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Abstract. The distributed discrete logarithm (DDL) problem was in-
troduced by Boyle et al. at CRYPTO 2016. A protocol solving this prob-
lem was the main tool used in the share conversion procedure of their
homomorphic secret sharing (HSS) scheme which allows non-interactive
evaluation of branching programs among two parties over shares of secret
inputs.
Let g be a generator of a multiplicative group G. Given a random group
element gx and an unknown integer b ∈ [−M,M ] for a small M , two
parties A and B (that cannot communicate) successfully solve DDL if
A(gx) − B(gx+b) = b. Otherwise, the parties err. In the DDL protocol
of Boyle et al., A and B run in time T and have error probability that
is roughly linear in M/T . Since it has a significant impact on the HSS
scheme’s performance, a major open problem raised by Boyle et al. was
to reduce the error probability as a function of T .
In this paper we devise a new DDL protocol that substantially reduces
the error probability to O(M · T−2). Our new protocol improves the
asymptotic evaluation time complexity of the HSS scheme by Boyle et
al. on branching programs of size S from O(S2) to O(S3/2). We further
show that our protocol is optimal up to a constant factor for all relevant
cryptographic group families, unless one can solve the discrete logarithm
problem in a short interval of length R in time o(

√
R).

Our DDL protocol is based on a new type of random walk that is com-
posed of several iterations in which the expected step length gradually
increases. We believe that this random walk is of independent interest
and will find additional applications.
Keywords: Homomorphic secret sharing, share conversion, fully homo-
morphic encryption, discrete logarithm, discrete logarithm in a short
interval, random walk.

1 Introduction

Homomorphic Secret Sharing Homomorphic secret sharing (HSS) is a prac-
tical alternative approach to fully homomorphic encryption (FHE) [13, 19] that

? A preliminary version of the paper was presented at the CRYPTO 2018 confer-
ence [10].



provides some of its functionalities. It was introduced by Boyle, Gilboa and
Ishai [5] at CRYPTO 2016 and further studied and extended in [4, 6, 7, 11]. The
main advantage of HSS over traditional secure multiparty computation proto-
cols [1, 8, 22] is that, similarly to FHE, its communication complexity is smaller
than the circuit size of the computed function.

HSS allows homomorphic evaluation to be distributed among two parties who
do not interact with each other. A (2-party) HSS scheme randomly splits an input
w into a pair of shares (w0, w1) such that: (1) each share wi computationally hides
w, and (2) there exists a polynomial-time local evaluation algorithm Eval such
that for any program P from a given class (e.g., a boolean circuit or a branching
program), the output P (w) can be efficiently reconstructed from Eval(w0, P )
and Eval(w1, P ).

The main result of [5] is an HSS scheme for branching programs under the De-
cisional Diffie-Hellman (DDH) assumption that satisfies P (w) = Eval(w0, P ) +
Eval(w1, P ). It was later optimized in [4, 6], where the security of the optimized
variants relies on other discrete log style assumptions.

Let G be a multiplicative cyclic group of prime order N in which the discrete
log problem is (presumably) hard and let g be a generator of this group. The
scheme of [5] allows the parties to locally multiply an encrypted (small) input
w ∈ Z with an additively secret-shared (small) value y ∈ Z, such that the
result z = wy is shared between the parties. The problem is that at this stage
gz is multiplicatively shared by the parties, so they cannot multiply z with
a new encrypted input w′. Perhaps the most innovative idea of [5] allows the
parties to convert multiplicative shares of gz into additive shares of z without any
interaction via a share conversion procedure. Once the parties have an additive
sharing of z, they can proceed to add it to other additive shares. These operations
allow to evaluate restricted multiplication straight-line (RMS) programs which
can emulate any branching program of size S using O(S) instructions.

The share conversion procedure of [5] is not perfect in the sense that the
parties may err. More specifically, the parties fail to compute correct additive
shares of z with some error probability δ that depends on the running time T of
the parties and on a small integer M that bounds the intermediate computation
values. As share conversion is performed numerous times during the execution
of Eval, its total error probability accumulates and becomes roughly δ ·S, where
S is the number of multiplications performed by the RMS program P . Thus, for
the total error probability to be constant one has to set the running time T of
the parties in the share conversion procedure such that δ ≈ 1/S. Consequently,
the running time to error tradeoff has a significant impact on the performance
of the HSS scheme.

Since the main motivation behind HSS is to provide a practical alternative
to FHE, one of the main open problems posed in [5] was to improve the running
time to error tradeoff of the share conversion procedure. Progress on this open
problem was made in the followup works [4, 6] which significantly improved the
practicality of the HSS scheme. Despite this progress, the asymptotic running
time to error tradeoff of the share conversion procedure was not substantially
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improved and the running time T in all the schemes grows (roughly) linearly
with the inverse error probability 1/δ (or as M/δ in general). Thus, to obtain
δ ≈ 1/S, one has to set T ≈ S, and since the total number of multiplications in
P is S, the total running time becomes O(S2).

The Distributed Discrete Log Problem The focus of this paper is on the
“distributed discrete log” (DDL) problem which the parties collectively solve in
the share conversion procedure. We now describe the DDL problem and abstract
away the HSS details for simplicity. The DDL problem involves two parties A and
B. The input of A consists of a group element gx, where x is chosen uniformly
at random from ZN . The input of B consists of gx+b, where b ∈ [−M,M ] is
an unknown uniformly chosen integer in the interval (for a small fixed integer
parameter M). The algorithms A,B are restricted by a parameter T which
bounds the number of group operations they are allowed to compute.3 After
executing its algorithm, each party outputs an integer. The parties successfully
solve the DDL instance if A(gx)−B(gx+b) = b. We stress that A and B are not
allowed to communicate.4

If gz is multiplicatively shared by A (party 0) and B (party 1), then gz0 ·gz1 =
gz. In the share conversion procedure party A runs A(g−z0) while party B runs
B(gz1). Assuming they correctly solve DDL for |z| ≤ M , we have A(g−z0) −
B(gz1) = z1 + z0 = z, namely, A(g−z0) and −B(gz1) are additive shares of z as
required.

It is convenient to view the DDL problem as a synchronization problem: A
and B try to agree or synchronize on a group element with a known offset in
the exponent from their input. If they manage to do so, the parties solve DDL
by outputting this offset. For example, if both parties synchronize on gy, then
A(gx) = y− x while B(gx+b) = y− (x+ b), so A(gx)−B(gx+b) = b as required.
In particular, if both A and B can solve the discrete logarithm problem for their
input (i.e., compute x and x+ b, respectively), then they can synchronize on the
generator g by outputting A(gx) = 1− x and B(gx+b) = 1− (x+ b). Of course,
this would violate the security of the HSS scheme, implying that the discrete
logarithm problem in G should be hard and A,B have to find other means to
succeed.

3 In all algorithms presented in this paper, the bulk of computation involves performing
group operations, hence this is a reasonable complexity measure. Alternatively, the
parameter T may bound the complexity of A,B in some reasonable computational
model.

4 We note that in the applications of [4–6], the distribution of b ∈ [−M,M ] is arbitrary.
However (as we show in Lemma 12), our choice to define and analyze DDL for
the uniform distribution of b ∈ [−M,M ] is technically justified since the uniform
distribution is the hardest for DDL: algorithms for A,B that solve DDL with an error
probability δ for the uniform distribution, also solve DDL with an error probability
O(δ) for any distribution of b ∈ [−M,M ].
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Our Goals The goal of this paper is to devise algorithms for A and B (i.e.,
a DDL protocol) that maximize their success probability (taken over the ran-
domness of x, b), or equivalently, minimize their error probability δ given T . Our
point of reference is the DDL protocol of [6] (which is a refined version of the
original DDL protocol [5]) that achieves a linear tradeoff between the parameter
T and error probability δ. More precisely, given that A,B are allowed T group
operations, the DDL error probability is roughly M/T . In fact, there are sev-
eral closely related protocols devised in [4–6] which give similar linear tradeoffs
between the parameter T and error probability δ.

Yet another goal of this paper is to better understand the limitations of
DDL protocols. More specifically, we aim to prove lower bounds on the error
probability of DDL protocols by reducing a well-studied computational problem
on groups to DDL. In particular, we are interested in the discrete log in an
interval (DLI) problem, where the input consists of a group element in a known
interval of length R and the goal is to compute its discrete log.

DLI has been the subject of intensive study in cryptanalysis and the best
known algorithms for it are adaptations of the classical baby-step giant-step
algorithm and the memory-efficient variant of Pollard [17] (see [12, 18] for ad-
ditional extensions). These algorithms are based on collision finding and have
complexity of about

√
R. They are the best known in concrete prime-order group

families (in which discrete log is hard) up to large values of the interval R. In
particular, for elliptic curve groups, the best known DLI algorithm has complex-
ity of about

√
R where R is as large as the size of the group N (which gives

the standard discrete logarithm problem). For some other groups (such as prime
order subgroups of Z∗p), the best known complexity is about

√
R, where R can be

up to subexponential in logN (as discrete log can be solved in subexponential
complexity in these groups [14, 15]). We note that besides its relevance in crypt-
analysis, DLI is solved as part of the decryption process of some cryptosystems
(notably in the cryptosystem by Boneh, Goh and Nissim [3]).

An alternative approach to establishing error probability lower bounds for
DDL is to use the generic group model (GGM), introduced by Shoup [20]. In
GGM, an algorithm is not allowed direct access to the bit representation of
the group elements, but can only obtain randomized encodings of the elements,
available via oracle queries. The generic group model is a standard model for
proving computational lower bounds on certain (presumably hard) problems on
groups and thus establishing confidence in their hardness. Although the bounds
obtained in GGM are relevant to a restricted class of algorithms, it is essen-
tially the only model in which meaningful lower bounds are known for some
computational problems on groups (such as discrete log). Moreover, for sev-
eral problems (such as discrete log computation in some elliptic curve groups),
generic algorithms are essentially the best algorithms known. The downside of
this alternative proof approach is that it does not directly relate DDL to any
hard problem in a group family, but rather establishes a lower bound proof in
an abstract model.
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Our Contribution The main result of this work is closing the gap for DDL
in many concrete group families by presenting upper and lower bounds that are
tight (within a constant factor) based on the hardness of DLI in these families.
We first develop an improved DDL protocol that is applicable in any group G and
achieves a quadratic tradeoff between the parameter T and the error probability,
namely δ = O(M/T 2). This is a substantial improvement over the linear tradeoff
δ = O(M/T ) obtained in [4–6]. Therefore, when executing Eval on an RMS
program P with multiplicative complexity S, one can set T = O(S1/2) to obtain
δ = O(1/S) and the total running time is reduced fromO(S2) in [4–6] toO(S3/2).
This result directly improves upon the computational complexity of some of the
HSS applications given in [4–6]. For example, in private information retrieval [9]
(PIR), a client privately searches a database distributed among several servers
for the existence of a document satisfying a predicate P . The 1-round 2-server
PIR scheme of [5] supports general searches expressed as branching programs of
size S applied to each document. The computational complexity per document
in the scheme of Boyle et al. is O(S2) and our result reduces this complexity to
O(S3/2).

On the practical side, we fully verified our protocol by extensive experiments.
We further consider the optimizations implemented in [4, 6] for DDL, which
have a significant impact on its concrete running time. Although applying these
optimizations to our DDL protocol is not straightforward, we show how to tweak
our protocol such that it can benefit from these optimizations as well. Overall,
we believe that our new DDL protocol will allow us to improve upon the most
efficient HSS implementation [4] by several orders of magnitude and render it
practical for new applications.

Our DDL protocol uses a new type of (pseudo) random walk composed of
several iterations. Each one of these iterations resembles Pollard’s “kangaroo”
random walk algorithm for solving DLI using limited memory [17]. However
DDL is different from DLI as the parties cannot communicate and seek to mini-
mize their error probability (rather than make it constant). This leads to a more
complex iterative algorithm, where the parties carefully distribute their time
complexity T among several random walks iterations. These iterations use in-
creasingly longer step lengths that gradually reduce the error probability towards
O(M/T 2).

The new random walk maximizes the probability that parties with close
inputs agree (or synchronize) on a common output without communicating. We
believe that this random walk is of independent interest and will find additional
applications beyond homomorphic secret sharing schemes and cryptography in
general.

After presenting our DDL protocol, we focus on lower bounds and show
that any DDL protocol for a family of groups must have error probability of
δ = Ω(M/T 2), unless DLI (with interval of length R) can be solved in time T ′ ≈
T = o(

√
R) in this family. This is currently not achievable for small (polynomial)

T in standard cryptographic groups (for which the group-based HSS scheme is
deemed to be secure).
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Finally, we analyze DDL protocols in the generic group model. In this model,
our DDL protocol is adaptive, as the oracle queries of A and B depend on
the answers to their previous queries. This stands in contrast to the protocols
of [4–6] in GGM, whose oracle queries are fixed in advance (or selected with
high probability from a pre-fixed set of size O(T )). It is therefore natural to
ask whether adaptivity is necessary to obtain optimal DDL protocols in GGM.
Interestingly, we prove that the answer is positive. In fact, we show that the
linear tradeoff obtained in [4–6] is essentially the best possible for non-adaptive
DDL protocols in GGM.

Paper Organization The rest of the paper is organized as follows. We describe
preliminaries in Section 2 and present an overview of our new protocol and
related work in Section 3. Our new DDL protocol is analyzed in Section 4. We
prove lower bounds on the DDL error probability in concrete group families in
Section 5 and finally prove lower bounds on non-adaptive algorithms in GGM
in Section 6.

2 Preliminaries

In this section we describe the preliminaries required for this work. First we
introduce notation that we use throughout the paper and then we present and
analyze the DDL algorithm of [5], which will serve as a basis for our algorithms.
For sake of completeness, we give a brief description of the group-based homo-
morphic secret sharing scheme of [5] in Appendix A.

2.1 Notation for the Distributed Discrete Log Problem

Recall that the parties A and B successfully solve the DDL instance if A(gx)−
B(gx+b) = b. To simplify our notation, we typically do not explicitly write the
parameters G, g,N,M, T in the description of A,B, although some of them will
appear in the analysis. We are interested in the success (or error) probability of
A and B, taken over the randomness of x, b (and possibly over the randomness of
A,B). We denote by err(A,B, x, b, T ) the error event A(gx)−B(gx+b) 6= b, and
by Prerr(A,B, [M1,M2], T ) its probability Pr

x,b
[err(A,B, x, b, T )], where x ∈ ZN

and b ∈ [M1,M2] are uniform (typically, we are interested in M2 = −M1 = M).
We also denote by suc(A,B, x, b, T ) the complementary success event A(gx) −
B(gx+b) = b.

When both parties perform the same algorithm A, we shorten the notation
into err(A, x, b, T ), Prerr(A, [M1,M2], T ), and suc(A, x, b, T ), respectively. If the
parameters A,B, x, b, T are apparent from the context, we sometimes use err
and suc instead of err(A,B, x, b, T ) and suc(A,B, x, b, T ), respectively. As men-
tioned above, A and B can be randomized algorithms and in this case the success
(and error) probabilities are taken over their randomness as well. However, to
simplify our notation we will typically not refer to this randomness explicitly.
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We note that the DDL problem considered in [4–6] is slightly different, as
A,B are allowed to perform up to T group operations in expectation. In this
alternative definition, one can construct DDL protocols that are more efficient
than ours by a small constant factor, while our lower bounds remain the same
(again, up to a constant factor).

In the description and analysis of the DDL algorithms, we make frequent use
of group elements of the form gx+j . For sake of simplicity, we denote gj := gx+j .
In addition, we usually assume b ≥ 0, as otherwise we can simply exchange the
names of the parties A and B when they use the same algorithm. Finally, we
refer to a group operation whose output is h as a query to h.

2.2 The Basic DDL Algorithm

Let φ : G → [0, N − 1] be a pseudo-random function (PRF) that maps group
elements to integers. Our protocols evaluate φ on O(T ) group elements for
T � N1/2. We assume throughout the analysis that φ behaves as a truly random
permutation on the evaluated group elements, and in particular, we do not en-
counter collisions in φ (i.e., for arbitrary h 6= h′, φ(h) 6= φ(h′)). Our probabilistic
calculations are taken over the choice of φ, even though we do not indicate this
explicitly for simplicity.5

We describe the min-based DDL algorithm of [5] in Algorithm 1 and refer
to it as the basic DDL algorithm. The algorithm is executed by both A and B.
When applied to g0 = gx, the algorithm scans the T values g0, g1, . . . , gT−1 and
chooses the index imin for which φ(gi) is minimal. The output of the algorithm
is BasicT (gx) = (imin, gmin). Note that the algorithm depends also on G, g;
however, we do not mention them explicitly in the notation. Furthermore, the
output gmin will only be relevant later, when we use this algorithm as a sub-
procedure. For the sake of analysis, we slightly abuse notation below and refer
to imin as the (only) output of BasicT (gx).

The motivation behind the algorithm is apparent: if partyA applies BasicT (gx)
and party B applies BasicT (gx+b), where b� T , then the lists of values scanned
by the two algorithms (i.e., g0, g1, . . . , gT−1 and gb, gb+1, . . . , gb+T−1) contain
many common values, and thus, with a high probability the minimum is one of
the common values, resulting in success of the algorithm.

2.3 Analysis of the Basic DDL Algorithm

Error probability. The following lemma calculates the error probability of the
basic DDL algorithm, as a function of |b| and T .

5 The function φ (and additional pseudo-random functions defined in this paper) can
be implemented by a keyed MAC, where the key is pre-distributed to A and B. Thus,
our probabilistic calculations should be formally taken over the choice of the key.
They should include an error term that accounts for the distinguishing advantage
of an efficient adversary (A or B in our case) that attempts to distinguish the PRF
from a truly random permutation. However, for an appropriately chosen PRF, the
distinguishing advantage is negligible and we ignore it for the sake of simplicity.
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Algorithm 1: BasicT (gx)

1 begin
2 h′ ← gx, i← 0, min←∞;
3 while i < T do
4 y ← φ(h′);
5 if y < min then
6 gmin ← h′;
7 imin ← i, min← y;

8 end
9 h′ ← h′ · g;

10 i← i+ 1;

11 end
12 Output (imin, gmin);

13 end

Lemma 1. The error probability of the basic DDL algorithm is

Pr
x

[err(BasicT , x, b, T )] = Pr[(BasicT (gx)− BasicT (gx+b) 6= b)] =
2|b|
|b|+ T

.

Proof. We assume b ≥ 0, as otherwise we exchange the names of A and B.
Since both A and B use Algorithm 1, then A computes the function φ on
g0, g1, . . . , gT−1, while B computes this function on gb, gb+1, . . . , gb+T−1. If the
minimum value of φ for each party is obtained on an element gmin = gx · gimin

which is queried by both, then we have BasicT (gx) = imin and BasicT (gx+b) =
imin − b, implying that BasicT (gx) − BasicT (gx+b) = b and the parties are
successful. Similarly, they fail when the minimal value of φ on the elements
g0, g1, . . . , gb+T−1 is obtained on an element computed only by one party, namely
on one of the 2b elements gx ·gi for 0 ≤ i < b or T ≤ i < b+T . Assuming that the
output of φ on each element is uniform and the outputs are distinct, this occurs
with probability 2b/(b + T ). Hence Pr

x
[err(BasicT , x, b, T )] = 2|b|/(|b| + T ), as

asserted. �

The output difference in case of failure. An important quantity that plays a role
in our improved protocol is the output difference of the parties in case they fail
to synchronize on the same element gmin (i.e., their output difference is not b).
The following lemma calculates the expectation of this difference, as function of
|b| and T .

Lemma 2.

E
[∣∣BasicT (gx)− BasicT (gx+b)− b

∣∣ ∣∣ err
]

=
|b|+ T

2
.

Proof. We assume b ≥ 0. As written above, A computes the function φ on
g0, . . . , gT−1, and B computes this function on gb, . . . , gb+T−1. The ordering of
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the values φ(g0), . . . , φ(gb+T−1) is uniform, and so the permutation π satisfying
φ(gπ(0)) < φ(gπ(1)) < . . . < φ(gπ(b+T−1)) is uniformly random in the permu-
tation group of {0, 1, . . . , b + T − 1}. The event err is equivalent to the event
π(0) /∈ [b, T − 1]. Without loss of generality let us restrict ourselves to the event
π(0) < b, i.e. A encounters the minimal group element, and B does not; the other
possibility π(0) ≥ T is symmetric with respect to reflection. Clearly, π(0), which
equals BasicT (gx), is uniformly random in [0, b− 1]. Moreover, BasicT (gx+b) + b
is π (min {i |π(i) > b}) which uniformly distributes in [b, b+T−1]. Hence the ex-
pected final distance between the parties is (2b+T+1)/2−(b+1)/2 = (b+T )/2.
�

3 Overview of our New Protocol and Related Work

3.1 The New DDL Protocol

For the sake of simplicity, we assume in this overview that M = 1, hence |b| ≤ 1.
The starting point of our new DDL protocol is Algorithm 1. It makes T queries
(i.e., group operations) and fails with probability of roughly 2/T according to
Lemma 1. Let us assume that we run this algorithm with only T/2 queries, which
increases the error probability by a factor of 2 to about 4/T . On the other hand,
we still have a budget of T/2 queries and we can exploit them to reduce the
error probability. Interestingly, simply proceeding to calculate more consecutive
group elements is not an optimal way to exploit the remaining budget.

After the first T/2 queries, we say that A (or B) is placed at group element
gy if φ(gy) is the minimal value in its computed set of size T/2. Assume that A
and B fail to synchronize on the same group element after the first T/2 queries
(which occurs with probability of roughly 4/T ). Then, by Lemma 2, A and B
are placed at elements which are at distance of about T/4, i.e., if A is placed at
gy and B is placed at gz, then |y−z| ≈ T/4. Our main idea is to use a somewhat
different procedure in order to try to synchronize A and B in case they fail to
do so after the first T/2 queries, while keeping A and B synchronized if they
already are.

The next procedure employed by both A and B is a (pseudo) random walk
starting from their initial position, whose step length is uniformly distributed in
[1, L − 1], where L ≈

√
T . The step length at group element gy is determined

by ψL−1(gy), where ψL−1 is a pseudo-random function independent of φ that
outputs a uniform integer in [1, L− 1].6 Assume that after the first T/2 queries,
B is placed at distance of about T/4 in front of A. Then A will pass B’s initial
position after about

√
T/2 steps and simple probabilistic analysis shows that

A will land on one of B’s steps after an additional expected number of about√
T/2 steps. From this point, the walks coincide for the remaining T/2 −

√
T

steps, and B makes about
√
T/2 extra steps. Similarly to Algorithm 1, each

party outputs the offset of the minimal φ(gy) value visited during its walk. Since

6 Our analysis assumes that ψL−1 is a truly random function and our probabilistic
calculations are taken over the choice of ψL−1.
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both A and B use the same deterministic algorithm, they remain synchronized
if they already are at the beginning of the walks. On the other hand, if they
are not initially synchronized, their walks are expected to coincide on T/2−

√
T

elements, and hence the probability that they remain unsynchronized is roughly√
T/(T/2) = 2 ·T−1/2. Thus, the error probability at this stage is about 4 ·T−1 ·

2 ·T−1/2 = 8 ·T−3/2, which already significantly improves upon the 2 ·T−1 error
probability of Algorithm 1 for large T .

However, we can still do better. For the sake of simplicity, let us completely
ignore constant factors in rest of this rough analysis. Note that we may reserve
an additional number of O(T ) queries to be used in another random walk by
shortening the first two random walks, without affecting the failure probability
significantly. Hence, assume that the parties fail to synchronize after the ran-
dom walk (which occurs with probability of about T−3/2) and that we still have
enough available queries for another random walk with O(T ) steps. Since each
party covers a distance of about T 3/2 during its walk, then the expected dis-
tance between the parties in case of failure is roughly T 3/2. We can now perform
another random walk with expected step length of T 3/4 (hence the walks are
expected to coincide after about T 3/4 steps), reducing the error probability to
about T−3/2 · (T 3/4 ·T−1) = T−7/4. This further increases the expected distance
between A and B in case of failure to approximately T 7/4. We continue execut-
ing random walk iterations with a carefully chosen step length (distributing a
budget of O(T ) queries among them). After i random walk iterations, the error

probability is reduced to about T−2+2−i

(and the expected distance between

the parties is roughly T 2−2−i

). Choosing i ≈ log log T gives an optimal error
probability of about T−2+1/ log T = O(T−2).

Our new DDL protocol is presented in algorithms 2 and 3. Algorithm 2 de-
scribes a single iteration of the random walk, parameterized by (L, T ) which
determine the maximal step length and the number of steps, respectively.7 Al-
gorithm 3 describes the full protocol which is composed of application of the
basic DDL algorithm (using t0 < T queries, reserving queries for the subsequent
random walks), and then I additional random walks, where the i’th random
walk is parameterized by (Li, ti) which determine its maximal step length and
number of steps. Between each two iterations in Step 6, both parties are moved
forward by a large (deterministic) number of steps, in order to guarantee inde-
pendence between the iterations (the computation time used to perform these
calculations is negligible compared to T ). We are free to choose the parameters

I, {Li, ti}, as long as
∑I
i=0 ti = T is satisfied.

The very rough analysis presented above assumes that we have about T
queries in each of the log log T iterations, whereas we are only allowed T queries
overall. Moreover, it does not accurately calculate the error probability and
the distance between the parties in case of failure in each iteration. Taking all

7 We assume that the algorithm uses a table containing the pre-computed values
g, g2, . . . , gL−1. Otherwise, it has to compute gzi+1 on-the-fly in Step 10, which
results in a multiplicative penalty of O(log(T )) on the number of group operations.
Of course, it is also possible to obtain a time-memory tradeoff here.
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Algorithm 2: RandWL,T (h)

1 begin
2 h′ ← h, i← 0, min←∞, d0 ← 0;
3 while i < T do
4 y ← φ(h′);
5 if y < min then
6 hmin ← h′;
7 dmin ← di, min← y;

8 end
9 zi+1 ← ψL−1(h′);

10 h′ ← h′ · gzi+1 ;
11 di+1 ← di + zi+1;
12 i← i+ 1;

13 end
14 Output (dmin, hmin);

15 end

Algorithm 3: IteratedRandWI,t0,{(Li,ti)Ii=1}(h)

1 begin
2 (c0, h0)← Basict0(h);
3 p0 ← c0;
4 i← 1;
5 while i ≤ I do

6 h′i−1 ← hi−1 · g
∑

j<i tjLj ;
7 (ci, hi)← RandWLi,ti(h

′
i−1);

8 pi ← pi−1 + ci;
9 i← i+ 1;

10 end
11 Output pI ;

12 end

of these into account in an accurate analysis results in an error probability of
Ω(log T ·T−2). Surprisingly, we can still achieve an error probability of O(T−2).
This is done by a fine tuning of the parameters which distribute the number of
queries among the iterations and select the step length of each random walk. In
particular, it is not optimal to independently optimize the step length of each
iteration and one has to analyze the subtle dependencies between the iterations
in order to achieve an error probability of O(T−2).

As the fine tuning of the parameters is rather involved, in addition to the
theoretical analysis we verified the failure probability by extensive experiments.
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3.2 Related Work

The most closely related work to our DDL algorithm is Pollard’s “kangaroo”
method for solving the discrete logarithm problem in an interval (DLI) using
limited memory (see Galbraith et al. [17] and Pollard [12, 18] for further analysis
and extensions). The kangaroo method launches two random walks (kangaroos),
one from the input h = gx (where x the unknown discrete log) and one from gy,
where y is a known value in an interval of a fixed size R around x. The algorithm
is optimized such that the walks meet at a “distinguished point”, which reveals
x. The kangaroo method thus resembles a single random walk iteration of our
DDL algorithm.

On the other hand, there are fundamental differences between the standard
DLI and DDL. These differences result in the iterative structure of our algorithm
that differs from Pollard’s method. First, in contrast to the DLI problem, in DDL
A and B cannot communicate and never know if they succeed to synchronize.
Hence, the parties cannot abort the computation at any time. Second, the goal
in DDL is to minimize the error probability, whereas achieving a constant error
probability (as in standard DLI) is unsatisfactory. To demonstrate the effect of
these differences, observe that solving the discrete log problem in an interval of
size 3 can be trivially done with probability 1 using 3 group operations. On the
other hand, our algorithm for solving DDL for M = 1 is much more complicated
and achieves an error probability of about T−2 using T group operations (which
is essentially optimal for many concrete group families).

Yet another difference between DLI and DDL is that in DLI the boundaries
of the interval of the input h are known, whereas in DDL the input of each party
is completely uniform. The knowledge of the interval boundaries in DLI allows
to shift it to the origin (using the self-reducibility property of discrete log) and
efficiently use preprocessing (with a limited amount of storage) to speed up the
online computation, as shown by Bernstein and Lange [2]. It is not clear how to
efficiently exploit preprocessing in DDL.

4 The New Distributed Discrete Log Protocol

In this section we study our new DDL protocol in more detail. In Section 4.1
we focus on a single iteration of our DDL protocol (i.e., a single random walk
iteration) and analyze its failure probability and the expected distance between
its outputs in case of a failure. In Section 4.2 we analyze the complete protocol.
The experimental verification of the protocol is presented in Section 4.3. We also
describe some practical considerations regarding the protocol in Appendix D.

4.1 A Single Iteration of our DDL Protocol – the Random Walk
DDL Algorithm

Recall that in Algorithm 2, applied with parameters (L, T ), both parties perform
a random walk of T steps of the form gy → gy+ai , where the length ai of each step
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is determined by a (pseudo) random function ψL−1 : G→ {1, 2, . . . , L−1} which
guarantees that the step length is uniformly distributed in the range [1, L− 1].
Each party then chooses, among the elements of G visited by its walk, the element
hmin for which φ(hmin) is minimal (as in the basic DDL algorithm).8

In Algorithm 3, once the parties synchronize in a given stage (i.e., application
of Algorithm 2), they remain synchronized in the subsequent ones as each stage
is deterministic. Hence, in each stage, Algorithm 3 tries to minimize the failure
probability, given that in the previous stage, the parties failed to synchronize.
This error probability depends on the ‘initial’ distance between the parties, at
the start of the stage. Hence, in order to analyze the total error probability of the
whole Algorithm 3, we should estimate the error probability of each stage (given
the distance at its beginning), together with the (expected) distance between
the parties in case of failure to synchronize.

Additional Notation In our analysis we use some auxiliary notation. Without
loss of generality, we assume that b ≥ 0 (namely, B is located at distance b in
front of A). We let SA be the number of steps of A until its walk lands on
an element visited by B (i.e., the number of queries made by A strictly before
the first element of A that is included in B’s path). If this never occurs, we
let SA = T . Similarly, we define SB as the number of steps of B until its walk
lands on an element visited by A. Clearly, the walks of A and B coincide for
T −max(SA, SB) steps.

We define UA as the number of steps A performs until it is within reach
of a single step from the starting point of B. Namely, UA = min{i | dAi >
b − L}, where dAi is the variable di in Algorithm 2 applied by A. In addition,
we let VA, VB denote the numbers of steps performed by A and B, respectively,
starting from the point where A is within reach of a single step from the starting
point of B, until the walks collide or one of them ends. Furthermore, we denote
Vm = max{VA, VB}. Notice that SA = UA + VA and SB = VB , and hence

max(SA, SB) ≤ UA + Vm. (1)

Below, we evaluate the expectations of the random variables UA, Vm in order to
bound the error probability of synchronization based on Algorithm 2.

Finally, while RandWL,T (h) has two outputs, we slightly abuse notation and
refer to dmin as the (only) output of RandWL,T (h) since only this output is
relevant for this analysis.

The Failure Probability of Algorithm 2 First, we bound the expected
number of steps performed by A until it reaches the starting point of B.

Lemma 3. E[UA] < 2b
L .

8 We assume in our analysis that during the application of the whole protocol by a
single party, each function φ, ψL−1 is not evaluated twice on the same input. These
constrains are satisfied since |G| = N is much larger than T (e.g., |G| > cT 2 for a
sufficiently large constant c).
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Proof. By the definition of UA, we have dAUA
< b. Consider the martingale d′i =

dAi − iL/2 (which is indeed a martingale, as ψL−1(h′) computed in the algorithm
are independent and have expectation L/2). The classical Doob’s martingale
theorem yields

0 = d′0 = E[d′UA
] = E[dAUA

]− LE[UA]/2.

As dUA
< b, we deduce E[UA] < 2b/L. �

Our next lemma bounds the expectation of SA+SB , that is, the total number
of steps performed by the two walks together before they meet.

Lemma 4. Suppose the initial distance between the parties, b, satisfies 0 < b <
L. Then E[SA + SB ] ≤ L− 1.

Proof. For ease of computation, we do not trim SA and SB with T . Of course, this
can only make the upper bound larger. One easily sees that E[SA +SB ] is finite
and depends only on b (and the parameter L). Write Eb for this expectation. We
have E0 = 0, and by dividing into cases according to the result of the first step
of A, we obtain

Eb = 1 +
1

L− 1
(Eb−1 + Eb−2 + . . .+ E1 + E0 + E1 + . . .+ EL−1−b) .

A valid solution for this system of linear equations is Eb = L−1 for all 0 < b < L.
This is actually the only solution, since the matrix corresponding to this system
is strictly diagonally dominant, and thus is invertible by the Levy-Desplanques
theorem. Therefore, E[SA + SB ] = L− 1, independently of b. �

The next lemma bounds the maximum between the numbers of steps per-
formed by A and B between the time A “almost” reached the starting point of
B and the meeting of the walks.

Lemma 5. E[Vm] ≤ L−1
2 +

√
8(L− 1).

Proof. The proof consists of several steps.

Step 1. We write Vm = max{VA, VB} = VA+VB

2 + |VA−VB |
2 . Lemma 4 upper

bounds the first summand by (L− 1)/2.

Step 2. We now continue and bound E |VA−VB |. From Cauchy-Schwarz it suffices
to bound

√
E[(VA − VB)2]. To analyze such terms, we define

Fb = E
[
(VA − VB)2

]
.

Note that we write Fb in order to emphasize that Fb depends on the initial
distance between the parties. As Fb = F−b, we may assume b ≥ 0, i.e. A is
behind B. To compute Fb, we let n be the minimal time with dAn ≥ b. Note that
n is a random variable and not a constant. We denote (V ′A, V

′
B) = (VA − n, VB),

which corresponds to the walk after letting A perform n steps. We thus have

Fb = E[(n+ V ′A − V ′B)2] = E[n2] + E[(V ′A − V ′B)2] + 2E[(V ′A − V ′B)n]. (2)
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We now wish to understand each of the terms in the RHS (right-hand side)
of (2).

Step 2(a). We start with E[n2]. From Lemma 3, E[n] ≤ 2(b + L − 1)/L. Addi-
tionally, consider the martingale

Sk =

k∑
i=0

(dAk − dAi )− L

2

(
k + 1

2

)
.

To see this is a martingale, observe that

Sk+1 − Sk = (k + 1)(dAk+1 − dAk )− (k + 1)L/2,

which has expectation 0 regardless of the values of S0, . . . , Sk. Hence, by Doob’s
martingale theorem, we have E[Sn] = 0, where n is the stopping time defined
above. Thus,

L

2
E
[(
n+ 1

2

)]
= E

[
n∑
i=0

(dAn − dAi )

]
≤ E[n](L+ b− 2) ≤ 2(b+ L− 1)2

L
.

Therefore,

E[n2] ≤ 8

(
L+ b− 1

L

)2

.

Step 2(b). We now reason about E[(V ′A − V ′B)2]. Notice V ′A − V ′B equals 0 with
probability ≥ 1/(L−1), since in the last step before dAn ≥ b we had a probability
of 1/(L− 1) to end up with dAn = b. Hence, E[(V ′A− V ′B)2] is a positive weighted
sum of some (Fb′)’s, all satisfying b′ ≤ L− 2, with total weight ≤ 1− 1/(L− 1).

Step 2(c). Another crucial component is that E[(V ′A − V ′B)n] ≤ 0. Actually, for
any fixed η we have E [V ′A − V ′B |n = η] ≤ 0, which implies the former assertion.
This is intuitive, since once A is ahead of B, on average B will have to perform
more steps than A in order to catch up A. Formally, one can use once again a
martingale argument and obtain

E[dAV ′A+n − V ′AL/2] =︸︷︷︸
martingale

dAn ≥ b = dB0 + b =︸︷︷︸
martingale

E[dBV ′B
− V ′BL/2] + b.

Observing that dAV ′A+n = dBV ′B
+ b we find that E[V ′A] ≤ E[V ′B ] as desired.

Step 3. So far, we obtained some inequalities of the form

Fb ≤ 8

(
L+ b− 1

L

)2

+ (1− 1/(L− 1))E
b′

[Fb′ ],

where the involved b′ are ≤ L − 2. Letting m = maxb′≤L−2{Fb′}, we deduce
m ≤ 32 + (1− 1/(L− 1))m, and thus, m ≤ 32(L− 1).
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Step 4. Putting all together, we obtain

Vm ≤
L− 1 +

√
Fb

2
≤ L− 1

2
+
√

8(L− 1), (3)

as asserted. �
Now we are ready to estimate the failure probability of Algorithm 2.

Lemma 6. Let R = 2b/L+ L/2 +
√

8L for 0 < b < L. The error probability of
the random walk DDL algorithm satisfies

Pr
x

[err(RandW, x, b, T )] = Pr[(RandWL,T (gx)− RandWL,T (gx+b) 6= b)]

≤ 2R

T +R
.

Proof. The walks of A and B coincide for T − max(SA, SB) steps. Notice that
we have,

E[max(SA, SB)] ≤ E[UA + Vm] ≤ L

2
+

2b

L
+
√

8L = R, (4)

where the first inequality uses (1) and the second inequality uses Lemmas 3
and 5. Similarly to the basic DDL algorithm (Lemma 1), the error probability
(assuming that the output of φ on each element is uniformly random) is

Pr
x

[err(RandW, x, b, T )] = E[2 max(SA, SB)/(T + max(SA, SB))]

≤ E[2 max(SA, SB)]

T + E[max(SA, SB)]
≤ 2R

T +R
,

where the first inequality is Jensen’s inequality applied to the increasing concave
function x 7→ 2x/(T + x) in the domain x > 0, and the second inequality uses
the monotonicity of the function x 7→ 2x/(T + x) and Equation (4). �

The Output Difference in Case of Failure Similarly to Lemma 2 which
bounded the expected difference of outputs in case of failure for the basic DDL
algorithm, we bound the analogous quantity for Algorithm 2. In order to achieve
this result, we need the following corollary of the classical Azuma’s martingale
inequality.

Theorem 1 (Azuma’s inequality). Let X0, X1, . . . , Xn be a martingale with
|Xi −Xi−1| ≤ V . Then for any t ≥ 0,

Pr
[
|Xn −X0| ≥ V · t

√
n
]
≤ 2 exp(−t2/2).

Lemma 7. Let X1, . . . , Xn be independent random variables with |Xi−E[Xi]| ≤
V and let E be an event. Then

E

 n
max
k=1

∣∣∣∣∣∣
∑
i≤k

(Xi − E[Xi])

∣∣∣∣∣∣
∣∣∣∣∣∣ E
 ≤ V√8n log(2/Pr[E ]).
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To understand the intuition behind the lemma, consider the sum of indepen-
dent {1,−1} random variables {Xi}ni=1. By Chernoff’s inequality, Pr[|

∑
Xi| >

t
√
n] < e−t

2/2. However, if we condition on the event E = {
∑
Xi = n}, then we

have Pr[|
∑
Xi| > t

√
n|E ] = 1 for all t <

√
n. On the other hand, the probability

of the event E is extremely small. We claim that if one is allowed to condi-
tion only on events with not-so-small probability, then the expectation of the
maximum between the sums |

∑k
i=1Xi| is not much larger than O(

√
n) (which

follows from Chernoff’s inequality in the unconditioned case), and in particular,
Pr[|

∑
Xi| > t

√
n|E ] is negligible for any “large” t. Our lemma is the martingale

version of this intuition.

Proof (of Lemma 7). Let t ≥ 0. Consider the martingale Y0, Y1, . . . , Yn defined
by Y0 = 0 and

Yk = Yk−1 +

{
Xk − E[Xk], if |Yk−1| < t

0, otherwise
.

Write M = maxnk=1

∣∣∣∑i≤k(Xi − E[Xi])
∣∣∣. Notice |Yn| ≥ t if and only if M ≥ t.

Using Azuma’s inequality for the martingale {Yk}k, we deduce

Pr [M ≥ t] ≤ 2 exp(−t2/(2nV 2)).

Using Fubini’s theorem and a partition into “small” and “large” values of t, we
obtain that for any r > 0,

E [M | E ] Pr[E ] =

∫ ∞
0

Pr [(M > t) ∧ E ] dt

≤
∫ ∞
0

min
{

Pr[E ], 2 exp(−t2/(2nV 2))
}

dt

≤ rPr[E ] + 2

∫ ∞
r

exp(−t2/(2nV 2))dt

≤ rPr[E ] +
2V 2n · exp(−r2/(2nV 2))

r
.

Choosing r = V
√

2n log(2/Pr[E ]), we obtain

E [M | E ] Pr[E ] ≤ 2rPr[E ] = Pr[E ] · 2V
√

2n log(2/Pr[E ]).

Dividing both sides by Pr[E ] gives the result. �
Finally, we show that either the error probability is “very small” (and so

there is no need to continue the random walk iterations), or we can bound the
distance between the outputs in case of failure.

Lemma 8. If Prerr(RandWL,T , [1, 1], T ) ≥ ε, then for 0 < b < L and h1 ∈ G,

E
[∣∣RandWL,T (h1)− RandWL,T (h1 · gb)− b

∣∣ ∣∣ err
]

≤ b+
TL

4
+ L

√
32T log(2/ε).

(5)
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Proof. The jumping patterns of the parties (ψL−1(h′)) are independent of their
choices of minimums hmin among the group elements they queried. Hence, simi-
larly to Lemma 2, we note that the event err happens if and only if the minimal
element in the union of the elements queried by A and B, was queried only by one
of them. Since A and B query the same number of elements, when conditioning
on err, both A and B have probability 1/2 to query this minimal element. From
now on we rename A,B so that A is the one who queries the minimal element
(in case of a tie we randomly rename them). Notice that since b measures how
much A is behind B, we might have changed b’s sign. We observe that, even
when conditioning on err, dBmin uniformly distributes in dB0 , . . . , d

B
T−1, since, as

mentioned, err is independent of the relative order of the non-minimum elements
queried by the parties (and A queried the minimum element).

Let PB be the point in B’th route which is closest to dAmin, i.e. we choose
PB ∈ {dB0 , . . . , dBT−1} which minimizes |dAmin − PB − b|. Notice the lemma asks
to bound the expected value of |dAmin − dBmin − b|, given err. We simply bound

|dAmin − dBmin − b| ≤ |dAmin − PB − b|+ |PB − dBmin|, (6)

and analyze the values on the right hand side of (6). First,

|dAmin − PB − b| ≤ max{|b|, L/2, |dAT−1 − dBT−1 − b|}. (7)

We can verify (7) by case analysis:

– If dAmin ≤ b, we may take PB = dB0 = 0.
– If dAmin ≥ dBT−1 + b, we may take PB = dB0 = 0.
– Otherwise, dB0 + b ≤ dAmin ≤ dBT−1 + b; since the jumps of B are < L (i.e.
dBi+1−dBi < L), we may find PB ∈ {dB0 , . . . , dBT−1} with |dAmin−PB−b| < L/2.

Triangle inequality applied to (7) implies

|dAmin − PB − b| ≤ |b|+ L/2 + |dAT−1 − dBT−1|
≤ |b|+ L/2 + |dAT−1 − (T − 1)L/2|+ |dBT−1 − (T − 1)L/2|.

Using Lemma 7 to bound the right hand side of the previous inequality, we
obtain

E
[
|dAmin − PB − b|

∣∣ err
]
≤ |b|+ L/2 + L

√
8T log(2/ε). (8)

We now wish to bound E
[
|PB − dBmin|

∣∣ err
]
. Let j satisfy dBj = PB . As dBmin

uniformly distributes in {dB0 , . . . , dBT−1} (even given err), we deduce

E
[
|PB − dBmin|

∣∣ err
]
≤ E

[
E

i∼U(0,T−1)
[|PB − dBi |]

∣∣∣∣ err

]
≤ E

[
E

i∼U(0,T−1)
[|i− j|L/2 + |dBi − iL/2|+ |dBj − jL/2|]

∣∣∣∣ err

]
≤ (T − 2)L/4 + L

√
8T log(2/ε),

(9)

where the last inequality uses Lemma 7 again. Combining (8) and (9) implies
the required (5). �
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4.2 The Iterated Random Walk DDL Algorithm

As described in Section 3, our full DDL protocol (i.e., Algorithm 3) runs itera-
tively several stages of Algorithm 2. It depends on a set of parameters: I, which
is the number of iterations in the algorithm (on top of the basic DLL algorithm),
(ti)

I
i=0, which represent the number of queries in each of the I+1 iterations, and

(Li)
I
i=1, which determine the (maximal) sizes of steps performed in each random

walk iteration.
Given a set of parameters, Lemmas 6 and 8 allow us to compute the failure

probability of IteratedRandW under that set of parameters. A “naive” choice of
parameters leads to a failure probability of O(T−2 log T ). However, we show in
the following theorem that the parameters can be chosen in such a way that the
failure probability becomes O(T−2).

Theorem 2. There exists a parameter set PS for which the error probability of
the iterated random walk DDL algorithm is

Prerr(IteratedRandWPS , [1, 1], T )

= Pr[IteratedRandWPS(gx)− IteratedRandWPS(gx+1) 6= 1]

≤ 210.2+o(1)/T 2.

A simple distance extension argument (see Section 5.5, Lemma 13) allows us
to obtain a similar result for larger distances between the starting points.

Corollary 1. Consider Algorithm 3 with the parameter set PS chosen in The-
orem 2. Then for any distribution of the initial distance b that has expectation
E[|b|], the error probability of Algorithm 3 is at most O(E |b|/T 2). In particular,
Prerr(IteratedRandWPS , [−M,M ], T ) = O(M/T 2).

We note that when E[|b|] � 1, it is more efficient to start the sequence of
iterations directly with a random walk of expected step length of roughly

√
E[|b|]

(instead of starting it with Algorithm 1). This reduces the error probability by
a constant factor.

We also note that for specific (not too small) values of T , one can strengthen
the bound of Theorem 2, using a computer-aided choice of parameters. Such
results, for several sample values of T , are presented in Appendix B. These
results also show that for small values of T , the o(1) term does not dominate
the probability bound, and so, the result of Theorem 2 applies (up to a small
constant factor) also for small values of T .

Proof (of Theorem 2). In the proof we use some additional notation. We assume
that the party called A executes IteratedRandW with h = h−1, while the party
called B executes IteratedRandW with h = h−1·g. The starting distance between
the parties is thus b = 1, and the distance after stage i, denoted by bi, is |pAi −
pBi − b|. For i ∈ {0, 1, . . . , I}, we write erri for the event that A,B do not agree
on hi (i.e. bi 6= 0), and err = errI . Note that once the parties agree on some
hi, then the rest of their (iterated) walks coincide and they are successful, i.e.,
pAI = pBI + b.
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In order to prove the theorem, we should choose values for I, ti and Li so
that Pr[err] is small. For this, we start by upper-bounding Pr[err] in terms of
these parameters. We define the sequence of functions {fk : N→ [0, 1]}I+1

k=0 by

fk(x) = Pr [err | bk−1 = x] ,

where b−1 is interpreted as the initial distance between the parties, i.e., b−1 =
b = 1. We wish to bound these functions inductively, starting with k = I + 1
and going down to k = 0.

Instead of working directly with the functions {fk}, we shall bound them
from above by concave functions {gk}, and then bound the gk’s from above.
This will allow us to combine upper bounds on the error probability after the
(k + 1)’th step conditioned on a specific distance between the parties after the
k’th step, into an upper bound on the same error probability conditioned on the
expected distance after the k’th step, that we already computed.

We start with gI+1 ≡ 1 (and so, clearly fI+1 ≤ gI+1), and define gk by a
backward induction. Assume gk+1 was already defined. We have

fk(x) = Pr [err | bk−1 = x]

=
∑
m

Pr [err | bk = m ∧ bk−1 = x] Pr [bk = m | bk−1 = x]

(a)
=
∑
m

fk+1(m) Pr [bk = m | bk−1 = x]

(b)
= E [fk+1(bk) | bk−1 = x ∧ bk 6= 0] · Pr [bk 6= 0 | bk−1 = x]

(c)

≤ gk+1 (E [bk | bk−1 = x ∧ errk]) · Pr [errk | bk−1 = x] .

(10)

Equality (a) follows from the fact that the performance of the algorithm from
stage k+1 onwards is conditionally independent from its performance on previous
stages, given bk. Equality (b) follows from the fact that fk+1(0) = 0. Inequality
(c) is a consequence of Jensen’s inequality, together with the equality errk =
{bk 6= 0}.

The k’th stage of Algorithm 3 is applied on h′k−1, which sufficiently precedes
hk−1, to ensure that the elements considered by both parties in the k’th stage
had not been used in previous stages, and so the performance of the algorithm
on stage k is conditionally independent of the previous stages, given pAk−1, p

B
k−1.

Thus, stage k may be analyzed using the tools of Section 4.1, with bk−1 playing
the role of b. Lemma 6 provides the bound

Pr [errk | bk−1 = x] ≤ 4x

tkLk
+
Lk +

√
32Lk

tk
. (11)

Similarly, by setting ε = 1/T 2, Lemma 8 asserts that if Pr [errk | bk−1 = x] ≥ ε,
then

E [bk | bk−1 = x ∧ errk] ≤ x+
tkLk

4
+ Lk

√
32tk log(2/ε). (12)
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Combining (10), (11), and (12), we obtain

fk(x) ≤ max
{
ε, gk+1

(
x+

tkLk
4

+ Lk
√

32tk log(2/ε)

)
·

4x
Lk

+ Lk +
√

32Lk

tk

}
.

(13)

Since we eventually choose the functions gk(x) to be linear functions (as will be
shown below), gk(x) = ukx+ vk with uk, vk ≥ 0, either we have gk(x) ≥ gk(1) ≥
ε, or gk(1) < ε and the theorem holds (even when truncating stages 0..k − 1 in
Algorithm 3); hence, we may forget that we must take gk(x) to be at least ε.

A straightforward choice of gk(x) that guarantees fk(x) ≤ gk(x) is to set
gk(x) to be the right hand side of (13). For the sake of simplicity, we write

g̃k(x) =

(
4x
Lk

+ Lk

tk

)
gk+1

(
x+

tkLk
4

)
, (14)

omitting ‘error terms’ of (13). We shall show below that for all k we have fk(x) ≤
g̃k(x)(1 + o(1)), and thus, bounding g̃k is sufficient for bounding fk.

However, since gk+1(x) is linear in x, g̃k(x) is quadratic in x, and so, not
concave. To remedy this, we let

∀k ≥ 1 : Ck =

k−1∑
i=0

(Li − 1)ti,

which is an upper bound for bk−1, and write b2k−1 ≤ Ckbk−1. Equation (14),
together with x2 ≤ Ckx, allows us to define recursively a sequence of pairs
(uk, vk), by (

uk

vk

)
= Ak

(
uk+1

vk+1

)
, (15)

where

∀k ≥ 1 : Ak =
1

Lktk

(
(tk + Lk)Lk + 4Ck 4

tkL
3
k/4 L2

k

)
, (16)

and then set gk(x) = ukx + vk to be a linear function that bounds g̃k(x) from
above (and thus, also essentially bounds fk(x) from above).

Analogously, since we are only interested in g0(1), Lemmas 1 and 2 yield
f0(1) ≤ (1+o(1))g1((t0 +1)/2) ·2/(t0 +1), which allows extending the definition
of gk to k = 0 by setting (

u0

v0

)
= A0

(
u1

v1

)
,

where

A0 =

(
1 0

0 2/t0

)
.
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Finally, we achieve a bound on Pr[err]:

Pr[err] ≤ g0(b) = (b 1)A0A1 · · ·AI

(
0

1

)
(17)

To analyze Equation (17), we define (xk, yk) so that

(xk
4yk
tkLk

) = (1 1)A0 · · ·Ak.

The recursion formula for (xk, yk) is (x0 y0) = (1 1), and for k ≥ 1,

(xk yk) = (xk−1 yk−1)

(
1 + Lk/tk + 4Ck/(tkLk) 1

L2
k/(Lk−1tk−1) L2

k/(Lk−1tk−1)

)
.

It is clear from the formula that yk ≤ xk, and thus, we can restrict ourselves to
understanding xk. We have

xk ≤
(

1 +
4Ck + L2

k

tkLk
+

L2
k

tk−1Lk−1

)
xk−1, x0 = 1. (18)

Suppose we prove xI ≤ Q. This implies yI ≤ Q, and so, Pr[err] ≤ 4Q/(tILI).
Hence it is also desirable to have LI ≥ Ω(T ).

At this point, we are ready to choose values for tk and Lk. We set

I∑
k=0

tk = T, tk = 21+c1(I−k)tk−1.

L0 = 2, Lk = 2c2(k−I)
√
Lk−1tk−1.

(19)

We start by computing a lower bound for LI . Write zk = log(tk/Lk) ≤ log(T ).
Using the recursive definitions of tk, Lk we get

zk = log
(

21+(c1+c2)(I−k)tk−1/
√
tk−1Lk−1

)
= zk−1/2 + 1 + (c1 + c2)(I − k).

Thus, inductively one obtains zk ≤ log(T )/2k + 2 + 2(c1 + c2)(I−k+ 1). We will
later choose I ≥ log log(T ) + ω(1), so that in particular, LI ≥ tI/41+c1+c2+o(1).

Next, to bound xI we should bound the quantities in (18). Writing qk =
Ck/(tkLk), we have

qktkLk = Ck = Ck−1 + tk−1Lk−1 = (1 + qk−1)(tk−1Lk−1).

We assume I = o(
√

log(T )), so that z0 ≥ 2+2(c1 +c2)(I+1), and by induction,

zk ≥ 2 + 2(c1 + c2)(I − k + 1).

Note that tkLk/(tk−1Lk−1) = tk/(2
2c2(I−k)Lk), and hence,

log(tkLk/(tk−1Lk−1)) ≥ zk − 2c2(I − k).
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We conclude,

qk ≤
1 + qk−1

41+c2+(I−k+1)c1
.

This recursion remains true even if we artificially define q0 = 0. Equation (18)
now gives xk ≤ mkxk−1, where

mk = 1 + 4qk +
1

41+(c1+c2)(I−k+1)
+

1

4c2(I−k)
.

Lastly, notice tI ≥ T/K where K = (1 + 2−1 + 2−2+(2
2)c1 + 2−3+(3

2)c1 + . . .).
Combining these estimates, we obtain the following upper bound on Pr[err]:

Pr[err] ≤ 4 ·K2 · 41+c1+c2
I∏
k=1

mk/T
2.

Computer-aided calculations suggests choosing (c1, c2) = (0.44, 0.75) in (19),
which results in

Pr[err] ≤ 1133/T 2.

A few issues are due. The first is that I can indeed be taken to be anything
which is log log(T ) + ω(1) but still o(

√
log(T )), without significant effect on

the (provable) performance of the algorithm. Another issue is that the steps
Lk must be taken to be integers. This does not affect the analysis much, as
this only replaces the Lk’s in the proof by others which multiplicatively differ
by at most 1 + O(1/L1) from the original values, and we have L1 = ω(T 1/3)
since I = o(

√
log(T )). Yet another issue is the error terms neglected in the pass

from (13) to (14). These relative errors are only 1+O(max(1/
√
L1,
√

log(T )/tk)),
which is negligible since there are only I steps. �

4.3 Experimental verification

In order to evaluate Algorithm 3 in practice, we programmed a simulator which
simulates IteratedRandWPS(gx) and IteratedRandWPS(gx+1), and empirically
approximates Pr[err] as the percentage of pairs of simulations which disagree.
The parameters for these simulations were chosen using a numerical optimizer
based on the analysis above. We used G = Z, g = 1 and h = 0. Since Pr[err] ∼
T−2, where T is the number of group elements computed by the two parties, a
naive simulator must perform ∼ T 2 simulations, each taking ∼ T group oper-
ations, to obtain only one instance for which the parties failed to synchronize,
while we wish to obtain at least a few hundreds of such failures. Since T 3 time
is too much, we performed the two following optimizations, which do not affect
the simulator’s reliability.

1. The first optimization we use is to trim the first stage of the algorithm, where
we perform BasicG,g(h, t0). We know that the probability that cA0 6= cB0 is
precisely 2/(t0+1) and in this case, the absolute value of the distance between
cA0 and cB0 of Algorithm 3 distributes according to U(1, t0 + 1).
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2. The second optimization we use is the observation that once dAi = dBi in
Algorithm 3, we will end up with dAI = dBI , since if the parties managed to
synchronize in an early stage, they will keep being synchronized.

The results of the simulations are given in Table 1.9 In order to obtain experi-
mental data for larger values of T , we performed separate experiments in which
we obtained an additional optimization – a much more subtle one. We describe
this optimization and the experimental results obtained using it in Appendix C.

T I
∼ log2(tk)

∼ log2(Lk)

T 2 · Pr[err]

σ (SD)

T 2 · Pr[err]

σ (SD)

213 5
6.0, 8.6, 9.6, 10.4, 11.1, 11.7

1.6, 3.6, 5.6, 7.5, 9.4

334

2

336.6

0.3

216 6
7.1, 10.3, 11.6, 12.5, 13.3, 14.1, 14.7

1.6, 3.9, 6.2, 8.3, 10.3, 12.2

390

10

382.5

1

219 7
7.0, 10.3, 12.6, 13.7, 14.7, 15.5, 16.3, 17.1, 17.7

1.6, 2.8, 5.2, 7.4, 9.6, 11.5, 13.4, 15.2

391

25

394

2

222 8
8.2, 12.6, 15.1, 16.4, 17.5, 18.5, 19.3, 20.1, 20.7

1.6, 3.7, 6.7, 9.4, 11.8, 14.1, 16.2, 18.1

—

—

420

4

225 9
8.4, 13.0, 16.5, 18.0, 19.3, 20.5, 21.5, 22.3, 23.1, 23.8

1.6, 3.2, 6.4, 9.4, 12.2, 14.7, 17.0, 19.1, 21.1

—

—

427

10

The fourth column gives the result of simulations without the third optimization
(detailed in Appendix C), and the last column uses that optimization.

Table 1. Experimental Results

5 Error Probability Lower Bounds in Concrete Group
Families

5.1 Overview of the Lower Bound Proof

We outline the main ideas of the lower bound proof in concrete family groups.
For the sake of simplicity, we only consider DDL with M = 1 in this overview
(whereas the proof considers general M).

9 We note that according to the proof of Theorem 2, I can be taken to be any value
between log log(T )+ω(1) and o(

√
log(T )), without a significant effect on the provable

performance of the algorithm. On the other hand, according to Table 1, I seems to
grow more sharply. However, the restriction of I = o(

√
log(T )) is merely an artifact

of the proof and the optimal value of I could be asymptotically larger. Furthermore,
the sharp increase of the values of I in Table 1 could be attributed to low-order
terms that have a more noticeable effect for small T values.
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We first prove in Lemma 9 that in a DDL protocol, using different algorithms
for A,B cannot give a significant advantage in the error probability. As a result,
we can assume that both A and B use A’s algorithm. This simplifies the analysis,
but we note that the lower bound can be proved without this simplification.

Let us assume that we can solve DDL with error probability δ � 1 in time T
for M = 1. Our main reduction shows how to use A’s algorithm to solve DLI in
an interval of length about R ≈ 1/δ in time less than 4T with probability 1/2. If
we assume that in a specific family of groups, DLI in an interval of length c · T 2

(for a sufficiently large constant c) cannot be solved in complexity lower than
4T with probability 1/2,10 we must have R ≈ 1/δ < c ·T 2 or δ = Ω(T−2), which
gives our main lower bound for the case of M = 1. It is important to stress that
A is a DDL algorithm for M = 1 that is not explicitly given the DLI interval
length parameter R. Yet the reduction below will apply A’s algorithm to solve
DLI with parameter R in a black-box manner.

Recall that a DLI algorithm obtains as input a group element h = gx, where
x is in a known interval of length R ≈ 1/δ. By the self-reducibility of discrete
log, we can assume that h is a uniform group element (i.e., we can multiply the
input by a randomly chosen group element). Our reduction picks a point gz in
the interval (for a known z) and runs A on inputs gx and gz, where |x− z| ≤ R.
We hope that A(gx)−A(gz) = z−x and thus we return z−(A(gx)−A(gz)) = x.

Clearly, the DLI algorithm runs in time less than 4T and it remains to upper
bound its error probability by 1/2. In other words, we need to upper bound
the probability of A(gx)− A(gz) 6= z − x by 1/2. We know that the DDL error
probability is δ for M = 1, namely, if |x− z| ≤ 1, then the required probability
is11 δ. Next, assume that z = x + 2. Then, if A(gx) − A(gx+2) 6= 2 this implies
that either A(gx) − A(gx+1) 6= 1 or A(gx+1) − A(gx+2) 6= 1 (or both). Since
the probability of each of these two events is δ, we can use a union bound to
upper bound the probability that A(gx) − A(gx+2) 6= 2 by 2δ. Using a similar
argument (which we refer to as distance extension, formalized in Lemma 13),
we can upper bound the probability of the event A(gx) − A(gz) 6= z − x for
|x− z| ≤ R by O(R · δ) and for R = O(1/δ), this gives error probability 1/2, as
required. Note that the same algorithm A is used for any distance |x − z| ≤ R
(which is unknown in advance) and conditioning on this distance is only done
for the sake of analysis.

5.2 The Single Algorithm Distributed Discrete Log Problem

We now define the single algorithm DDL problem, which is the same problem
as general DDL with the restriction that the algorithms of the parties are the
same (i.e., both parties use A’s algorithm). Denote by err(A, x, b, T ) the event

10 We consider only uniform algorithms that can be applied to families of groups (such
as elliptic curve groups) and not non-uniform algorithms that are specialized to a
specific group G. Indeed, in the non-uniform model, there exist algorithms that solve
DLI in an interval of length R in time o(

√
R) for any specific group (see, e.g., [2]).

11 More accurately, it is O(δ), as δ is the average error probability in the interval [−1, 1].
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A(gx) − A(gx+b) 6= b and by Prerr(A, [M1,M2], T ) its probability (over x ∈
ZN , b ∈ [M1,M2]). Obviously, the optimal 2-party DDL error probability is a
lower bound on the optimal single algorithm DDL error probability. In this
section, we prove that the bound in the other direction holds as well up to a
constant factor in case M2 = −M1 = M .12

Lemma 9. Prerr(A,B, [−M,M ], T ) ≥ 1
8 · Prerr(A, [−M,M ], T ).

Proof. Note that if A(gx+b1)−A(gx+b2) 6= b2− b1, then A(gx+b1)−B(gx) 6= −b1
or A(gx+b2)−B(gx) 6= −b2 (or both). Therefore, for uniform b1, b2 ∈ [−M,M ],

Pr
x,b1,b2

[err(A, x+ b1, b2 − b1, T )] = Pr
x,b1,b2

[A(gx+b1)−A(gx+b2) 6= b2 − b1]

≤ Pr
x,b1,b2

[(A(gx+b1)−B(gx) 6= −b1) ∪ (A(gx+b2)−B(gx) 6= −b2)]

≤ Pr
x,b1

[A(gx+b1)−B(gx) 6= −b1] + Pr
x,b2

[A(gx+b2)−B(gx) 6= −b2]

= 2 · Prerr(A,B, [−M,M ], T ).

It remains to relate Prerr(A, [−M,M ], T ) to Pr
x,b1,b2

[err(A, x+ b1, b2− b1, T )].

Denote the event |b2 − b1| ≤ M by E and note that Pr
b1,b2

[E ] ≥ 1/2. Conditioned

on E , if b2 − b1 was uniform in [−M,M ], then we would have

Pr
x,b1,b2

[err(A, x+ b1, b2 − b1, T ) | E ] = Prerr(A, [−M,M ], T ).

Although it is not uniform, b2 − b1 is almost uniform in the sense that for each
i ∈ [−M,M ], we have Pr

b1,b2
[b2 − b1 = i] ≥ Pr

b1,b2
[b2 − b1 = M ] ≥ (M + 1)/(4M2)

and Pr
b1,b2

[b2− b1 = i] ≤ Pr
b1,b2

[b2− b1 = 0] ≤ (2M + 1)/(4M2). As the minimal and

maximal probabilities assigned to |b2 − b1| in [−M,M ] are within a factor of 2,

Pr
x,b1,b2

[err(A, x+ b1, b2 − b1, T ) | E ] ≥ 1

2
· Prerr(A, [−M,M ], T )

and

Pr
x,b1,b2

[err(A, x+ b1, b2 − b1, T )] ≥ Pr
x,b1,b2

[err(A, x+ b1, b2 − b1, T ) | E ] · Pr
b1,b2

[E ]

≥ 1

4
· Prerr(A, [−M,M ], T ).

Finally,

Prerr(A,B, [−M,M ], T ) ≥ 1

2
· Pr
x,b1,b2

[err(A, x+ b1, b2 − b1, T )]

≥ 1

8
· Prerr(A, [−M,M ], T ),

12 It is also possible to prove a similar bound in case the interval [M1,M2] is not
symmetric around the origin.
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concluding the proof. �
The consequence of the lemma is that for the sake of proving lower bounds on

the error probability, we can restrict our attention to A’s algorithm by analyzing
Prerr(A, [−M,M ], T ). The lemma immediately gives us the same lower bound
on Prerr(A,B, [−M,M ], T ), up to a constant factor.

Furthermore, note that by symmetry we have Prerr(A,B, [−M,M ], T ) ≥
1/8 · Prerr(B, [−M,M ], T ), hence the general DDL error probability is lower
bounded by the maximal error probability of the (single) algorithms of the two
parties (up to constant factors). Therefore, running different algorithms for the
two parties cannot give a much better result than simply having both players
run the best algorithm in the single algorithm setting.

5.3 Limitation on Randomness

The effect of the internal randomness of a DDL algorithm A on its outcome
is quantified by Prerr(A, [0, 0], T ). This quantity measures the probability that
two different executions of A on the same input differ, where the probability is
taken over A’s input gx and its internal randomness. We prove that A’s internal
randomness cannot significantly influence its outcome.

Lemma 10. Assume Prerr(A, [−M,M ], T ) = δ. Then Prerr(A, [0, 0], T ) ≤ 2δ.

Proof. To be more explicit, we denote by A(r, gx) the execution of A with a
randomness string r. Assume we fix the output of A(r, gx+b) for some b ∈
[−M,M ] and randomness string r. Then, if A(r1, g

x) 6= A(r2, g
x) for r1, r2,

either A(r1, g
x)−A(r, gx+b) 6= b or A(r2, g

x)−A(r, gx+b) 6= b (or both). Hence,

Prerr(A, [0, 0], T )

= Pr
r1,r2,x

[A(r1, g
x) 6= A(r2, g

x)]

≤ Pr
r1,r2,r,x,b

[(A(r1, g
x)−A(r, gx+b) 6= b) ∪ (A(r2, g

x)−A(r, gx+b) 6= b)]

≤ Pr
r1,r,x,b

[A(r1, g
x)−A(r, gx+b) 6= b] + Pr

r2,r,x,b
[A(r2, g

x)−A(r, gx+b) 6= b]

= 2δ.

�

5.4 Symmetry

We prove the following symmetric property.

Lemma 11. For M2 ≥M1, Prerr(A, [M1,M2], T ) = Prerr(A, [−M2,−M1], T ).

Proof. It is sufficient to prove that for any positive integer b, Prerr(A, [b, b], T ) =
Prerr(A, [−b,−b], T ). This indeed holds, since err(A, x, b, T ) and err(A, x +
b,−b, T ) are identical events, and thus,

Prerr(A, [b, b], T ) = Pr
x

[err(A, x, b, T )] = Pr
x

[err(A, x+ b,−b, T )]

= Prerr(A, [−b,−b], T ).
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5.5 Distance Extension

We now show that the distance parameter M of any DDL algorithm A can be
extended at the expense of a linear loss in the error probability.

First, we prove the following lemma which reduces the error probability of
Prerr(A, [−M,M ], T ) to each one of the indices in the interval. As mentioned in
the Introduction (see Footnote 4), this implies that a DDL algorithm with error
probability δ for uniform b ∈ [−M,M ] also solves DDL with an error probability
O(δ) for any distribution on b ∈ [−M,M ].

Lemma 12. Assume that Prerr(A, [−M,M ], T ) = δ. Then, for every b ∈ [−M,M ],
Prerr(A, [b, b], T ) ≤ 4δ.

Proof. We first assume that b ∈ [1,M ] and let i ∈ [−M,M − b]. Clearly, if
gx is a uniform group element, then so is gx+i. Therefore, Prerr(A, [b, b], T ) =
Pr
x

[err(A, x + i, b, T )]. Furthermore, if the event err(A, x + i, b, T ) occurs, then

A(gx+i) − A(gx+i+b) 6= b, implying that at least one of the events A(gx) −
A(gx+i+b) 6= i+b andA(gx)−A(gx+i) 6= imust occur. Consequently, Prerr(A, [b, b], T )
(the error probability associated with index b) is upper bounded by Prerr(A, [i+
b, i + b], T ) + Prerr(A, [i, i], T ) (the sum of error probabilities associated with
indices i and i+ b). Formally,

Prerr(A, [b, b], T ) = Pr
x

[err(A, x+ i, b, T )]

≤ Pr
x

[err(A, x, i+ b, T ) ∪ err(A, x, i, T )]

≤ Pr
x

[err(A, x, i+ b, T )] + Pr
x

[err(A, x, i, T )]

= Prerr(A, [i+ b, i+ b], T ) + Prerr(A, [i, i], T ).

We map the indices in [−M,M ] into disjoint pairs of the form i, i + b (this
implies that i ∈ [−M,M − b]). We can obtain at least b(2M − b + 1)/2c such
pairs, which is at least (M + 1)/2 for b ∈ [1,M − 1]. On the other hand, for
b = M , the number of pairs is M ≥ (M + 1)/2. We apply the above inequality
to each of the pairs:

δ = Prerr(A, [−M,M ], T )

=
1

2M + 1
·

M∑
i=−M

Prerr(A, [i, i], T )

≥ 1

2M + 1
· M + 1

2
· Prerr(A, [b, b], T )

≥ 1

4
Prerr(A, [b, b], T ).

Thus, Prerr(A, [b, b], T ) ≤ 4δ for b ∈ [1,M ].
The proof for b ∈ [−M,−1] follows by symmetry (Lemma 11). Finally, for

b = 0, we have Prerr(A, [0, 0], T ) ≤ 2δ by Lemma 10. �
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Lemma 13. Let Prerr(A, [−M,M ], T ) = δ. Then for any β > 1,

Prerr(A, [−βM, βM ], T ) ≤ 8β · δ.

For the sake of simplicity we assume that βM is an integer (otherwise, we
only consider integer values in [−βM, βM ]).
Proof. First, we analyze Prerr(A, [1, βM ], T ). Let b ∈ [1, βM ] and divide it by
M , writing b = b1 ·M + b2, for integers b1 ≤ β and b2 ∈ [0,M). We examine the
following b1 + 1 success events:

E1 :suc(A, x,M, T )

E2 :suc(A, x+M,M,T )

. . .

Eb1 :suc(A, x+ (b1 − 1)M,M,T )

Eb1+1 :suc(A, x+ b1M, b2, T )

Observe that if all b1+1 events hold (i.e. ∩b1+1
i=1 Ei), then A(gx)−A(gx+b1M+b2) =

A(x)−A(gx+b) = b, i.e., suc(A, x, b, T ) holds.
By Lemma 12, we have Pr

x
[Ēi] ≤ 4δ for each i ∈ 1, 2, . . . , b1, and Pr

x,b
[Ēb1+1] ≤

4δ. Hence,

1− Prerr(A, [1, βM ], T ) ≥ Pr
x,b

[∩b1+1
i=1 Ei] = 1− Pr

x,b
[∪b1+1
i=1 Ēi]

≥ 1−
b1+1∑
i=1

Pr
x,b

[Ēi] ≥ 1− (b1 + 1)4δ ≥ 1− (β + 1)4δ ≥ 1− 8β · δ.

Therefore, Prerr(A, [1, βM ], T ) ≤ 8β · δ. By symmetry (Lemma 11), we
have Prerr(A, [−βM,−1], T ) ≤ 8β · δ as well. Since Prerr(A, [0, 0], T ) ≤ 2δ by
Lemma 10, we conclude that Prerr(A, [−βM, βM ], T ) ≤ 8β · δ, as claimed. �

Remark 1. An open question of [5] asked whether the DDL error probability
can be eliminated completely. If we apply the above lemma with no error (i.e.,
Prerr(A, [−M,M ], T ) = δ = 0), we obtain Prerr(A, [−βM, βM ], T ) = 0, im-
plying that the two parties (running A’s algorithm) never err for any distance.
This allows the parties to collectively solve the discrete log problem in G with
probability 1 (a similar reduction will be formally presented in Algorithm 4),
thus violating the security assumption of the underlying HSS scheme. Namely,
the DDL error probability cannot be eliminated (in fact it is easy to show that
it must be superpolynomial in 1/N), answering negatively the open question of
Boyle et al.

5.6 Reduction from Discrete Log in an Interval to Distributed
Discrete Log

Recall that the discrete log problem in an interval (DLI) is parametrized by an
interval length R for a cyclic multiplicative group G of size N with generator g.
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The input to the problem is a group element h = gx, where13 x ∈ [0, R− 1] and
the goal is to recover x with high probability (which is at least a constant).

The following lemma reduces the DLI problem to DDL.

Lemma 14. For a family of groups, assume that Prerr(A, [−M,M ], T ) = δ,
where T ≥ logN and δ < 1/32. Then discrete log in an interval of length
R = M/(32δ) can be solved in complexity 4T with probability 1/2.

Proof. Consider Algorithm 4 for solving DLI on input h = gx for x ∈ [0, R− 1].
For the sake of simplicity we assume that R is even.

Algorithm 4: DLI(h)

1 begin
2 y ←−

R
ZN ;

3 d1 ← A(h · gy);

4 d2 ← A(gy+(R/2));
5 Output (R/2)− (d1 − d2);

6 end

The algorithm computes h · gy and gy+(R/2), which can be carried out by
performing 2 logN group operations using the square-and-multiply algorithm.
It further invokes A twice in complexity 2T and therefore its total complexity is
2T + 2 logN ≤ 4T (since T ≥ logN).

It remains to upper bound the error probability of the algorithm by 1/2. The
algorithm succeeds to return x if (R/2)− (d1 − d2) = x, or equivalently,

A(gy+x)−A(gy+(R/2)) = d1 − d2 = (R/2)− x.

Since y ∈ ZN is uniform, then gy+x is a uniform group element. Moreover, since
x ∈ [0, R−1], then (R/2)−x ∈ [−R/2, R/2]. Therefore, by Lemma 12, the error
probability of the algorithm is at most

4 · Prerr(A, [−R/2, R/2], T ) ≤ 4 · 8 · R
2M
· Prerr(A, [−M,M ], T )

= 16 · R
M
· δ = 1/2,

where the first inequality is due to Lemma 13. Note that we use Lemma 12 (and
pay a factor of 4 in the error probability), as x ∈ [0, R − 1] may be selected by
an adversary (whereas Prerr(A, [−R/2, R/2], T ) averages the error probability).
�

Theorem 3 is a simple corollary of Lemma 14.

13 Alternatively, x could be in any fixed interval of length R. The exact interval is
not important as one can easily reduce the problem in a given interval to any other
interval.
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Theorem 3. For a specific family of groups, assume there exists a constant c
such that for any group in the family of size N , DLI in an interval of length at
least c ·T 2 cannot be solved in complexity 4T with probability at least 1/2 (where
logN ≤ T < B for some bound B).14. Moreover, assume that there is a DDL
protocol A for this family with time complexity parameter T , maximal distance
parameter M and error probability Prerr(A, [−M,M ], T ) = δ for δ < 1/32. Then
δ = Ω(M · T−2).

Proof. By Lemma 14, discrete log in an interval of length R = M/(32δ) can
be solved in complexity 4T with probability 1/2. By our assumption, R =
M/(32δ) < c · T 2 implying that δ = Ω(M · T−2) as claimed. �

6 Error Probability Lower Bounds for Non-Adaptive
Algorithms in the Generic Group Model

In this section, we prove lower bounds on DDL algorithms in the generic group
model (GGM), focusing on non-adaptive algorithms. We first review the generic
group model (GGM) we consider (which is slightly different than the one pro-
posed by Shoup [20]) and formulate DDL in this model. This formulation is given
for the additive group ZN , which is isomorphic to the cyclic multiplicative group
G of size N .

6.1 Distributed Discrete Log in the Generic Group Model

Let ZN be the additive group of integers, and let S be a set of bit strings of
cardinality at least N . An encoding function of ZN on S is an injective map
σ : ZN → S.

A generic algorithm A for ZN on S for the discrete logarithm problem is
a probabilistic algorithm that takes as input an encoding list that consists of
σ(1), σ(x), namely, the encodings of a generator of ZN and a uniform x ∈ ZN ,
where σ is an encoding function of ZN on S. Throughout its execution, A con-
tinues to maintain the encoding list, and is allowed to extend it using oracle
queries. An oracle query in our model specifies two indices i, j ∈ ZN . The oracle
computes σ(i · x + j) and the returned bit string is appended to the encoding
list. The algorithm A succeeds to solve the discrete log problem if A(σ; 1, x) = x,
and its success probability is taken over the uniform choices of σ : ZN → S and
x ∈ ZN (and perhaps additional randomness of its own coin tosses). We mea-
sure the complexity of A according to the number of oracle queries it makes.
The following success probability upper bound was proved in [20].

Theorem 4 ([20]). If a generic discrete log algorithm A is allowed T oracle
queries, then Pr

σ,x
[A(σ; 1, x) = x] = O(T 2/N), assuming that N is prime.

14 We note that the parameter B for which our assumption on the hardness of DLI is
believed to hold, depends on the specific family of groups. For example, for some
subgroups of Z∗p, B is subexponential in logN .
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We note that our GGM formulation is slightly stronger than the one of [20],
where the queries ofA are limited to linear combinations with coefficients of±1 of
elements in its encoding list. Since any query (i, j) can be issued in Shoup’s orig-
inal GGM after at most O(logN) queries using the double-and-add algorithm,
a stronger GGM algorithm can be simulated by a standard one by increasing
the query complexity by a multiplicative factor of logN . However, by following
its original proof in [20], it is easy to verify that Theorem 4 actually holds with
no modification in our stronger GGM. Obviously, any algorithm in the original
GGM is also an algorithm in the stronger GGM. Therefore, any lower bounds
we obtain in the stronger GGM also apply in the original GGM.

We now describe the basic game of distributed discrete log in GGM. Ob-
viously, all the results of Section 5 also hold in the generic group model. In
particular, by Lemma 9 it is sufficient to consider single algorithm DDL to ob-
tain general DDL lower bounds.

A party (algorithm) A is given as input σ(1) and the encoding of an additional
group element σ(x) for x ∈ ZN , selected uniformly at random. Algorithm A is
allowed to make T oracle queries. After obtaining the answers from the oracle,
A returns an integer value. Two parties (both running A’s algorithm) win the
DDL game in GGM if

A(σ; 1, x)−A(σ; 1, x+ b) = b.

Otherwise, they lose the game, or err.
We are interested in proving lower bounds on the DDL error probability as

a function of T , namely

Pr
σ,x,b

[A(σ; 1, x)−A(σ; 1, x+ b) 6= b].

Analogously to our notation for multiplicative groups, we denote by err(A, σ, x, b, T )
the error event A(σ; 1, x)−A(σ; 1, x+ b) 6= b, and by Prerr(A, σ, [M1,M2], T ) its
probability Pr

σ,x,b
[err(A, σ, x, b, T )], where b ∈ [M1,M2] is a uniform integer. We

further denote by suc(A, σ, x, b, T ) the complementary success event.

6.2 An Error Probability Lower Bound for Arbitrary Generic
Algorithms

The following theorem gives a DDL error probability lower bound in GGM. The
theorem is a somewhat weaker statement than Theorem 3 (which has implica-
tions in concrete group families).

Theorem 5. For any generic DDL algorithm A, Prerr(A, σ, [−M,M ], T ) =
Ω(M · T−2), given that M = O(T 2), T = o(

√
N), and N is prime.

We omit the proof, as it is similar to the proof of Theorem 3. It applies a
reduction to discrete log, while using Theorem 4 to obtain the error probability
lower bound. Alternatively, one could obtain a hardness result for DLI in GGM
(extending Theorem 4 to smaller intervals) and apply Theorem 3 directly.
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6.3 An Error Probability Lower Bound for Non-Adaptive Generic
Algorithms

In this section, we prove a lower bound on the DDL error probability of non-
adaptive generic algorithms, whose oracle queries {(i1, j1), (i2, j2), . . . , (iT , jT )}
are fixed in advance and do not depend on previous answers.

We will prove the following lower bound:

Theorem 6. Any non-adaptive DDL algorithm A satisfies

Prerr(A, σ, [−1, 1], T ) = Ω(1/T ),

given that T = o(N1/2), and N is prime.

Overview of the Lower Bound Proof on Non-Adaptive Algorithms in
the Generic Group Model Let us first consider the class of algorithms that
make T consecutive oracle queries to group elements (such as Algorithm 1 and
the ones of [4–6] in general). Consider the executions A(σ; 1, x) and A(σ; 1, x+T ),
which query 2T distinct group elements. In GGM, algorithm executions that
query disjoint sets of elements are essentially independent, which implies that
the probability that A(σ; 1, x) − A(σ; 1, x + T ) 6= T is at least 1/2. Indeed, one
can construct a bijective mapping between encodings σ for which A(σ; 1, x) −
A(σ; 1, x+T ) = T and encodings σ′ for which A(σ′; 1, x)−A(σ′; 1, x+T ) = −T
(by defining σ′(x+ i) = σ(x+ i+ T ) for i ∈ [0, T − 1], σ′(x+ i) = σ(x+ i− T )
for i ∈ [T, 2T − 1] and σ′(x+ i) = σ(x+ i) otherwise).

Recall that we are interested in the probability that A(σ; 1, x)− A(σ; 1, x+
1) 6= 1 and it can be lower bounded byΩ(T−1) using distance extension (Lemma 13).
A similar lower bound applies if A only queries group elements in a short interval
of length O(T ).15

Of course, we are interested in proving the Ω(T−1) lower bound for arbitrary
non-adaptive algorithms. The main idea that allows us to achieve this is to
define a transformation that takes an arbitrary non-adaptive algorithm A′ and
maps its T queries to a small interval of size O(T ), obtaining a new algorithm
A, for which the error lower bound Ω(T−1) holds. We require that the query
mapping preserves the error probability of A′, thus proving that the above error
probability lower bound Ω(T−1) applies to non-adaptive algorithms in general.
In order to preserve the error probability of A′, the mapping will ensure that
the joint input distribution of A′(σ; 1, x) and A′(σ; 1, x + 1) is equal to that of
A(σ; 1, x) and A(σ; 1, x + 1). In the generic group model, this means that the
mapping should preserve joint queries, namely, satisfy the condition that query i
of A′(σ; 1, x) and query j of A′(σ; 1, x+1) evaluate the same group element if and
only if query i of A(σ; 1, x) and query j of A(σ; 1, x+1) evaluate the same group
element.16 Based on this observation, it is possible to define an appropriate query

15 Our actual proof is slightly more general than outlined here and uses the notion of
query chains.

16 Our proof relaxes this strong condition, and requires that it holds unless a low-
probability event (called a collision) occurs.
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mapping and complete the proof, since for non-adaptive algorithms we know in
advance (independently of σ) whether query i of A′(σ; 1, x) and and query j of
A′(σ; 1, x+ 1) evaluate the same group element.

Additional Notation We begin by defining additional notation. Given a query
(i, j), denote its evaluation on x as (i, j)[x] = ix + j. Thus, its oracle answer is
σ(ix+j). We denote byQ(A(σ; 1, x)) the query set ofA(σ; 1, x), excluding queries
(i, j) for which i = 0 (which we call constant queries). Denote by QE(A(σ; 1, x))
the set of evaluations of all (non-constant) queries Q(A(σ; 1, x)).

We further denote by Q(A) the set containing all of the potential (non-
constant) queries of A on any input x and encoding σ. Note that for non-adaptive
algorithms, |Q(A)| ≤ T and any adaptive algorithm A′ can be simulated by a

non-adaptive algorithm that makes T ′
def
== |Q(A′)| queries.

For the rest of this section, we focus on non-adaptive algorithms. For such
algorithms, we can write QE(A, x) (instead of QE(A(σ; 1, x))), as the query eval-
uations are independent of σ (obviously, the oracle answers on these evaluations
invoke σ).

Restricted Queries We examine pairs of executions A(σ; 1, x) and A(σ; 1, x+b)
for some b ∈ [−M,M ]. For such a pair, we define a (non-trivial) collision as the
event that two queries issued by these executions (i, j) and (i′, j′) with i 6= i′ have
the same evaluation. The actual evaluations depend on which algorithm issued
the queries, and there are 4 cases (e.g., ix+j mod N = i′x+j′ mod N if A(σ; 1, x)
issued both and ix + j mod N = i′(x + b) + j′ mod N if A(σ; 1, x) issued (i, j)
and A(σ; 1, x+b) issued (i′, j′), etc). In each of these four cases, both algorithms
can exploit the collision to jointly solve the discrete logarithm problem using at
most 2T queries (e.g., in the first case above, x = (j′ − j) · (i − i′)−1 mod N).
According to Theorem 4, the probability of this event is O(T 2/N) = o(1) (by
our assumption T = o(N1/2)), which is negligible. In the following we generally
denote collision events by COL.

Most of the analysis below will be conditioned on the event COL (whose
probability is 1− o(1)), but we will omit this explicit conditioning for simplicity,
while ignoring a negligible factor in the probability calculation.

Lemma 15. Assume that T = o(N1/2). Then, any non-adaptive algorithm
A′ with Prerr(A

′, σ, [−M,M ], T ) = δ enables defining a non-adaptive query-
restricted algorithm A with Prerr(A, σ, [−M,M ], T ) ≤ δ · (1 + o(1)) such that A
only issues restricted queries of the form (i, j) with i ∈ {0, 1}.

Proof. First, as analyzed above, a collision event COL′ in the algorithm A′ occurs
with probability o(1) and we condition the analysis on the complementary event
COL′. Essentially, once we have excluded collisions, then each query (i, j) of
the algorithm A′ can be assigned a domain i such that queries with different
domains do not influence each other. Such an algorithm enables defining an
algorithm A that only queries a single domain with i = 1 (in addition to i = 0),
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while preserving the error probability, unless the event COL (which denotes a
collision in A) occurs. Overall, we show that conditioned on COL′ ∩ COL, we
have

Prerr(A, σ, [−M,M ], T ) = Prerr(A
′, σ, [−M,M ], T ) = δ.

Since Pr[COL′ ∩ COL] = 1− o(1), by lifting the conditioning we get

δ = Prerr(A
′, σ, [−M,M ], T ) ≥ Prerr(A, σ, [−M,M ], T ) · (1− o(1))

or
Prerr(A, σ, [−M,M ], T ) ≤ δ · (1 + o(1)),

as claimed.
In the following, operations on oracle query indices are performed in ZN . The

algorithm A simply translates the queries of A′ using some predefined translation
function tr : ZN × ZN → ZN × ZN . We will define tr such that

(i, j)[x] = (i∗, j∗)[x+ b]⇔ tr((i, j))[x] = tr((i∗, j∗))[x+ b], (20)

for all x, i, j, i∗, j∗ ∈ ZN and b ∈ [−M,M ] (unless a collision occurs in A or
A′). This guarantees that A(σ; 1, x) and A(σ; 1, x+ b) have the same joint input
distribution as A′(σ; 1, x) and A′(σ; 1, x + b) and hence A has the same error
probability as A′ (assuming no collisions).

Assume that we are given some fixed values of domain separators Dv
u ∈ ZN

for non-zero v ∈ ZN and u ∈ Zv. We define tr(i, j) = (1, Di
j mod i + bj/ic) for

i 6= 0 (and tr(0, j) = (0, j) otherwise), where addition is performed in ZN .
We now need to show that (20) holds. The condition (i, j)[x] = (i∗, j∗)[x+ b]

is equivalent to ix + j = i∗(x + b) + j∗. Assuming COL′, we have i = i∗ and
j = i∗b+ j∗ = ib+ j∗.

For i, i∗ 6= 0, the condition tr((i, j))[x] = tr((i∗, j∗))[x+ b] is equivalent to

Di
j mod i + bj/ic+ x = Di∗

j∗ mod i∗ + bj∗/i∗c+ x+ b. (21)

We will choose the domain separators such that there are no collisions between
queries in different domains of A. Namely, the above equality gives i = i∗ and
j mod i = j∗ mod i∗ (i.e., Di

j mod i = Di∗

j∗ mod i∗). Thus, (21) is equivalent to

bj/ic = bj∗/i∗c+ b = bj∗/ic+ b. (22)

We write j = k · i + j∗ (as j, j∗ differ by a multiple of i), and thus bj/ic =
b(k · i + j∗)/ic = bj∗/ic + k. From (22) we obtain k = b, namely j = ib + j∗,
which implies that (20) holds, as required.

We are left with the problem of choosing the domain separators Dv
u. Since

T 2 � N it is sufficient to choose the domain separators in a (pseudo) random
manner in order to avoid collisions between queries in different domains of A (ex-
cept with negligible probability).17 Moreover, since A is non-adaptive, its query

17 In fact, it is sufficient to choose them to be pairwise independent to avoid collisions
with high probability.
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set is known in advance. Hence, there are at most T possible domain separators
that A will use and they can be chosen to avoid such collisions with probability
1. (Note that collisions between queries of type tr(i, j) = (1, Di

j mod i + bj/ic)
(for i 6= 0) and tr(0, j∗) = (0, j∗) are still possible (yet occur with negligible
probability of O(T 2/N) = o(1))). �

Query Disjoint Indices We say that a non-adaptive DDL algorithm A has
a query disjoint index b if QE(A, x) ∩ QE(A, x + b) = ∅ for any x ∈ ZN . We
note that A can have many query disjoint indices. We prove the following error
probability lower bound on algorithms with a (small) query disjoint index.

Lemma 16. Any non-adaptive algorithm which is query disjoint on index b ≥ 1
satisfies Prerr(A, σ, [−1, 1], T ) = Ω(1/b).

Proof. We prove that Prerr(A, σ, [b, b], T ) ≥ 1/2. This implies the assertion of
the lemma, since

1/2 ≤ Prerr(A, σ, [b, b], T ) ≤ 4 · Prerr(A, σ, [−b, b], T )

≤ 4 · 8b · Prerr(A, σ, [−1, 1], T ),

where the second inequality follows from Lemma 12 and the third inequality
follows from Lemma 13.

To prove that Prerr(A, σ, [b, b], T ) ≥ 1/2, assume that QE(A, x)∩QE(A, x+
b) = ∅ and A(σ; 1, x) − A(σ; 1, x + b) = b. We further assume for the sake
of simplicity that A is deterministic, but the proof can be easily extended to
randomized algorithms. Since A is non-adaptive, both executions have the same
query set Q(A). Given a triplet x, b, σ, we define an encoding σ′ that interchanges
the encoding values of QE(A, x) and QE(A, x + b), while maintaining all the
other values (including those of the constant queries). (We remark that for a
randomized algorithm A, the above mapping should be defined between quartets
that also involve the randomness string of A.)

More specifically, for every query (i, j) such that i 6= 0,18 we set σ′(i(x+ b) +
j) = σ(ix+j) and σ′(ix+j) = σ(i(x+b)+j). Thus, A(σ′; 1, x+b) = A(σ; 1, x) and
A(σ′; 1, x) = A(σ; 1, x+ b), implying that A(σ′; 1, x)−A(σ′; 1, x+ b) = −b 6= b.

We prove that Prerr(A, σ, [b, b], T ) ≥ 1/2 = Ω(1) by analyzing the mapping
between the triplets x, b, σ and x, b, σ′. Clearly, both σ and σ′ are equally likely
and it remains to show that the mapping is one-to-one. This indeed holds, as
given x, b, σ′, we can invert the mapping (i.e. reconstruct σ) by interchanging
the encoding values of QE(A, x) and QE(A, x+ b). �

Query Chains Given a query (1, j), we refer to the value j as a query offset.
For a non-adaptive algorithm A, we define a query chain of length c as a sequence
of c+ 1 query offsets j, j + 1, j + 2, . . . , j + c such that for each k ∈ {0, 1, . . . , c},
18 By Lemma 15 we can assume that i = 1, although this assumption is not explicitly

required here.
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(1, j + k) ∈ Q(A), while (1, j + c + 1) /∈ Q(A) and (1, j − 1) /∈ Q(A) (i.e., the
sequence is maximal).

Denote the length of the longest query chain of A by C(A).

Lemma 17. Any non-adaptive query-restricted algorithm A satisfies

Prerr(A, σ, [−1, 1], T ) ≥ Ω(1/C(A)).

Proof. Given a non-adaptive query-restricted algorithm A whose queries (i, j)
satisfy i ∈ {0, 1} (as in Lemma 15), we transform it into an algorithm A′ that is

query disjoint on index C ′
def
== C(A) + 1, while preserving its error probability.

Once this is done, by Lemma 16, we have

Prerr(A, σ, [−1, 1], T ) = Prerr(A
′, σ, [−1, 1], T ) = Ω

(
1

C(A)

)
.

A is transformed to A′ using a static query transformation tr. We partition
the (non-constant) queries (1, j) of A into chains (in some arbitrary order) and
map each chain into an interval of length C ′. The chains are mapped into every
second interval, namely, [0, C ′− 1], [2C ′, 3C ′− 1], [4C ′, 5C ′− 1], . . . , [2kC ′, (2k+
1)C ′ − 1], . . .. Since the maximal chain length is C(A), then no chain crosses its
interval boundary. Hence, QE(A, x) ∩ QE(A, x + C ′) = ∅, as these executions
query different intervals: the query evaluations of A(σ; 1, x) are in [x+ 2kC ′, x+
(2k + 1)C ′ − 1], while the query evaluations of A(σ; 1, x+ C ′) are in [x+ (2k +
1)C ′, x+ (2k + 2)C ′ − 1].

Next, we show that the joint input distribution of A(σ; 1, x) and A(σ; 1, x+1)
is preserved, which implies that the error probabilities of A and A′ are identical.
To show that tr preserves the joint input distribution, it suffices to prove that

(1, j)[x] = (1, j∗)[x+ 1]⇔ tr((1, j))[x] = tr((1, j∗))[x+ 1],

for all x ∈ ZN and (1, j), (1, j∗) ∈ Q(A). Indeed, (1, j)[x] = (1, j∗)[x+ 1]⇔ j =
j∗ + 1, which occurs if and only if (1, j), (1, j∗) are in the same query chain of
A. By the properties of tr, this occurs if and only if tr((1, j)), tr((1, j∗)) are in
the same query chain of A′, namely, tr((1, j))[x] = tr((1, j∗))[x+ 1], as claimed.
Finally, we note that the analysis assumes no collisions in A,A′, but this event
can be neglected as previously specified. �

Proof of Theorem 6 Now we are ready to present the proof of Theorem 6.

Proof. The assertion of the theorem is an immediate corollary of Lemmas 15
and 17. Given a non-adaptive algorithm A, transform it into a query-restricted
algorithm A′ using Lemma 15, with a multiplicative loss of 1 + o(1) in error
probability. Clearly, C(A′) ≤ T , hence by Lemma 17 we have

Prerr(A, σ, [−1, 1], T ) ≥ Prerr(A
′, σ, [−1, 1], T ) · 1/(1 + o(1)) = Ω

(
1

C(A′)

)
= Ω

(
1

T

)
,

concluding the proof. �
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A Generalization of Theorem 6 The above Theorem 6 does not completely
render non-adaptive algorithms as inefficient since (for example) it does not
rule out the possibility that Prerr(A, σ, [−T, T ], T ) = O(1/T ) (which is optimal
according to Theorem 5). The following theorem states that this is impossible,
and non-adaptive algorithms have a linear query-error tradeoff at best.

Theorem 7. For all 1 ≤ M ≤ T , any non-adaptive generic DDL algorithm A
satisfies Prerr(A, σ, [−M,M ], T ) = Ω(M/T ) given that T = o(N1/2) and N is
prime. In particular, for M = T , Prerr(A, σ, [−T, T ], T ) = Ω(1).

Note that Theorem 6 is a special case of Theorem 7, obtained for M = 1. We
chose to present both theorems, as their proofs use entirely different techniques.

Proof. For the sake of simplicity, in this proof we omit the generic group notation
A(σ, 1, x), and simply refer to A(x) as a function. By Lemma 15, we can assume
that A uses only restricted queries which are at a fixed distance from x. We
assume that the output of the encoding function σ is completely uniform, which
is justified since T �

√
N (i.e., the probability of collisions in σ is negligible).

By Lemma 13, it is sufficient to prove that Prerr(A, σ, [−T, T ], T ) = Ω(1).
In fact, we will prove that for any algorithm A, we have Pr

x,b
[A(x + b) − A(x) 6=

b] = Ω(1), where b ∈ [−2T, 2T ]. This implies Theorem 7 by Lemma 13. Note
that we slightly changed the problem formulation which requires proving that
Pr
x,b

[A(x)−A(x+b) 6= b] = Ω(1), but this is equivalent since we can simply negate

the output of A.
Let w be a complex N -th root of unity. For this proof, we will treat every

element e of ZN as if it was we. Notice that we have

2 Pr[A(xb)−A(x) = b]− 1 ≤
∣∣∣E [A(x)wbA(xb)

]∣∣∣ ,
since the product in the right hand side is 1 if A(xb)−A(x) = b. We now consider
the Fourier expansion of A as a function of xi1 , . . . , xiT . This just means we write

A(x) =
∑
S⊆J

Â(S)xS ,

where the sum is over all multisets of indices S of J , where each index appears
at most N − 1 times, and xS is just the monomial obtained by multiplying the
corresponding entries of x, with the multiplicities specified by S. (For formal
treatment of the Fourier expansion of Boolean functions, we refer the reader
to [16].)

A basic property of the Fourier expansion is the Plancherel identity:

E
x

[
A(x)B(x)

]
=
∑
S⊆J

Â(S)B̂(S).

Plancherel’s identity implies Parseval’s identity
∑
S |Â(S)|2 = Ex[|A(x)|2] = 1,

where the rightmost equality is due to the fact that always |A(x)| = 1, as we
embedded ZN in the complex unit circle.
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Hence, our task is to prove∣∣∣∣∣Eb
[
wb
∑
S

Â(S)Â(S + b)

]∣∣∣∣∣ ≤ 1−Ω(1),

where S+b is a multiset similar to S, but with each element shifted by b (modulo
length of x).

First, notice that we may arrange the contribution from |Â(∅)|2 to be small,

by choosing w so that Eb[wb] ≈ 0, i.e., for example, w = exp
(

2πibN/2Tc
N

)
.19

We are now ready to present the main argument. Consider the following
Cauchy-Schwarz bound

|Â(S)Â(S + b)| ≤ 1

2

(
|Â(S)|2 + |Â(S + b)|2

)
1

{
Â(S) · Â(S + b) 6= 0

}
. (23)

If we temporarily neglect the indicator on the right, we get the inequality∣∣∣∣∣Eb
[
wb
∑
S

Â(S)Â(S + b)

]∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
S 6=∅

1

2
E
b

[
|Â(S)|2 + |Â(S + b)|2

]∣∣∣∣∣∣ ≤ 1,

by trivially using the triangle inequality.
Fix some S. The important observation is that for at least 1/2 of the values

of b ∈ [1, 2T ], we have Â(S) · Â(S + b) = 0 (which gives better understanding

for the RHS of (23)). To see this, notice that in order to have Â(T ) 6= 0, we
must have T ⊆ J . Hence, for any fixed i ∈ S, only for at most T shifts S + b we
have S + b ⊆ J , as this requires i + b ∈ J , while J is of size T . Since there are
2T available shifts, 1

2 |Â(S)|2 is counted only for 1/2 of the b’s. By a symmetric

argument, 1
2 |Â(S + b)|2 is counted only 1/2 of the times. Therefore, we have∣∣∣∣Ex,b [A(x)wbA(xb)

]∣∣∣∣ ≤ T

2T
+ o(1),

which means Pr[A(xb) = A(x) + b] ≤ 3/4 + o(1). The o(1) corresponds to the
contribution of |A(∅)|2 Eb[wb] which we explained that may be assumed to be
o(1). This completes the proof. �

7 Conclusions

In this paper we introduced a new distributed discrete log protocol that achieves
an error probability of O(M · T−2). We further showed that this protocol is op-
timal (up to a constant factor) in all prime order group families relevant for
homomorphic secret sharing (HSS), unless there is a breakthrough in cryptanal-
ysis of discrete log in a short interval. Moreover, we showed that adaptivity is

19 Note w must be a primitive root of unity. In our case, this holds trivially since N is
prime.
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necessary to break the linear error barrier M · T−1 in the generic group model.
We leave it to future work to implement and optimize the protocol for conversion
friendly groups in an HSS scheme and to find additional applications for our new
random walk.
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A Group-Based Homomorphic Secret Sharing Scheme [5]

We describe very briefly the main ideas behind the group HSS scheme of [5]. For
more details, refer to the original publication and its extensions [4, 6].
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The (2-party) HSS scheme of [5] randomly splits an input w into a pair of
shares (w0, w1) such that: (1) each share wi computationally hides w, and (2)
there exists a polynomial-time local evaluation algorithm Eval such that for any
program P from a given class (branching programs in this case), the output
P (w) can be efficiently reconstructed as Eval(w0, P ) + Eval(w1, P ).

The scheme works in a multiplicative cyclic group G of prime order N with a
generator g. First, the scheme allows the parties to locally multiply an encrypted
input w ∈ ZN with an additively secret-shared value y ∈ ZN , such that the result
z = wy is shared between the parties. For this purpose, the parties also require
an additive share of (cy) (where h = gc is the public key). The sharing is such
that each party i ∈ {0, 1} has a group element gzi satisfying gz0 · gz1 = gz. We
note that all intermediate computation values are bounded by a small integer
parameter M .

More specifically, the encryption of w is (gr, hrgw), which is an ElGamal
encryption, modified to be additively homomorphic by placing the plaintext in
the exponent. The value y (and similarly (cy)) is additively shared as (y0, y1)
such that y = y0 + y1 mod N and party i obtains yi. Given (gr, hrgw), yi and
(cy)i, party i locally computes a share of z = wy as γi = (hrgw)yi · (gr)−(cy)i .
Thus, γ0 · γ1 = (hrgw)y · (gr)−(cy) = g(cr+w)y−cry = gwy = gz as required.

At this stage, gz is multiplicatively shared by the parties, so they cannot
multiply z with a new encrypted input w′. Next, [5] shows how the parties
can convert multiplicative shares of gz into additive shares of z without any
interaction via a share conversion procedure. The parties implement the share
conversion procedure by collectively solving the distributed discrete log (DDL)
problem, described in Section 2.1. Once the parties have an additive sharing of
z, they can add it to other additive shares. They can also multiply it with a
new encrypted input w′ (provided that they also compute an additive share of
(cz)).20

This allows the parties to perform the following operations on their input:
(1) load an input into memory, (2) add the values of two memory locations, (3)
multiply a memory location by an input, and (4) output the value of a memory
location modulo some integer.21 Such programs, referred to as restricted multi-
plication straight-line (RMS) programs, can emulate any branching program of
size S by a sequence of O(S) instructions.

20 An additional difficulty is that cz may be a large number, while the parties are
restricted to performing computations on small integers. This problem is overcame
by providing an encryption of each input w multiplied by each bit of the secret key
ci, and then applying a linear combination whose coefficients are powers of 2 to the
additive shares of the products ciyw, obtaining additive shares of cz.

21 The parties cannot multiply two memory locations, which would allow evaluation of
arbitrary circuits.
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B Refined Provable Parameters for Theorem 2

In Theorem 2, we proved that the failure probability of Algorithm 3, namely,
Prerr(IteratedRandWP , [1, 1], T ), is bounded by 210.2+o(1)/T 2. One may wonder
whether for small values of T , the o(1) term is actually dominant and makes the
result meaningless. It turns out that this is not the case, and on the contrary, for
specific values of T one may obtain bounds which are similar to those of Theo-
rem 2 and usually even stronger, using a computer-aided choice of parameters. In
order to obtain such bounds, we programmed a routine that uses all the bounds
proved in this paper to obtain a bound on Prerr(IteratedRandWP , [1, 1], T ),
given a set of parameters SP = {I, {Lk}, {tk}}. Then, we optimized the param-
eters, and obtained for several values of T an upper bound on the probability
Prerr(IteratedRandWP , [1, 1], T ).

The bounds were used together with their lower order terms, so that the
results given below are precise, assuming the the group G is sufficiently large.
Notice the lower order terms are dominant for small T , but the resulting bound
is still not much worse than the one claimed in Theorem 2. We emphasize that
these bounds are rigorously provable, by plugging the choices of parameters given
below into the proof of Theorem 2; the computer routine only helps in choosing
the parameters.

T I
∼ log2(tk)

∼ log2(Lk)
T 2 · Pr[err] ≤

215 2
12.4, 13.5, 14.0

5.7, 9.6
1440

225 5
19.2, 20.7, 21.5, 22.3, 23.1, 23.8

7.6, 12.4, 15.8, 18.4, 20.8
755

250 10
32.1, 36.2, 38.8, ..., 47.3, 48.1, 48.8

9.1, 16.8, ..., 41.5, 43.8, 46.0
555

2100 12
77.9, 80.9, 83.6, ..., 97.3, 98.1, 98.8

30.5, 47.4, ..., 91.5, 93.8, 96.0
555

C An Additional Optimization Used in Part of the
Experiments

In this section we describe the third optimization used in part of the experi-
ments. The results obtained using this optimization are described in the right-
most column of Table 1. As can be seen in the table, for all values of T for which
computation using only the first two optimizations is feasible, the expected error
probability obtained using the third optimization is very close to the probabil-
ity obtained without it. The advantage of this optimization is that it leads to a
much smaller standard deviation, and allows performing the simulation for much
larger values of T .
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The optimization is based on the fact that Algorithm 3 is composed of several
stages, and Pr[err] expresses the failure of the parties to synchronize in any of
these stages. Roughly speaking, it estimates efficiently the probability of failure
in each stage, assuming failure in all previous stages, and then multiplies these
probabilities. First we describe the simulation and then we justify its correctness.

For each stage i (starting at i = 0), we simulate a specific pattern of jumps of
both parties for the i’th stage, and compute the probability pi of the event that
the parties are not synchronized at the end of that stage, given the simulated
pattern of jumps. We then uniformly draw cAi , c

B
i (that is, the values of the

parties at the end of the i’th step), given the pattern of jumps and the assumption
that the parties have not synchronized yet. We then repeat the process for the
(i+ 1)’th stage, until i = I. The simulation outputs the product of probabilities
X = p0 · p1 · · · pI . We claim that we have E[X] = Pr[err], which allows us to
approximate Pr[err] efficiently.

The claim is proved by induction on I, using repeated application of the law
of total expectation and the law of total probability, in their conditional version.
Recall that the law of total expectation states that if {Bn}n=1,2,... is a partition
of the entire space, then for each pair of events A,C we have

E[A|C] =
∑
n

E[A|C ∩Bn] Pr[Bn|C].

The law of total probability asserts the same, with expectation replaced by
probability.

In our case, recall that for each 0 ≤ i ≤ I, erri denotes the event that the
parties fail to synchronize until the end of stage i, and cAi , c

B
i denote the positions

of the parties at the end of stage i. Let us denote by {Eji }j=1,2,... the possible
pairs of positions (cAi , c

B
i ).

For I = 0 (i.e., if Algorithm 3 consists of a single stage), we clearly have
E[X] = E[p0] = Pr[err0] = Pr[err]. Assume that for all j ≤ I − 1 we have
E[p0 · p1 · . . . · pj ] = Pr[errj ], and consider stage I.

We have

Pr[err] = Pr[errI ] = Pr[errI−1] Pr[errI |errI−1]

By the law of total probability,

Pr[errI |errI−1] =
∑
j

Pr[errI |EjI−1 ∧ errI−1] Pr[EjI−1|errI−1].

By the definition of the pi’s, we have

Pr[errI |EjI−1 ∧ errI−1] = E[pI |EjI−1],
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and so by the law of total expectation,

Pr[errI |errI−1] =
∑
j

Pr[errI |EjI−1 ∧ errI−1] Pr[EjI−1|errI−1]

=
∑
j

E[pI |EjI−1 ∧ errI−1] Pr[EjI−1|errI−1]

= E[pI ].

Hence, using the induction hypothesis, we obtain

Pr[err] = Pr[errI−1] Pr[errI |errI−1]

= E[p0 · p1 · . . . · pI−1]E[pI ]

= E[p0 · p1 · . . . · pI ],

as asserted.

We note that an important difference between the first two optimizations,
described in Section 4, and the third optimization described above, is the type
of random variables we obtain. The variables outputted from a simulation based
solely on the first two optimizations are Bernoulli variables, indicating the failure
of the parties to synchronize, and we seek to compute their expectation. In
contrast, the distribution of the variables outputted from a simulation using
the third optimization is not clear, but still has expectation equal to Pr[err].
Therefore, we performed some simulations also without this optimization.

In both cases we approximate Pr[err] by the empirical expectation of the
samples drawn with the described simulations. In addition, we estimate the
standard deviation (σ) of our approximation of Pr[err] using the empirical vari-
ance ∑

i<j(Xi −Xj)
2

n3 − n2
,

where X1, . . . , Xn are independent samples from the corresponding distribution,
as this is the standard way to estimate the variance of a random variable whose
distribution is not known a-priori, based on samples.

D Variants and Optimizations of Algorithm 3

D.1 Error Flag

The DDL protocols of [4, 6] were adapted to raise a flag in case there was a
potential error in the protocol (namely, the parties fail to synchronize). This
feature was important for some of the HSS applications. In the tweaked protocol,
A simulates B’s algorithm for all its potential locations (i.e., b ∈ [−M,M ]). This
can be performed very efficiently for small M by computing about M additional
group elements. A then raises a flag if there is a potential disagreement (i.e., an
error) in one of these simulations.
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Another option (described in [11]) is for each party to maintain a footprint
(e.g., a hash) of all the final group elements it computes during the DDL execu-
tions of an RMS program. One can then check if an error occurred during one
of the DDL executions by comparing these footprints.

Our iterated random walk algorithm can be adapted to support each of these
two modifications with a small overhead. In particular, the expected overhead
in the first modification is small since each iteration in all simulations can be
performed by A in parallel. Note that almost all simulations are likely to agree
on the same group element after the first iteration, which executes the basic
algorithm and requires computing only about M additional consecutive group
elements for all simulations. Hence, the number of simulations that A has to test
in the remaining iterations drops sharply.

D.2 Practical Considerations

In the HSS implementations of [4, 6], the authors used a specific type of groups
(called “conversion friendly” groups) for which their share conversion procedure
can be implemented very efficiently. In such groups, multiplication by g is very
efficient,22 and moreover, given gx it is possible to scan very quickly a consecutive
interval gx+1, gx+2, . . . , gx+c (for some value of c) to determine whether one of
these elements has a specific pattern (e.g., is the minimal element in this set).
In the following, we refer to this procedure as a consecutive scan. Consequently,
in [4], the authors were able to perform T ≈ 5 · 109 “conversion operations”
per second, which gives an error probability of roughly 2 · 1/5 · 10−9 using their
algorithm. On the other hand, the authors reported that using an elliptic curve
group (offering a similar level of security), they could only perform about T =
4 ·106 group operations per second. This gives an error probability that is higher
by a factor of about 1000 compared to the conversion friendly group.

If we run our algorithm on a similar elliptic curve group, according to Table 1,
we expect the error probability to become roughly 400 ·T−2 = 400 · (4 ·106)−2 ≈
1/4 · 10−10, which is lower than the probability obtained with a conversion
friendly group in [4] by a factor of about 16. We note that an additional benefit
of elliptic curve groups is that they reduce the size of the HSS ciphertexts.

We would like to further optimize our algorithm in conversion friendly groups,
but its direct application would not yield a similar benefit as in [4, 6] since
(besides the first iteration) it does not compute consecutive group elements.
Nevertheless, we can tweak our algorithm to benefit from conversion friendly
groups by combining our random walk iterations with efficient consecutive scans
as above, resulting in “alternating” random walks. Optimizing the parameters
for this algorithm in practice is quite involved and we leave it to future work.
Below, we sketch the algorithm and its analysis at a high level.

22 Conversion friendly groups are subgroups of Z∗p of a prime order q, where p = 2q+ 1
is a prime that is close to a power of 2, and g = 2 is a generator. Multiplying a
group element h by the generator g can be very efficiently performed by shifting h
by one bit to the left, and adding the difference between p and the closest power of
2 in case the removed leftmost bit is 1.
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We combine the iterated random walk of Algorithm 3 with basic Algorithm 1
as follows: for parameters T1, T2, Algorithm 3 is viewed as an outer algorithm
that operates on blocks of size T1 (in the original algorithm T1 = 1) and makes
T2 invocations of the basic Algorithm 1, where each such inner invocation makes
T1 consecutive queries to its block. Thus, the combined algorithm makes a total
of T1 · T2 queries.

More specifically, in each step, the combined algorithm moves to the group
element which has the lowest value under the mapping φ among the next T1
elements. It then computes the step function ψ on the chosen element, where its
output defines the number of blocks (of size T1) to jump over in this step (the
domain and range of ψ are the same as in the standard Algorithm 3 with T2
queries). Calculation shows that for M = 1, the combined algorithm has error
probability of δ = O(T−11 · T−22 ) (for the cases of T1 = 1 and T2 = 1 this is
directly implied by our analysis of algorithms 1 and 3, respectively).

Let us assume that in conversion friendly groups, scanning a block of size
T ′ using Algorithm 1 requires the same amount of time as performing a single
jump in the iterated random walk of Algorithm 3 (the exact value of T ′ should be
determined by experiments). Furthermore, assume that we can make Tu jumps
in Algorithm 3 in a fixed time unit, or alternatively, scan Tu blocks of size T ′

using Algorithm 1. Since the combined algorithm makes the same number of
consecutive scans and jumps, we can set the block size as T1 = T ′, i.e., we
make Tu/2 jumps and scan Tu/2 blocks of size T ′ in a time unit, obtaining
δ = O(T ′−1 · T−2u ) (precise optimization will set T1 more accurately in order to
optimize the constants). In other words, we get an advantage of O(T ′−1) in error
probability compared to the iterated random walk of Algorithm 3.

47


