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Abstract

Cloud storage services use deduplication for saving bandwidth and storage. An adversary

can exploit side-channel information in several attack scenarios when deduplication takes

place at the client side, leaking information on whether a specific plaintext exists in the cloud

storage. Generalising existing security definitions, we introduce formal security games for a

number of possible adversaries in this domain, and show that games representing all natural

adversarial behaviors are in fact equivalent. These results allow users and practitioners alike

to accurately assess the vulnerability of deployed systems to this real-world concern.

Keywords: Cloud Storage, Side-channel analysis, Information Leakage

1 Introduction

Outsourced storage is by now strikingly prevalent for individuals and enterprises. This booming

industry has encouraged fierce competition between cloud storage providers (CSPs) to acquire

new clients, and to ensure that existing customers do not move on. The competitive market has

led to very low prices for vast amounts of storage, with some CSPs even giving free storage to

new customers. There are two mechanisms that have allowed the CSPs to provide such startling

prices and offers targeted advertising and (cross-user) deduplication. We note in passing that

the first mechanism is often misunderstood by users: the data that they upload has inherent

value making it worthwhile to leak to advertisers.

Deduplication is the process by which CSPs only store one copy of each file, irrespective of

how many times that file is uploaded. If the CSP does this on the basis of individual clients then

it will save storage in its data centers every time a client uploads a backup of a file. However the

real storage savings can be made if the CSP enforces this procedure between users (cross-user
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deduplication): if Alice uploads a popular movie file and Bob subsequently wants to upload the

same movie, the server only stores one copy and attaches a pointer to both Alice and Bob. In

addition to a storage saving, the CSP can also save bandwidth by insisting that deduplication

is done at the client side. Fig. 1 depicts the data flow in so-called client-side deduplication: a

client initially sends a short descriptor (hash) of the file, the server then checks its storage and

signals the client to upload the file only if the server does not have the hash value stored already.

The introduction of cross-user deduplication is good news for CSPs since they can pass on

their savings to users in the form of lower prices. However, there is a potential conflict between

deduplication and security since a user who encrypts files before uploading them destroys the

server’s ability to identify identical files. Several attempts have been made to provide secure

deduplication [SKH17, BKR13, KBR13, LAP15a, LDLA18, LQLL16, SSAK14, SGLM08, Dua14]

which allow client-side encryption without preventing deduplication. Such schemes have typi-

cally used deterministic encryption and message-dependent keys so that all encryptions of the

same file are identical. This leads to degraded cryptographic security, and does not negate the

following side channel that is present in all client-side deduplicating storage systems.

If the server informs the client that it does not require transmission of the full file then this

(inherently) informs the client that at least one copy of the file has already been stored by the

server. This side channel has been studied in the literature [HPS10, MSL+11, HLY+15, ABD+17]

and defending against it is intuitively straightforward: instead of producing sig = 1 (please send

full file) when a file is first uploaded and sig = 0 (i.e. file already stored, no need to upload)

for each subsequent upload, the server can return a noisy value that selects the signal according

to some distribution for uploads (clearly the first upload necessitates sig = 1). This creates a

clear tradeoff between security (probability that an adversarial client can infer storage status of

some file) and efficiency (number of expected uploads of each file).

The security–efficiency tradeoff was observed by Armknecht et al. [ABD+17], who also pre-

sented an indistinguishability-based security experiment to reflect adversarial capability in this

attack scenario. However their model was very limited: it only considered an adversary that

wished to learn whether a file was stored on the server or not – the archetypal example involves

an employment contract of a person who uses the same CSP as the attacker. In many situations

this analysis may not be sufficient. Consider that instead of trying to learn whether a contract

Client Server

h← H(F)

if h stored then sig← 0

else sig← 1

if sig = 1 then a← F

else a← ⊥

h

sig

a

Figure 1: Information flow in client-side deduplication.
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is stored or not, the attacker Eve knows that Alice has stored her contract with the CSP and

additionally knows many of the details (formatting, common text etc.) of such contracts, and

creates a template file for this low-entropy document. Eve then performs the attack on each of

these candidates, and if she receives sig = 0 for any of them then she knows that she has found

a match with Alice’s real contract. This leaves a gap since it is not a priori clear whether an

optimal solution for one security experiment is the same as for other natural experiments.

The goal of this paper is to fill this gap by providing a general security experiment for this

attack vector. Further, we show that our definition is in fact equivalent to the one posited

by Armknecht et al. [ABD+17], answering an open question from their work. This rigor will

allow practitioners to accurately judge the risk to their systems posed by these real-world attack

vectors, which subsequently allows users to make an informed decision about the security threats

posed to their files. Continuing in this vein, we consider a generic security experiment for the

effect of this class of attacks on fully-fledged cloud storage protocols. Such an approach has

been missing from the literature so far, and this framework could potentially allow modular and

natural analysis of the threat landscape in outsourced storage.

2 Notation

In this paper x ← F (y) means that we assign x the output of procedure F on input of y.

The code x
$←− S indicates that either x has been chosen uniformly from set S, or according to

some distribution S. For vector x, denote the number of components of x by |x|, and the ith

component of x by x[i]. We refer to users to mean entities that own an account with a CSP,

and clients that represent the devices owned by users.

Our definitions of security follow the cryptographic literature by using a formal game that

is played between a challenger and an idealized adversary. This adversary has access to some

oracles and attempts to perform some task that defines success. This allows analysis of primi-

tives and protocols via reductions to existing definitions or hard problems. If a reduction calls

one of its own oracles then we indicate this by underlining the call. Pseudocode return b′
?
= b

is used as shorthand for if b′ = b then return 1 // else return 0, with an output of 1 indicat-

ing adversarial success. We choose to follow the concrete security framework: an adversary’s

advantage is defined in terms of some generic security experiment and a protocol or primitive’s

security is then defined in terms of comparative statements and reductions. This removes a

need for security parameters and a definition of a negligible-advantage adversary: a decision

of particular utility in the cloud setting due to the vast computational capabilities of CSPs.

If an adversary’s probability of success is worse than guessing then we assume an automatic

normalization to an adversary that is better than by guessing (this is possible since all of our

adversaries output either a bit or an integer value). This assumption removes the requirement

for absolute values in advantage statements.
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3 Plaintext Hiding in Deduplicating Storage Systems

Client-side deduplication provides savings in both storage and bandwidth. To upload a file, the

client first uploads a short descriptor (usually a hash) of the file and then receives a signal that

informs the client whether or not to go ahead with the full file upload. These savings come at

a clear cost: when the server informs a client that it does not require a file to be uploaded then

that client learns that the file is certainly already stored on the server. Most storage services

that employ client-side deduplication will do the most simple and efficient solution: after a file

has been uploaded once, tell all subsequent uploaders not to upload. If the server wishes to

keep the storage status of a file hidden from other users then it must use some deduplication

threshold selection strategy to choose how many times to ask for that file to be uploaded before

informing clients that uploading the full file is not needed.

In secure deduplication schemes [SGLM08, BKR13, KBR13, Dua14, SSAK14, LAP15a, LQLL16,

LDLA18], this ‘file’ is a ciphertext. These schemes attempt to hide the existence of the underly-

ing plaintext on the storage from both clients and servers. However, in the client-side dedupli-

cation even with uploading the ciphertext, the existence of the corresponding plaintext can de

easily deduced from the signal that the client receives from the server which indicates whether

or not to upload data.

Harnik et al. (HPS) [HPS10] (and subsequently Mulazzani et al. [MSL+11], Pulls [Pul11]

and Hovhannisyan et al. [HLY+15]) discussed the implications of this side channel in terms of

three attacks:

1. Identifying files: to identify storage of an incriminating file on the cloud, and possibly

identifying its owner later with the help of law enforcement access.

2. Learning file contents: to guess the contents of a file and infer its existence in the cloud.

3. Covert channels: to use the existence or non-existence of a specific file on the cloud as a

covert communication channel.

HPS noted that the mechanism for performing all of the above attacks is the same, and this

was modelled more formally by Armknecht et al. [ABD+17] (henceforth ABDGT). However

ABDGT’s nomenclature – indistinguishability under existence-of-file attack (IND-EFA) – is

imprecise: security definitions are normally expressed as {goal}-{cap} for some property goal

that a satisfying scheme will possess (e.g. indistinguishability of ciphertexts) and some capability

cap that we suppose for an adversary (e.g. a chosen plaintext oracle). Thus we propose this notion

should be called Plaintext-Existence Hiding under Chosen Store-Signal Attack (PEH-CSSA).

ABDGT considered a security experiment in which the adversary submits one file to a

challenger, the challenger then flips a coin and either stores the file or not. The adversary then

has access to an oracle that when fed a file, returns the (binary) deduplication signal. This

game directly models the second HPS attack: Eve suspects that Alice, who also uses the same

cloud storage provider, has stored her employment contract with the CSP. She then uploads

the suspected contract and uses the deduplication signal to infer the storage status of Alice’s

contract. Any storage protocol that does not try to hide the storage status will not meet this

notion of security. ABDGT went on to show that randomly choosing the deduplication threshold
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(the number of times a file is to be uploaded before the server tells clients not to send the file)

balances security and efficiency.

An arguably more natural model for attacks aimed at learning file contents considers a

dishonest client that knows that one of a set N of files is stored on the server. The client

attempts to glean which one is stored (obvious example: Eve attempts to learn Alice’s salary

knowing that it can be one of finitely many values). ABDGT acknowledge this shortcoming and

describe how a hybrid argument does not extend to this extended case, since the experiment

would either store all N files or none. In real deployments the size of the set of possible files, the

value N, could in fact be small (e.g. a discrete pay scale).

3.1 Plaintext Hiding Security Experiments

In the rest of this section we follow HPS and ABDGT and focus solely on the threshold selection

algorithm DS.Alg, defined as in ABDGT:

Definition 1 (Deduplication Strategy). A deduplication strategy DS is characterized by its

probability distribution

DS(F) = (p1(F), p2(F), . . . )

where pi(F) = Pr [i← DS.Alg(F)]. A threshold selection algorithm DS.Alg is a probabilistic

procedure that on input a deduplication strategy distribution DS and a file F, outputs a threshold

thr ∈ N. Denote this event by thr← DS.Alg(F).

As in ABDGT, we note that this definition allows any strategy that depends in some way

on the file being input, however we are not aware of any such schemes in the literature or

in deployed systems – and in fact such an approach could potentially lead to further side-

channel leakage. The most bandwidth-efficient solution – asking for the file once and informing

subsequent uploaders not to send the full file – is represented by strategy (1, 0, 0, . . . ).

We will show how the ‘1 out of N’ model is in fact implied by the decisional model con-

sidered by ABDGT. In Fig. 2 we detail a security experiment that we call PEHdN, which is a

generalization of ABDGT’s presentation (their results concern the N = 1 case of PEHdN). In

this experiment an adversary selects N ≥ 1 files, the challenger chooses one of the files and flips

a coin to determine whether to store that file or not (d alludes to the ‘decisional’ nature of this

definition).

Definition 2 (PEHdN-CSSA Security for Threshold Selection Strategies). Let DS.Alg be a dedu-

plication threshold selection strategy. Then the PEHdN-CSSA advantage for an adversary A
against DS.Alg is defined by

AdvPEHdN-CSSA
DS.Alg, A = 2 ·

[
Pr
[
ExpPEHdN-CSSA

DS.Alg, A = 1
]
− 1

2

]
where experiment ExpPEHdN-CSSA

DS.Alg, A is given in Fig. 2.

In Fig. 3 we detail a novel plaintext-existence hiding experiment, which we denote PEHN,

where the adversary submits a vector of N ≥ 2 files, the challenger chooses one of them and
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ExpPEHdN-CSSA
DS.Alg, A :

b
$←− {0, 1}

i
$←− {1, . . . ,N}

F← A
for j ∈ {1, . . . ,N} do

thrF[j] ← DS.Alg(F[j])

for j ∈ {1, . . . ,N} \ i do

ctrF[j] ← 0

ctrF[i] ← b

b′ ← AO.PEH.Store

return b′
?
= b

O.PEH.Store(j):
ctrF[j] ← ctrF[j] + 1

if ctrF[j] < thrF[j] then

sig← 1

else

sig← 0

return sig

Figure 2: Plaintext-existence hiding experiments for deduplication schemes for yes/no variant

PEHdN (the special subcase N = 1 is the original ABDGT experiment, denoted PEHd).

the adversary aims to work out which one was stored. This is the natural extension discussed

by ABDGT. Note the special subcase N = 2, where the adversary submits just two files, is a

standard indistinguishability-style game and we use a special label PEHind for this notion.

Definition 3 (PEHN-CSSA Security for Threshold Selection Strategies). Let DS.Alg be a dedupli-

cation threshold selection strategy. Then the PEHN-CSSA advantage for an adversary A against

DS.Alg is defined by

AdvPEHN-CSSA
DS.Alg, A =

N

N− 1
·
[
Pr
[
ExpPEHN-CSSA

DS.Alg, A = 1
]
− 1

N

]
where experiment ExpPEHN-CSSA

DS.Alg, A is given in Fig. 3.

ExpPEHN-CSSA
DS.Alg, A :

i
$←− {1, . . . ,N}

F← A
for j ∈ {1, . . . ,N} do

thrF[j] ← DS.Alg(F[j])

for j ∈ {1, . . . ,N} \ i do

ctrF[j] ← 0

ctrF[i] ← 1

i′ ← AO.PEH.Store

return i′
?
= i

O.PEH.Store(j):
ctrF[j] ← ctrF[j] + 1

if ctrF[j] < thrF[j] then

sig← 1

else

sig← 0

return sig

Figure 3: Plaintext-existence hiding experiments for deduplication schemes for 1-of-N variant

PEHN (note special subcase N = 2, denoted PEHind).
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We emphasize that the O.PEH.Store oracle that the adversary has access to in these exper-

iments takes a file pointer as input and returns the deduplication signal sig for the associated

file, with sig = 1 indicating that the client should upload the whole file and sig = 0 indicating

that transferring the file is not required.

Since we use concrete security throughout this paper, we must insist that all adversaries

terminate after some ‘reasonable’ amount of time has passed to ensure that the reductions in

the remainder of this section work. Each reduction is otherwise straightforward, and we use

figures to clearly indicate how each reduction responds to the underlying adversary’s queries.

3.2 Relations between Notions for Plaintext-Existence Hiding

In Fig. 4 we depict relations between notions: arrows denote reductions via the corresponding

theorems that are presented in this section. The arrow for PEHN implies PEHd (Thm. 4) is starred

because this reduction is not tight. These games only consider the deduplication threshold

strategy algorithm as a standalone object, ignoring the wider protocol in which it exists. This

is notable because this result appears, intuitively at least, to not necessarily be correct: schemes

that protect which of a group of N files have been stored do not necessarily hide whether one file

has been stored or not since an adversary can simply eavesdrop on the communication between

the client and the server. This observation is further motivation for expanding the discussion of

PEH attacks in wider protocols, as discussed in Section 4. Our first theorem shows the converse

statement, that PEHd implies PEHN.

PEHdN PEHd PEHN PEHind

sub-case

Thm. 2

Thm. 1

Thm. 4*

sub-case

Thm. 3

Figure 4: Relations between notions for plaintext-existence hiding in cloud storage.

Theorem 1. Let DS.Alg be a deduplication threshold selection strategy. For any adversary A1

against PEHN then there exists an adversary B1 of comparable computational complexity against

PEHd such that:

AdvPEHN-CSSA
A1

=
N

N− 1
AdvPEHd-CSSA

B1 .

Proof. The reduction is detailed in Fig. 5. When B1 receives the vector of files from A1 it needs

to select one of them and use that in its own game, then when A1 calls its O.PEH.Store oracle

on all other files B1 needs to simulate those calls as if the files had not been stored by A1’s

challenger.

If B1’s challenger selects b = 1 and stores F[t] then a successful A1 will detect this and

correctly output i′ = t, and B1 also wins its game. If B1’s challenger does not store F[t] then A1

is playing its game with none of the files stored. This is something that it will not expect and

thus we need to invoke our assumption that all adversaries in the PEH games terminate. In this

case A1 can do no better than a 1
N guess.
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B1 playing ExpPEHd-CSSA
DS.Alg, B1 :

F← A1

t
$←− {1, . . . ,N}

Give F[t] to chall.

for j ∈ {1, . . . ,N} \ t do

thrF[j] ← DS.Alg(F[j])

ctrF[j] ← 0

i′ ← AO.PEH.Store1

if i′ = t then

return 1

else

return 0

O.PEH.Store(j) :

if j = t then

sig← O.PEH.Store(j)

else

ctrF[j] ← ctrF[j] + 1

if ctrF[j] < thrF[j] then

sig← 1

else

sig← 0

return sig

Figure 5: Reduction B1 for proof of Theorem 1.

AdvPEHd-CSSA
DS.Alg, B1

= 2 ·
[
Pr
[
ExpPEHd1-CSSA

DS.Alg, B1 = 1
]
− 1

2

]
= 2 ·

[
Pr [B1 ⇒ 1 ∩ b = 1] + Pr [B1 ⇒ 0 ∩ b = 0]− 1

2

]
= 2 ·

[
1

2
|Pr [B1 ⇒ 1|b = 1] +

1

2
Pr [B1 ⇒ 0|b = 0]− 1

2

]
= 2 ·

[
1

2
Pr
[
ExpPEHN-CSSA

DS.Alg, A1
= 1
]

+
1

2
(1− 1

N
)− 1

2

]
= 2 ·

[
1

2
(
N− 1

N
AdvPEHN-CSSA

DS.Alg, A1
+

1

N
)− 1

2N

]
=

N− 1

N
AdvPEHN-CSSA

DS.Alg, A1
.

We now prove another relation to show the equivalence of the decisional variants, PEHd and

PEHdN. Clearly one direction is trivial since PEHd is a sub-case of PEHdN so we focus on the

converse direction.

Theorem 2. Let DS.Alg be a deduplication threshold selection strategy. For any adversary A2

against PEHdN then there exists an adversary B2 of comparable computational complexity against

PEHd such that:

AdvPEHdN-CSSA
A2

= AdvPEHd-CSSA
B2 .

Proof. The reduction proceeds in a similar manner to Theorem 1 and is detailed in Fig. 6. b is

the challenge bit in B2’s game, b′ is the bit output by B2 and b′′ is the bit output by A2. Recall
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that a successful A2 can tell if one of its N files was stored or not but it doesn’t matter which

file was stored. This means that as long as B2 can successfully simulate the game that A2 is

playing, the reduction is perfect. Note that this reduction does not depend on N since it does

not matter how many additional files B2 needs to simulate.

B2 playing ExpPEHd-CSSA
DS.Alg, B2 :

F← A2

t
$←− {1, . . . ,N}

Give F[t] to chall.

for j ∈ {1, . . . ,N} \ t do

thrF[j] ← DS.Alg(F[j])

ctrF[j] ← 0

b′′ ← AO.PEH.Store2

if b′′ = 1 then

return 1

else

return 0

O.PEH.Store(j) :

if j = t then

sig← O.PEH.Store(j)

else

ctrF[j] ← ctrF[j] + 1

if ctrF[j] < thrF[j] then

sig← 1

else

sig← 0

return sig

Figure 6: Reduction B2 for proof of Theorem 2.

AdvPEHd-CSSA
DS.Alg, B2 = 2 ·

[
Pr
[
ExpPEHd-CSSA

DS.Alg, B2 = 1
]
− 1

2

]
= 2 ·

[
Pr
[
ExpPEHdN-CSSA

DS.Alg, A2
= 1
]
− 1

2

]
= AdvPEHdN-CSSA

DS.Alg, A2
.

We move on to the relationship between PEHN and PEHind. Clearly one direction is a sub-

case; Thm. 3 shows that the converse direction yields the expected security tightness loss.

Theorem 3. Let DS.Alg be a deduplication threshold selection strategy. For any adversary A3

against PEHN then there exists an adversary B3 of comparable computational complexity against

PEHind such that:

AdvPEHN-CSSA
A3

=
N

2(N− 1)
AdvPEHind-CSSA

DS.Alg, B3 .

Proof. The reduction is detailed in Fig. 7. B3 chooses two files from A3’s vector of N files and

submits them to its own challenger, ensuring that one is stored. It then simulates all the other

files as being not stored. If A3’s index guess does not correspond to one of the two files that B3
picked then B3 must simply guess (bit b′′ in reduction). b is the challenge bit in B3’s game, b′

is the bit output by B3. This means that B3 can win in two ways: either A3 assisted, or b′ was

guessed correctly after A3 gave an incorrect index.
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B3 playing ExpPEHind-CSSA
DS.Alg, B3 :

F← A3

t0, t1
$←− {1, . . . ,N}

T ← {t0, t1}
Give F[t0],F[t1] to chall.

for j ∈ {1, . . . ,N} \ T do

thrF[j] ← DS.Alg(F[j])

ctrF[j] ← 0

i′ ← AO.PEH.Store3

if i′ = t0 then

return 0

if i′ = t1 then

return 1

else

b′′
$←− {0, 1}

return b′′

O.PEH.Store(j) :

if j ∈ {t0, t1} then

sig← O.PEH.Store(j)

else

ctrF[j] ← ctrF[j] + 1

if ctrF[j] < thrF[j] then

sig← 1

else

sig← 0

return sig

Figure 7: Reduction B3 for proof of Theorem 3.

Pr
[
ExpPEHind-CSSA

DS.Alg, B3 = 1
]

= Pr
[
ExpPEHN-CSSA

DS.Alg, A3
= 1
]

+ Pr
[
A3 loses but b′′ = b

]
= Pr

[
ExpPEHN-CSSA

DS.Alg, A3
= 1
]

+ Pr
[
ExpPEHN-CSSA

DS.Alg, A3
= 0 ∩ b′′ = b

]
= Pr

[
ExpPEHN-CSSA

DS.Alg, A3
= 1
]

+
1

2

(
N− 2

N

)
(1)

= Pr
[
ExpPEHN-CSSA

DS.Alg, A3
= 1
]

+
N− 2

2N
.

So we plug this into the advantage statement equations:

AdvPEHind-CSSA
DS.Alg, B3 = 2 ·

[
Pr
[
ExpPEHind-CSSA

DS.Alg, B3 = 1
]
− 1

2

]
= 2 ·

[
Pr
[
ExpPEHN-CSSA

DS.Alg, A3
= 1
]

+
N− 2

2N
− 1

2

]
= 2 ·

[
N− 1

N
AdvPEHN-CSSA

DS.Alg, A3
+

1

N
+

N− 2

2N
− 1

2

]
=

2(N− 1)

N
AdvPEHN-CSSA

DS.Alg, A3
.
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Theorem 4. Let DS.Alg be a deduplication threshold selection strategy. For any adversary A4

against PEHd then there exists an adversary B4 of comparable computational complexity against

PEHN such that:

AdvPEHd-CSSA
A4

= (N− 1) ·AdvPEHN-CSSA
B4 .

Proof. The reduction is detailed in Fig, 8. Firstly A4 outputs a file F. B4 then randomly picks

N − 1 files and sends these N files to its challenger, who will store one of them. One can think

of the real file F and the first ‘fake’ file F1 as being the simulation of the PEHd game, since the

file F that A4 is concerned with is stored with probability 1
2 . The other N − 2 files reduce the

efficacy of this reduction. In this reduction B4 does not need to simulate O.PEH.Store queries

since the only valid query A4 can make is on F.

Pr
[
ExpPEHN-CSSA

DS.Alg, B4 = 1
]

=
1

N
Pr
[
ExpPEHd-CSSA

DS.Alg, A4
= 1
]

+ Pr
[
A4 loses but i′′ = i

]
=

2

N
Pr
[
ExpPEHd-CSSA

DS.Alg, A4
= 1
]
.

B4 playing ExpPEHN-CSSA
DS.Alg, B4 :

F← A4

F0 ← F

F1, . . . ,FN−1
$←− F

F← F0, . . . ,FN−1
Give F to chall.

b′ ← AO.PEH.Store4

if b′ = 1 then

return 0

else

i′′
$←− [1, . . . ,N− 1]

return i′′

O.PEH.Store(j) :

sig← O.PEH.Store(j)

return sig

Figure 8: Reduction B4 for proof of Theorem 4.

Plugging this into the advantage statement equations:

AdvPEHN-CSSA
DS.Alg, B4 =

N

N− 1
·
[
Pr
[
ExpPEHN-CSSA

DS.Alg, B4 = 1
]
− 1

N

]
=

N

N− 1
·
[

2

N
Pr
[
ExpPEHd-CSSA

DS.Alg, A4
= 1
]
− 1

N

]
=

N

N− 1
·
[

2

N

(
1

2
[AdvPEHd-CSSA

DS.Alg, A4
+ 1]

)
− 1

N

]
=

1

N− 1
AdvPEHd-CSSA

DS.Alg, A4
.
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4 Plaintext Hiding in Full Cloud Storage Protocols

So far we have discussed and extended the work of HPS and ABDGT on choosing the dedu-

plication threshold. We now consider the wider implications of this side channel as part of

fully-fledged cloud storage protocols. In particular we consider this procedure to consist of two

distinct parts: an upl.Client procedure that reflects what the client does locally and upl.Server

that represents the server’s activity in updating its storage state. As mentioned previously, in

deployed systems that for the sake of saving bandwidth typically prefer client-side, rather than

server-side, deduplication, uploading will often be a three-stage protocol: first the client sends a

hash; the server says upload or not; client sends either the file or nothing. In this straightforward

scenario the upl.Server procedure will act exactly like the PEH.Store oracle used in Section 3.1,

and thus the results detailed there precisely encapsulate plaintext-existence hiding as an attack

vector. For more complex systems, the upload procedure may not be the only side channel when

it comes to inferring storage status of a file.

In secure deduplication protocols, some key derivation procedure fkeyGen is required to

produce keys that, when used, produce deduplicatable ciphertexts. This may involve deriv-

ing the file encryption key from the file alone [SGLM08, BKR13] or some other mechanism

(such as a third party or additional protocol) to transport the encryption key between valid

users [KBR13, Dua14, SSAK14, LAP15a, LQLL16, LDLA18]. If this fkeyGen procedure is an

interactive algorithm then this may be another vector of attack for an adversarial client. An

example of this being an issue is the protocol of Liu et al. (CCS ’15) [LAP15a], noted in a

revision to the ePrint version [LAP15b] of their paper and also in subsequent work by some of

the same authors [LDLA18]. In their protocol, the file key is determined at the point of the first

upload of a file. This is by design but it means that the deduplication threshold is necessarily

linked to the number of users that are currently online, rather than the total number of users

to store that particular file. This means that a malicious user Eve can choose a time at which

she thinks Alice will be online, run the fkeyGen protocol once to acquire some file key fk, abort

before uploading the ciphertext, take that client offline and run fkeyGen again. If the two keys

are the same then Alice was online and her key material was ‘transported’ to Eve; if not then

the file was not previously stored (or Alice is offline). This attack is particularly interesting

because the threshold selection algorithm is – according to ABDGT’s analysis – perfect, yet it

is another component of the protocol that leaks file storage status.

It is therefore natural to consider a security experiment combining these two attack vectors.

The exact security of any concrete protocol in this definitional framework is beyond the scope

of this paper, however regarding plaintext-existence hiding in terms of complete cloud storage

protocols is an interesting avenue worth pursuing. We thus consider creation of generic results

in this space as an open research topic.

Consider an adversary that is attempting to learn whether some file has previously been

stored or not (i.e. PEHd), but that has control over a more generic store procedure than the

one considered in the previous section. In particular such an adversary takes into account

the potential leakage inferred by the fkeyGen procedure. In this game, the adversary (A) can

create valid users and has access to oracles that simulate the interactions those users can make

with the protocol(s) in question. In particular, A can store and delete arbitrary (valid) files,
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and interact with an O.fkeyGen oracle. To accommodate the secure deduplication protocols

mentioned previously that involve inputs from other users of the system, A should of course

be able to simulate this by providing such inputs to this oracle. A challenge oracle will take in

some file and some user, and either store the file or not. It is then A’s task to work out whether

or not the store operation occurred, using its own oracles. In this game, the server’s method of

processing delete queries raises a number of interesting questions. If there is only one copy of

the file stored, does the server actually remove the file from its backend storage? If so, does it

also delete the counter and tag/hash associated with that file? As ABDGT pointed out, this

behavior may in fact lead to subtle attacks [[ABD+17], § 3.2] and is thus not recommended.

This style of security experiment is certainly extensible to the PEHdN scenario described earlier.

While it is straightforward to define such a security experiment, it is not immediately obvious

if generic results regarding security are possible. For some protocol, if fkeyGen does not take

inputs from an external source (i.e. is an algorithm computable using only the file itself) then

this attack vector is quashed, and security reduces to that of the threshold selection algorithm.

Constructing a truly efficient secure deduplication protocol that is not susceptible to attacks by

dishonest clients and an adversarial server remains an open question, and further analysis of

this side channel will lead to feasibility results in this space.

5 Concluding Remarks

In this paper, we investigated a variety of attacks on deduplicating cloud storage systems, in

which a (malicious) client attempts to learn the storage status of some plaintext data. We

showed that the previously-studied attack scenario – the adversary wishes to learn whether or

not a file is stored – is equivalent to an adversary wishing to learn which file from a list is

stored. Furthermore, we considered the consequences of such attacks on the upload procedure

for deployed cloud storage protocols, and discussed necessary defense mechanisms for thwarting

such adversaries. This line of research will allow providers and users to clearly identify which

attack vectors exist in deployed systems, and the steps required to mitigate the security risks.
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