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Abstract. We propose a generic construction of a Σ-protocol of commit-and-prove type, which is
an and-composition of Σ-protocols on statements that include a common commitment. Our proto-
col enables a prover to convince a verifier that the prover knows a bundle of witnesses that have
a common component which we call a base witness point. When the component Σ-protocols are of
witness-indistinguishable argument systems, our Σ-protocol is also a witness-indistinguishable argu-
ment system as a whole. As an application, we propose a decentralized multi-authority anonymous
authentication scheme. We first give a syntax and security definitions of the scheme. Then we give a
generic construction of the scheme. There a witness is a bundle of witnesses each of which consists of a
common global identity string and a digital signature on it. We mention an instantiation in the setting
of bilinear groups.
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1 Introduction

Global identities such as Passport Numbers (PNs), Social Security Numbers (SSNs) and e-mail addresses as
global identifiers are currently common for identification. They are used not only for governmental identifi-
cation but also for commercial services; that is, when we want to use a commercial service, we often ask the
service administration authority for issuing an attribute certificate at the registration phase. In the phase, the
authority confirms our identities by verifying the global identity string such as PN or SSN. Once the attribute
certificate is issued, we become to be accepted at the authentication phase of the service. Hence the global
identity strings work for us to be issued our attribute certificates. It is notable that recently multi-factor
authentication schemes are utilized to prevent misauthentication. In the scheme a user of a service is granted
access only after presenting several separate pieces of evidence. Actually the multi-factor authentication of
using both a laptop PC, which is connected to Internet by a service provider, and a smartphone, which is
activated by a cellular carrier, is getting usual. Thus, there is a compound model that involves independent
administration authorities for us to be authenticated and receive benefit of a service.

Privacy protection is a function to be pursued in authentication. The growth of companies in the areas
of the IT infrastructures made protecting privacy more critical for involved users because we use search
engines, digital devices, social networking services and e-shopping services everyday. Considering this change
of circumstance, the authentication framework using identity strings and passwords should be evolved into a
framework where anonymity is guaranteed at the authentication phase. For example, when a smart household
machine sends a report about the situation of a house via Internet as a query for useful suggestion (such
as air conditioning or cooking recipes), the identity information is often unnecessary. A further example is
connected vehicles which are connected to Internet and which use a combination of plural services like a
local traffic information system and the passenger’s web-scheduler, where the identity information should
not be leaked even when the memberships should be made in the registration phase. In this example a user
should be authenticated by the service providers simultaneously in the authentication phase, anonymously.
This is an authentication framework in which plural attributes of a single user are authenticated. However,
there is a threat on such anonymous authentication frameworks; collusion attack. For example, two malicious
users with different identities bring together their private attribute certificates, and try to make a verifier
accept anonymously by using the merged attribute certificates. Here the vary anonymity is a critical potential
drawback from the view point of the collusion attack.

1.1 Our Contribution and Related Work

In this paper, we propose a new notion of a proof system; a witness-indistinguishable argument system (WIA)
with Σ-protocols for a bundled witness space. It is known that WIA is a natural building block to achieve
anonymity in cryptographic primitives ([Gol01]). However, there is no previous work for the multi-prover
setting executed by a hidden single prover who is able to convince a verifier that she is certainly a single
prover, though she is anonymous. By employing a commitment scheme as one of the building blocks we
construct the kind of WIA as a kind of commit-and-prove scheme [CLOS02,EG14].

As an application, we give a generic construction of a decentralized multi-authority anonymous authenti-
cation scheme, which can be converted into a decentralized multi-authority attribute-based signature scheme
(DMA-ABS) [OT13]. In an ABS scheme, a signer has certificates, which are also keys, on her attributes. The
signer is able to sign a message which is associated with a signing policy expressed as a boolean formula on
attributes if and only if her attributes satisfy the boolean formula. There are assignment patterns to satisfy
the boolean formula, and the attribute privacy of an ABS scheme should assure that the signatures do not
leak any information on the assignment pattern which she used. It should be noted that the attribute privacy
implies the anonymity of the signer’s identity. On the other hand, decentralized multi-authorities mean that
there are independent key-issuing authorities each of which generates each private secret key for her. Our
WIA can actually be converted into a DMA-ABS scheme if a prover chooses a monotone boolean formula
instead of an all-and formula, and if we apply the Fiat-Shamir transform [FS86] to the Σ-protocol of our
authentication scheme.

The difference between the previous DMA-ABS schemes and our DMA-ABS scheme is that, in our DMA-
ABS scheme, when a signer wants the authorities to issue private secret keys for her, the authorities simply
generate digital signatures on her single global identity string. This feature is useful when her global identity
string is easy to be validated.
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1.2 Organization of the Paper

In Section 2, we prepare for needed notions and notations. In Section 3, we describe building blocks and give
a generic construction of our witness-indistinguishable argument system with a Σ-protocol for the bundled
witness space. In Section 4, we first define a syntax and security notions of our decentralized multi-authority
anonymous authentication scheme. Then, we give a generic construction of the scheme. In Section 5, we
conclude our work. In Appendix A, we briefly show an instantiation of the scheme in the setting of bilinear
groups.

2 Preliminaries

The set of natural numbers is denoted by N. We put N0 := N∪{0}. The residue class ring of integers modulo
a prime number p is denoted by Zp. The security parameter is denoted by λ. The bit length of a string a
is denoted by |a|. The number of elements of a set S is denoted by |S|. A uniform random sampling of an
element a from a finite set S is denoted as a ∈R S. The expression a =? b returns a boolean 1 (true) when
a = b, and otherwise 0 (false). When an algorithm A with an input a returns z, we denote it as z ← A(a),
or, A(a) → z. St means the inner state of an algorithm. When a probabilistic algorithm A with an input a
and a randomness r on a random tape returns z, we denote it as z ← A(a; r) When an algorithm A with
an input a and an algorithm B with an input b interact with each other and B returns z, we denote it as
z ← 〈A(a), B(b)〉. The transcript of all the messages of the interaction is denoted by transc〈A(a), B(b)〉.
When an algorithm A accesses an oracle O, we denote it by AO. When A accesses n oracles O1, . . . ,On

concurrently (i.e. in arbitrarily interleaved order of messages), we denote it by AOi|ni=1 . A probability of an
event E is denoted by Pr[E]. A conditional probability of an event E given events F1, . . . , Fn in this order
is denoted by Pr[E|F1, . . . , Fn]. A probability distribution which dominates a random variable X is denoted
by dist

(
X
)
. A probability distribution which dominates a random variable X whose probability is a joint

probability of random variables Y1, . . . , Yn, X is denoted by dist
(
X|Y1, . . . , Yn, X

)
. A probability P is said

to be negligible in λ if for any given positive polynomial poly(λ) P < 1/poly(λ) for sufficiently large λ ∈ N.
Two probabilities P and Q are said to be computationally indistinguishable if |P − Q| is negligible in λ,
which is denoted as P ≈c Q. A probability P is said to be overwhelming if |1− P | is negligible in λ.

2.1 Interactive Argument System, Σ-protocol and Witness-Indistinguishability

Suppose that there exists a predicate Φ that defines the membership of a binary relation R; i.e., Φ maps

(x,w) ∈ ({0, 1}∗)2 to true or false. The relation R is defined as R
def
= {(x,w) ∈ ({0, 1}∗)2|Φ(x,w) = true}.

We consider relations parametrized by the security parameter λ. That is, R in our sense is a family (Rλ)λ∈N
of relations Rλ ⊆ ({0, 1}∗)2. We say that R is polynomially bounded if there exist a constant c and a
polynomial `(·) such that for any λ, |x| ≤ c · λ and |w| ≤ `(|x|) for any (x,w) ∈ Rλ. We say that R is an NP
relation if R is polynomially bounded and Φ is computable within polynomial-time in |x| as an algorithm. For
a pair (x,w) ∈ R we call x a statement and w a witness of x. We call R the witness relation, and Φ(·, ·) the
predicate of the witness relation R. An NP language L for an NP relation R is defined as the set of all possible

statements: L
def
= {x ∈ {0, 1}∗;∃w ∈ {0, 1}∗, (x,w) ∈ R}. We denote the set of witnesses of a statement x by

W (x): W (x)
def
= {w ∈ {0, 1}∗ | (x,w) ∈ R}. We call the union W of all the sets W (x) for x ∈ L the witness

space of L: W
def
=
⋃
x∈LW (x). We denote an interactive proof system on an NP relation R [Bab85,GMR85]

by Π = (Π.Setup,P,V), where Π.Setup is a set up algorithm for a set pp of public parameters, and P and V
are a pair of interactive algorithms. P called a prover is probabilistic and unbounded, and V called a verifier
is probabilistic polynomial-time (ppt). If P is also limited to ppt, then Π is called an interactive argument
system.

Σ-protocol [Cra96,Dam10] Let R be an NP relation. A Σ-protocol Σ on the relation R is a 3-move
public-coin protocol of an interactive argument system Π = (Π.Setup,P,V) [Cra96,Dam10]. We introduce
six ppt algorithms for a Σ-protocol: Σ = (Σcom, Σcha, Σres, Σvrf, Σext, Σsim). The first algorithm Σcom is
executed by P. On input a pair of a statement and a witness (x,w) ∈ R, it generates a commitment message
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com and outputs its inner state St. It returns them as Σcom(x,w) → (com, St). The second algorithm
Σcha is executed by V. On input the statement x, it reads out the size of the security parameter as 1λ and
chooses a challenge message cha ∈R chaSp(1λ) from the challenge space chaSp(1λ) := {0, 1}l(λ), where
l(·) is a super-log function (i.e. l(λ) = ω(log(λ))) [BP02]. It returns the message as Σcha(x) → cha. The
third algorithm Σres is executed by P. On input the state St and the challenge message cha, it generates a
response message res. It returns the message as Σres(St,cha)→ res. The fourth algorithm Σvrf is executed
by V. On input the statement x and the messages com, cha and res, it computes a boolean decision d.
It returns the decision as Σvrf(x,com,cha,res) → d. If d = 1, then we say that P is accepted by V on x.
Otherwise, we say that P is rejected by V on x. The vector of all the messages (com,cha,res) is called a
transcript of the interaction on x.

These four algorithms (Σcom, Σcha, Σres, Σvrf) must satisfy the following property.
Completeness For any (x,w) ∈ R, a prover P(x,w) has a verifier V(x) accept with probability 1:
Pr[Σvrf(x,com,cha,res) = 1 | Σcom(x,w)→ (com, St), Σcha(x)→ cha, Σres(St,cha)→ res].

The fifth algorithm Σext concerns with the following property.
Special Soundness There is a ppt algorithm Σext called a knowledge extractor, which, on input a statement
x and two accepting transcripts (com,cha,res) and (com,cha′,res′), cha 6= cha′, computes a witness ŵ
satisfying (x, ŵ) ∈ R with an overwhelming probability in |x|:

ŵ ← Σext(x,com,cha,res,cha
′,res′). (1)

Note here that commitment messages are common and challenge messages are different.
The sixth algorithm Σsim concerns with the following property.

Honest-Verifier Zero-Knowledge There is a ppt algorithm called a simulator Σsim, which, on input a state-
ment x, computes an accepting transcript on x:

( ˜com, ˜cha, ˜res)← Σsim(x), (2)

where the distribution of the simulated transcripts dist
(

˜com, ˜cha, ˜res
)

is identical to the distribution of the

real accepting transcripts dist
(
com,cha,res

)
.

Note 1: Simulator Input In a Σ-protocol the challenge message cha is a public coin. This property
enables us in this paper to use the following variant of the simulator Σsim(x): On input a simulated challenge
message ˜cha that is chosen uniformly at random, the variant generates a commitment ˜com and a response

˜res:

˜cha ∈R chaSp(1λ), ( ˜com, ˜res)← Σsim(x, ˜cha). (3)

Witness-Indistinguishability [FS90,Gol01] Let R be an NP relation. Suppose that an interactive ar-
gument system Π = (Π.Setup,P,V) with a Σ-protocol Σ on the relation R is given. In this paper we focus
on the following property.
Perfect Witness Indistinguishability For any ppt algorithm V∗, any sequences of witnesses w = (wx)x∈L
and w′ = (w′x)x∈L s.t. wx, w

′
x ∈ W (x), any string x ∈ L and any string z ∈ {0, 1}∗, the two distributions

dist
(
x, z, transc〈P(x,wx),V∗(x, z)〉

)
and dist

(
x, z, transc〈P(x,w′x),V∗(x, z)〉

)
are identical.

2.2 Commit-and-Prove Scheme [CLOS02,EG14]

A commit-and-prove scheme CmtPrv consists of five ppt algorithms: CmtPrv = (CmtPrv.Setup,Cmt =
(Cmt.Com,Cmt.Vrf), Π = (P,V)).
CmtPrv.Setup(1λ) → pp. On input the security parameter 1λ, it generates a set of public parameter pp. It
returns pp.
Cmt.Com(m)→ (c, κ). On input a message m in the message space Msg(1λ), this ppt algorithm generates
a commitment c. It also generates an opening key κ. It returns (c, κ).
Cmt.Vrf(c,m, κ) → d. On input a commitment c, a message m and an opening key κ, this deterministic
polynomial-time algorithm generates a boolean decision d. It returns d.
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The correctness should hold for the commitment part Cmt of the scheme: For any security parameter
1λ, any set of public parameter pp and any message m ∈ Msg(1λ), Pr[d = 1 | (c, κ) ← Cmt.Com(m), d ←
Cmt.Vrf(c,m, κ)] = 1.

We denote by Φ a predicate that returns the boolean decision: Φ(c, (m,κ))
def
= (Cmt.Vrf(c,m, κ)). In the

scheme there is an interactive argument system Π = (P,V) for the following relation R:

R := {(c, (m,κ)) ∈ {0, 1}∗ × ({0, 1}∗)2 | Φ(c, (m,κ)) = true}. (4)

In this paper we focus on the following properties for the commitment part Cmt.
Perfectly Hiding For any security parameter 1λ, any set of public parameter pp and any two messages
m,m′ ∈ Msg(1λ), the two distributions dist

(
c | (c, κ)← Cmt.Com(m)

)
and dist

(
c | (c, κ)← Cmt.Com(m′)

)
are identical.
Computationally Binding The attack of breaking binding property of Cmt by an algorithm A is defined by
the following experiment.

ExpbindCmt,A(1λ) : (5)

pp← CmtPrv.Setup(1λ), (c,m, κ,m′, κ′)← A(pp) (6)

If Cmt.Vrf(c,m, κ) = Cmt.Vrf(c,m′, κ′) = 1 ∧m 6= m′, then Return Win else Return Lose (7)

The advantage of A over Cmt is defined as Advbind
Cmt,A(λ) := Pr[ExpbindCmt,A(1λ) returns Win]. The commitment

scheme Cmt is said to be computationally binding if for any set of public parameter pp and any ppt algorithm
A, the advantage Advbind

Cmt,A(λ) is negligible in λ.
Note 2: Opening Key The commitment generation algorithm Cmt.Com uses random tapes [Gol01]. In
this paper we are in the case that a randomness r ∈ {0, 1}λ is used to generate a commitment c, and the
opening key κ is the randomness: κ := r. That is, Cmt.Com(m; r)→ (c, r).

2.3 Digital Signature Scheme [FS86]

A digital signature scheme Sig consists of four ppt algorithms: Sig = (Sig.Setup, Sig.KG, Sig.Sign, Sig.Vrf).
Sig.Setup(1λ)→ pp. On input the security parameter 1λ, it generates a set of public parameter pp. It returns
pp.
Sig.KG(1λ)→ (PK,SK). On input the security parameter 1λ, this ppt algorithm generates a signing key SK
and the corresponding public key PK. It returns (PK,SK).
Sig.Sign(PK,SK,m) → σ. On input the public key PK, the secret key SK and a message m in the message
space Msg(1λ), this ppt algorithm generates a signature σ. It returns σ.
Sig.Vrf(PK,m, σ)→ d. On input the public key PK, a message m and a signature σ, it returns a boolean d.

The correctness should hold for the scheme Sig: For any security parameter 1λ and any message
m ∈ Msg(1λ), Pr[d = 1 | pp ← Sig.Setup(1λ), (PK,SK) ← Sig.KG(1λ), σ ← Sig.Sign(PK,SK,m), d ←
Sig.Vrf(PK,m, σ)] = 1.

An adaptive chosen-message attack on the scheme Sig by a forger algorithm F is defined by the following
experiment.

Expeuf-cma
Sig,F (1λ) : (8)

pp← Sig.Setup(1λ), (PK,SK)← Sig.KG(1λ), (m∗, σ∗)← FSignO(PK,SK,·)(PK) (9)

If m∗ /∈ {mj}1≤j≤qs and Sig.Vrf(PK,m∗, σ∗) = 1, then Return Win else Return Lose (10)

In the experiment, F issues a signing query to its signing oracle SignO(PK,SK, ·) by sending a message
mj at most qs times (1 ≤ j ≤ qs). As a reply, F receives a valid signature σj on mj . After receiving
replies, F returns a message and a signature (m∗, σ∗). A restriction is imposed on the algorithm F: The
set of queried messages {mj}1≤j≤qs should not contain the message m∗. The advantage of F over Sig is

defined as Adveuf-cma
Sig,F (λ) := Pr[Expeuf-cma

Sig,F (1λ) returns Win]. The digital signature scheme Sig is said to
be existentially unforgeable against adaptive chosen-message attacks if for any given ppt algorithm F, the
advantage Adveuf-cma

Sig,F (λ) is negligible in λ.
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3 Witness-Indistinguishable Argument with Σ-Protocol for Bundled Witness
Space

In this section, we propose a generic construction of an interactive argument system that is a witness-
indistinguishable argument system for a newly introduced bundled witness space. Our protocol of the inter-
active argument system is an AND-composition of Σ-protocols together with a commitment scheme, which
is to prove the knowledge of witness pairs each of which consists of two components; one is a common
component (such as a global identity string) and the other is an individual component (such as a digital
signature issued by an individual authority on the global identity). We prove that our protocol is certainly
a Σ-protocol. Finally, we prove that our interactive argument system with the protocol is perfectly witness-
indistinguishable under the condition that the employed commitment scheme is perfectly hiding and the
component Σ-protocols are perfectly witness-indistinguishable.

3.1 Building Blocks

Component Interactive Argument Systems with Σ-protocols For a polynomially bounded integer
n, let A be the set of indices: A := {1, . . . , n}. We start with an efficiently computable predicate Φa for each
a ∈ A, which determines an NP witness relation Ra:

Ra = {(xa, wa) ∈ {0, 1}∗ × {0, 1}∗ | Φa(xa, wa) = true}, a ∈ A. (11)

We suppose for each a ∈ A that there is an interactive argument system Πa = (Π.Setup,Pa,Va) which is
executed in accordance with a Σ-protocol for the relation Ra:

Σa = (Σa
com, Σ

a
cha, Σ

a
res, Σ

a
vrf, Σ

a
ext, Σ

a
sim). (12)

We suppose further that the witness space W a decomposes into two components W a = W a
0 ×W a

1 for each
a ∈ A. In this paper, our interest is in the case that all the 0-th spaces W a

0 , a ∈ A, are equal, which we
denote by W0. We call the common set W0 the base witness space of the witness spaces W a for a ∈ A, and
an element w0 ∈ W0 a base witness point. Then, we suppose that a witness wa ∈ W a consists of w0 and
wa1 , where the base witness point w0 is common for all a ∈ A. That is, we will study the following type of
bundled witnesses (wa)a∈A;

W a = W0 ×W a
1 ,

∈ ∈

wa = (∃w0,∃wa1),
a ∈ A. (13)

Commit-and-Prove Scheme with Σ-protocol To construct an interactive argument system for the re-
lations (Ra)a∈A with the base witness space W0, we employ a commit-and-prove scheme with a Σ-protocol:
CmtPrv = (CmtPrv.Setup,Cmt = (Cmt.Com,Cmt.Vrf), Π0 = (P0,V0)), where the predicate Φ0 and the rela-
tion R0 is defined as follows, and Π0 is executed in accordance with a Σ-protocol Σ0:

Φ0(c0, (w0, r0))
def
= (Cmt.Com(w0; r0) =? (c0, r0)), (14)

R0
def
= {(c0, (w0, r0)) ∈ {0, 1}∗ × ({0, 1}∗)2 | Φ0(c0, (w0, r0)) = true}, (15)

Σ0 = (Σ0,com, Σ0,cha, Σ0,res, Σ0,vrf, Σ0,ext, Σ0,sim). (16)

Note that a message m to be committed is a base witness point w0.

3.2 On the Construction of a Σ-protocol for Simultaneous Satisfiability

We introduce for each a ∈ A the following composed relation determined by the two predicates Φa and Φ0.
That is, the relation Ra0 is for simultaneous satisfiability of the two predicates Φa and Φ0 on the base witness
point w0:

Ra0 :=
{

(xa0 = (xa, c0), wa0 = (w0, w
a
1 , r0)) |

{
Φa(xa, (w0, w

a
1)) = true and

Φ0(c0, (w0, r0)) = true

}
, a ∈ A. (17)

5



We require here that the Σ-protocols Σa and Σ0 are turned into a simultaneous Σ-protocol Σa
0 of an

interactive argument system Πa
0 = (Π.Setup,CmtPrv.Setup,Pa0 ,V

a
0) for the above relation Ra0 :

Σa
0 = (Σa

0,com, Σ
a
0,cha, Σ

a
0,res, Σ

a
0,vrf, Σ

a
0,ext, Σ

a
0,sim). (18)

• Σa
0,com(xa0 , w

a
0) → (coma,coma0 , St

a
0). This ppt algorithm is executed by Pa0 . On input a statement

xa0 = (xa, c0) and a witness wa0 = (w0, w
a
1 , r0), it executes the algorithms Σa

com(xa, (w0, w
a
1)) and

Σ0,com(c0, (w0, r0)). It obtains the commitment messages and the inner states, (coma, Sta) and (coma0 , St
a
0),

respectively. There is a constraint that the knowledge extractor Σa
0,ext should return a witness which si-

multaneously satisfies the two predicates Φa and Φ0 on the base witness point w0. It sets the state as
Sta0 := (Sta, Sta0). It returns (coma,coma0 , St

a
0). Pa0 sends (coma,coma0) to Va0 as a commitment message,

and keeps the state Sta0 .

• Σa
0,cha(xa0) → cha. This ppt algorithm is executed by Va0 . On input the statement xa0 , it reads out the

size of the security parameter as 1λ and chooses a challenge message cha ∈R chaSp(1λ). It returns cha.
Va0 sends cha to Pa0 as a challenge message.

• Σa
0,res(St

a
0 ,cha) → (resa,resa0). This ppt algorithm is executed by Pa0 . On input the state Sta0 and

the challenge message cha, it executes the algorithms Σa
res(St

a,cha) and Σ0,res(St
a
0 ,cha). It obtains the

response messages resa and resa0 , respectively. There is the constraint that the knowledge extractor Σa
0,ext

should return a witness which simultaneously satisfies Φa and Φ0 on w0. It returns (resa,resa0). Pa0 sends
(resa,resa0) to Va0 as a response message.

• Σa
0,vrf(x

a
0 , (com

a,coma0),cha, (resa,resa0))→ d. This deterministic polynomial-time algorithm is executed
by Va0 . On input the statement xa0 = (xa, c0) and all the messages (coma,coma0), cha and (resa,resa0), it
executes the algorithms Σa

vrf(x
a,coma,cha,resa) and Σ0,vrf(c0,com

a
0 ,cha,res

a
0). It obtains two boolean

decisions da and da0 . If the both da and da0 are 1, then it returns d := 1, and otherwise d := 0. Va0 returns d
as the decision of the interactive protocol on xa0 .

• Σa
0,ext(x

a
0 , (com

a,coma0),cha, (resa,resa0),cha′, (resa′,resa0
′)) → (ŵa0 , ŵ

a
1 , r̂

a
0). This ppt algorithm

is for knowledge extraction. On input the statement xa0 = (xa, c0) and two accepting transcripts
((coma,coma0),cha, (resa,resa0)) and ((coma,coma0),cha′, (resa′,resa0

′)), cha 6= cha′, it executes the
algorithms Σa

ext(x
a,coma,cha,resa,cha′,resa′) and Σ0,ext(c0,com

a
0 ,cha,res

a
0 ,cha

′,resa0
′). It obtains

witnesses (ŵa0 , ŵ
a
1) and (w̄a0 , r̂

a
0) which satisfy (xa, (ŵa0 , ŵ

a
1)) ∈ Ra and (c0, (w̄

a
0 , r̂

a
0)) ∈ R0 with an over-

whelming probability in |xa| and |c0|, respectively. Note here that the commitment messages are common
and the challenge messages are different. The simultaneous satisfiability on w0 must assure the following
equality:

ŵa0 = w̄a0 with probability one. (19)

It returns (ŵa0 , ŵ
a
1 , r̂

a
0).

• Σa
0,sim(xa0 , ˜cha) → (( ˜com

a
, ˜com

a
0), ( ˜res

a
, ˜res

a
0)). This ppt algorithm is for the simula-

tion of an accepting transcript. On input a statement xa0 = (xa, c0) and a uniform ran-
dom string ˜cha ∈R chaSp(1λ), it executes the algorithms Σa

sim(xa, ˜cha) and Σ0,sim(c0, ˜cha).
It obtains the remaining part of the transcripts ( ˜com

a
, ˜res

a
) and ( ˜com

a
0 , ˜res

a
0), respec-

tively. The simulated messages (( ˜com
a
, ˜com

a
0), ˜cha, ( ˜res

a
, ˜res

a
0)) should form a distribution

dist
(
( ˜com

a
, ˜com

a
0), ˜cha, ( ˜res

a
, ˜res

a
0) | generated by chaSp(1λ) and Σa

0,sim(xa0 , ˜cha)
)

which is identi-

cal to the distribution dist
(
(coma,coma0),cha, (resa,resa0) | real accepting transcript

)
.

Remark To construct the algorithm Σa
0,com of commitment message and the algorithm Σa

0,res of response
message is a non-trivial task. That is, we have to construct Σa

0,com and Σa
0,res so that the knowledge extractor

Σa
0,ext returns a witness which simultaneously satisfies Φa and Φ0 on a base witness point w0. The idea of the

construction is to use a common random tape to generate commitment messages coma and coma0 , but we do
not describe the inner treatment of the random tapes in Σa

0,com and Σa
0,res for generality. Hence our approach

is to show the construction when we instantiate the Σ-protocol Σa
0 . In Section A we actually demonstrate

the construction of Σa
0 in an algebraic setting.
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3.3 Bundled Witness Space

We now introduce an NP witness relation for our bundled witness spaces. We first fix the base witness point
w0 in the base witness space W0 and consider a subset Raw0

for each NP witness relation Ra, a ∈ A:

Raw0
:= {(xa, wa) ∈ Ra | wa = (w0, w

a
1) for some wa1} ⊂ Ra, a ∈ A. (20)

Then we run the base witness point w0 to claim the following property.

Claim 1 For a polynomially bounded integer n, let A be the set of indices {1, . . . , n}. Then we have:⋃
w0∈W0

(∏
a∈A

Raw0

)
⊂
∏
a∈A

( ⋃
w0∈W0

Raw0

)
=
∏
a∈A

Ra. (21)

Proof. The equality of the right-hand side is because
⋃
w0∈W0

Raw0
= Ra. An element of the left hand side is

of the form (x1, (w0, w
1
1)), . . . , (xn, (w0, w

n
1 )) where w0 ∈W0 and (xa, (w0, w

a
0)) ∈ Ra for each a ∈ A. This is

an element of
∏
a∈AR

a, and hence the inclusion follows. �
Deleting the redundancy, we obtain the following one-to-one correspondence as sets (‘'’):

Ra∈Abnd
def
= {

(
(xa)a∈A, w0, (w

a
1)a∈A

)
∈ {0, 1}∗ × ({0, 1}∗)2 | (xa, (w0, w

a
1)) ∈ Ra, a ∈ A} (22)

'
⋃

w0∈W0

(∏
a∈A

Raw0

)
. (23)

Claim 2 For a polynomially bounded integer n, let A be the set of indices {1, . . . , n}. Then the relation
Ra∈Abnd is an NP relation.

Proof. We first note that the number of indices |A| is polynomially bounded. To bound the bit lengths of
witnesses by a fixed polynomial, let polya(·) denote for each a ∈ A the polynomial which bounds the bit
lengths of witnesses: |wa| < polya(|xa|) for (xa, wa) ∈ Ra. Let a polynomial poly(·) be the sum: poly(·) :=∑
a∈A polya(·). Then poly(·) bounds the bit length of the witness as

|w0, (w
a
1)a∈A| ≤ |(w0, w

a
1)a∈A| = |(wa)a∈A| ≤

∑
a∈A

polya(|xa|) ≤
∑
a∈A

polya(|(xa)a∈A|) = poly(|(xa)a∈A|).

(24)

As for efficiency of deciding the membership of the relation Ra∈Abnd , we just remember that the number of
indices |A| is polynomially bounded. �

Definition 1 (Relation for Bundled Witness Spaces) For a polynomially bounded integer n, an NP
witness relation for the bundled witness spaces is defined as Ra∈Abnd .

Definition 2 (Bundled Witness Spaces) For a polynomially bounded integer n, let A be the set of indices
{1, . . . , n}. Let Ra, a ∈ A be NP witness relations where each witness space decomposes W a = W0×W a

1 , a ∈ A.
Then the bundled witness spaces is defined as follows.

W a∈A
bnd

def
= W0 × (W a

1 )a∈A. (25)

3.4 Generic Construction of a Σ-protocol for the Bundled Witness Space

By using the above Σ-protocols (Σa
0 )a∈A and a commitment generation algorithm Cmt.Com, we construct

an interactive argument system Πa∈A
bnd = (P,V) for the witness relation Ra∈Abnd with a protocol Σa∈A

bnd . Σa∈A
bnd

is actually a Σ-protocol, which consists of the six ppt algorithms described below (see also Fig.1):

Σa∈A
bnd = (Σa∈A

bnd,com, Σ
a∈A
bnd,cha, Σ

a∈A
bnd,res, Σ

a∈A
bnd,vrf, Σ

a∈A
bnd,ext, Σ

a∈A
bnd,sim). (26)
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• Σa∈A
bnd,com((xa)a∈A, (w0, (w

a
1)a∈A)) → (c0, (com

a,coma0)a∈A, St). This ppt algorithm is executed by P. On

input a statement that is a vector (xa)a∈A and a witness that is a vector (w0, (w
a
1)a∈A), it computes a commit-

ment c0 to the base witness point w0 with a randomness r0 ∈R {0, 1}λ by running the commitment generation
algorithm of Cmt: (c0, r0) ← Cmt.Com(w0; r0). It sets the extended statement as xa0 := (xa, c0) and the ex-
tended witness as wa0 := (w0, w

a
1 , r0) for each a ∈ A. It executes for each a ∈ A the algorithm Σa

0,com(xa0 , w
a
0).

It obtains (coma,coma0 , St
a
0). It sets the state as St := (Sta0)a∈A. It returns (c0, (com

a,coma0)a∈A, St). P
sends (c0, (com

a,coma0)a∈A) to V as a commitment message, and keeps the state St.

• Σa∈A
bnd,cha((xa)a∈A)→ cha. This ppt algorithm is executed by V. On input the statement (xa)a∈A, it reads

out the size of the security parameter as 1λ and chooses a challenge message cha ∈R chaSp(1λ). It returns
cha. Va0 sends cha to Pa0 as a challenge message.

• Σa∈A
bnd,res(St,cha)→ (resa,resa0)a∈A. This ppt algorithm is executed by P. On input the state St and the

challenge message cha, it executes for each a ∈ A the algorithm Σa
0,res(St

a
0 ,cha). It obtains (resa,resa0).

It returns (resa,resa0). P sends (resa,resa0)a∈A to V as a response message.

• Σa∈A
bnd,vrf((x

a)a∈A) → d. This deterministic polynomial-time algorithm is executed by V. On input the

statement (xa)a∈A and all the messages (c0, (com
a,coma0)a∈A), cha and (resa,resa0)a∈A, it first sets the

extended statement as xa0 := (xa, c0) for each a ∈ A. Then it executes for each a ∈ A the algorithm
Σa

0,vrf(x
a
0 ,com

a,coma0 ,cha,res
a,resa0). It obtains boolean decisions. If all the decisions are 1, then V returns

1, and otherwise, 0.

These four algorithms (Σa∈A
bnd,com, Σ

a∈A
bnd,cha, Σ

a∈A
bnd,res, Σ

a∈A
bnd,vrf) must satisfy the following property.

Proposition 1 (Completeness) If Cmt is correct, and if Σa
0 is complete for each a ∈ A, then our Σa∈A

bnd

is complete.

Proof. The completeness of our Πa∈A
bnd comes from the correctness of Cmt and the completeness of Πa

0 for
each a ∈ A. �

• Σa∈A
bnd,ext((x

a)a∈A, (c0, (com
a,coma0)a∈A),cha, (resa,resa0)a∈A,cha′, ((resa)′, (resa0)′)a∈A) →

(ŵ0, (ŵ
a
1)a∈A). This ppt algorithm is for knowledge extraction. On input the statement

(xa)a∈A and two accepting transcripts ((c0, (com
a,coma0)a∈A),cha, (resa,resa0)a∈A)) and

((c0, (com
a,coma0)a∈A),cha′, (resa′,resa0

′)a∈A)), cha 6= cha′, it first sets the extended state-
ment as xa0 := (xa, c0) for each a ∈ A. Note here that commitment messages are com-
mon and challenge messages are different. Then it executes for each a ∈ A the algorithm
Σa

0,ext(x
a
0 , (com

a,coma0),cha, (resa,resa0),cha′, (resa′,resa0
′)). It obtains (ŵa0 , ŵ

a
1 , r̂

a
0). We empha-

size that the property (19) is needed here. If this event does not occur (i.e. Σa
0,ext fails to extract a witness

for at least one a), then it returns ⊥. Otherwise, if ŵa0 = ŵa
′

0 for any a, a′ ∈ A, then it sets the common value
ŵ0 := ŵa0 and returns (ŵ0, (ŵ

a
1)a∈A). Otherwise it returns ⊥∗. The binding property of the commitment

scheme Cmt assures that the former case holds with an overwhelming probability, as claimed in the following
proposition.

Proposition 2 (Special Soundness) If Cmt is correct and computationally binding, and if Σa
0 has the

special soundness for each a ∈ A, then our Σa∈A
bnd has the special soundness.

Proof. By employing (Σa∈A
bnd,com, Σ

a∈A
bnd,cha, Σ

a∈A
bnd,res, Σ

a∈A
bnd,vrf, Σ

a∈A
bnd,ext) as subroutines, we construct a ppt al-

gorithm A that breaks the binding property of Cmt in accordance with the experiment ExpbindCmt,A(1λ). A

is given as input the set of public parameter ppCmtPrv. A first reads out the security parameter 1λ from
ppCmtPrv, and executes the setup algorithms Π.Setup(1λ). It obtains the set of public parameter ppΠ . A
merges the sets of public parameter as pp := (ppΠ , ppCmtPrv). Then A executes Πa∈A

bnd = (P,V). If the de-
cision d of V is 1, then A rewinds P back to the timing at which P had sent the challenge message cha
of the protocol Σa∈A

bnd . If the decision d of V is again 1, A executes the knowledge extractor Σa∈A
bnd,ext on

input ((xa)a∈A, (c0, (com
a,coma0)a∈A)),cha, (resa,resa0)a∈A,cha′, ((resa)′, (resa0)′)a∈A). If Σa∈A

bnd,ext out-

puts ⊥∗, then there must be a pair a, a′ ∈ A∗, a 6= a′ such that (ŵa0 , ŵ
a
1 , r̂

a
0) and (ŵa

′

0 , ŵ
a′

1 , r̂a′,0) pass the

verification Cmt.Vrf and ŵa0 6= ŵa
′

0 . The vector (c0, ŵ
a
0 , r̂

a
0 , ŵ

a′

0 , r̂a′,0) breaks the binding property to yields
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Win in ExpbindCmt,A(1λ). This completes the description of A, and the following equality holds.

Advbind
Cmt,A(λ) = Pr[Σa∈A

bnd,ext returns ⊥∗] (27)

= 1− (Pr[Σa∈A
bnd,ext returns(ŵ0, (ŵ

a
1)a∈A)] + Pr[Σa∈A

bnd,ext returns ⊥]). (28)

Therefore,

Pr[Σa∈A
bnd,ext returns(ŵ0, (ŵ

a
1)a∈A)] = 1− (Advbind

Cmt,A(λ) + Pr[Σa∈A
bnd,ext returns ⊥]) (29)

= 1− (Advbind
Cmt,A(λ) + (1−

∏
a∈A

Pr[Σa
0,ext returns a witness])). (30)

The right-hand side is an overwhelming probability because Pr[Σa
0,ext returns a witness] is an overwhelming

probability for each a ∈ A and |A| is bounded by a polynomial in |x|. �
Note 3: Our Use Case For simplicity of the later discussion, we hereafter assume that, for all a ∈ A,
Pr[Σa

0,ext returns a witness] = 1. That is, we assume that Pr[Σa
0,ext returns ⊥] = 0 for each a ∈ A.

• Σa∈A
bnd,sim((xa)a∈A, ˜cha) → ((c̃0, ( ˜com

a
, ˜com

a
0)a∈A), ( ˜res

a
, ˜res

a
0)a∈A). This ppt algorithm is for the sim-

ulation of an accepting transcript. On input a statement (xa)a∈A and a uniform random string ˜cha ∈R
chaSp(1λ), it first chooses a base witness point w̃0 ∈R W0 uniformly at random, and executes the
commitment generation algorithm with a randomness r̃0, Cmt.Com(w̃0; r̃0) → (c̃0, r̃0). It obtains a com-
mitment c̃0. Then it sets the extended statement as xa0 := (xa, c̃0) for each a ∈ A. Then it exe-
cutes for each a ∈ A the algorithm Σa

0,sim(xa0 , ˜cha). It obtains (( ˜com
a
, ˜com

a
0), ( ˜res

a
, ˜res

a
0)). It returns

((c̃0, ( ˜com
a
, ˜com

a
0)a∈A), ( ˜res

a
, ˜res

a
0)a∈A).

Proposition 3 (Honest-Verifyer Zero-Knowledge) If Cmt is perfectly hiding, and if Σa
0 is honest-

verifier zero-knowledge for each a ∈ A, then our Σa∈A
bnd is honest-verifier zero-knowledge.

Proof. The perfectly hiding property assures that the distribution of simulated commitment c̃0 is the
same as the real. Then on input (xa0 , ˜cha), the simulator Σa

0,sim works to return the remaining part

of the simulated transcript, (( ˜com
a
, ˜com

a
0), ( ˜res

a
, ˜res

a
0)) for each a ∈ A. Then, the merged transcripts

((c̃0, ( ˜com
a
, ˜com

a
0)a∈A), ( ˜res

a
, ˜res

a
0)a∈A) is identically distributed to the real. �

Theorem 1 If Cmt is correct, computationally binding and perfectly hiding, and if Σa
0 is a Σ-protocol for

each a ∈ A, then our protocol Σa∈A
bnd is a Σ-protocol.

Proof. Propositions 1, 2 and 3 deduces that Σa∈A
bnd is a Σ-protocol. �

Theorem 2 If the component interactive proof system Πa
0 with Σa

0 is perfectly witness-indistinguishable for
each a ∈ A, and if Cmt is perfectly hiding, then our interactive argument system Πa∈A

bnd with Σa∈A
bnd is perfectly

witness-indistinguishable.

Proof. The transcripts form a distribution dista∈A := dist
(
(c0, (com

a,coma0)a∈A),cha, (resa,resa0)a∈A
)
,

where the challenge message cha is chosen by any given ppt verifier V∗ on input a set of statements (xa)a∈A,
any given auxiliary input z and a commitment message (c0, (com

a,coma0)a∈A). If Cmt is perfectly hiding,
then the distribution of the commitment c0 is identical even if the committed element w0 varies. For each
a ∈ A, if Πa

0 is perfectly witness-indistinguishable, then the distribution of the commitment message and
the response message dist

(
(coma,coma0), (resa,resa0)

)
are identical even if the witness (w0, w

a
1) varies and

even if cha chosen by V∗((xa)a∈A, z, (c0, (com
a,coma0)a∈A)) deviates from the uniform random distribution.

Therefore, for all a ∈ A, the distribution dista∈A is identical even if the witness (w0, (w
a
1)a∈A) varies. �

Note. OR-composition and Boolean Formulas The OR-proof, and more generally the proof for mono-
tone formulas, are also possible for our Σ-protocol Σa∈A

bnd (see [CDS94,AAS14]).

4 Decentralized Multi-Authority Anonymous Authentication Scheme

In this section, we give a syntax and security definitions of an interactive anonymous authentication scheme
in a decentralized multi-authority setting on key generation.
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P((xa)a∈A, w0, (w
a
1 )a∈A) V((xa)a∈A)

Σa∈A
bnd,com((xa)a∈A, w0, (w

a
1 )a∈A)

(c0, r0)← Cmt.Com(w0; r0)
For a ∈ A:
xa0 := (xa, c0), wa0 := (w0, w

a
1 , r0)

Σa
0,com(xa0 , w

a
0 )→ (coma,coma0 , St

a
0)

St := (Sta0)a∈A

Return (c0, (com
a,coma0)a∈A, St) c0, (com

a,coma0)a∈A

→ Σa∈A
bnd,cha((xa)a∈A)

cha ∈R chaSp(1λ)
cha Return cha

Σa∈A
bnd,res(St,cha) ←
For a ∈ A:
Σa

0,res(St
a,cha)→ (resa,resa0)

Return (resa,resa0)a∈A (resa,resa0)a∈A

→ Σa∈A
bnd,vrf((x

a)a∈A)

For a ∈ A:
xa0 := (xa, c0)
Σa

0,vrf(x
a
0 , (com

a,coma0),cha, (resa,resa0))
=? 1

If true for all a ∈ A, then Return d := 1
else Return d := 0

Return d

Fig. 1. The protocol Σa∈A
bnd of our proof system Πa∈A

bnd for the NP witness relation Ra∈Abnd .

4.1 Syntax and Security Definitions

Our scheme a-auth consists of five ppt algorithms, (Setup, AuthKG, PrivKG, P, V).

• Setup(1λ) → pp. This ppt algorithm is needed to generate a set of public parameter pp. On input the
security parameter 1λ, it generates the set pp. It returns pp.

• AuthKG(1λ, a) → (PKa,MSKa). This ppt algorithm is executed by a key-issuing authority indexed by a
positive integer a. On input the security parameter 1λ and the authority index a, it generates the a-th public
key PKa of the authority and the corresponding a-th master secret key MSKa. It returns (PKa,MSKa).

• PrivKG(PKa,MSKa, i)→ skai . This ppt algorithm is executed by the a-th key-issuing authority. On input
the a-th public and master secret keys (PKa,MSKa) and a string i of a prover (a global identity string), it
generates a private secret key skai of a prover. It returns skai .

• 〈P((PKa, skai)a∈A
′
),V((PKa)a∈A

′
)〉 → d. These two interactive ppt algorithms are a prover who is to be

authenticated, and a verifier who confirms that the prover certainly knows the secret keys for indices a ∈ A′,
respectively, where A′ denotes a subset of all indices at which the prover is issued her private secret keys
by authorities. On input the public keys (PKa)a∈A to P and V and the corresponding private secret keys
(skai)a∈A to P, P and V interact with each other. After at most polynomially many (in λ) moves of messages
between P and V, V returns d := 1 (“accept”) or d := 0 (“reject”).

We discuss two security notions for our authentication scheme a-auth; security against concurrent and
collusion attacks that yield misauthentication, and anonymity for privacy of provers’ global identities.

Security against Concurrent and Collusion Attack of Misauthentication One of the strongest attacks to cause
misauthentication on our a-auth is the concurrent and collusion attack. For a formal treatment we define the
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following experiment on a-auth and an adversary algorithm A.

Expconc-colla-auth,A (1λ) (31)

pp← Setup(1λ) (32)

(qA, St)← A(pp), A := {1, . . . , qA} (33)

For a ∈ A : (PKa,MSKa)← AuthKG(1λ, a) (34)

(qI , St)← A(St, (PKa)a∈A), I := {1, . . . , qI} (35)

For i ∈ I : ii ∈R {0, 1}λ (36)

For a ∈ A : For i ∈ I : skaii ← PrivKG(PKa,MSKa, ii) (37)

(Ã, St)← A(St), A∗ := A\Ã (38)

St← AP((PKa,skaii
)a∈A

∗
)|i∈I ,PrivKGO(PK·,MSK·,·)(St, (MSKa)a∈Ã) (39)

〈A(St),V〉((PKa)a∈A
∗
)→ d (40)

If d = 1 then Return Win else Return Lose (41)

Intuitively, the above experiment describes the attack as follows. A first outputs the number qA of key-
issuing authorities. Then A outputs the number qI of concurrent provers. Then A outputs a set of indices
of corrupted authorities Ã. The target set of authority indices is fixed as A∗ := A\Ã.

In the “learning phase” A is given as input the master secret keys (MSKa)a∈Ã. Then A interacts concur-
rently with qI provers on the target public keys (PKa)a∈A

∗
(“concurrent” means “in arbitrarily interleaved

order of messages”). In addition, A collects private secret keys by issuing private secret key queries for
j = qI + 1, . . . , qI + qsk to the oracle PrivKGO(PK·,MSK·, ·) with an authority index a ∈ A∗ and an
identity string ij ∈ {0, 1}λ. We denote by Aj the set of authority indices for which the private secret key
queries were issued with ij . That is,

Aj := {a ∈ A | A is given skaij} ⊂ A
∗. (42)

Note that the maximum number of private secret key queries is qAqsk. We require that the numbers qA, qI
and qsk are bounded by a polynomial in λ.

Next, in the “attacking phase”, A is given as input the inner state St. A interacts with the verifier V on
the target public keys (PKa)a∈A

∗
. If the decision d of V is 1, then the experiment returns Win and otherwise,

returns Lose. Two restrictions are imposed on the adversary A; the queried ijs are pairwise different, and
any Aj is a proper subset of the target set A∗:

ij1 6= ij2 for j1, j2 ∈ {qI + 1, . . . , qI + qsk}, j1 6= j2, (43)

Aj ( A∗, j = qI + 1, . . . , qI + qsk. (44)

The advantage of an adversary A over our authentication scheme a-auth in the experiment is defined as:

Advconc-coll
a-auth,A (λ)

def
= Pr[Expconc-colla-auth,A (1λ) = Win]. (45)

An authentication scheme a-auth is called secure against concurrent and collusion attacks if, for any ppt
algorithm A, the advantage Advconc-coll

a-auth,A (λ) is negligible in λ.

Anonymity As is explained in Section 1, a critical feature to be attained is provers’ anonymity on global
identities when the provers are authenticated. For a formal treatment we define the following experiment on
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a-auth and an adversary algorithm A.

Expanoa-auth,A(1λ) (46)

pp← Setup(1λ) (47)

(qA, St)← A(pp), A := {1, . . . , qA} (48)

For a ∈ A : (PKa,MSKa)← AuthKG(1λ, a) (49)

i0, i1 ← A(St, (PKa)a∈A) (50)

For a ∈ A : For i ∈ 0, 1 : skaii ← PrivKG(PKa,MSKa, ii) (51)

b ∈R {0, 1}, b∗ ← AP((PKa,skaib
)a∈A)(St, (skai0 , sk

a
i1

)a∈A) (52)

If b = b∗, then Return Win, else Return Lose (53)

Intuitively, the above experiment describes the attack as follows. The adversary algorithm A, on input the
security parameter 1λ, first outputs the number qA of key-issuing authorities. Then, on input the issued
public keys (PKa)a∈A, A designates two identity strings i0 and i1 (as is usual in the indistinguishability
games). Next, A interacts with a prover P on input the private secret keys (skaib)

a∈A, where the index b is
chosen uniformly at random. If the decision b∗ of A is equal to b, then the experiment returns Win and
otherwise, returns Lose.

The advantage of an adversary A over our authentication scheme a-auth in the experiment is defined as:

Advano
a-auth,A(λ)

def
=
∣∣Pr[Expanoa-auth,A(1λ) = Win] − (1/2)

∣∣. An authentication scheme a-auth is called to have
anonymity if, for any ppt algorithm A, the advantage Advano

a-auth,A(λ) is negligible in λ.

4.2 Generic Construction

We give a generic construction of our authentication scheme a-auth. The building blocks are the interactive
proof system Πa∈A

bnd with our Σ-protocol Σa∈A
bnd and a digital signature scheme Sig. We note that a commit-

and-prove scheme CmtPrv is employed in Σa∈A
bnd .

• Setup(1λ) → pp. On input the security parameter 1λ, this ppt algorithm generates a set of public pa-
rameter by running the setup algorithms Sig.Setup(1λ), Π.Setup(1λ) and CmtPrv.Setup(1λ). These algo-
rithms are for the digital signature scheme Sig, the interactive argument systems (Πa

0 )a∈A, and the commit-
ment generation algorithm Cmt.Com. They generate ppSig, ppΠ and ppCmt, respectively. It merges them as
pp := (ppSig, ppΠ , ppCmt). It returns pp.

• AuthKG(1λ, a) → (PKa,MSKa). On input the security parameter 1λ and an authority index a, this ppt
algorithm executes the key generation algorithm Sig.KG(1λ). It obtains a signing key SK and the corre-
sponding public key PK. It sets the master secret key as MSKa := SK and the corresponding public key as
PKa := PK. It returns (PKa,MSKa).
• PrivKG(PKa,MSKa, i)→ skai . On input a public key PKa, the corresponding master secret key MSKa and
a string i, this ppt algorithm executes the signing algorithm Sig.Sign(PKa,MSKa, i). It obtains a digital
signature σai on the message i. It puts a private secret key skai as skai := σai . It returns skai .
• P((PKa)a∈A, (skai)a∈A) and V((PKa)a∈A). On input the public keys (PKa)a∈A to the prover P and the
verifier V, and the corresponding private secret keys (skai)a∈A to P, ppt algorithms P and V first set the
statements as xa := PKa for each a ∈ A and P sets the witness as w0 := i and wa1 := skai for each a ∈ A.
The witness spaces W a, a ∈ A are described as follows.

W a =W0 ×W a
1 , (54)

W0 = {i | string of length λ} = {0, 1}λ, (55)

W a
1 = {σai | σai ← Sig.Sign(PKa,MSKa, i) for some i ∈W0}. (56)

P and V execute the Σ protocol Σa∈A
bnd . V returns the returned boolean d of the verifier algorithm Σa∈A

bnd,vrf.

4.3 Properties

Theorem 3 If the component proof system Πa
0 is perfectly witness-indistinguishable for each a ∈ A, if the

commitment scheme Cmt is perfectly hiding and computationally binding, and if the digital signature scheme
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Setup(1λ) AuthKG(1λ, a) PrivKG(PKa,MSKa, i)

ppSig ← Sig.Setup(1λ) (SK,PK)← Sig.KG(1λ) σai ← Sig.Sign(PKa,MSKa, i)

ppΠ ← Π.Setup(1λ) PKa := PK,MSKa := SK skai := σai
ppCmtPrv ← CmtPrv.Setup(1λ) Return (PKa,MSKa) Return skai
pp := (ppΠ , ppCmtPrv, ppSig)
Return pp

P((PKa)a∈A, (skai )a∈A) V((PKa)a∈A)
For a ∈ A: xa := PKa, wa1 := skai For a ∈ A: xa := PKa

w0 := i

(Execute Σa∈A
bnd )

Return (d← Σa∈A
bnd,vrf)

Fig. 2. Generic construction of our decentralized multi-authority anonymous authentication scheme a-auth.

Sig is existentially unforgeable against adaptive chosen-message attacks, then our a-auth is secure against
concurrent and collusion attacks. More precisely, let qA denote the maximum number of authorities. For any
given ppt algorithm A that executes a concurrent and collusion attack on our a-auth in accordance with
the experiment Expconc-colla-auth,A (1λ), there exist a ppt algorithm F that generates an existential forgery on Sig in

accordance with the experiment Expeuf-cma
Sig,F (1λ) and a ppt algorithm B that breaks the binding property of

Cmt in accordance with the experiment ExpbindCmt,B(1λ) which satisfy the following inequality.

Advconc-coll
a-auth,A (λ) ≤ 1

|chaSp(1λ)|
+

√
2λ

2λ − 1
· qA ·Adveuf-cma

Sig,F (λ) + Advbind
Cmt,B(λ). (57)

Proof. Given any ppt algorithm A on Expconc-colla-auth,A (1λ), we construct a ppt algorithm F that generates an

existential forgery on Sig in accordance with the experiment Expeuf-cma
Sig,F (1λ). F is given as input the set of

public parameter ppSig and a public key PKSig. F first reads out the security parameter 1λ from ppSig, and

executes the setup algorithms Π.Setup(1λ) and CmtPrv.Setup(1λ). It obtains the sets of public parameter
ppΠ and ppCmtPrv, respectively. F merges the sets of public parameter as pp := (ppSig, ppΠ , ppCmtPrv). Then
F invokes the algorithm A with pp. F obtains the number qA of key-issuing authorities from A. F chooses a
target index a† from the set A := {1, . . . , qA} uniformly at random. F executes the authority key generation
algorithm honestly for a ∈ A except the target index a†. As for a†, F uses the input public key:

For a ∈ A, a 6= a† : (PKa,MSKa)← AuthKG(1λ, a),

For a = a† : PKa† := PKSig.

F inputs St and the public keys (PKa)a∈A into A. Then F obtains the number qI of concurrent provers from
A. F sets I as I := {1, . . . , qI}. F inputs St into A. Then F obtains a set of corrupted authority indices
Ã from A. F puts A∗ := A\Ã. If a† ∈ A∗ (the case TgtIdx), then a† is not in Ã and F is able to input

(St, (MSKa)a∈Ã) into A. Otherwise F aborts.
Simulation of Concurrent Provers. When A invokes qI provers P((PKa, skaii)

a∈A∗)|i∈I , F chooses i† ∈R
{0, 1}λ. F executes the private secret key generation algorithm with input i† honestly for a ∈ A∗ where
a 6= a†. As for a = a†, F issues a signing query to its oracle with i†:

For a ∈ A∗ s.t. a 6= a† : skai† ← PrivKG(PKa,MSKa, i†),

For a = a†, ska
†

i† ← SignO(PK,SK, i†).

In the simulation of concurrent provers P((PKa, skaii)
a∈A∗)|i∈I , F uses the single set of private secret key

(skai†)
a∈A∗ . This is a perfect simulation due to the perfect witness-indistinguishability of Π.Setup(1λ).

Simulation of Private Secret Key Oracle. When A issues a private secret key query with Aj ( A∗ and
ij ∈ {0, 1}λ(j = qI +1, . . . , qI +qsk), F executes the private secret key generation algorithm with ij honestly
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for a ∈ A∗ such that a 6= a†. As for a = a†, F issues a signing query to its oracle with ij :

For a ∈ A∗ s.t. a 6= a† : skaij ← PrivKG(PKa,MSKa, ij),

For a = a†, ska
†

ij
← SignO(PK,SK, ij).

F replies to A with the secret key skaij . This is also a perfect simulation.
Generating Existential Forgery. In the “attacking phase”, on input the inner state St, the adversary A
interacts with the verifier.

That is, F executes a verifier V with an input ((PKa)a∈A
∗
). If the decision d of V is 1, then F

rewinds (Bellare-Palacio [BP02]) A back to the timing at which A had sent the first message of the Σ-
protocol Σa∈A

bnd . If the decision d′ of V is again 1, F executes the knowledge extractor Σa∈A
bnd,ext on input

((xa)a∈A, (c0, (com
a,coma0)a∈A)),cha, (resa,resa0)a∈A,cha′, ((resa)′, (resa0)′)a∈A). If Σa∈A

bnd,ext outputs a

witness ŵ := (ŵ0, (ŵ
a
1)a∈A), then F sets a message i∗ as i∗ := ŵ0. The restriction (43) and (44) of the

experiment assures that ∃j∗ ∈ {qI + 1, . . . , qI + qsk}, ∃â ∈ (A∗\Aj∗). F chooses such an â uniformly at
random and sets a signature σ∗ as σ∗ := ŵâ1 . F returns a forgery pair of a message and a signature (i∗, σ∗).
This completes the description of F.

Probability Evaluation The probability that the returned value (i∗, σ∗) is actually an existential forgery
is evaluated as follows. We name the events in the above as:

Acc : d = 1,

Rst : d = 1, d′ = 1 and c 6= c′,

TgtIdx : â = a†,

Ext : Σa∈A
bnd,ext returns a witness ŵ := (ŵ0, (ŵ

a
1)a∈A

∗
),

FgID : i∗ 6= i†,

Forge : (i∗, σ∗) is an existential forgery on Sig.

We have the following inequality by Reset Lemma [BP02].

Pr[Acc] ≤ 1

|chaSp(1λ)|
+
√

Pr[Rst]. (58)

Besides, the above discussion as well as the definitions deduce the following equalities.

Advconc-coll
a-auth,A (λ) = Pr[Acc], (59)

Pr[TgtIdx,Rst,Ext,FgID] = Pr[Forge], (60)

Pr[Forge] = Adveuf-cma
Sig,F (λ). (61)

The left-hand side of the equality (60) is expanded as follows.

Pr[TgtIdx,Rst,Ext,FgID]

= Pr[TgtIdx] Pr[Rst,Ext,FgID | TgtIdx]

= Pr[TgtIdx] Pr[Rst,Ext,FgID]

= Pr[TgtIdx] Pr[Rst,Ext] Pr[FgID | Rst,Ext]. (62)

Claim 3

Pr[TgtIdx] = 1/|A| = 1/qA. (63)

Proof. â coincides with a† with probability 1/|A|. This is because a† is chosen uniformly at random from A
by F and no information that identifies a† is leaked to A. �

Claim 4

Pr[FgID | Rst,Ext] =
2λ − 1

2λ
. (64)
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Proof. i∗ is not i† with probability 2λ−1
2λ

. This is because i† is chosen uniformly at random from {0, 1}λ and no
information that identifies the individual witnesses leak to A due to the perfect witness-indistinguishability
of Π.Setup(1λ). �

Claim 5 If TgtIdx and FgID occurs, then i∗ is not queried to F’s oracle SignO.

Proof. This is because of the occurrence of the events TgtIdx and FgID and the restriction (43)(44). �

Lemma 1 For any given ppt algorithm A that executes a concurrent and collusion attack on our a-auth
in accordance with the experiment Expconc-colla-auth,A (1λ), there exists a ppt algorithm B that breaks the binding

property of Cmt in accordance with the experiment ExpbindCmt,B(1λ) satisfying the following equality.

Pr[Rst,Ext] = Advbind
Cmt,B(λ). (65)

Proof. Given any ppt algorithm A on Expconc-colla-auth,A (1λ), we construct a ppt algorithm B that breaks the

binding property of Cmt in accordance with the experiment ExpbindCmt,B(1λ). B is given as input the set of

public parameter ppCmtPrv. B first reads out the security parameter 1λ from ppCmtPrv, and executes the
setup algorithms Π.Setup(1λ) and Sig.Setup(1λ). It obtains the sets of public parameter ppΠ and ppSig,
respectively. B merges the sets of public parameter as pp := (ppSig, ppΠ , ppCmtPrv). Then B invokes the

algorithm A with 1λ. It obtains the number qA of key-issuing authorities. The simulation of concurrent
provers and the simulation of the private secret key oracle are done in the same way. (Note that B does
not need to choose a∗.) In the “attacking phase”, B executes a verifier V with an input ((PKa)a∈A

∗
). If

the decision d of V is 1, then B rewinds A back to the timing at which A had sent the challenge message
of the Σ-protocol Σa∈A

bnd . If the decision d of V is again 1, B executes the knowledge extractor Σa∈A
bnd,ext on

input ((xa)a∈A, (c0, (com
a,coma0)a∈A)),cha, (resa,resa0)a∈A,cha′, ((resa)′, (resa0)′)a∈A). If Σa∈A

bnd,ext out-

puts ⊥∗, then there must be a pair a, a′ ∈ A∗, a 6= a′ such that (ŵa0 , ŵ
a
1 , r̂

a
0) and (ŵa

′

0 , ŵ
a′

1 , r̂a′,0) pass the

verification Cmt.Vrf and ŵa0 6= ŵa
′

0 . The vector (c0, ŵ
a
0 , r̂

a
0 , ŵ

a′

0 , r̂a′,0) breaks the binding property to yields

Win in ExpbindCmt,B(1λ). This completes the description of B, and B satisfies (65). �
Note that we have the equality:

Pr[Rst] = Pr[Rst,Ext] + Pr[Rst,Ext]. (66)

Combining (60), (62), (63), (64), (65) and (66), we have:

Pr[Rst] =
2λ

2λ − 1
· qA · Pr[Forge] + Advbind

Cmt,B(λ). (67)

Combining (58), (59), (67) and (61), we have:

Advconc-coll
a-auth,A (λ) ≤ 1

|chaSp(1λ)|
+

√
2λ

2λ − 1
· qA ·Adveuf-cma

Sig,F (λ) + Advbind
Cmt,B(λ).

�

Theorem 4 If the component proof system Πa
0 is perfectly witness-indistinguishable for each a ∈ A, and

if the commitment scheme Cmt is perfectly hiding, then our a-auth has anonymity. More precisely, for any
given algorithm A that is not necessarily bounded and that executes the anonymity game on our a-auth in
accordance with the experiment Expanoa-auth,A(1λ), the following equality holds.

Advano
a-auth,A(λ) = 0. (68)

Proof. The perfect witness-indistinguishability of Πa
0 for each a ∈ A and the perfectly hiding property

of the commitment scheme Cmt assure that our proof system Πa∈A
bnd is perfectly witness-indistinguishable

by Theorem 2. Then the two distribution dista∈A := dist
(
(c0, (com

a,coma0)a∈A),cha, (resa,resa0)a∈A
)

is identical even if the auxiliary input z is private secret keys (skai0 , sk
a
i1

)a∈A. Therefore, the advantage
Advano

a-auth,A(λ) is zero. �
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Note. Relation to Attribute-Based Identifications and Signatures Using a monotone formula instead
of the and-composition, a decentralized multi-authority attribute-based authentication scheme [AAHI13] is
obtained over a small universe A. Moreover, the Fiat-Shamir transform [FS86] gives a decentralized multi-
authority attribute-based signature scheme [OT13]. Note here that the security against the collusion attacks
means the security against the passive attacks, and therefore the unforgeability is derived (see [AABN02]).

5 Conclusion

We proposed a generic construction of a Σ-protocol of commit-and-prove type, which is an and-composition
of Σ-protocols on the statements that include a common commitment. When the component Σ-protocols are
of witness-indistinguishable argument systems, our Σ-protocol is also a witness-indistinguishable argument
system as a whole. As an application, we gave a generic construction of a decentralized multi-authority
anonymous authentication scheme. There a witness is a bundle of witnesses each of which decomposes into
a fixed global identity string and a digital signature on it. We show an instantiation of the scheme in the
setting of bilinear groups.
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Appendices

A Instantiation

We discuss an instantiation of our generic authentication scheme a-auth that was given in Section 4. Basically,
we can employ any three building blocks that satisfy the requirements stated in Section 4. Below we briefly
mention an instantiation in the setting of bilinear groups. We put the symbol pp at the subscript of the
algorithms to note that the set of public parameters pp is used in the transition functions of the underlying
Turing machines that correspond to the algorithms.

The three building blocks are the pairing version of the Camenisch-Lysyanskaya digital signature scheme
SigCL (See Appendix C) [Oka06,SNF11,TF12], the pairing version of the Camenisch-Lysyanskaya perfectly
witness-indistinguishable argument of knowledge system ΠCL (See Appendix D) [Oka06,SNF11,TF12], and
the Pedersen-Okamoto commit-and-prove scheme CmtPrvPO (See Appendix E) which is a combination of the
perfectly hiding commitment scheme CmtPed of Pedersen [Ped91] and the perfectly witness-indistinguishable
argument of knowledge system ΠOka by Okamoto [Oka92]. The five algorithms of our a-auth are instantiated
as follows. (Also see Fig. 3.)
• Setup(1λ) → pp. On input the security parameter 1λ, this ppt algorithm executes the setup algorithm
SigCL.Setup. That is, it executes the group generation algorithm BG to generate bilinear groups of a prime
order p of length |p| = λ: BG(1λ) → Λ := (p, e,G, G̃,GT , G, G̃). Here e : G × G̃ → GT is a bilinear map
and G ∈R G, G̃ ∈R G̃ with e(G, G̃) 6= 1GT are the generators, respectively. Then it chooses a set of base
elements for SigCL and CmtPrvPO as G0, G1, G2, H ∈R G, G̃0 ∈R G̃. It returns the set of public parameter
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pp := (Λ,G0, G1, G2, H, G̃0). Note that, in the case of SigCL, the setup algorithm SigCL.Setup is also the setup
algorithm ΠCL.Setup. As for CmtPrvPO.Setup, we use the group G for CmtPrvPO.
• AuthKGpp(1

λ, a) → (PKa,MSKa). On input pp and an authority index a, this ppt algorithm chooses

exponents αa ∈R Zp and computes G̃a,1 := G̃αa0 . It sets PKa := G̃a,1,MSKa := αa. It returns (PKa,MSKa).
• PrivKGpp(PKa,MSKa, i) → skai . On input PKa,MSKa and a string i ∈ Zp, this ppt algorithm generates
a CL signature on i. That is, it chooses an exponent γa, δa ∈R Zp and computes Γa := (G0G

i
1G

γa
2 )1/(δa+αa).

(We omit the index i for simplicity.) It sets skai := (Γa, γa, δa). The right-hand side is a CL signature on i.
It returns skai .
• 〈Ppp((PKa)a∈A, (skai)a∈A),Vpp((PKa)a∈A)〉 → 1/0. Ppp, the prover, and Vpp, the verifier, take a common
input (PKa)a∈A. Ppp also takes as input her set of private keys (skai)a∈A that are signatures on i. These ppt
interactive algorithms execute the following protocol of an argument system. Note here that the statement
is x := (xa)a∈A := (PKa)a∈A, and the witness is w := (w0, (w

a
1)a∈A) := (i, (skai)a∈A). Thus, wa = (w0, w

a
1).

Hence, the predicate and relation for each a ∈ A are the following ones.

Φapp(x
a, wa)

def
=
(
e(G0G

i
1G

γa
2 , G̃0) =? e(Γa, G̃

δa
0 G̃a,1)

)
, (69)

Ra
def
= {(xa, wa) ∈ G̃×

(
Zp ×G× Z2

p

)
| Φapp(xa, wa) = true}. (70)

• ΣCL,a∈A
PO,com , Σ

CL,a
PO,0,com. To start the interactive argument, Ppp first chooses a randomness u ∈R Zp and compute

a Pedersen commitment to i as C0 := GiHu. Ppp puts a statement and the witness as c0 := C0, (w0, r0) :=
(i, u). Hence, the additional predicate and relation needed for our bundled witnesses are the following ones.

Φ0,pp(c0, (w0, r0))
def
=
(
C0 =? G

iHu
)
, (71)

R0
def
= {(c0, (w0, r0)) ∈ G× Z2

p | Φ0,pp(c0, (w0, r0)) = true}. (72)

Then the relation Ra0 for simultaneous satisfiability in the instantiation is the following one.

Ra0 :=
{

(xa0 = (xa, c0), wa0 = (w0, w
a
1 , r0)) |

{
Φapp(x

a, (w0, w
a
1)) = true and

Φ0,pp(c0, (w0, r0)) = true

}
, a ∈ A. (73)

Now, we show that the simultaneous Σ-protocol Σa
0 is actually constructed as follows.

Ppp for each a ∈ A chooses va ∈R Zp and re-randomize the secret element Γa as Ra := ΓaG
va
2 , and

puts za := γa + vaδa. Then Ppp chooses ra,i, ra,z, ra,v, ra,δ ∈R Zp and computes Ta := e(G1, G̃0)ra,i ·
e(G2, G̃0)ra,ze(G2, G̃1)ra,ve(Ra, G̃0)−ra,δ . Besides, Ppp chooses an exponent ra,u ∈R Zp and computes
Ca := Gra,iHra,u . Ppp sends the commitment message (C0, (Ra, Ta, Ca)a∈A) to Vpp. We emphasize that
the randomness ra,i is commonly used for the both ΠCL and ΠOka.

• ΣCL,a∈A
PO,cha , Σ

CL,a
PO,0,cha. Vpp computes a challenge message by choosing an exponent c ∈R Zp. Vpp sends c to

Ppp.

• ΣCL,a∈A
PO,res , Σ

CL,a
PO,0,res. Ppp computes the response message as sa,i := ra,i + ci, sa,z := ra,z + cza, sa,v :=

ra,v + cva, sa,δ := ra,δ + cδa, sa,u := ra,u + cu. Ppp sends (sa,i, sa,z, sa,v, sa,δ, sa,u)a∈A to Vpp.

• ΣCL,a∈A
PO,vrf , Σ

CL,a
PO,0,vrf. Vpp checks whether the following equalities hold. If those hold, then return 1. Otherwise,

0.

For a ∈ A : (74)

e(G1, G̃0)sa,ie(G2, G̃0)sa,ze(G2, G̃a,1)sa,ve(Ra, G̃0)−sa,δ =? Ta(e(Ra, G̃a,1)/e(G0, G̃0))c, and (75)

Gsa,iHsa,u =? CaC
c
0. (76)

We again emphasize that the response sa,i is commonly used for the both ΠCL and ΠOka. This is why the
property (19) is assured in the instantiation.

We omit the description of the knowledge extractor ΣCL,a
PO,0,ext and the simulator ΣCL,a

PO,0,sim. (See Appendix
D and E and the previous work cited there.)

As has been explained at (18), we have to show that the ΣCL,a
PO,0 is actually a Σ-protocol and ΠCL,a

PO,0 is
perfectly witness indistinguishable.

The following propositions hold.
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Setup(1λ) AuthKGpp(a) PrivKGpp(PKa,MSKa, i)

Λ := (p, e,G, G̃,GT , G, G̃)← BG(1λ) αa ∈R Zp, G̃a,1 := G̃αa0 γa, δa ∈R Zp
G0, G1, G2, H ∈R G, G̃0 ∈R G̃ PKa := G̃a,1,MSKa := αa Γa := (G0G

i
1G

γa
2 )1/(δa+αa)

pp := (Λ,G0, G1, G2, H, G̃0) Return (PKa,MSKa) skai := (Γa, γa, δa)
Return pp Return skai

Ppp((PKa)a∈A, (skai )a∈A) Vpp((PKa)a∈A)
u ∈R Zp, C0 := GiHu

For a ∈ A :
va ∈R Zp, Ra := ΓaG

va
2 , za := γa + vaδa

ra,i, ra,z, ra,v, ra,δ ∈R Zp
Ta := e(G1, G̃0)ra,ie(G2, G̃0)ra,z

·e(G2, G̃a,1)ra,ve(Ra, G̃0)−ra,δ

ra,u ∈R Zp, Ca := Gra,iHra,u C0, (Ra, Ta, Ca)a∈A

→
For a ∈ A : c c ∈R Zp
sa,i := ra,i + ci, sa,z := ra,z + cza ←
sa,v := ra,v + cva, sa,δ := ra,δ + cδa
sa,u := ra,u + cu (sa,i, sa,z, sa,v, sa,δ, sa,u)a∈A For a ∈ A :

→ e(G1, G̃0)sa,ie(G2, G̃0)sa,z

·e(G2, G̃a,1)sa,ve(Ra, G̃0)−sa,δ

=? Ta(e(Ra, G̃a,1)/e(G0, G̃0))c

and Gsa,iHsa,u =? CaC
c
0

If all eqs. hold, Return 1
else Return 0

Fig. 3. Instantiation of our decentralized multi-authority anonymous authentication scheme a-auth in the setting of
bilinear groups.

Proposition 4 ΣCL,a
PO,0 is a Σ-protocol.

Proof. Σa
0 is a protocol with the common randomness ra,i and the common response message sa,i in the

two Σ-protocols Σa and Σ0. Therefore, in each parallel execution for each a ∈ A, the knowledge extractor
Σa

ext and Σ0,ext extract the same exponent î
a

with probability one. Moreover, all the extracted exponents

î
a
, a ∈ A are equal to a single exponent î with an overwhelming probability owing to the the binding

property of the Pedersen commitment, which is under the discrete logarithm assumption on G. �

Proposition 5 ΠCL,a
PO,0 is perfectly witness indistinguishable.

Proof. The distribution dist
(
(C0, (Ra, Ta, Ca)a∈A), c, (sa,i, sa,z, sa,v, sa,δ, sa,u)a∈A

)
is identical even if the dis-

tribution of cha deviates from the uniform random distribution. This is because ΠCL,a, a ∈ A, and ΠOka are
perfectly witness indistinguishable. �

Then we obtain the following theorems.

Theorem 5 If CmtPed is perfectly hiding and computationally binding, and if SigCL is existentially unforge-
able against adaptive chosen-message attacks, then our a-auth is secure against concurrent and collusion
attacks.

Proof. Proposition 4, Proposition 5 and Theorem 3 assure the claim. �

Theorem 6 Our a-auth has anonymity.

Proof. SigCL is perfectly witness-indistinguishable and CmtPrvPO is perfectly hiding. Theorem 4 assures the
claim. �
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B Algebraic Settings and Number-Theoretic Assumptions

Let (p,G) denote a cyclic group of prime order p, where |p| = λ. Let G denote a generator chosen uniformly
at random, G ∈R G\{1G}. Let G denote a ppt algorithm which, on input 1λ, returns the set of parameters
Λ := (p,G, G). That is, Λ := (p,G, G)← G(1λ).

Let (p, e,G, G̃,GT ) denote bilinear groups of prime order p and of Type 3 [GPS08,BB08], where |p| = λ.
Here we require that the bilinear map e : G × G̃ → GT is efficiently computable (i.e., polynomial-time
in λ). Let G and G̃ denote generators chosen uniformly at random, G ∈R G\{1G}, G̃ ∈R G̃\{1G̃} with

e(G, G̃) 6= 1GT . Let BG denote a ppt algorithm which, on input 1λ, returns the set of parameters Λ :=
(p, e,G, G̃,GT , G, G̃). That is, Λ := (p, e,G, G̃,GT , G, G̃) ← BG(1λ). Bilinear groups are widely recognized
in the form of the pairing on elliptic curves [GPS08].

B.1 Discrete Logarithm Assumption (DL) [EG85]

The DL assumption is stated as follows. For any PPT algorithm S, the advantage of S over G defined by the
following equality is negligible in λ:

Advdl
G,S(λ) := Pr[γ = γ∗

∣∣ Λ← G(1λ), γ ∈R Zp, γ∗ ← S(Λ,G,Gγ)]. (77)

The probability is taken over the random tape of G, the uniform random sampling of γ, and the random
tape of S.

B.2 Strong Diffie-Hellman Assumption (SDH) [BB04]

The SDH assumption is stated as follows. Let q be a natural number that is a function of λ bounded by a
polynomial in λ. For any ppt algorithm S and for any q, the advantage of S over BG defined by the following
equality is negligible in λ:

Advsdh
BG,S(λ) := Pr[Γ γ+e = G

∣∣ Λ← BG(1λ), γ ∈R Zp, (Γ, e)← S(Λ, (G̃γ , G̃γ
2

, . . . , G̃γ
q

))]. (78)

The probability is taken over the random tape of G, the uniform random sampling of γ, and the random
tape of S.

C Camenisch-Lysyanskaya Signatures, Pairing Version [Oka06,SNF11,TF12]

The pairing version of the Camenisch-Lysyanskaya signature scheme SigCL, which was originally in the RSA
setting, was proposed by Okamoto [Oka06]. We summarize the digital signature scheme here in the form
which is found in Sudarsono-Nakanishi-Funabiki [SNF11] and Teranishi and Furukawa [TF12]. SigCL consists
of four ppt algorithms, SigCL := (SigCL.Setup,SigCL.KGpp,Sig

CL.Signpp,Sig
CL.Vrfpp).

• SigCL.Setup(1λ) → pp. On input the security parameter 1λ, this ppt algorithm generates a set of public
parameter. That is, it executes a group generation algorithm BG to generate bilinear groups of a prime
order p of length |p| = λ: Λ := (p, e,G, G̃,GT , G, G̃)← BG(1λ). Besides, it chooses a set of base elements of
G0, G1, G2 ∈R G, G̃0 ∈R G̃. It returns pp := (λ,G0, G1, G2, G̃0).
• SigCL.KGpp(1λ)→ (PK,SK). On input 1λ this ppt algorithm chooses an exponent α ∈R Zp and computes

G̃1 := G̃α0 . It sets a public key and the corresponding secret key as PK := G̃1,SK := α, respectively. It
returns (PK,SK).
• SigCL.Signpp(PK,SK,m) → σ. On input PK, SK and a message m ∈ Zp, this ppt algorithm chooses two

randomnesses γ, δ ∈ Zp. It computes Γ := (G0G
m
1 G

γ
2)1/(δ+α). It sets a signature σ := (Γ, γ, δ). It returns σ.

• SigCL.Vrfpp(PK,m, σ)→ 1/0. On input PK, m and σ, this deterministic polynomial time algorithm returns

a boolean decision 1 if the following holds, and otherwise 0: e(G0G
m
1 G

γ
2) =? e(Γ, G̃

δ
0G̃1).

The pairing version of the Camenisch-Lysyanskaya signature scheme SigCL is known to be existentially
unforgeable against adaptive chosen-message attacks under the Strong Diffie-Hellman assumption on BG (see
Appendix B.2) [Oka06,SNF11,TF12].
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D Camenisch-Lysyanskaya WIAoK, Pairing Version [Oka06,SNF11,TF12]

The pairing version of the Camenisch-Lysyanskaya argument of knowledge system ΠCL, which was originally
in the RSA setting, was first proposed by Okamoto [Oka06]. We summarize the argument system here
in the form found in Sudarsono-Nakanishi-Funabiki [SNF11] and Teranishi and Furukawa [TF12]. ΠCL =
(ΠCL.Setup,Ppp,Vpp) is executed in accordance with a Σ-protocol ΣCL = (ΣCL

com, Σ
CL
cha, Σ

CL
res, Σ

CL
vrf, Σ

CL
ext, Σ

CL
sim).

The setup algorithm ΠCL.Setup is the same as SigCL.Setup. The set of public parameter pp is common.
For α ∈R Zp, the statement is x := G̃1 := G̃α0 . For a given string i ∈ Zp, choose two randomnesses

γ, δ ∈ Zp and compute Γ := (G0G
i
1G

γ
2)1/(δ+α). The witness of the statement x is w := (i, Γ, γ, δ). Note that

σ := (Γ, γ, δ) is a Camenisch-Lysyanskaya signature on the message i. The following key equation holds.

e(G0G
i
1G

γ
2 , G̃0) = e(Γ, G̃δ0G̃1). (79)

It is notable that the statement x does not include any information on the witness w, and the number of
elements in W (x) is p3 because there are three independent variable in w; that is, (i, γ, δ). In other words,
this number is the number of the solutions of the equation (79) determined by pp and x.

The protocol between Ppp and Vpp is a Σ-protocol. It goes as follows.
• ΣCL

com(x,w) → (com, St). This ppt algorithm is executed by Ppp. On input a statement x and a witness
w, it chooses v ∈R Zp and re-randomize the secret element Γ as R := ΓGv2. It puts z := γ + vδ. It

chooses ri, rz, rv, rδ ∈R Zp and computes T := e(G1, G̃0)rie(G2, G̃0)rze(G2, G̃1)rve(R, G̃0)−rδ . It puts the
commitment message as com := (R, T ). It returns com and its inner state St. Ppp sends com to Vpp. Note
that the following equality holds after the re-randomization.

e(G1, G̃0)ie(G2, G̃0)ze(G2, G̃1)ve(R, G̃0)−δ = e(R, G̃1)/e(G0, G̃0). (80)

• ΣCL
cha(x)→ cha. This ppt algorithm is executed by Vpp. On input the statement x, it reads out the size of

the security parameter as 1λ and chooses a challenge message c ∈R chaSp(1λ). It puts the challenge message
as cha := c. It returns cha. Vpp sends cha to Ppp.
• ΣCL

res(St,cha) → res. This ppt algorithm is executed by Ppp. On input the state Sta and the challenge
message cha, it computes si := ri+ci, sz := rz+cz, sv := rv+cv, sδ := rδ+cδ. It sets the response message
as res := (si, sz, sv, sδ). It returns res. Ppp sends res to Vpp.
• ΣCL

vrf(x,com,cha,res) → d. This deterministic polynomial-time algorithm is executed by Vpp. On input
the statement x and all the messages (com,cha,res), it checks whether the following equality holds. If it
holds, then return 1 (“accept”), and otherwise, 0 (“reject”).

e(G1, G̃0)sie(G2, G̃0)sze(G2, G̃1)sve(R, G̃0)−sδ =? T (e(R, G̃1)/e(G0, G̃0))c. (81)

For the remaining two, ΣCL
ext and ΣCL

sim, see [SNF11,TF12]. The protocol ΣCL is known to be a Σ-protocol.
ΠCL is perfectly witness-indistinguishable [FS90]. This is because the distribution of transcripts is in-

dependent of the witness w ∈ W (x) even if the distribution of cha deviates from the uniform random
distribution.

E Pedersen-Okamoto Commitment-and-Prove Scheme [Ped91,Oka92]

The Pedersen commitment scheme [Ped91] CmtPed is a commitment scheme in the discrete logarithm setting.
CmtPed consists of three ppt algorithms, CmtPed = (CmtPed.Setup,CmtPed.Compp,CmtPed.Vrfpp).

• CmtPed.Setup(1λ) → pp. On input the security parameter 1λ, this ppt algorithm generates a set of public
parameter. That is, it executes a group generation algorithm G to generate a cyclic group of a prime order p
of length |p| = λ: Λ := (p,G, G)← G(1λ). In addition, it chooses ρ ∈R Zp and computes H := Gρ. It returns
pp := (p,G, G,H).
• CmtPed.Compp(m) → (C, κ). On input a message m ∈ Zp, this ppt algorithm generates a commitment
c ∈ G and an opening key κ ∈ Zp. That is, it chooses u ∈R Zp and computes the commitment C = GmHu

to m, and it sets κ as κ := u. It returns (C, κ).
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• CmtPed.Vrfpp(C,m, κ) → d. On input C, m and κ, this deterministic polynomial-time algorithm generates
a boolean decision d. That is, it checks whether C = GmHκ holds or not. If it holds, then it returns d := 1,
and otherwise, d := 0.

CmtPed is perfectly hiding. the distribution of the commitment C is independent of the committed message
m. CmtPed is computationally binding under the discrete logarithm assumption on G (see Appendix B.1). If
a commitment C is opened in two different ways (m,κ) 6= (m′, κ′) with non-negligible probability in λ, then
a ppt algorithm S is constructed and it solves instances of the discrete logarithm problem, H = Gρ. with a
non-negligible probability in λ.

The Okamoto interactive argument system ΠOka = (ΠOka.Setup,Ppp,Vpp) [Oka92] is executed in accor-
dance with a Σ-protocol ΣOka = (ΣOka

com, Σ
Oka
cha , Σ

Oka
res , Σ

Oka
vrf , Σ

Oka
ext , Σ

Oka
sim ).

The setup algorithm ΠOka.Setup is the same as CmtPed.Setup. The set of public parameter pp is common.
For t, u ∈R Zp, the statement is x := X := GtHu. The witness of x is w = (t, u). It is notable that the

number of elements in W (x) is p because there are one independent variable in w; that is, one of t and u. In
other words, this number is the number of the solutions of the equation X = GtHu determined by pp and x.

The protocol between Ppp and Vpp is a Σ-protocol. It goes as follows.
• ΣOka

com(x,w) → (com, St). This ppt algorithm is executed by Ppp. On input a statement x and a witness
w, it chooses rt, ru ∈R Zp and computes C := GrtHru . It puts the commitment message as com := C. It
returns com and its inner state St. Ppp sends com to Vpp.
• ΣOka

cha (x)→ cha. This ppt algorithm is executed by Vpp. On input the statement x, it reads out the size of
the security parameter as 1λ and chooses a challenge message c ∈R chaSp(1λ). It puts the challenge message
as cha := c. It returns cha. Vpp sends cha to Ppp.
• ΣOka

res (St,cha) → res. This ppt algorithm is executed by Ppp. On input the state Sta and the challenge
message cha, it computes st := rt + ct, su := ru + cu. It sets the response message as res := (st, su). Ppp
sends res to Vpp.
• ΣOka

vrf (x,com,cha,res) → d. This deterministic polynomial-time algorithm is executed by Vpp. On in-
put the statement x and all the messages (com,cha,res), it checks whether the following equality holds:
GstHsu =? CX

c.
For the remaining two, ΣOka

ext and ΣOka
sim , see [Oka92]. The protocol ΣOka is known to be a Σ-protocol.

ΠOka is perfectly witness-indistinguishable [FS90]. This is because the distribution of transcripts is in-
dependent of the witness w ∈ W (x) even if the distribution of cha deviates from the uniform random
distribution.

Combining the Pedersen commitment scheme CmtPed and the Okamoto interactive argument system
ΠOka with the Σ-protocol ΣOka, we obtain the Pedersen-Okamoto commit-and-prove scheme CmtPrvPO =
(CmtPrvPO.Setup,CmtPed = (CmtPed.Compp,CmtPed.Vrfpp), Π

Oka = (Ppp,Vpp)), where the setup algorithm

CmtPrvPO.Setup is the same as CmtPed.Setup and ΠOka.Setup.
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