIR protocols, originating from [14]; however, in these DPF constructions security only holds
against t < k − 1 parties (typically t = 1) and the key size is super-polynomial in n when k is constant.
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Tensor Product FSS (Gen⊗,Eval⊗)
Let PRG : {0, 1}λ → K be a pseudorandom generator (where K is the keyspace of (GenF ,EvalF ).
Let ConvertG : {0, 1}λ → G be a map converting a random λ-bit string to a pseudorandom group
element of G.

Gen⊗(1λ, gα,f ):

1: Sample a random λ-bit string sα ← {0, 1}λ, and let tα = 1 be a bit.
2: Generate an FSS key pair for the multi-bit point function fα,sα||tα that outputs (sα||tα) ∈
{0, 1}λ+1 on input α and 0 otherwise. That is, (σ0, σ1)← Gen•(1λ, fα,sα||tα).

3: Identify the resulting shares of the two parties for the evaluation input α: Let s0
α||t0α ←

Eval•(σ0, 0, α) and s1
α||t1α ← Eval•(σ1, 1, α). Recall that s0

α||t0α and s1
α||t1α are an additive secret

sharing of sα||tα in {0, 1}λ+1.
4: Generate an FSS key pair for the function f ∈ F : Let (r0, r1)← GenF (1λ, f).
5: Mask keys r0, r1 with randomness generated from s0

α, s
1
α, and set as correction words in the

order dictated by t0α, t
1
α: ie, let CWtbα

← PRG(sbα) + rb, for b = 0, 1, with addition in K.
6: Output final keys kb ← σb||CW0||CW1, encoded as size•(n1, λ) + 2sizeF (n2, λ) bits, for b = 0, 1.

Eval⊗(kb, b, (x1, x2)):

1: Parse k as k = σ||CW0||CW1.
2: Let sx1 ||tx1 ← Eval•(σ, b, x1).

// Note that if x1 6= α, the value sx1 ||tx1 is equal for both parties.

// If x1 = α, then it is exactly the special string sbα||tbα as in Step 3 of Gen⊗.

3: Let τ ← CWtx1
− PRG(sx1).

// Similarly, here for x1 6= α, the value τ is equal for both parties, since both sx1 and tx1 are
the same across parties.

// If x1 = α, then by the choice of CW0, CW1 (Step 5 of Gen⊗), party 0 will compute τ = r0

and party 1 will compute τ = r1.

4: Compute y ← EvalF (τ, b, x2).
5: Output y.

Figure 8: FSS (Gen⊗,Eval⊗) for function class F•⊗F , given schemes (Gen•,Eval•), (GenF ,EvalF ).
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sbα||tbα is party b’s share of the output sα||1 on input α (i.e., sbα||tbα ← Eval•(σb, b, α)), and
(r0, r1) is an FSS key pair for the function f , generated as (r0, r1)← GenF (1λ, f). We address
the correctness of the scheme in two cases.

Case 1: x1 6= α. By the correctness of the FSS scheme (Gen•,Eval•), for x1 6= α, we have
that Eval•(σ0, 0, x1) − Eval•(σ1, 1, x1) = 0: that is, that the evaluation of sx1 ||tx1 in Step 2 in
Eval⊗ will be equal for both party 0 and party 1. This means that both parties will arrive at
the same value τ in Step 3, and thus both parties will produce the same output y in the final
step, producing Eval⊗(k0, 0, (x1, x2))−Eval⊗(k1, 1, (x1, x2)) = 0, as desired. Note that this case
does not rely on any correctness properties of the second FSS scheme (GenF ,EvalF ): in fact, the
parties will be evaluating with respect to “garbage” keys τ , but whatever resulting evaluations
will be consistent between parties.

Case 2: x1 = α. By definition, each party b ∈ {0, 1} will compute sbα||tbα from the evaluation
Eval•(σb, b, α) in Step 2 of Eval⊗, which implies (from the construction of the correction words
CWtbα

= rb+PRG(sbα) in Step 5 of Gen⊗) that he will exactly recover the key rb as his result τ in

Step 3. Therefore, we have that Eval⊗(k0, 0, (x1, x2))−Eval⊗(k1, 1, (x1, x2)) = EvalF (r0, 0, x2)−
EvalF (r1, 1, x2), which by the correctness of the FSS scheme (GenF ,EvalF ), is precisely f(x2) =
gα,f (x1, x2).

Claim C.2 (Security). There exists a polynomial p(n) ∈ poly(n) such that, given the tools
listed above, the scheme (Gen⊗,Eval⊗) is a (t′, ε′)-secure FSS scheme for t′ = t−p(n1 +n2) and
ε′ = εDPF + 2 · εPRG + 2 · εFSS.

Proof. Recall that for b ∈ {0, 1}, by construction, kb = σb||CW0||CW1 where CWtbα
= G(sbα)+rb

and CW1−b = G(s1−b
α )+r1−b. At a high level, we will show that the correction words CW0, CW1

are pseudorandom given the remaining view of each party because of this masking, and thus to-
gether with the security for the underlying scheme (Gen•,Eval•), we will have indistinguishability
of keys for our new scheme (Gen⊗,Eval⊗).

Formally, for any pair of functions gα,f , gα̂,f̂ ∈ F
• ⊗ F , we consider a sequence of hybrid

distributions that begins with an honestly generated FSS key for gα,f and ends with an honestly
generated key for gα̂,f̂ . We will show that an adversary who wins in the FSS security game for

(Gen⊗,Eval⊗) with advantage greater than ε′ must succeed in distinguishing between these
distributions for some (gα,f , gα̂,f̂ ), and thus distinguishes between some adjacent hybrids with
advantage that contradicts the security of one of the underlying tools.

In what follows, we define the hybrid experiments. Within the distribution descriptions, we
denote with boxes the lines which were modified from the previous step.

Hybrid 0: Real key distribution for function gα,f .

H0(b, α, f) :=


σb||CW0||CW1 :

sα ← {0, 1}λ,
(σ0, σ1)← Gen•(1λ, fα,sα||1),

(r0, r1)← GenF (1λ, f),
siα||tiα = Eval•(σi, α) ∀i ∈ {0, 1},

CWtbα
= rb + PRG(sbα),

CW1−tbα = r1−b + PRG(s1−b
α )


By correctness of the FSS, Eval•(σ1−b, α) = fα,sα||1(α)− Eval•(σb, α) = sα||1− sbα||tbα. So,
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t1−bα = 1− tbα and s1−b
α = sα − sbα:

H0(b, α, f) ≡


σb||CW0||CW1 :

sα ← {0, 1}λ,
(σ0, σ1)← Gen•(1λ, fα,sα||1),

(r0, r1)← GenF (1λ, f),

sbα||tbα = Eval•(σb, α),

CWtbα
= rb + PRG(sbα),

CW1−tbα = r1−b + PRG(sα − sbα)


Hybrid 1: (DPF Security). Replace DPF key for fα,sα||1 with key for fα̂,sα̂||1. Note all re-

maining steps are still performed with respect to the original α, sα.

H1(b, α, α̂, f) :=


σb||CW0||CW1 :

sα, sα̂ ← {0, 1}λ,

(σ0, σ1)← Gen•(1λ, fα̂,sα̂||1),

(r0, r1)← GenF (1λ, f),
sbα||tbα = Eval•(σb, α),
CWtbα

= rb + PRG(sbα),

CW1−tbα = r1−b + PRG(sα − sbα)


Claim C.3. There exists a polynomial p1 such that for every b ∈ {0, 1}, α, α̂ ∈ {0, 1}n1 , f ∈
F , and auxiliary input z, no adversary running in time T − p1(n1 + n2) can distinguish
the distributions (H0(b, α, f), z) and (H1(b, α, α̂, f), z) with advantage greater than εDPF.

Proof. Suppose there exists b∗ ∈ {0, 1}, α∗, α̂∗ ∈ GN1
, f∗ ∈ F , auxiliary input z∗, and an

adversary A∗ that runs in time T ′′ for which

|Pr[kb∗ ← H0(b∗, α∗, f∗) : A∗(kb∗ , z∗) = 1]− Pr[kb∗ ← H1(b∗, α∗, α̂∗, f∗) : A∗(kb∗ , z∗) = 1]| > εDPF.

We will use this adversary A∗ to construct an adversary B for the underlying FSS scheme
(Gen•,Eval•). Define auxiliary input zB := {b∗, α∗, α̂∗, f∗, z∗}.

Adversary B(1λ, zB):

1. Parse zB = {b∗, α∗, α̂∗, f∗, z∗}.
2. Choose b∗ as the corrupted party and fα∗,sα∗ ||1, fα̂∗,sα̂∗ ||1 ∈ F• as the pair of DPF

challenge functions.

3. Receive as input from the DPF challenger a key σb∗ , sampled as (σ0, σ1)← Gen•(1λ, h)
for either h = fα∗,s∗α||1 or h = fα̂∗,sα̂∗ ||1.

4. Sample sα, sα̂ ← {0, 1}λ.

5. Sample a key pair (r0, r1)← GenF (1λ, f∗).

6. Compute sb
∗

α∗ ||tb
∗

α∗ = Eval•(σb∗ , α
∗), using the challenge key σb∗ .

7. Let CWtb
∗
α∗

= rb∗ + PRG(sb
∗

α∗).

8. Let CW1−tb∗
α∗

= r1−b∗ + PRG(sα∗ − sb
∗

α∗).

9. Take kb∗ := σb∗ ||CW0||CW1.

10. Let guess← A∗(kb∗ , z∗). Output guess.

The runtime of B is equal to time(A∗) + time(GenF [1λ, n2]) + time(Eval•[1λ, n1]) + 2 ·
time(PRG) = time(A∗) + p1(n1 + n2) for some fixed polynomial p1. By construction, if
the challenge key σb∗ is generated using h = fα∗,sα∗ ||1 then kb∗ is distributed precisely
as H0(b∗, α∗, f∗), whereas if it is generated using h = fα̂∗,sα̂∗ ||1 then kb∗ is distributed

43



precisely as H1(b∗, α∗, α̂∗, f∗). Thus the advantage of B in the DPF security game is equal
to the advantage of A∗ in distinguishing distributions, which is > εDPF. If A∗ runs in time
T ′′ ≤ T − p1(n), then B runs in time ≤ T , which would contradict the (T, εDPF)-security
of the underlying DPF scheme.

Hybrid 2: (PRG Security). Replace PRG(sα − sbα) with random R.

H2(b, α, α̂, f) :=


σb||CW0||CW1 :

R← K,
sα̂ ← {0, 1}λ,

(σ0, σ1)← Gen•(1λ, fα̂,sα̂||1),

(r0, r1)← GenF (1λ, f),
sbα||tbα = Eval•(σb, α),
CWtbα

= rb + PRG(sbα),

CW1−tbα = r1−b +R


Claim C.4. There exists a polynomial p2 such that for every b ∈ {0, 1}, α, α̂ ∈ {0, 1}n1 , f ∈
F , and auxiliary input z, no adversary running in time T −p2(n1 +n2) can distinguish the
distributions (H1(b, α, α̂, f), z) and (H2(b, α, α̂, f), z) with advantage greater than εPRG.

Proof. Suppose there exists b∗ ∈ {0, 1}, α∗, α̂∗ ∈ GN1
, f∗ ∈ F , auxiliary input z∗, and an

adversary A∗ that runs in time T ′′ for which

|Pr[kb∗ ← H1(b∗, α∗, α̂∗, f∗) : A∗(kb∗ , z∗) = 1]− Pr[kb∗ ← H2(b∗, α∗, α̂∗, f∗) : A∗(kb∗ , z∗) = 1]| > εPRG.

We will use this adversary A∗ to construct an adversary B for the underlying PRG.
Define auxiliary input zB := {b∗, α∗, α̂∗, f∗, z∗}. In the PRG challenge, B receives a
string K ∈ K which is either sampled either randomly as K ← K or pseudorandomly
as K = PRG(s) : s← {0, 1}λ.

Adversary B(1λ,K, zB):

1. Parse zB = {b∗, α∗, α̂∗, f∗, z∗}.
2. Sample sα̂∗ ← {0, 1}λ.

3. Sample DPF keys (σ0, σ1)← Gen•(1λ, fα̂∗,sα̂∗ ||1).

4. Sample FSS keys (r0, r1)← GenF (1λ, f∗).

5. Compute sb
∗

α∗ ||tb
∗

α∗ = Eval•(σb∗ , α
∗).

6. Take CWtb
∗
α∗

= rb∗ + PRG(sb
∗

α∗).

7. Take CW1−tb∗
α∗

= r1−b∗ +K.

8. Define kb∗ = σb∗ ||CW0||CW1.

9. Let guess← A∗(kb∗ , z∗). Output guess.

The runtime of B is equal to time(A∗)+time(Gen•[1λ, n1])+time(GenF [1λ, n2])+time(Eval•[1λ, n1])+
time(PRG) = time(A∗) + p2(n1 + n2) for some fixed polynomial p2. By construction, if
K is pseudorandom then kb∗ is distributed precisely as H1(b∗, α∗, α̂∗, f∗), whereas if it is
sampled randomly from K then kb∗ is distributed precisely as H2(b∗, α∗, α̂∗, f∗). Thus the
advantage of B in the DPF security game is equal to the advantage of A∗ in distinguishing
distributions, which is > εPRG. If A∗ runs in time T ′′ ≤ T − p2(n), then B runs in time
≤ T , which would contradict the (T, εPRG)-security of the underlying PRG scheme.
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Hybrid 3: (Pseudorandomness of keys for (GenF ,EvalF )). Replace rb with random R′′ ∈ K.

H3(b, α, α̂) :=


σb||CW0||CW1 :

R′, R′′ ← K,
sα̂ ← {0, 1}λ,

(σ0, σ1)← Gen•(1λ, fα̂,sα̂||1),
sbα||tbα = Eval•(σb, α),

CWtbα
= R′′ + PRG(sbα),

CW1−tbα = R′


Now that we’ve removed all information about the second key r1−b generated via GenF (1λ, f)
in the previous hybrids, we may here rely on the pseudorandomness of any single key gen-
erated by GenF .

Claim C.5. There exists a polynomial p3 such that for every b ∈ {0, 1}, α, α̂ ∈ {0, 1}n1 , f ∈
F , and auxiliary input z, no adversary running in time T − p3(n1 + n2) can distinguish
the distributions (H2(b, α, α̂, f), z) and (H3(b, α, α̂), z) with advantage greater than εFSS.

Proof. Suppose there exists b∗ ∈ {0, 1}, α∗, α̂∗ ∈ GN1
, f∗ ∈ F , auxiliary input z∗, and an

adversary A∗ that runs in time T ′′ for which

|Pr[kb∗ ← H2(b∗, α∗, α̂∗, f∗) : A∗(kb∗ , z∗) = 1]− Pr[kb∗ ← H3(b∗, α∗, α̂∗) : A∗(kb∗ , z∗) = 1]| > εFSS.

We will use this adversary A∗ to construct an adversary B for the pseudorandomness of
the keys of (GenF ,EvalF ). Define auxiliary input zB := {b∗, α∗, α̂∗, f∗, z∗}.

Adversary B(1λ, zB):

1. Parse zB = {b∗, α∗, α̂∗, f∗, z∗}.
2. Select party b∗ and function f∗ ∈ F for the challenge.

3. Receive a key Kb∗ that is sampled either as (K0,K1) ← GenF (1λ, f∗) or randomly
sampled as Kb∗ ← K.

4. Sample sα̂∗ ← {0, 1}λ.

5. Generate (σ0, σ1)← Gen•(1λ, fα̂∗,sα̂∗ ||1).

6. Evaluate sb
∗

α∗ ||tb
∗

α∗ = Eval•(σb∗ , α).

7. Take CWtb
∗
α∗

= Kb∗ + PRG(sb
∗

α∗).

8. Sample CW1−tb∗
α∗
← K.

9. Define kb∗ = σb∗ ||CW0||CW1.

10. Let guess← A∗(kb∗ , z∗). Output guess.

The runtime of B is equal to time(A∗)+time(Gen•[1λ, n1])+time(Eval•[1λ, n1])+time(PRG) =
time(A∗) + p3(n1 + n2) for some fixed polynomial p3. By construction, if Kb∗ is sampled
from GenF (1λ, f∗) then kb∗ is distributed precisely as H2(b∗, α∗, α̂∗, f∗), whereas if it is
sampled randomly from K then kb∗ is distributed precisely as H3(b∗, α∗, α̂∗). Thus the
advantage of B in the DPF security game is equal to the advantage of A∗ in distinguishing
distributions, which is > εFSS. If A∗ runs in time T ′′ ≤ T − p3(n), then B runs in time
≤ T , which would contradict the (t, εFSS)-key-pseudorandomness of the underlying FSS
scheme (GenF ,EvalF ).

45



Note that this distribution no longer depends at all on the original α and can be rewritten
as:

H3(b, α̂) ≡


σb||CW0||CW1 :

R,R′ ← K,
sα̂ ← {0, 1}λ,

(σ0, σ1)← Gen•(1λ, fα̂,sα̂||1),

CW0 = R,

CW1 = R′


And further, since the values of CW0, CW1 are random, we can add in fixed values de-
pending on α̂ and it will not affect this distribution.

H3(b, α̂) ≡


σb||CW0||CW1 :

R,R′ ← K,
sα̂ ← {0, 1}λ,

(σ0, σ1)← Gen•(1λ, fα̂,sα̂||1),

sbα̂||tbα̂ = Eval•(σb, α̂),

CWtbα̂
= R+ PRG(sbα̂),

CW1−tbα̂
= R′


In the following hybrids we “undo” the last 2 steps, but using the new function gα̂,f̂ .

Hybrid 4: (Pseudorandomness of keys for (GenF ,EvalF )). Replace randomR with rb+PRG(sbα̂),

where rb is a key generated by GenF for the (new) function f̂ .

H4(b, α̂, f̂) :=


σb||CW0||CW1 :

R′ ← K,
sα̂ ← {0, 1}λ,

(σ0, σ1)← Gen•(1λ, fα̂,sα̂||1),

(r0, r1)← GenF (1λ, f̂),

sbα̂||tbα̂ = Eval•(σb, α̂),

CWtbα̂
= rb + PRG(sbα̂),

CW1−tbα̂
= R′


Claim C.6. There exists a polynomial p4 such that for every b ∈ {0, 1}, α, α̂ ∈ {0, 1}n1 , f ∈
F , and auxiliary input z, no adversary running in time T − p4(n1 + n2) can distinguish

the distributions (H3(b, α̂), z) and (H4(b, α̂, f̂), z) with advantage greater than εFSS.

Proof. The proof is nearly identical to that of Claim C.5.

Hybrid 5: Replace random R′ with r1−b + PRG(sα̂ − sbα̂). (Security of PRG).

H5(b, α̂, f̂) :=


σb||CW0||CW1 :

R′ ← K,
sα̂ ← {0, 1}λ,

(σ0, σ1)← Gen•(1λ, fα̂,sα̂||1),

(r0, r1)← GenF (1λ, f̂),
sbα̂||tbα̂ = Eval•(σb, α̂),
CWtbα̂

= rb + PRG(sbα̂),

CW1−tbα̂
= r1−b + PRG(sα̂ − sbα̂)


Claim C.7. There exists a polynomial p5 such that for every b ∈ {0, 1}, α, α̂ ∈ {0, 1}n1 , f ∈
F , and auxiliary input z, no adversary running in time T − p5(n1 + n2) can distinguish

the distributions (H4(b, α̂, f̂), z) and (H5(b, α̂, f̂), z) with advantage greater than εPRG.
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Proof. The proof is nearly identical to that of Claim C.4.

By the correctness of (Gen•,Eval•), we have that sα̂ − sbα̂ = s1−b
α̂ , and so we have

H5(b, α̂, f̂) ≡


σb||CW0||CW1 :

R′ ← K,
sα̂ ← {0, 1}λ,

(σ0, σ1)← Gen•(1λ, fα̂,sα̂||1),

(r0, r1)← GenF (1λ, f̂),
siα̂||tiα̂ = Eval•(σi, α̂) ∀i ∈ {0, 1},

CWtbα̂
= rb + PRG(sbα̂),

CW1−tbα̂
= r1−b + PRG(s1−b

α̂ )


Note that this distribution H5(b, α̂, f̂) is now precisely the distribution of honestly gener-

ated keys for the function gα̂,f̂ : That is, H5(b, α̂, f̂) ≡ H0(b, α̂, f̂).

We now combine Claims C.3-C.7 to finalize the security proof.

Claim C.8. There exists a polynomial p(n) ∈ poly(n) such that the scheme (Gen⊗,Eval⊗) is a
(T ′, ε′)-secure FSS scheme for T ′ = T − p(n1 + n2) and ε′ = εDPF + 2εPRG + 2εFSS.

Proof. Suppose there exists b∗ ∈ {0, 1} and an adversary A∗ running in some time T ′′ who
succeeds in the FSS security game for (Gen⊗,Eval⊗) for corrupted party b∗ with advantage
greater than ε′ (see Appendix D). That is,∣∣∣∣∣∣Pr

 (g0, g1, state)← A(1λ)
(k0, k1)← Gen(1λ, g1)
guess← A(kb∗ , state)

: guess = 1

− Pr

 (g0, g1, state)← A(1λ)
(k0, k1)← Gen(1λ, g0)
guess← A(kb∗ , state)

: guess = 1

∣∣∣∣∣∣ > ε′.

In particular, there must exist a pair of functions g0 = gα0,f0 and g1 = gα1,f1 and value of state
for which∣∣∣∣Pr

[
(k0, k1)← Gen(1λ, g1)
guess← A(kb∗ , state)

: guess = 1

]
− Pr

[
(k0, k1)← Gen(1λ, g0)
guess← A(kb∗ , state)

: guess = 1

]∣∣∣∣ > ε′.

Note that the distribution of kb∗ received by A∗ corresponds exactly to the distribution of kb∗ ←
H0(b∗, αc, fc) for the corresponding function gαc,fc (indeed, H0 was defined to be the honest key
distribution). That is, (together with some notation shrinking), for this (gα0,f0 , gα1,f1 , state), it
holds that∣∣∣Pr[kb∗ ← H0(b∗, α1, f1) : A∗(kb∗ , state) = 1]−Pr[kb∗ ← H0(b∗, α0, f0) : A∗(kb∗ , state) = 1]

∣∣∣ > ε′.

Now, since ε′ = εDPF + 2εPRG + 2εFSS, then at least one of the following must hold:

1. εDPF < |Pr[kb∗ ← H0(b∗, α1, f1) : A∗(kb∗ , state) = 1]− Pr[kb∗ ← H1(b∗, α1, α0, f1) : A∗(kb∗ , state) = 1]|
2. εPRG < |Pr[kb∗ ← H1(b∗, α1, α0, f1) : A∗(kb∗ , state) = 1]− Pr[kb∗ ← H2(b∗, α1, α0, f1) : A∗(kb∗ , state) = 1]|
3. εFSS < |Pr[kb∗ ← H2(b∗, α1, α0, f1) : A∗(kb∗ , state) = 1]− Pr[kb∗ ← H3(b∗, α0) : A∗(kb∗ , state) = 1]|
4. εFSS < |Pr[kb∗ ← H3(b∗, α0) : A∗(kb∗ , state) = 1]− Pr[kb∗ ← H4(b∗, α0, f0) : A∗(kb∗ , z∗) = 1]|
5. εPRG < |Pr[kb∗ ← H4(b∗, α0, f0) : A∗(kb∗ , state) = 1]− Pr[kb∗ ← H0(b∗, α0, f0) : A∗(kb∗ , z∗) = 1]|

But, by Claims C.3-C.7, this cannot happen if A∗ runs in time T < T − max5
i=1 pi(n1 + n2),

where each pi is as appears within the corresponding claim. Therefore, security of (Gen⊗,Eval⊗)
holds, for the polynomial p = max5

i=1 pi.
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C.2 Reconstructing Prior DPF Constructions via Tensor Product

We demonstrate that for two particular choices of iterative applications of the FSS tensoring
operation of Theorem 3.2, we directly obtain the (seemingly quite different) DPF constructions
of Gilboa and Ishai [24] and of Boyle, Gilboa, and Ishai [8].

Recursion Structure 1. By recursively combining two DPFs with equal input bit lengths
n, in each such step, the input length doubles from n to 2n, and the FSS key size grows by
a factor of 3. Thus, starting with a trivial DPF construction on 1-bit inputs (and (λ + 1)-bit
outputs)—i.e., just a secret sharing of the evaluation table, with size 2(λ+ 1)—by applying the
transformation log2 n times we obtain a DPF for n-bit inputs. The resulting key size will be
2(λ+ 1) · 3log2 n ∈ O(λnlog2 3). The resulting DPF is that of Gilboa and Ishai [24].

Corollary C.9 (Reconstructing Gilboa-Ishai [24]). There exists a polynomial p(n) such that,
if a (T, ε)-secure pseudorandom generator exists, then there exists a (T − p(n), ε · p(n))-secure
FSS scheme for the multi-bit point function family F• : {0, 1}n → G for n-bit inputs, with key
size bounded by 4

3 (λ+ 1)nlog2 3.

Proof. We apply Theorem 3.2 recursively. For initial domain {0, 1}d, there exists a trivial (T ′, 0)-
secure FSS for the function family F• : {0, 1}d → {0, 1}λ+1 with key size 2d(λ+ 1) (for any T ′:
i.e., perfect security). Say we begin with (t′, ε′)-secure PRG. After i iterations of Theorem 3.2,
we reach an FSS for the point function family for (d · 2i)-bit inputs with a resulting key size of

3i2d(λ + 1), and (T ′ −
∑i
j=1 p

′(2jd), 5i · ε′)-security, for fixed polynomial p′ as guaranteed by
Theorem 3.2 (where the 5 is taking a bound of equal (growing) values for εDPF, εPRG, εFSS). Thus,
for a desired target domain size N = 2n, we must repeat

⌈
log
(
n
d

)⌉
times to reach this size; the

resulting key size will then be 3dlog(n/d)e2d(λ+ 1). Choosing the initial domain bit-length d = 2
(to minimize 2d/3log2 d), we reach a final key size bounded by 4

3 (λ+1)nlog2 3. The resulting FSS
will have security no worse than (T ′ − log n · p′(n), 5logn · ε) = (T ′ − p′′(n), nlog2 5 · ε) for some
fixed polynomial p′′(n). Thus, taking p(n) = max{p′′(n), nlog2 5}, the claim holds.

Recursion Structure 2. Observe, however that the key size of the tensor product of
Theorem 3.2 grows asymmetrically in the key sizes of the two original DPFs: i.e., size⊗(λ, n1 +
n2) = size•(λ, n1) + 2 · size•(λ, n2). Thus, it is advantageous to instead recursively combine a
DPF with input length n1 together with a DPF of a single-bit input n2 = 1 (which has a trivial
construction with fixed key size s). In each step, the input length increases by 1 bit, and the
FSS key size grows additively as size•(λ, n1) + 2s. As the conclusion of n such steps, if we began
with just the trivial 1-bit-input DPF construction, we will have constructed a DPF for n-bit
inputs whose key size grows only linearly in n. The resulting DPF is the tree-based construction
of Boyle, Gilboa, and Ishai [8].

Corollary C.10 (Reconstructing Boyle-Gilboa-Ishai [8]). There exists a polynomial p(n) such
that, if a (T, ε)-secure pseudorandom function exists, then there exists a (T − p(n), 2nε)-secure
FSS scheme for the multi-bit point function family F• : {0, 1}n → G for n-bit inputs, with key
size 4n(λ+ 1).

Proof. We again apply Theorem 3.2 recursively, beginning with the trivial FSS (Gen1,Eval1) for
single-bit-input point functions F• : {0, 1} → {0, 1}λ+1, with key size 2(λ + 1) bits. In each
iteration i = 1, . . . , n − 1, apply Theorem 3.2 using (Geni,Evali) together with (Gen1,Eval1) to
yield an FSS for (i+ 1)-bit-input point functions F• : {0, 1}i+1 → {0, 1}λ+1, with resulting key
size sizei+1(i + 1, λ) = sizei(i, λ) + 2 · size1(1, λ) = sizei(i, λ) + 2 · 2(λ + 1). Thus, after n − 1
iterations, we obtain an FSS for the desired function class F• : {0, 1}n → {0, 1}λ+1 with key
size 2(λ+ 1) + (n− 1)4(λ+ 1) ≤ 4n(λ+ 1). Assuming a (T, ε)-secure PRG, the security of the
resulting FSS (given (n−1) applications of Theorem 3.2) will be no worse than (T −n ·p(n), ε′),
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where p is the polynomial guaranteed by Theorem 3.2, and ε′ = ε1 +
∑n−1
i=1 (2ε1 + 2εPRG) ≤ 2nε

since ε1 of (Gen1,Eval1) is 0 due to its perfect security.

D An Indistinguishability-Based Security Definition

We quote here the alternative indistinguishability-based security definition of FSS from [8],
naturally extended to the case of a general leakage function Leak. This definition is equivalent
to our original one for every function family F and leakage function Leak for which Leak can be
efficiently inverted, which will be the case for all F and Leak considered in this work. In our
security proofs, it will be convenient to use this alternative definition.

• Security: Consider the following indistinguishability challenge experiment for set of cor-
rupted parties S ⊂ [m] of size |S| ≤ t:
1: The adversary outputs (f0, f1, state) ← A(1λ), where f0, f1 ∈ F with Leak(f0) =

Leak(f1).
2: The challenger samples b← {0, 1}, (k1, . . . , km)← Gen(1λ, fb).
3: The adversary outputs a guess b′ ← A((ki)i∈S , state), given the keys for corrupted S.

Denote by Adv(1λ,A) the adversary’s advantage in guessing the challenge bit b: Adv(1λ,A) :=
Pr[b = b′]− 1/2. We say the scheme (Gen,Eval) is t-secure if for every S ⊆ [m] of size ≤ t
and non-uniform PPT adversary A, there exists a negligible function ν, such that for all
positive integer λ we have Adv(1λ,A) ≤ ν(λ).
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