
On Publicly Verifiable Delegation

From Standard Assumptions

Yael Tauman Kalai ∗ Omer Paneth † Lisa Yang ‡

August 25, 2018

Abstract

We construct a publicly verifiable non-interactive delegation scheme for log-space uniform bounded
depth computations in the common reference string (CRS) model, where the CRS is long (as long as the
time it takes to do the computation).

The soundness of our scheme relies on the assumption that there exists a group with a bilinear

map, such that given group elements g, h, ht, ht
2

, it is hard to output ga, gb, gc and ha, hb, hc such that
a · t2 + b · t + c = 0, but a, b, c are not all zero.

Previously, such a result was only known under knowledge assumptions (or in the Random Oracle
model), or under non-standard assumptions related to obfuscation or zero-testable homomorphic encryp-
tion.

We obtain our result by converting the interactive delegation scheme of Goldwasser, Kalai and Roth-
blum (J. ACM 2015) into a publicly verifiable non-interactive one. As a stepping stone, we give a publicly
verifiable non-interactive version of the sum-check protocol of Lund, Fortnow, Karloff, Nisan (J. ACM
1992).

∗Microsoft Research, email yael@microsoft.com.
†MIT, email omerpa@mit.edu. Supported by NSF Grants CNS-1350619 and CNS-1414119, and the Defense Advanced

Research Projects Agency (DARPA) and the U.S. Army Research Office under contracts W911NF-15-C-0226 and W911NF-15-
C-0236.
‡MIT, email lisayang@mit.edu. Part of this work was done at Microsoft Research.

Contents

1 Introduction 3
1.1 This Work . 4
1.2 Our Techniques . 4

1.2.1 The Interactive Sum-Check Protocol. 5
1.2.2 A Non-interactive Sum-Check Protocol. 6
1.2.3 The Non-interactive Delegation Scheme. 7
1.2.4 Discussion . 9

2 Preliminaries 10
2.1 Low Degree Extension . 10
2.2 The Sum-Check Protocol . 11

3 Publicly Verifiable Non-interactive Sum-Check 11
3.1 Definitions . 12
3.2 The Protocol . 13
3.3 Analysis of Protocol 3.4 . 14

4 Modified Interactive GKR Protocol 18
4.1 The Protocol . 19

5 Publicly Verifiable Non-interactive GKR 21
5.1 Definitions . 22
5.2 The Protocol for a Fixed Family of Circuits . 23
5.3 Analysis of Protocol 5.7 . 26

1 Introduction

This work considers the setting where a prover wishes to prove the validity of a computational statement
to a verifier who is too weak to perform the computation on its own. The exploration of such proofs
have transformed computer science, giving rise to notions like NP proofs [Coo71, Kar72], interactive proofs
[GMR88], multi-prover interactive proofs [BGKW88], probabilistically checkable proofs [FGL+91, BFLS91,
AS92, ALM+98], and zero knowledge proofs [GMR88]. Such proofs have a pivotal role in secure cloud
computing and other online applications such as anonymous distributed payment systems [BCG+14].

In many applications, it is crucial that proofs are non-interactive and can be verified by anyone at any
time. Concretely, we are interested in achieving the following two key properties in a proof system:

Non-interactive: Proofs can be generated offline , posted and then verified without any additional inter-
action between the prover and verifier.

Publicly verifiable: Proofs can be verified by anyone, and verification does not require knowing any secret
information.

For example, the standard notion of an NP proof satisfies both of these properties.

In this work we focus on the following setting: given a program M and an input x, the prover would like
to convince the verifier that M(x) = y. The verifier is given x, and a representation of M (for example, as
a Turing machine), but it is either not capable or not willing to spend the computational resources required
to evaluate M(x). The prover will, therefore, provide the verifier with the output y = M(x) together with
a proof of correctness Π. Importantly, verifying this proof should be much easier then evaluating M(x).
Additionally, the resources required to generate the proof should not be much greater than the resources
required to perform the computation. In the literature, such proofs are referred to as doubly-efficient proofs,
proofs for delegating computation, or efficiently verifiable computation.

It is well known that, under standard complexity theoretic assumptions, non-interactive delegation
schemes require both computational assumptions and a common reference string. The common reference
string (CRS) is generated once and used to generate and verify proofs. While for every CRS there exist
accepting proofs for false statements, it should be computationally infeasible to find any such proof given an
honestly generated CRS.

Prior work. Many delegation schemes have been proposed in the literature. These schemes can roughly
be divided into three groups:

Schemes from non-standard assumptions. Extensive work, starting from the seminal work of Micali
[Mic94], and continuing with [Gro10, Lip12, DFH12, GGPR13, BCI+13, BCCT13, BCC+14], con-
structed publicly verifiable non-interactive delegation schemes that can even prove non-deterministic
computations. However, the soundness of these schemes is proven either in the Random Oracle
model [BR93], or based on non-standard hardness assumptions known as “knowledge assumptions”.1

Such assumptions have been criticized for being non-falsifiable and for yielding non-explicit security
reductions [Nao03]. We mention that some of these works form the basis of several efficient implemen-
tations. These schemes, however, have long CRS proportional to the runtime of the computation.

Other schemes (for deterministic computations) are known based on non-standard assumptions related
to obfuscation [CHJV15, KLW15, BGL+15, CH16, ACC+16, CCC+16] or to zero-testable homomorphic
encryption [PR17].

Designated verifier schemes. A line of works starting from [KRR13, KRR14], and continuing with
[KP16, BHK17, BKK+17, HR18], designed delegation schemes based on standard assumptions (such
as computational private-information retrieval). However these schemes are not publicly verifiable.

1For example, the Knowledge-of-Exponent assumption [Dam92] asserts that any efficient adversary that is given two random
generators (g, h) and outputs (gz , hz), must also “know” the exponent z.

3

The CRS is generated together with a secret verification key required to verify the proof. Moreover,
an adversary that is able to learn if its proofs are accepted or not can eventually recover the secret
verification key.

Interactive schemes. In the interactive setting we can achieve publicly verifiable schemes under standard
assumptions, and even unconditionally. For example, [GKR15] and [RRR16] give interactive delegation
schemes for bounded depth and bounded space computations with unconditional soundness. The work
of [Kil92] gives a four message protocol from collision-resistant hashing, and [PRV12] use attribute-
based encryption to delegate low-depth circuits in two messages in addition to a (hard to compute)
CRS.

We therefore ask:

Do publicly verifiable non-interactive delegation schemes exist under standard assumptions?

1.1 This Work

In this work we construct a publicly verifiable non-interactive delegation scheme for low-depth circuits based
on a hardness assumption on groups with bilinear maps.

The delegation scheme. Our scheme supports computations represented as log-space uniform circuits.
That is, circuits that can be generated by a log-space Turing machine. The cost of verification (and proof
length) is proportional to the depth of the circuit (and depends polynomially on the security parameter), and
is independent of the circuit size. The length of the CRS is polynomially related to the size of the circuit,
but verification only depends on a small portion of the CRS. Our proofs are adaptively sound meaning that
soundness holds even if the statement being proved depends on the CRS.

The assumption. Our scheme is based on a group G of prime order p ∈ {0, 1}κ (κ being the security
parameter) equipped with a non-degenerate bilinear map e : G×G→ GT . We make the following assumption
stated informally:

Assumption 1.1. For a pair of random group elements g, h ∈ G and a random t ∈ Zp, no polynomial-size

adversary that is given g, h, ht, ht
2

can output group elements

ga, gb, gc , ha, hb, hc such that (a, b, c) 6= (0, 0, 0) and a · t2 + b · t+ c = 0 ,

with non-negligible probability.

This arguably simple constant size assumption is falsifiable, and holds in the generic group model.

Informal theorem. For every d = d(κ) (κ being the security parameter) there exists a publicly verifiable
non-interactive delegation scheme for any log-space uniform depth d computation, with verification time
d · poly(κ) and adaptive soundness and under Assumption 1.1.

Our delegation scheme is obtained by removing interaction from the interactive proofs of Goldwasser,
Kalai and Rothblum [GKR15] and the interactive sum-check protocol [LFKN92].

1.2 Our Techniques

Our starting point is the interactive delegation scheme of [GKR15] (henceforth denoted by GKR). This
scheme is an interactive public-coin delegation scheme for low-depth log-space uniform circuits. We show
how to convert this scheme into a publicly verifiable non-interactive delegation scheme.

At the heart of the GKR delegation scheme is the interactive sum-check protocol. Thus, as a first step,
we show how to convert the interactive sum-check protocol into a publicly verifiable non-interactive protocol.

4

1.2.1 The Interactive Sum-Check Protocol.

We start with a quick overview of the celebrated interactive sum-check protocol of Lund, Fortnow, Karloff,
and Nisan [LFKN92]. Let F be a field of size κω(1) (where κ is the security parameter) and let H ⊂ F be
a subset of size poly(κ). Let f : F` → F be a polynomial with individual degree d = poly(κ). The prover
and verifier are both given a representation of f as a small arithmetic circuit C. The prover claims that the
evaluations of f over the entire hypercube H` sum to an element A ∈ F:∑

x1,...,x`∈H
f(x1, . . . , x`) = A .

While computing the above sum naively requires time O(|H|` · |C|), the running time of the verifier is only
O(` · d · |H|+ |C|) (assuming constant-time field operations).

The protocol proceeds as follows: In the first round of the protocol, the prover computes a degree-d
univariate polynomial S1 that maps every t ∈ F to the partial sum of f where x1 is fixed to t and the rest
of the variables range over H`−1:

S1(t) ≡
∑

x2,...,x`∈H
f(t, x2, . . . , x`) .

The prover sends the polynomial S1 represented as a list of d coefficients, and the verifier checks that

A =
∑
x1∈H

S1(x1) . (1)

Next, the verifier samples a random element t1 ∈ F and sends it to the prover. In the rest of the protocol
the prover must convince the verifier that the polynomial f(t1, ·) indeed sums to S1(t1) over H`−1:

S1(t1) =
∑

x2,...,x`∈H
f(t1, x2, . . . , x`) . (2)

In the second round of the protocol the prover computes the polynomial S2 and sends it to the verifier:

S2(t) ≡
∑

x3,...,x`∈H
f(t1, t, x3, . . . , x`) .

The verifier checks that S2 indeed sums to S1(t1) over H:

S1(t1) =
∑
x2∈H

S2(x2) . (3)

Then the verifier sends a random element t2 ∈ F to the prover. Then it remains to verify that f(t1, t2, ·)
indeed sums to S2(t2) over H`−2.

Finally, after ` such rounds have been completed, it remains to verify that:

S`(t`) = f(t1, . . . , t`) . (4)

The verifier checks this on its own by evaluating the circuit C on inputs (t1, . . . , t`).

Soundness. Consider a cheating prover claiming an incorrect sum A′ 6= A for f(·). To pass the verifier’s
test in (1), such a prover must send an incorrect polynomial S′1 6≡ S1. If S′1 and S1 are distinct polynomials
of degree at most d, then they disagree on the random element t1 with overwhelming probability at least
1 − d/|F|. If S′1(t1) 6= S1(t1), then the cheating prover claims an incorrect sum for f(t1, ·). To pass the
verifier’s test in (3), the prover must send an incorrect polynomial S′2 6≡ S2. By induction, with overwhelming
probability, the prover must send an incorrect polynomial S′` 6≡ S` in the last round. Then the final claim in
(4) must be incorrect causing the verifier to reject.

5

1.2.2 A Non-interactive Sum-Check Protocol.

Next we give a high-level overview of our publicly verifiable non-interactive sum-check protocol, which is the
main component in our delegation scheme.

As a mental experiment, consider the following (unsound) non-interactive sum-check protocol: the ele-
ments t1, . . . , t` which are sent by the original sum-check verifier one at a time, are now published ahead of
time in the CRS and the proof contains all of the original prover’s answers in one message. This protocol
is clearly unsound since a cheating prover that knows t1 before sending its message can cheat by sending a
polynomial S′1 6≡ S1 such that S′1(t1) = S1(t1) and then compute the rest of the polynomials honestly.

Main idea. Our solution is based on the following observation: while the honest prover computes the
polynomial S1 independently of t1, in a cheating proof where S′1 6≡ S1 and S′1(t1) = S1(t1), the polynomial
S1 must depend on t1, as t1 is one of the d roots of S′1−S1. In our solution the CRS includes a “cryptographic
encoding” of t1. Intuitively, this encoding still allows the verifier to check the proof, but it does not allow a
cheating prover to find a non-zero polynomial that vanishes at t1.

Specifically, we use a prime order group G, sample a random element g ∈ G and encode t1 in the exponent
of g. To allow the verifier to evaluate the degree-d polynomial S1 on t1 we also encode the powers t21, . . . , t

d
1

in the exponent. This is sufficient since the verifier can obtain any linear combination of these powers in
the exponent. For soundness we need to assume that given such encodings it is hard to find a non-zero
polynomial that vanishes at t1.

Subsequent rounds. In the second round of the interactive sum-check protocol, the prover sends the
polynomial S2:

S2(t) ≡
∑

x3,...,x`∈H
f(t1, t, x2, . . . , x`) .

Since S2 does depend on t1, the (non-interactive) prover cannot compute S2 in the clear. However, since the
coefficients of S2 can themselves be expressed as a degree-d polynomial in t1, the prover can send encodings
of the coefficients of S2.

The next round bring additional challenges. The prover now needs to convinces the verifier that:

S2(t2) =
∑

x3,...,x`∈H
f(t1, t2, x3, . . . , x`) .

We again add encodings of the element t2 and its powers to the CRS. However these encodings are no longer
sufficient.

The prover needs to compute encoded coefficients of the polynomial S3, but now these coefficients depend
on t1, t2, and their products. To this end, we add encodings of all possible degree-d monomials in t1 and t2 to
the CRS. On the verification side, the verifier needs to compute S2(t2), but now both t2 and S2’s coefficients
are encoded. To this end, we require that the group G is equipped with a bilinear map e : G×G→ GT . The
verifier can now obtain an encoding of S2(t2) in the target group GT and perform the consistency checks
there.

The final round. Continuing the above construction through the last round, the CRS will contain en-
codings of all degree-d monomials in the elements t1, . . . , t`. Therefore the length of our CRS grows with
d`. However, note that the running time of the honest prover is exponential in ` anyways since it needs to
sum f over all inputs. Looking ahead, for the sum-check parameters used in the GKR protocol, d` will be
polynomial in the width of the circuit.

Recall that in the original interactive sum-check protocol, the verifier has a representation of f as a small
arithmetic circuit C, and in the final round it evaluates C to obtain f(t1, . . . , t`). However, now the CRS
only contains encoded monomials of t1, . . . , t`, and the time required to compute an encoding of f(t1, . . . , t`)
is proportional to the number of monomials in f , which may be exponentially larger than |C|.

6

The complexity of this final verification step, therefore, depends on the specific polynomial f in question.
For example, for the polynomial f used in the GKR protocol we show how to perform the final verification
step efficiently.

To allow for maximal flexibility in applications, we formulate our non-interactive sum-check without the
final verification step. Instead, the prover will include an encoding of the value B = f(t1, . . . , t`) as part
of the proof. If the prover claims that the sum of f is A′, and the verifier accepts the proof, then it does
not guarantee that A′ is correct. Rather, we are only guaranteed that if A′ is incorrect then the proof must
contain an encoding of an incorrect value B′, namely:

B′ = f(t1, . . . , t`) ⇒ A′ =
∑

x1,...,x`∈H
f(x1, . . . , x`) .

Soundness. To prove soundness, we hope to argue that given the encoded monomials of t1, . . . , t`, it is
hard to generate encoded coefficients of a degree-d polynomial that vanishes on some ti. Alas, finding such
encodings is actually easy. For example, the polynomial S(t) = t1 · t − t1 · t2 vanishes on t2 and encodings
of its coefficients t1 and t1 · t2 are given in the CRS.

To overcome this problem, we modify the protocol to use encodings under different random group elements
g0, . . . , g` ∈ G. For every i > 0, the CRS will contain all of the monomials of t1, . . . , ti encoded in the
exponent of gi. The proof will contain the coefficients of the polynomial Si encoded under gi−1 (recall that
these coefficients only depend on tj for j < i).

Intuitively, we can obtain soundness under the assumption that given the encodings of powers of ti under
gi, it is hard to find encodings of coefficients of a non-zero polynomial in the exponent of gi−1 such that the
polynomial vanishes at ti. However, it is still easy to find such encodings: simply encode such coefficients in
the exponent of gi. The same encodings viewed as exponents with base gi−1 encode a scaled version of the
same polynomial and must vanish at ti as well. Thus to obtain soundness, we make one last modification to
the protocol: we ask for the proof to contain the coefficients of Si encoded in the exponent of both gi−1 and
gi.

We prove the soundness of the non-interactive sum-check for polynomials of degree d under Assump-
tion 1.2 which is stated informally below. We note that our delegation scheme only relies on sum-check for
quadratic polynomials and therefore we can base its security on Assumption 1.1 which is a special case of
Assumption 1.2 with d = 2.

Assumption 1.2 (Informal). For a pair of random group elements g, h ∈ G and a random t ∈ Zp, no

polynomial-size adversary that is given g and ht
0

, . . . , ht
d

can output group elements

{gai , hai}0≤i≤d such that ∃i : ai 6= 0 and

d∑
i=0

ai · ti = 0 ,

with non-negligible probability.

1.2.3 The Non-interactive Delegation Scheme.

With a new sum-check protocol at hand, we proceed to describe our publicly verifiable non-interactive
delegation scheme for low-depth log-space uniform circuits. The scheme mostly follows the blueprint of the
interactive GKR protocol with a few important modifications and simplifications that we discuss next.

Roughly speaking, the interactive GKR protocol for delegating a computation C(x) of depth D, is as
follows. The prover evaluates C(x), and for every 1 ≤ i ≤ D it encodes the i-th layer of the computation
(with i = 1 being the output layer) as a multilinear polynomial Vi.

2 The output C(x) is encoded by the
value V1(s1) for some particular point s1.

2We note that the GKR protocol considers the more general case where Vi is a low-degree polynomial (not necessarily
multilinear). In our work we use the multilinear version, since it results with a weaker assumption.

7

The protocol proceeds in D − 1 phases, where in phase i, the prover makes a claim Vi(si) = vi on the
value of a particular point in the i’th layer. This claim is then reduced to a new claim Vi+1(si+1) = vi+1

on the value of a point in the (i + 1)’st layer. After the final phase, the verifier can check the final claim
VD(sD) = vD on the value of a point in the input layer on its own.

Oversimplifying, the value Vi(si) can be expressed as a sum of the form:

Vi(si) =
∑
xi,x′i

Vi+1(xi) · Vi+1(x′i) · fC(xi, x
′
i) ,

where (xi, x
′
i) range over all pairs of points in layer i + 1 and where fC is some multilinear polynomial

that encodes the structure of C’s wires. The prover convinces the verifier that Vi(si) is indeed the value
of the sum above via the interactive sum-check protocol. Recall that in order to complete the sum-check,
the verifier must compute Vi+1(ti) · Vi+1(t′i) · fC(ti, t

′
i) for a single pair of points (ti, t

′
i). The verifier cannot

simply compute this value efficiently and, therefore, in the GKR protocol the verifier obtains this value in
two steps:

• The prover sends the values Vi+1(ti) = ui and Vi+1(t′i) = u′i. Then, the prover and verifier run
a so-called “2-to-1” interactive protocol to reduce these two claims to a single claim of the form
Vi+1(si+1) = vi+1. This is the starting point for the protocol’s (i+ 1)’st phase.

• The verifier needs to evaluate fC(ti, t
′
i) on the two claimed values. Recall that the verifier holds a

log-space Turing machine that outputs C, but it does not have the time to evaluate this machine, write
C and evaluate fC . Instead it delegated this computation to the prover using the GKR protocol itself.
Fortunately, since this computation is very simple (in log-space), it can be shown that its verification
can be performed efficiently without further help from the prover.

To obtain our delegation scheme, we replace each of the D interactive sum-checks with our non-interactive
sum-check. We also need to modify the two steps described above:

Avoiding the “2-to-1” protocol. One approach to dealing with the interactive “2-to-1” protocol is
making it non-interactive as we do for sum-check. Instead we show how to avoid the use of a “2-to-1”
protocol altogether both in the interactive and non-interactive settings.

Our solution is to let the prover make a claim on the value of two points in every phase instead of on just
one point. Of course if we do this naively, each claim would be reduced to a claim about two new points in
the next layer and the number of points would grow exponentially.

Our idea is to make sure that each of the claims in the i’th phase is reduced to a claim about the same
two points in the next layer. We observe that in the sum-check protocol, the verifier’s final evaluation points
ti and t′i depend only on its own randomness and not on the prover’s messages. Therefore, if we use the
same randomness in the two parallel sum-check executions (or the same CRS in the non-interactive case)
moving from layer i to layer i + 1, then the verification in both sum-check executions will depend on the
same pair of points (ti, t

′
i) in the next layer. We note that reusing the verifier’s randomness in this manner

does not increase the soundness error too much.

Avoiding the delegation of fC . Recall that unlike the case in the interactive sum-check protocol, in
our non-interactive sum-check, the complexity of the verifier’s final evaluation grows with the number of
monomials in f and not with f ′s circuit complexity.

As a result, even when delegating simple log-space computations such as the evaluation of fC , we can no
longer show that verification is efficient. Instead we show how to avoid the need to delegate fC altogether
in the non-interactive setting.

The basic idea is to place (encodings of) the values fC(ti, t
′
i) in the CRS. As mentioned above, the values

ti and t′i depend only on the CRS for the sum-check protocol. However, the function fC depends on the
delegated computation C and therefore the CRS cannot depend on it. To resolve this, we first consider
delegation only for a fixed universal circuit U and include in the CRS (encodings of) the values fU (ti, t

′
i).

8

The circuit U outputs C(x) given a description of a log-space Turing machine that generates a circuit C of
depth D and any input x for C. We rely on the fact that there exists such circuits U with depth not much
larger than D.

1.2.4 Discussion

While at first glance our approach may seem tailored to the sum-check and GKR protocol, we note that
our techniques can be generalized and used to remove interaction (in the CRS model) from a wider class of
“algebraic” protocols where the prover and verifier strategies are given by low-degree polynomials. We leave
the task of formalizing this class of protocols to future work.

Next we discuss other known techniques for “compilers” that give non-interactive delegation and compare
these techniques with our approach.

The Fiat-Shamir heuristic. Fiat and Shamir [FS86] suggested a heuristic for reducing interaction in
constant-round public-coin protocols. Compared to our approach, their transformation is simple, highly
efficient, applies to a wide class of protocols, and uses a random CRS with no structure. The main downside
is that, as its name suggests, the security of the resulting protocol is heuristic and we do not know how to
base it on any standard assumption. Very recently, [KRR16, CCRR18] show how to securely instantiate this
heuristic under non-standard and exponentially-strong hardness assumptions. However, these instantiations
fall short of reducing interaction in the GKR protocol which has a super-constant number of rounds.

The Kalai-Raz transformation. Kalai and Raz [KR09] show how to remove interaction from any public-
coin interactive proof assuming the existence of a fully homomorphic encryption scheme with sub-exponential
security. However, the resulting non-interactive protocol is not publicly verifiable: a secret decryption key
is needed to verify the proof. Although our techniques are not as generic as those of [KR09], we achieve a
publicly verifiable protocol.

It is instructive to compare our approach to that of [KR09]. Both protocols have the same high-level
structure: for every round i, the verifier’s messages up to the i-th round are given in the CRS under some
cryptographic encoding. This encoding can be homomorphically manipulated so that the prover can compute
its i-th answer under the encoding. However to maintain soundness, the encoding must not reveal too much
about the verifier’s future messages. The encoding in [KR09] is simply a fully homomorphic encryption,
whereas we use an encoding based on groups with bilinear maps.

While the group structure and bilinear map enable public verification, they only support a limited set
of homomorphic operations, namely quadratic polynomials. As a result, we can only handle protocols
where both the prover and verifier strategies only evaluate quadratic polynomials over random elements.
In particular, to handle the sum-check and GKR protocols, where the prover and verifier’s strategies have
degree above 2, we need to include all the monomials as part of the CRS which results in a long CRS.

Delegation from linear PCPs. The work of [BCI+13] shows how to convert linear PCPs into publicly
verifiable non-interactive delegation schemes. In a linear PCP the answers are obtained by applying a
linear function to the queries. Their work considers linear PCPs where the verification has degree 2 in the
queries and their answers. They transform such a PCP into a delegation protocol by encoding the verifier’s
PCP queries in the exponent of a group with a bilinear map. Our protocols can be described in a similar
framework. Specifically, the interactive GKR prover just evaluates a low-degree polynomial over the verifier
queries. By changing the verifier’s queries to include all possible monomials, we can think of the prover
strategy as a linear PCP. In our protocol the CRS contains an encodings of this extended query.

The crucial difference between our approach and that of [BCI+13] is in the security proof. Their soundness
proof relies on a non-standard and non-falsifiable knowledge assumption on groups with bilinear maps,
whereas our security proof is based on a falsifiable assumption on such groups. However, we can only support
deterministic bounded depth computations, whereas [BCI+13] support any non-deterministic computation.

9

We note that the need to restrict our attention to deterministic computations is known to be inherent, given
that our security proof is via a black-box reduction to a falsifiable assumption [GW11].

2 Preliminaries

2.1 Low Degree Extension

This subsection is taken almost verbatim from [GKR15]. Let F be a field and let H ⊆ F. Throughout
this work with take H = {0, 1}. We always assume (without loss of generality) that field operations can
be performed in time that is poly-logarithmic in the field size, and space that is logarithmic in the field
size. Fix an integer m ∈ N. In what follows, we define the low degree extension of a k-element string
(w0, w1, . . . , wk−1) ∈ Fk with respect to F,H,m, where k ≤ |H|m.

Fix α : Hm → {0, 1, . . . , |Hm| − 1} to be any (efficiently computable) one-to-one function. In this paper,
we take α to be the lexicographic order of Hm. We can view (w0, w1, . . . , wk−1) as a function W : Hm → F,
where

W (z) =

{
wα(z) if α(z) ≤ k − 1

0 o.w.
(5)

A basic fact is that there exists a unique extension of W into a function W̃ : Fm → F (which agrees with W
on Hm: W̃ |Hm ≡ W), such that W̃ is an m-variate polynomial of degree at most |H| − 1 in each variable.
Moreover, as is formally stated in the proposition below, the function W̃ can be expressed as

W̃ (t1, . . . , tm) =

k−1∑
i=0

β̃i(t1, . . . , tm) · wi,

where each β̃i : Fm → F is an m-variate polynomial, that depends only on the parameters H, F, and m (and
is independent of w), of size poly(|H|,m) and of degree at most |H| − 1 in each variable.

The function W̃ is called the low degree extension of w = (w0, w1, . . . , wk−1) with respect to H,F,m, and
is denoted by LDEH,F,m(w).

Proposition 2.1. There exists a Turing machine that takes as input a field F,3 and a subset H ⊆ F,
and an integer m. The machine runs in time poly(|H|,m). It outputs the unique 2m-variate polynomial
β̃ : Fm × Fm → F of degree |H| − 1 in each variable (represented as an arithmetic circuit of degree |H| − 1 in
each variable), such that for every (w0, w1, . . . , wk−1) ∈ Fk with k ≤ |H|m, and for every z ∈ Fm,

W̃ (z) =
∑
p∈Hm

β̃(z, p) ·W (p), (6)

where W : Hm → F is the function corresponding to (w0, w1, . . . , wk−1) as defined in Equation (5), and
W̃ : Fm → F is its low degree extension (i.e., the unique extension of W : Hm → F of degree at most |H| − 1
in each variable).

Moreover, β̃ can be evaluated in time poly(|H|,m). Namely, there exists a Turing machine with the above
time bound, that takes as input parameters H,F,m (as above), and a pair (z, p) ∈ Fm × Fm, and outputs
β̃(z, p).

Claim 2.2. There exists a Turing machine that takes as input a field F, a subset H ⊆ F, an integer m, a
sequence w = (w0, w1, . . . , wk−1) ∈ Fk such that k ≤ |H|m, and a coordinate z ∈ Fm. It outputs the value
W̃ (z), where W̃ is the unique low-degree extension of w (with respect to H,F,m). The machine’s running
time is |H|m · poly(|H|,m).

3Throughout this work, when we refer to a machine that takes as input a field, we mean the machine is given a short (poly-
logarithmic in the field size) description of the field, that permits field operations to be computed in time that is poly-logarithmic
in the field size and space that is logarithmic in the field size.

10

2.2 The Sum-Check Protocol

Let F be a field and let H ⊆ F. Let f(x1, . . . , x`) be a multivariate polynomial of degree at most d in each
variable, with coefficients in F, and let v ∈ F. The sum-check protocol is an interactive protocol for proving
that ∑

(h1,...,h`)∈H`

f(h1, . . . , h`) = v.

It consists of ` rounds of interaction between a prover and a verifier, and is defined below.

Protocol 2.3 (The Sum-Check Protocol).

• The verifier samples random elements t1, . . . , t` ← F.

• In the ith round, the verifier sends ti−1 and the prover responds with αi,0, αi,1, . . . , αi,d such that

d∑
j=0

αi,jx
j
i =

∑
(hi+1,...,h`)∈H`−i

f(t1, . . . , ti−1, xi, hi+1, . . . , h`).

Where we define t0 = ∅.
The verifier performs the following checks depending on the round:

– In the first round, the verifier checks that
∑
h∈H

∑d
j=0 α1,jh

j = v.

– In the ith round for i = 2, . . . , `, the verifier checks that
∑
h∈H

∑d
j=0 αi,jh

j =
∑d
j=0 αi−1,jt

j
i−1.

– Finally, the verifier checks that
∑d
j=0 α`,jt

j
` = f(t1, . . . , t`).

• The verifier accepts if and only if all checks pass.

Lemma 2.4. [LFKN92, Sha92] Let f : F` → F be an `-variate polynomial of degree d in each variable. The
sum-check protocol (P, V) described in Protocol 2.3 satisfies the following properties.

• Completeness: If
∑

(h1,...,h`)∈H` f(h1, . . . , h`) = v then

Pr
[(
P (f), V f (v)

)
= 1
]

= 1.

• Soundness: If
∑

(h1,...,h`)∈H` f(h1, . . . , h`) 6= v then for every (unbounded) interactive Turing machine

P̃ ,

Pr
[(
P̃ (f), V f (v)

)
= 1
]
≤ `d

|F|
.

• Efficiency: P (f) is an interactive Turing machine, and V f (v) is a probabilistic interactive Turing
machine with oracle access to f : Fm → F. The prover P (f) runs in time ≤ poly(|H|`).4 The
verifier V f (v) runs in time ≤ poly(|H|, log |F|, `, d), and queries the oracle f at a single point. The
communication complexity is ≤ poly(|H|, log |F|, `, d), and the total number of bits sent from the verifier
to the prover is O(` · log |F|). Moreover, this protocol is public-coin; i.e., all the messages sent by the
verifier are truly random and consist of the verifier’s random coin tosses.

3 Publicly Verifiable Non-interactive Sum-Check

In this section we show how to convert the interactive sum-check protocol to a publicly verifiable non-
interactive one. We start by defining this notion.

4Here we assume the prover’s input is a description of the function f , from which f can be computed (on any input) in time
≤ poly(|H`|).

11

3.1 Definitions

We specify the syntax of the publicly verifiable non-interactive sum-check protocol. As discussed in Sec-
tion 1.2.2 of the introduction, this is a non-interactive encoded version of the sum-check protocol.

Notations We use the following notations throughout this work. We let κ denote the security parameter.
We let F = Fκ be a field of prime order p = pκ = Θ(2κ), and let H = Hκ ⊂ Fκ be a subset of size poly(κ). Let
G = Gκ be a group of order pκ with a non-degenerate bilinear map e : G×G→ GT .5 For t ∈ F and g ∈ G
let 〈t〉g denote the element gt ∈ G. For a vector t = (t1, . . . , t`) ∈ F` let 〈t〉g denote the vector

(
〈ti〉g

)
i∈[`]

.

The monomial encoding. The interface of the sum-check protocol uses a simple monomial encoding
scheme. Let d ∈ N be a constant degree parameter. For a vector s = (s1, . . . , sm) ∈ Fm and a vector of
degrees δ = (δ1, . . . , δm) ∈ [0, d]

m
, let sδ denote the product

∏
i∈[m] s

δi
i .

Definition 3.1 (Monomial encoding). The degree d monomial encoding of the vector s ∈ Fm under an

element g ∈ G is denoted by [s]
d
g and it consists of the elements:

[s]
d
g =

{〈
sδ
〉
g

}
δ∈[0,d]m

.

Fact 3.2. Let s ∈ Fm and t ∈ F` be vectors. Let g ∈ G be an element, and let h = 〈x〉g for some x ∈ F. Let
f : Fm → F be a multivariate polynomial of individual degree at most d represented by a list of its coefficients.
Then:

Extention: The encodings [s|t]
d
g and [t|s]

d
g can be efficiently computed given [s]

d
g and t.

Rerandomization: The encoding [s]
d
h can be efficiently computed given [s]

d
g and x.

Evaluation: The element 〈f(s)〉g can be efficiently computed given [s]
d
g and f .

We proceed to define the notion of a publicly verifiable non-interactive sum-check protocol.

Syntax A publicly verifiable non-interactive sum-check protocol consists of a randomized algorithm SC.S
and a pair of deterministic polynomial-time algorithms (SC.P,SC.V) with the following syntax.

• The setup algorithm SC.S takes as input:

– The security parameter κ.

– A parameter `.

– A monomial encoding [s]
d
g of a vector s ∈ Fm.

The setup algorithm outputs:

– A monomial encoding [s|t]
d
h for a vector t ∈ F`.

– A pair of proving and verification keys (pk, vk).

• The prover algorithm SC.P takes as input:

– The proving key pk.

– A multivariate polynomial f : Fm+` → F of individual degree at most d represented by a list of
its coefficients.

5We can use also an asymmetric map, and we chose to use a symmetric one only for the sake of simplicity.

12

The prover algorithm outputs:

– A pair of elements (A,B) ∈ G.

– A proof Π.

• The verifier algorithm SC.V takes as input:

– The verification key vk.

– The elements (A,B) ∈ G.

– The proof Π.

The verifier algorithm outputs an acceptance bit.

Definition 3.3 (Publicly Verifiable Non-interactive Sum-Check). A publicly verifiable non-interactive sum-
check protocol (SC.S,SC.P,SC.V) satisfies the following properties:

Completeness. For every κ ∈ N, multivariate polynomial f : Fm+` → F of individual degree at most d,
vector s ∈ Fm and element g ∈ G:

Pr

 1 = SC.V(vk, (A,B),Π)
B = 〈f(s, t)〉h
A =

〈∑
x∈H` f(s,x)

〉
g

∣∣∣∣∣∣
(

[s|t]
d
h, (pk, vk)

)
← SC.S

(
κ, `, [s]

d
g

)
((A,B),Π)← SC.P(pk, f)

 = 1 .

Soundness. For every poly-size cheating prover P∗ and polynomials m = m(κ) and ` = `(κ), there exists a
negligible function negl such that for every κ ∈ N and vector s ∈ Fm:

Pr

 1 = SC.V(vk, (A,B),Π)
B = 〈f(s, t)〉h
A 6=

〈∑
x∈H` f(s,x)

〉
g

∣∣∣∣∣∣∣∣
g ← G(

[s|t]
d
h, (pk, vk)

)
← SC.S

(
κ, `, [s]

d
g

)
(f, (A,B),Π)← P∗

(
g, [s|t]

d
h, (pk, vk)

)
 = negl(κ) .

where f above is describing an (m+ `)-variate polynomial of individual degree at most d.

Efficiency. In the above honest experiment, the running time of SC.S is (d + |H|)`+m · poly(κ), and the
length of the verification key vk and the length of the proof Π are bounded by ` · poly(κ).

3.2 The Protocol

In what follows we construct our publicly verifiable non-interactive sum-check protocol (SC.S,SC.P,SC.V).

Protocol 3.4 (Publicly Verifiable Non-interactive Sum-Check).

The setup algorithm SC.S. The setup algorithm is given as input the security parameter κ, ` ∈ N, and
an encoding [s]

d
g. The setup algorithm proceeds as follows.

1. Set g0 = g.

2. Sample random x1, . . . , x` ← F and set gi = 〈xi〉g.

3. Sample random t = (t1, . . . , t`)← F`.

4. For i ∈ [0, `] let ri = (s1, . . . , sm, t1, . . . , ti) ∈ Fm+i.

5. Set

pk =

(
1|H|

`

,
{

[ri]
d
gi

}
i∈[0,`]

)
, vk =

{
[ti]

d
gi

}
i∈[0,`]

,

where the encoding [ri]
d
gi

is computed from [s]
d
g, t and xi, using Fact 3.2.

13

6. Output:
(

[r]
d
g`
, (pk, vk)

)
.

The prover algorithm SC.P. The prover is given as input the key

pk =

(
1|H|

`

,
{

[ri]
d
gi

}
i∈[0,`]

)
,

and a multivariate polynomial f : Fm+` → F of individual degree at most d represented by a list of its
coefficients. The prover proceeds as follows: Let f` ≡ f and for every i ∈ [0, `− 1], let fi : Fm+i → F be the
polynomial such that

fi(x1, . . . , xm+i) ≡
∑

x∈F`−i

f(x1, . . . , xm+i,x) . (7)

For i ∈ [`] let
{
fi,δ : Fm+i−1 → F

}
δ∈[0,d]

be the polynomials such that

fi(x1, . . . , xm+i) ≡
∑
δ∈[0,d]

xδm+i · fi,δ(x1, . . . , xm+i−1) . (8)

Given the encodings in pk the prover computes the following elements, using Fact 3.2:

(A,B) =
(
〈f0(r0)〉g0 , 〈f`(r`)〉g`

)
Π =

{
Ci,δ = 〈fi,δ(ri−1)〉gi−1

, C ′i,δ = 〈fi,δ(ri−1)〉gi
}
i∈[`], δ∈[0,d]

. (9)

The prover outputs ((A,B),Π).

The verifier algorithm SC.V. The verifier is given as input the following elements

vk =
{

[ti]
d
gi

}
i∈[0,`]

, (A,B) , Π =
{
Ci,δ, C

′
i,δ

}
i∈[`], δ∈[0,d]

.

From the input elements the verifier computes the following elements for every i ∈ [`]:

Ai =
∑
δ∈[0,d]

e
(
C ′i,δ,

〈
tδi
〉
gi

)
, Bi−1 =

∑
x∈H

∑
δ∈[0,d]

e
(
Ci,δ,

〈
xδ
〉
gi−1

)
, (10)

and sets A0 = e(g0, A) and B` = e(g`, B). The verifier accepts if and only if:

∀i ∈ [`], δ ∈ [0, d] : e (gi, Ci,δ) = e
(
gi−1, C

′
i,δ

)
(11)

∀i ∈ [0, `] : Ai = Bi . (12)

3.3 Analysis of Protocol 3.4

In this section we prove the security of Protocol 3.4 based on the following assumption.

Assumption 3.5. For any poly-size adversary Adv and every κ ∈ N:

Pr

 c = c′

c 6= 0d

c · (t0, . . . , td) = 0

∣∣∣∣∣∣∣
g, h← G
t← F
〈c〉g , 〈c′〉h ← Adv

(
g, [t]

d
h

)
 = negl(κ) .

Theorem 3.6. Under Assumption 3.5, Protocol 3.4 is a publicly verifiable non-interactive sum-check (Def-
inition 3.3).

In the rest of this section, we prove Theorem 3.6.

14

Completeness. Fix κ, a polynomial f : Fm+` → F of individual degree at most d, a vector s ∈ Fm and
an element g ∈ G. Consider the honest experiment

([s|t]
d
h, (pk, vk))← SC.S(κ, `, [s]

d
g)

((A,B),Π)← SC.P(pk, f)

We need to show that

1 = SC.V(vk, (A,B),Π)

and

(A,B) =

〈∑
x∈H`

f(s,x)

〉
g

, 〈f(s, t)〉h

 .

The latter condition follows directly by construction. We focus on showing that the verifier accepts. The
verifier’s test in Equation (11) passes since by Equation (9), for all i ∈ [`] and δ ∈ [0, d]:

e (gi, Ci,δ) = 〈fi,δ(ri−1)〉e(gi−1,gi)
= e

(
gi−1, C

′
i,δ

)
.

It remains to show that the verifier’s test in Equation (12) passes. We have that for every i ∈ [`]:

Ai =
∑
δ∈[0,d]

e
(
C ′i,δ,

〈
tδi
〉
gi

)
=
∑
δ∈[0,d]

e
(
〈fi,δ(ri−1)〉gi ,

〈
tδi
〉
gi

)
(By Equation (9))

=

〈 ∑
δ∈[0,d]

fi,δ(ri−1) · tδi

〉
e(gi,gi)

= 〈fi(ri−1, ti)〉e(gi,gi) (By Equation (8))

= 〈fi(ri)〉e(gi,gi) .

Similarly, for every i ∈ [`]:

Bi−1 =
∑
x∈H

∑
δ∈[0,d]

e
(
Ci,δ,

〈
xδ
〉
gi−1

)
=
∑
x∈H

∑
δ∈[0,d]

e
(
〈fi,δ(ri−1)〉gi−1

,
〈
xδ
〉
gi−1

)
(By Equation (9))

=

〈∑
x∈H

∑
δ∈[0,d]

fi,δ(ri−1) · xδ
〉
e(gi−1,gi−1)

=

〈∑
x∈H

fi(ri−1, x)

〉
e(gi−1,gi−1)

(By Equation (8))

= 〈fi−1(ri−1)〉e(gi−1,gi−1) (By Equation (7))

15

By construction we also have that:

A0 = e(g0, A) = e
(
g0, 〈f0(r0)〉g0

)
= 〈f0(r0)〉e(g0,g0)

B` = e(g`, B) = e
(
g`, 〈f`(r`)〉g`

)
= 〈f`(r`)〉e(g`,g`) .

Put together we get, as required, that for all i ∈ [0, `], Ai = Bi = 〈fi(ri)〉e(gi,gi).

Soundness. Let P∗ be a poly-size cheating prover and let m = m(κ) and ` = `(κ) be polynomials. Assume
towards contradiction that there exists a polynomial p such that for infinitely many κ ∈ N, there exist s ∈ Fm
such that:

Pr

 1 = SC.V(vk, (A,B),Π)
B = 〈f(s, t)〉h
A 6=

〈∑
x∈H` f(s,x)

〉
g

∣∣∣∣∣∣∣∣
g ← G(

[s|t]
d
h, (pk, vk)

)
← SC.S

(
κ, `, [s]

d
g

)
(f, (A,B),Π)← P∗

(
g, [t]

d
h, (pk, vk)

)
 ≥ 1

p(κ)
. (13)

Next we describe an adversary Adv that breaks Assumption 3.5. That is, fix κ and s = (s1, . . . , sm) such
that Equation (13) holds. We show that:

Pr

 c = c′

c 6= 0d

c · (t0, . . . , td) = 0

∣∣∣∣∣∣∣
g, h← G
t← F
〈c〉g , 〈c′〉h ← Adv

(
g, [t]

d
h

)
 ≥ 1

` · p(κ)
. (14)

We first describe Adv and then prove Equation (14). Given as input g and [t]
d
h, Adv proceeds as follows:

1. Sample i∗ ← [`].

2. For every i ∈ [0, i∗ − 2], sample gi ← G.

3. Set (gi∗−1, gi∗) = (g, h).

4. For every i ∈ [i∗ + 1, `], sample xi ← F and set gi = 〈xi〉h.

5. For every i ∈ [0, `] \ {i∗}, sample ti ← F.

6. Let ti∗ = t and let t = (t1, . . . , t`). Note that Adv is given [t]
d
h but not t.

7. For i ∈ [0, `] let ri = (s1, . . . , sm, t1, . . . , ti) ∈ Fm+i.

8. Set

pk =

(
1|H|

`

,
{

[ri]
d
gi

}
i∈[0,`]

)
, vk =

{
[ti]

d
gi

}
i∈[0,`]

, (15)

where the encoding [ri]
d
gi

is computed as follows:

• For i ∈ [0, i∗ − 1], Adv knows ri and therefore, it can directly compute [ri]
d
gi

.

• For i ∈ [i∗, `], Adv knows s and tj for j 6= i∗ and therefore, it can compute [ri]
d
h from [t]

d
h, following

Fact 3.2.

• For i ∈ [i∗ + 1, `], Adv knows xi such that gi = 〈xi〉h and therefore, it can compute [ri]
d
gi

from

[ri]
d
h following Fact 3.2.

16

9. Obtain the output of the cheating prover:(
f, (A,B),Π =

{
Ci,δ, C

′
i,δ

}
i∈[`], δ∈[0,d]

)
← P∗

(
g0, [r]

d
g`
, (pk, vk)

)
. (16)

10. Evaluate the honest prover strategy with the polynomial f and obtain the output:(
(Ā, B̄),Π =

{
C̄i,δ, C̄

′
i,δ

}
i∈[`], δ∈[0,d]

)
← SC.P (pk, f) . (17)

11. Let c, c′, c̄, c̄′ ∈ Fd+1 be vectors such that:

〈c〉g = (Ci∗,δ)δ∈[0,d] , 〈c′〉h =
(
C ′i∗,δ

)
δ∈[0,d]

, (18)

〈c̄〉g =
(
C̄i∗,δ

)
δ∈[0,d]

, 〈c̄′〉h =
(
C̄ ′i∗,δ

)
δ∈[0,d]

.

12. Output 〈c− c̄〉g , 〈c′ − c̄′〉g.

We observe that encodings computed by Adv in Equation (15) are distributed identically to those gener-
ated by SC.S. That is:

(
[r]
d
g`
, (pk, vk)

) ∣∣∣∣∣∣∣
g, h← G
t← F
Adv

(
g, [t]

d
h

)
 ≡

{
SC.S

(
κ, `, [s]

d
g

) ∣∣∣ g ← G
}

(19)

By our assumption (Equation (13)) and Equation (19) it follows that the output of the cheating prover
in Equation (16) satisfies:

Pr

 1 = SC.V(vk, (A,B),Π)
B = 〈f(s, t)〉h
A 6=

〈∑
x∈H` f(s,x)

〉
g

∣∣∣∣∣∣∣
g, h← G
t← F
Adv

(
g, [t]

d
h

)
 ≥ 1

p(κ)
.

By the completeness property of the sum-check protocol and Equation (19) it follows that the output of
the honest prover in Equation (17) satisfies:

Pr

 1 = SC.V(vk, (Ā, B̄),Π)
B̄ = 〈f(s, t)〉h
Ā =

〈∑
x∈H` f(s,x)

〉
g

∣∣∣∣∣∣∣
g, h← G
t← F
Adv

(
g, [t]

d
h

)
 = 1 .

Put together we have that:

Pr


1 = SC.V(vk, (A,B),Π)
1 = SC.V(vk, (Ā, B̄),Π)
B = B̄
A 6= Ā

∣∣∣∣∣∣∣∣
g, h← G
t← F
Adv

(
g, [t]

d
h

)
 ≥ 1

p(κ)
.

Let {Ai, Bi}i∈[0,`] be the values computed by SC.V(vk, (A,B),Π) in Equation (10) and let
{
Āi, B̄i

}
i∈[0,`]

be the values computed by SC.V(vk, (Ā, B̄),Π). Whenever the verifier’s accept, by the test in Equation (12)
we have that for all i ∈ [0, `], Ai = Bi and Āi = B̄i Therefore:

Pr


1 = SC.V(vk, (A,B),Π)
1 = SC.V(vk, (Ā, B̄),Π)

∃i ∈ [`] :
Bi−1 6= B̄i−1

Ai = Āi

∣∣∣∣∣∣∣∣
g, h← G
t← F
Adv

(
g, [t]

d
h

)
 ≥ 1

p(κ)
.

17

Note that by Equation (19) the views of the cheating and honest provers in Equations (16) and (17) are
independent of i∗. Therefore:

Pr


1 = SC.V(vk, (A,B),Π)
1 = SC.V(vk, (Ā, B̄),Π)
Bi∗−1 6= B̄i∗−1

Ai∗ = Āi∗

∣∣∣∣∣∣∣∣
g, h← G
t← F
Adv

(
g, [t]

d
h

)
 ≥ 1

` · p(κ)
. (20)

Recall that:
Π =

{
Ci,δ, C

′
i,δ

}
i∈[`], δ∈[0,d]

, Π =
{
C̄i,δ, C̄

′
i,δ

}
i∈[`], δ∈[0,d]

.

By Equation (18), c, c′, c̄, c̄′ ∈ Fd+1 are vectors such that:

〈c〉g = (Ci∗,δ)δ∈[0,d] , 〈c′〉h =
(
C ′i∗,δ

)
δ∈[0,d]

,

〈c̄〉g =
(
C̄i∗,δ

)
δ∈[0,d]

, 〈c̄′〉h =
(
C̄ ′i∗,δ

)
δ∈[0,d]

.

Whenever the verifier’s accept, by the test in Equation (11) it holds that c = c′ and c̄ = c̄′. In this case we
can rewrite Equation (10) as:

Ai∗ =
∑
δ∈[0,d]

e
(
C ′i∗,δ,

〈
tδ
〉
h

)
=
〈
c · (t0, . . . , td)

〉
e(h,h)

,

Āi∗ =
∑
δ∈[0,d]

e
(
C̄ ′i∗,δ,

〈
tδ
〉
h

)
=
〈
c̄ · (t0, . . . , td)

〉
e(h,h)

,

Bi∗−1 =
∑
x∈H

∑
δ∈[0,d]

e
(
Ci∗,δ,

〈
xδ
〉
g

)
=
∑
x∈H

〈
c · (x0, . . . , xd)

〉
e(h,h)

,

B̄i∗−1 =
∑
x∈H

∑
δ∈[0,d]

e
(
C̄i∗,δ,

〈
xδ
〉
g

)
=
∑
x∈H

〈
c̄ · (x0, . . . , xd)

〉
e(h,h)

.

Combined with Equation (20) we get that:

Pr

 (c− c̄) = (c′ − c̄′)
(c− c̄) 6= 0d

(c− c̄) · (t0, . . . , td) = 0

∣∣∣∣∣∣∣
g, h← G
t← F
Adv

(
g, [t]

d
h

)
 ≥ 1

` · p(κ)
.

Since Adv outputs 〈c− c̄〉g , 〈c′ − c̄′〉h we reach a contradiction to Assumption 3.5.

4 Modified Interactive GKR Protocol

Notations. Let C : {0, 1}n → {0, 1} be a boolean circuit with fan-in 2 of size S and depth D. For the
sake of simplicity, add dummy gates so that each layer has the exact same size S. This increases the size of
the circuit to at most S2. Let H be a set of size at most polylog(S),6 and let m ∈ N such that |H|m = S. Let
` = 3m. We identify the indices {0, . . . , S − 1} with the elements of Hm. Let F be a field such that H ⊂ F
and such that |F| ≥ m ·D · κ.7

Fix a circuit C as above, and an input x ∈ {0, 1}n. For every i < D, denote by Vi ∈ {0, 1}S the value
of the i’th layer of the circuit C on input x, where V0 corresponds to the output layer. And denote by
VD ∈ {0, 1}n the value of the input layer of the circuit C. For every i ∈ [0, D − 1], let Ṽi : Fm → F denote
the low-degree extension of Vi, and let ṼD : Fm′ → F denote the low-degree extension of VD, where m′ is
such that Hm′ = n.

6In the next section, we will use the protocol presented in this section with |H| = 2.
7In the next section, we will use the protocol presented in this section with a field F such that |F| = 2Θ(κ).

18

Overview. The (interactive) GKR protocol, for delegating the computation C(x) = 0, consists of D phases
where each phase runs a sum-check protocol. For i ≥ 1, the i’th sum-check reduces the task of verifying the
value of a single point in the low-degree extension of the i − 1’st layer, Ṽi−1(zi−1), to verifying the values
of two points in the low-degree extension of the i’th layer, Ṽi(xi) and Ṽi(yi). Thus, there appears to be an
exponential blowup in the number of points that the verifier will need to verify.

In [GKR15], they avoid this exponential blowup, by using a “2-to-1” reduction, where the verifier asks
for the values of all the points on the line between xi and yi, and then chooses a random point zi on the
line, and only verifies the value of this single point Ṽi(zi).

We present a modification of the GKR protocol without this “2-to-1” reduction. Instead of continuing
with a single sum-check to verify the value of Ṽi(zi), we continue with two sum-checks in parallel, to verify
the values of both Ṽi(xi) and Ṽi(yi). The important observation is that we can reduce verifying these two
points in the i−1’st layer to verifying only two points in the i’th layer. This is achieved by having the verifier
use the same randomness in both sum-checks, and we argue that this does not compromise the security. This
prevents the exponential blowup discussed above, and we will only have O(D) sum-checks to verify the values
of Ṽ0(0, . . . , 0) and {Ṽi(xi), Ṽi(yi)}i∈[D−1].

Before we describe our modified protocol in detail, we note some basic facts (from [GKR15]).

Facts. For any point w ∈ Hm, it holds that

Ṽi−1(w) =
∑

(x,y)∈H2m

˜addi(w, x, y) ·
(
Ṽi(x) + Ṽi(y)

)
+ ˜multi(w, x, y) · Ṽi(x) · Ṽi(y),

where addi : H3m → {0, 1} is the function that on input (w, x, y) ∈ H3m outputs 1 if and only if the w
gate in layer i − 1 is an ADD gate whose children are gates x and y in layer i, and ˜addi : F3m → F is the
low-degree extension of addi. Similarly, multi : H3m → {0, 1} is the function that on input (w, x, y) ∈ H3m

outputs 1 if and only if the w gate in layer i− 1 is a MULT gate whose children are gates x and y in layer
i, and ˜multi : F3m → F is the low-degree extension of multi. The functions addD and multD are defined
analogously except they take inputs (w, x, y) ∈ Hm+2m′ .

Therefore, for every point z ∈ Fm in the extension of the i− 1’st layer,

Ṽi−1(z) =
∑

(w,x,y)∈H3m

β̃(z, w) ·
(

˜addi(w, x, y) ·
(
Ṽi(x) + Ṽi(y)

)
+ ˜multi(w, x, y) · Ṽi(x) · Ṽi(y)

)
(21)

where β̃ is the polynomial defined in Proposition 2.1.
Denote the summand by

fi,z(w, x, y) := β̃(z, w) ·
(

˜addi(w, x, y) ·
(
Ṽi(x) + Ṽi(y)

)
+ ˜multi(w, x, y) · Ṽi(x) · Ṽi(y)

)
. (22)

Then proving the value of Ṽi−1(z) is equivalent to proving the value of
∑

(w,x,y)∈H3m fi,z(w, x, y).

Note that fi,z(w, x, y) is of degree ≤ 2(|H| − 1) in each variable. In particular, if H = {0, 1}, then
fi,z(w, x, y) is of degree ≤ 2 in each coordinate of (z, w, x, y). Jumping ahead, when we convert our modified
GKR protocol to a non-interactive publicly verifiable variant, we indeed set H = {0, 1}.

4.1 The Protocol

We next present the protocol in detail. We assume (for simplicity) that the verifier has oracle access to the
functions ˜addi and ˜multi.

Remark 4.1. We note that in [GKR15], it was similarly assumed that verifier has oracle access to ˜add
and ˜mult. This was refered to as the “barebones protocol.” Then it was argued that for non-deterministic
log-space (NL) computations, the verifier can indeed efficiently compute ˜add and ˜mult on his own, for ˜add

19

and ˜mult which are not the low-degree extensions of add and mult, but rather are some low degree extension
(of slightly higher degree) of add and mult. Then, for log-space uniform bounded-depth circuits, ˜add and

˜mult are in NL and hence can be delegated.
In our setting, it suffcies to assume that the verifier has oracle access to ˜add and ˜mult, since when we

later convert this protocol into a non-interactive publicly verifiable one, we will include the relevant values
of ˜add and ˜mult in the verification key vk.

Protocol 4.2 (Modified Interactive GKR Protocol).

Generating the queries: For each i ∈ [D], the verifier randomly samples a sum-check query (wi−1, xi, yi)←
F3m. Let x0 = y0 = 0m. Let v0,x0

= v0,y0 = 0.

The i’th phase (1 ≤ i ≤ D − 1): The prover and verifier run two sum-check protocols, as described in
Protocol 2.3, to prove that

vi−1,xi−1 =
∑

(w,x,y)∈H3m

fi,xi−1(w, x, y) and vi−1,yi−1 =
∑

(w,x,y)∈H3m

fi,yi−1(w, x, y),

where xi−1, yi−1 ∈ Fm are determined by the random messages sent by the verifier in the previous phase.
These two sum-check protocols are executed in parallel, where the verifier uses the same randomness in both.
Namely, the messages of the verifier correspond to messages of a single sum-check, whereas the messages of
the prover correspond to two (parallel) sum-checks.

Recall that the sum-check protocol reduces the task of verifying that vi−1,xi−1 =
∑

(w,x,y)∈H3m fi,xi−1(w, x, y)

and vi−1,yi−1
=
∑

(w,x,y)∈H3m fi,yi−1
(w, x, y), to the task of verifying that two elements given by the prover

are equal to fi,xi−1
(wi−1, xi, yi) and fi,yi−1

(wi−1, xi, yi), respectively.
The verifier does not have oracle access to fi,xi−1

and fi,yi−1
, and cannot efficiently compute these func-

tions on his own. However, since β̃ is efficiently computable, verifying the values claimed for fi,xi−1
(wi−1, xi, yi)

and fi,yi−1
(wi−1, xi, yi) reduces to verifying the (two) values claimed for

˜addi(wi−1, xi, yi) ·
(
Ṽi(xi) + Ṽi(yi)

)
+ ˜multi(wi−1, xi, yi) · Ṽi(xi) · Ṽi(yi). (23)

If these two values are not the same (as they should be) the verifier rejects.
The prover sends vi,xi

as the value for Ṽi(xi) and vi,yi as the value for Ṽi(yi). Next, the verifier checks that
vi,xi and vi,yi give the claimed value for Equation (23), and continues to the next phase with the values vi,xi

and vi,yi . Recall that we assume that the verifier has oracle access to ˜addi(wi−1, xi, yi) and ˜multi(wi−1, xi, yi),
and thus can indeed efficiently heck that vi,xi

and vi,yi give the claimed values for Equation (23).

The D’th phase: This phase proceeds as in the first D − 1 phases except the verifier computes the values
of ṼD(xD) and ṼD(yD) on his own and checks that these give the claimed values for Equation (23).

Theorem 4.3. The protocol described above, denoted by (PGKR, VGKR), has the following properties.

• Completeness. For every circuit C : {0, 1}n → {0, 1} of size S and depth D, characterized by
{ ˜addi, ˜multi}i∈[D] and every x ∈ {0, 1}n such that C(x) = 0,

Pr

[(
PGKR(C, x), V

{ ˜addi, ˜multi}i∈[D]

GKR (x)

)
= 1

]
= 1

• Soundness. For every circuit C : {0, 1}n → {0, 1} of size S and depth D, characterized by { ˜addi, ˜multi}i∈[D],
every x ∈ {0, 1}n such that C(x) 6= 0, and every P ∗,

Pr

[(
P ∗(C, x), V

{ ˜addi, ˜multi}i∈[D]

GKR (x)

)
= 1

]
≤ 12(|H| − 1)mD

F

• Efficiency. The prover’s run time is poly(S), the verifier’s runtime is (D + n) · polylog(S), and the
communication complexity is D · polylog(S).

We do not use Theorem 4.3 to obtain our non-interactive publicly verifiable delegation scheme. Never-
theless we provide a proof sketch of Theorem 4.3 for the sake of completeness.

20

Proof Sketch. The completeness and efficiency guarantees follow immediately from the construction.
Thus, in what follows we focus on proving soundness.

Suppose for contradiction that there exists a cheating prover P ∗ and there exists a circuit C : {0, 1}n →
{0, 1} and an input x ∈ {0, 1}n such that C(x) 6= 0 and yet

η := Pr

[(
P ∗(C, x), V

{ ˜addi, ˜multi}i∈[D]

GKR (x)

)
= 1

]
>

12(|H| − 1)mD

F
.

Denote by CHEAT the event that the verifier accepts the interactive proof given by P ∗. Note that if
CHEAT holds then it must be the case that

(v0,x0
, v0,y0) 6= (Ṽ0,x0

, Ṽ0,y0) and (vD,xD
, vD,yD) = (ṼD,xD

, ṼD,yD).

Therefore, it CHEAT holds it must be the case that there exists i ∈ [D] such that

(vi−1,xi−1, vi−1,yi−1) 6= (Ṽi−1,xi−1, Ṽi−1,yi−1) and (vi,xi
, vi,yi) = (Ṽi,xi

, Ṽi,yi).

We next argue that this contradicts the soundness of the sum-check protocol, as guaranteed in Lemma 2.4.
The above equation implies (without loss of generality) that if CHEAT holds then with probability at

least 1/2 there exists i ∈ [D] such that

vi−1,xi−1 6= Ṽi−1,xi−1 and vi,xi
= Ṽi,xi

.

This implies that there exists i ∈ [D] such that

Pr
[(
vi−1,xi−1 6= Ṽi−1,xi−1 and vi,xi = Ṽi,xi

)
∧ V accepts

]
≥ η

2D

where the randomness is over the random coin tosses of the verifier V .
By our assumption η > 12(|H|−1)mD

F and thus

η

2D
>

6(|H| − 1)m

|F|
.

Therefore, P ∗ convinces the sum-check verifier to accept an incorrect statement

vi−1,xi−1
6=

∑
(w,x,y)∈H3m

fi,xi−1
(w, x, y)

where fi,xi−1
(w, x, y) is a polynomial of degree ≤ 2(|H| − 1) in each variable, with probability greater than

2(|H|−1)(3m)
|F| , contradicting the soundness of the (interactive) sum-check protocol (see Lemma 2.4).

5 Publicly Verifiable Non-interactive GKR

Notations. We use the same notations as those used in Section 4. Namely, we let C : {0, 1}n → {0, 1} be
a boolean circuit with fan-in 2 of size S and depth D. For the sake of simplicity, we add dummy gates so
that each layer has the exact same size S. Let H = {0, 1} and let m ∈ N such that |H|m = S. We identify the
indices {0, . . . , S − 1} with the elements of Hm. Let F be a field such that H ⊂ F and such that |F| = 2Θ(κ).

Overview. Recall that the modified GKR protocol presented in Section 4 consists of a series of sum-
checks. The basic idea is to convert this interactive protocol into a non-interactive publicly verifiable one by
converting the sum-checks into non-interactive publicly verifiable ones, as was done in Section 3.

At first it may seem that the soundness of our non-interactive protocol simply follows from the soundness
of the non-interactive sum-check protocol, since our protocol simply consists of a sequence of sum-checks.
However, a closer look reveals several subtleties. In particular, the security of our protocol relies on the fact
that the underlying GKR protocol does not use a “2-to-1” reduction and that the underlying sum-check
protocol is secure even when the sum-check value is only given in the exponent. This allows us to ensure
consistency between the sum-checks.

21

5.1 Definitions

We now present the notion of a publicly verifiable non-interactive delegation scheme. We define it for log-
space uniform circuits though it can be defined more generally for any class of circuits C where each C ∈ C
can be represented by a (possibly non-uniform) Turing machine. Without loss of generality, it suffices to
construct delegation schemes for proving computations of the form Cn(x) = 0 since to prove C ′n(x) = y, the
prover can convert C ′ to C where Cn(x, y) computes C ′n(x) and checks equality with y.8

We proceed to define the notion of a publicly verifiable non-interactive delegation scheme for log-space
uniform circuits.

Syntax A publicly verifiable non-interactive delegation scheme for log-space uniform circuits consists of
a randomized algorithm S and a pair of deterministic polynomial-time algorithms (P,V) with the following
syntax.

• The setup algorithm S takes as input:

– The security parameter κ.

– A parameter n.

The setup algorithm outputs a pair of proving and verification keys (pk, vk).

• The prover algorithm P takes as input:

– The proving key pk.

– A log-space Turing machine M .

– A string x ∈ {0, 1}n.

The prover algorithm outputs a proof Π.

• The verifier algorithm V takes as input:

– The verification key vk.

– The log-space Turing machine M .

– The string x ∈ {0, 1}n.

– The proof Π.

The verifier algorithm outputs an acceptance bit.

Definition 5.1 (Publicly Verifiable Non-interactive Delegation Scheme). A publicly verifiable non-interactive
delegation scheme (S,P,V) for log-space uniform circuits satisfies the following properties:

Completeness. For every polynomial n = n(κ), κ ∈ N, log-space Turing machine M describing a family of
circuits C = {Cn : {0, 1}n → {0, 1}}n∈N, and string x ∈ {0, 1}n such that Cn(x) = 0:

Pr

[
1 = V(vk, (M,x),Π)

∣∣∣∣ (pk, vk)← S (1κ, n)
Π← P(pk, (M,x))

]
= 1 .

Soundness. For every polynomial n = n(κ) and poly-size cheating prover P∗, there exists a negligible
function negl such that for every κ ∈ N:

Pr

[
1 = V(vk, (M,x),Π)
Cn(x) 6= 0

∣∣∣∣ (pk, vk)← S (1κ, n)
((M,x),Π)← P∗ (pk, vk)

]
= negl(κ) .

where M is a log-space Turing machine that on input 1n outputs the description of a circuit Cn :
{0, 1}n → {0, 1} of size S(n) such that S(n(κ)) = poly(κ).

8If the delegation scheme is for a class C and C′ ∈ C, then C ∈ C.

22

Efficiency. For any log-space uniform family of circuits C = {Cn : {0, 1}n → {0, 1}}n∈N described by a
Turing machine M where Cn has size S = S(n) and depth D = D(n) and M has description length c,
the prover’s runtime is poly(S), the verifier’s runtime is (D+c+n) ·polylog(S), and the communication
complexity is D · polylog(S).

Our main result is the following:

Theorem 5.2. Under Assumption 3.5 for d = 2, there is a publicly verifiable non-interactive delegation
scheme for log-space uniform circuits (Definition 5.1).

First we construct a delegation scheme for any fixed family of circuits (not necessarily log-space uniform).

Lemma 5.3. Under Assumption 3.5 for d = 2, Protocol 5.7 is a publicly verifiable non-interactive delegation
scheme for any fixed family of circuits U = {Un : {0, 1}n → {0, 1}}n∈N.

The definition of a delegation scheme for a fixed family of circuits U = {Un : {0, 1}n → {0, 1}}n∈N
is analogous to Definition 5.1, except the instance is an input string x ∈ {0, 1}n for Un and the verifier’s
runtime is (D + n) · polylog(S).

To prove Theorem 5.2, we apply this delegation scheme to the following family of universal circuits.

Proposition 5.4. For every c ∈ N, every D = D(n), and every T = T (n), there exists a family of universal
circuits U = {Un′ : {0, 1}c+n → {0, 1}}n′∈N of size poly(T) and depth O(D+ log T · log n), such that for any
n ∈ N, any x ∈ {0, 1}n, and any log-space Turing machine M with description length c that on input 1n

outputs the description of a depth D(n) and size T (n) circuit Cn : {0, 1}n → {0, 1}, it holds that

Un′(M,x) = Cn(x).

Proposition 5.4 follows immediately from the following two Lemmas.

Lemma 5.5. [GKR15] For every c ∈ N, every S = S(n), and every T = T (n), there exists a family of
universal circuits U = {Un′ : {0, 1}c+n → {0, 1}}n′∈N of size poly(2S) and depth O(S · log T) such that for
any space S and time T Turing machine M with description length c that on input 1n outputs the description
of a circuit Cn : {0, 1}n → {0, 1}, it holds that

Un′(M, 1n) = Cn.

Lemma 5.6. [Val76] For a fixed constant c ∈ N, every D = D(n), and every T = T (n), there exists a family
of universal circuits U = {Un′ : {0, 1}c·T+n → {0, 1}}n′∈N of size poly(T) and depth O(D + log T · log n),
such that for any n ∈ N, any x ∈ {0, 1}n, and any circuit C : {0, 1}n → {0, 1} of size T and depth D, it
holds that

Un′(C, x) = C(x).

In Sections 5.2 and 5.3, we present our delegation scheme for any fixed family of circuits (Protocol 5.7)
and prove Lemma 5.3.

5.2 The Protocol for a Fixed Family of Circuits

In this subsection, we present our publicly verifiable non-interactive protocol for delegating the computation
of any fixed family of circuits U = {Un}n∈N with size S = S(n), depth D = D(n), and input length n = n(κ)
such that S(n(κ)) = poly(κ). Let m = logS and let m′ = log n.

Recall from Section 3.1 that for g ∈ G and t ∈ F, we denote the element gt ∈ G by 〈t〉g. We also denote

the degree d monomial encoding of a vector s ∈ Fm by [s]
d
g :=

{〈
sδ
〉
g

}
δ∈[0,d]m

.

We convert the modified interactive GKR protocol from Section 4 to a publicly verifiable protocol where
H = {0, 1} and F is a field of size p = 2θ(κ).

23

Protocol 5.7 (Publicly Verifiable Non-interactive Delegation Scheme for a Fixed Family of Circuits).

The setup algorithm S. The setup algorithm is given as input the security parameter 1κ and an index n
and generates public keys for proving and verifying the computation of the circuit Un.

1. Let s0 = (x0, y0) where x0 = y0 = ~0 ∈ Fm. Sample a random element h0 ← G. Compute [s0]
2
h0

.

2. For each layer i ∈ [D], do the following:

Sample a random element ri−1 ∈ F and let gi−1 = 〈ri−1〉hi−1
. Using the encoding [si−1]

2
hi−1

, compute

the encoding [si−1]
2
gi−1

(this rerandomization can be done efficiently by Fact 3.2).

• If i ∈ [D − 1], compute

([si−1|ti]2hi
, (SC.pki,SC.vki))← SC.S(1κ, 13m, [si−1]

2
gi−1

). (24)

Let (wi−1, xi, yi) = ti where wi−1, xi, yi ∈ Fm. Let si = (xi, yi).

• If i = D, compute

([sD−1|tD]
2
hD
, (SC.pkD,SC.vkD))← SC.S(1κ, 1m+2m′ , [sD−1]

2
gD−1

).

Let (wD−1, xD, yD) = tD where wD−1 ∈ Fm and xD, yD ∈ Fm′ . Let si = (xi, yi).

3. For each layer i ∈ [D], use [si−1|ti]2hi
= [xi−1, yi−1, wi−1, xi, yi]

2
hi

to compute

ADDi,x =
〈
β̃(xi−1, wi−1) · ˜addi(wi−1, xi, yi)

〉
hi

and MULTi,x =
〈
β̃(xi−1, wi−1) · ˜multi(wi−1, xi, yi)

〉
hi

,

(25)

ADDi,y =
〈
β̃(yi−1, wi−1) · ˜addi(wi−1, xi, yi)

〉
hi

and MULTi,y =
〈
β̃(yi−1, wi−1) · ˜multi(wi−1, xi, yi)

〉
hi

where β̃ is the polynomial defined in Section 2.1 and ˜addi and ˜multi are the low-degree extensions of
the addi and multi functions defined in Section 4.9

4. Let
pk =

{
SC.pki, [si]

1
gi

}
i∈[D]

and
vk =

(
{SC.vki,ADDi,x,MULTi,x,ADDi,y,MULTi,y, gi}i∈[D] , [sD]

1
gD

)
.

Output
(pk, vk).

The prover algorithm P. The prover is given as input the key

pk =
{
SC.pki, [si]

1
gi

}
i∈[D]

and a string x ∈ {0, 1}n. The prover generates a proof for the statement

Un(x) = 0

which is equivalent to the statement Ṽ0(~0) = 0, where Ṽ0 is the low-degree extension of the output layer of
Un(x), as follows.

9The verifier checks consistency between layers by verifying Equation 22 in the exponent. The verifier does not have enough
resources to compute ˜addi and ˜multi on his own. Although by Proposition 2.1, β̃ is efficiently computable given coordinates in
the clear, the verifier is only given coordinates in the exponent and thus cannot compute the products β̃ · ˜addi and β̃ · ˜multi in
the exponent. Therefore these values are provided in vk.

24

1. Perform the computation Un(x). Denote the i’th layer of the computation tableau by Vi ∈ {0, 1}2
m

.

2. Recall that in Equation (22), we defined the polynomial

fi,z(w, x, y) = β̃(z, w) ·
(

˜addi(w, x, y) ·
(
Ṽi(x) + Ṽi(y)

)
+ ˜multi(w, x, y) · Ṽi(x) · Ṽi(y)

)
.

Let z, z′ be variables in Fm. For each layer i ∈ [D], the prover can compute the coefficients of the
polynomials

Fi(z, z
′, w, x, y) := fi,z(w, x, y)

F ′i (z, z
′, w, x, y) := fi,z′(w, x, y)

by computing the coefficients of the polynomials β̃ and ˜addi, ˜multi, and Ṽi.

3. For each layer i ∈ [D], compute

((Ai,x, Bi,x),SC.Πi,x)← SC.P(SC.pki, Fi)

((Ai,y, Bi,y),SC.Πi,y)← SC.P(SC.pki, F
′
i).

Recall that by Equation (24), SC.pki allows a prover to prove the value of the sum of a function with the
first |si−1| = 2m coordinates fixed to si−1 = (xi−1, yi−1) and the remaining |ti| = 3m (or m+2m′ when
i = D) coordinates ranging over H|ti|. Thus when SC.P outputs a sum-check proof for the polynomial
Fi(z, z

′, w, x, y), the coordinates of z and z′ are fixed to si−1 = (xi−1, yi−1) so the proof is for the value
of
∑

(w,x,y)∈H3m fi,xi−1(w, x, y). Similarly, the sum-check proof for the polynomial F ′i (z, z
′, w, x, y) is

for the value of
∑

(w,x,y)∈H3m fi,yi−1
(w, x, y).

4. For each layer i ∈ [D], let (xi, yi) = si and use [si]
1
gi

to compute

Ai+1,x·y =
〈
Ṽi(xi) · Ṽi(yi)

〉
gi
.

5. Output
Π = {(Ai,x, Bi,x),SC.Πi,x, (Ai,y, Bi,y),SC.Πi,y, Ai+1,x·y}i∈[D] .

The verifier algorithm V. The verifier is given as input the key

vk =
(
{SC.vki,ADDi,x,MULTi,x,ADDi,y,MULTi,y, gi}i∈[D] , [sD]

1
gD

)
,

a string x ∈ {0, 1}n and a proof

Π = {(Ai,x, Bi,x),SC.Πi,x, (Ai,y, Bi,y),SC.Πi,y, Ai+1,x·y}i∈[D] .

The verifier performs the following checks and accepts if and only if all checks pass:

1. Check that

A1,x = 1 and A1,y = 1.

2. Let (xD, yD) = sD and use [sD]
1
gD

and x to compute

AD+1,x =
〈
ṼD(xD)

〉
gD

and AD+1,y =
〈
ṼD(yD)

〉
gD

where ṼD is the low-degree extension of the input layer of Un(x).

For each i ∈ [D], check that

e(gi, Ai+1,x·y) = e(Ai+1,x, Ai+1,y).

25

3. For each i ∈ [D], check that

1 = SC.V(SC.vki, (Ai,x, Bi,x),SC.Πi,x) and 1 = SC.V(SC.vki, (Ai,y, Bi,y),SC.Πi,y).

4. For each i ∈ [D], check that

e (Bi,x, gi) = e (ADDi,x, Ai+1,x ·Ai+1,y) · e (MULTi,x, Ai+1,x·y) ,

e (Bi,y, gi) = e (ADDi,y, Ai+1,x ·Ai+1,y) · e (MULTi,y, Ai+1,x·y) .

5.3 Analysis of Protocol 5.7

Completeness. Fix a family of circuits U = {Un}n∈N, a polynomial n = n(κ), a security parameter κ ∈ N,
and a string x ∈ {0, 1}n such that Un(x) = 0. Consider the honest experiment

(pk, vk)← S (1κ, n)

Π← P(pk, x)

We show that
1 = V(vk, x,Π).

First we prove the following claims using the completeness of the sum-check protocol (Protocol 3.4).

Claim 5.8. For every i ∈ [D + 1],

Ai,x =
〈
Ṽi−1(xi−1)

〉
gi−1

and Ai,y =
〈
Ṽi−1(yi−1)

〉
gi−1

.

Proof. Consider i ∈ [D]. By the generation of SC.pki in Equation (24) and by the completeness of Proto-
col 3.4,

Ai,x =

〈 ∑
(w,x,y)∈H3m

Fi(xi−1, yi−1, w, x, y)

〉
gi−1

=

〈 ∑
(w,x,y)∈H3m

fi,xi−1
(w, x, y)

〉
gi−1

=
〈
Ṽi−1(xi−1)

〉
gi−1

where the last equality follows from Equations (21) and (22). The argument for Ai,y is analogous.
For i = D + 1, the verifier computes Ai,x and Ai,y.

Claim 5.9. For every i ∈ [D],

Bi,x =
〈
fi,xi−1

(wi−1, xi, yi)
〉
hi

and Bi,y =
〈
fi,yi−1

(wi−1, xi, yi)
〉
hi
.

Proof. By the completeness of Protocol 3.4,

Bi,x = 〈Fi(xi−1, yi−1, wi−1, xi, yi)〉hi
=
〈
fi,xi−1

(wi−1, xi, yi)
〉
hi
.

The argument for Bi,y is analogous.

Now we show that each of the verifier’s checks in Protocol 5.7 passes.

1. Recall that x0 = y0 = ~0 ∈ Fm. By Claim 5.8, A1,x =
〈
Ṽ0(~0)

〉
g0

= 〈Un(x)〉g0 = 1.

2. The honest prover computes Ai,x·y =
〈
Ṽi−1(xi−1) · Ṽi−1(yi−1)

〉
gi−1

so by Claim 5.8,

e(gi−1, Ai,x·y) =
〈
Ṽi−1(xi−1) · Ṽi−1(yi−1)

〉
e(gi−1,gi−1)

= e(Ai,x, Ai,y).

26

3. The sum-check verifier accepts by the completeness of Protocol 3.4.

4. By the definition of ADDi,x and MULTi,x in Equation (25), by Claim 5.8, and by the honest prover’s

computation of Ai,x·y =
〈
Ṽi−1(xi−1) · Ṽi−1(yi−1)

〉
gi−1

,

e (ADDi,x, Ai+1,x ·Ai+1,y) =
〈
β̃(xi−1, wi−1) · ˜addi(wi−1, xi, yi) ·

(
Ṽi(xi) + Ṽi(yi)

)〉
e(hi,gi)

e (MULTi,x, Ai+1,x·y) =
〈
β̃(xi−1, wi−1) · ˜multi(wi−1, xi, yi) · Ṽi(xi) · Ṽi(yi)

〉
e(hi,gi)

.

By Claim 5.9,
e(Bi,x, gi) =

〈
fi,xi−1(wi−1, xi, yi)

〉
e(hi,gi)

.

So by the definition of fi,z in Equation (22),

e (Bi,x, gi) = e (ADDi,x, Ai+1,x ·Ai+1,y) · e (MULTi,x, Ai+1,x·y) .

Similarly,
e (Bi,y, gi) = e (ADDi,y, Ai+1,x ·Ai+1,y) · e (MULTi,y, Ai+1,x·y) .

Soundness. Assume for the sake of contradiction that for the family of circuits U = {Un}n∈N, there exists
a poly-size algorithm P∗, a polynomial n = n(κ) such that S(n(κ)) = poly(κ), and a polynomial p such that
for infinitely many κ ∈ N:

Pr

[
1 = V(vk, x,Π)
Un(x) 6= 0

∣∣∣∣ (pk, vk)← S (1κ, n)
(x,Π)← P∗ (pk, vk)

]
≥ 1

p(κ)
.

Using P∗, we construct a poly-size algorithm AdvSC that cheats with non-negligible probability in the
sum-check protocol (Protocol 3.4), contradicting Theorem 3.6. First we prove some statements about the
behavior of P∗.

Define the set of cheating answers, with respect to vk, as

CHEATvk =
{

(x,Π) : (V(vk, x,Π) = 1)
∧

(Un(x) 6= 0)
}
.

Recall from the construction of Protocol 5.7 that vk defines the elements x0, y0, and {(wi−1, xi, yi)}i∈[D].
For every j ∈ [D], define the set of answers which cheat in the jth sum-check, with respect to vk, as

CHEATvk(j) =

(x,Π) ∈ CHEATvk :

(
∀i ∈ [j] Ai,x 6=

〈
Ṽi−1(xi−1)

〉
gi−1

∨
Ai,y 6=

〈
Ṽi−1(yi−1)

〉
gi−1

)
∧(

Bj,x =
〈
f
xj−1

j (wj−1, xj , yj)
〉
hj

)∧(
Bj,y =

〈
f
yj−1

j (wj−1, xj , yj)
〉
hj

)
 .

Claim 5.10. Consider vk and (x,Π) where Π = {(Ai,x, Bi,x),SC.Πi,x, (Ai,y, Bi,y),SC.Πi,y, Ai+1,x·y, }i∈[D]

such that V(vk, x,Π) = 1.
For any j ∈ [D], if for all i ∈ [j] either

Ai,x 6=
〈
Ṽi−1(xi−1)

〉
gi−1

or Ai,y 6=
〈
Ṽi−1(yi−1)

〉
gi−1

,

then either
Aj+1,x 6=

〈
Ṽj(xj)

〉
gj

or Aj+1,y 6=
〈
Ṽj(yj)

〉
gj

or (x,Π) ∈ CHEATvk(j).

Note that for j = D, it must be the case that (x,Π) ∈ CHEATvk(j) since V computes AD+1,x and AD+1,y.

27

Proof. Assume that both

Aj+1,x =
〈
Ṽj(xj)

〉
gj

and Aj+1,y =
〈
Ṽj(yj)

〉
gj
.

Since V checks consistency between the values given for f
xj−1

j (wj−1, xj , yj) and f
yj−1

j (wj−1, xj , yj) in the

exponent of hj (these are Bj,x and Bj,y) with the values given for Ṽj(xj) and Ṽj(yj) in the exponent of gj
(these are Aj+1,x and Aj+1,y), it must hold that

Bj,x =
〈
f
xj−1

j (wj−1, xj , yj)
〉
hj

and Bj,y =
〈
f
yj−1

j (wj−1, xj , yj)
〉
hj
.

Therefore, if for all i ∈ [j] either

Ai,x 6=
〈
Ṽi−1(xi−1)

〉
gi−1

or Ai,y 6=
〈
Ṽi−1(yi−1)

〉
gi−1

,

then by definition,
(x,Π) ∈ CHEATvk(j).

The following claim follows from inductively applying Claim 5.10.

Claim 5.11. If (x,Π) ∈ CHEATvk, then (x,Π) ∈ CHEATvk(j) for some j ∈ [D].

Recall that according our contradiction assumption,

Pr

[
(x,Π) ∈ CHEATvk

∣∣∣∣ (pk, vk)← S (1κ, n)
(x,Π)← P∗(pk, vk)

]
≥ 1

p(κ)
.

For every j ∈ [D], define the set of prefixes

PREFIX(j) =

{{
[si−1]

2
gi−1

, [si−1|ti]2hi
, (SC.pki,SC.vki)

}
i∈[j−1]

: Pr [(x,Π) ∈ CHEATvk(j)] ≥
1

2D · p(κ)

}
.

where the probability is taken over the randomness used to generate (pk, vk) ← S(1κ, n) and (x,Π) ←
P∗(pk, vk), conditioned on the first j − 1 invocations of SC.S in Equation (24) taking as input [si−1]

2
gi−1

and

outputting
(

[si−1|ti]2hi
, (SC.pki,SC.vki)

)
.

For any (pk, vk) and j ∈ [0, . . . , D], denote the jth prefix of (pk, vk) by

(pk, vk)[j] :=
{

[si−1]
2
gi−1

, [si−1|ti]2hi
, (SC.pki,SC.vki)

}
i∈[j]

.

Claim 5.12. For some j ∈ [D], it holds that

Pr

[
(pk, vk)[j − 1] ∈ PREFIX(j)

∣∣∣∣ (pk, vk)← S(1κ, n)
(x,Π)← P∗(pk, vk)

]
≥ 1

2D · p(κ)
.

Proof. Assume for the sake of contradiction that this inequality does not hold for any j ∈ [D].
By Claim 5.11, there exists some j∗ ∈ [D] such that

Pr

[
(x,Π) ∈ CHEATvk(j

∗)

∣∣∣∣ (pk, vk)← S (1κ, n)
(x,Π)← P∗(pk, vk)

]
≥ 1

D · p(κ)
. (26)

Let E be the event that (pk, vk)[j∗ − 1] ∈ PREFIX(j∗).

28

By conditioning on E,

Pr[(x,Π) ∈ CHEATvk(j
∗)] = Pr[E] · Pr[(x,Π) ∈ CHEATvk(j

∗)|E] + Pr[¬E] · Pr[(x,Π) ∈ CHEATvk(j
∗)|¬E]

≤ Pr[E] + Pr[(x,Π) ∈ CHEATvk(j
∗)|¬E]

<
1

2D · p(κ)
+

1

2D · p(κ)

=
1

D · p(κ)

which contradicts Equation (26).

By Claim 5.12, there exists some j∗ ∈ [D] and prefix{[
s∗i−1

]2
g∗i−1

,
[
s∗i−1|t∗i

]2
h∗i
, (SC.pk∗i ,SC.vk

∗
i)
}
i∈[j∗−1]

∈ PREFIX(j∗).

If j∗ = 1, then let x0 = y0 = ~0 ∈ Fm.
Otherwise, for every i ∈ [j∗−1], let (xi−1, yi−1, wi−1, xi, yi) = s∗i−1|t∗i where xi−1, yi−1, wi−1, xi, yi ∈ Fm.
Let s = (xj∗−1, yj∗−1).
Consider the following experiment:

g ← G(
[s|t]

2
h, (SC.pk,SC.vk)

)
← SC.S

(
κ, `, [s]

2
g

)
AdvSC(g, [s|t]

2
h, (SC.pk,SC.vk)), breaks the soundness of the sum-check protocol, as follows:

1. Generate a set of keys (pk, vk) for Protocol 5.7, where

pk = {SC.pki, [si]
1
gi
}i∈[D]

vk =
(
{SC.vki,ADDi,x,MULTi,x,ADDi,y,MULTi,y, gi}i∈[D] , [sD]

1
gD

)
,

as follows:

(a) For every i ∈ [j∗ − 1], let si−1 = s∗i−1 and gi−1 = g∗i−1. The prefix contains [si−1]
1
gi−1

.

Let hi = h∗i , SC.pki = SC.pk∗i , and SC.vki = SC.vk∗i .

(b) Let sj∗−1 = s and gj∗−1 = g. Compute [sj∗−1]
1
gj∗−1

.

Let SC.pkj∗ = SC.pk, SC.vkj∗ = SC.vk, hj∗ = h, and (wj∗−1, xj∗ , yj∗) = t, where if j∗ ∈ [D − 1],

then wj∗−1, xj∗ , yj∗ ∈ Fm, and if j∗ = D, then wj∗−1 ∈ Fm and xj∗ , yj∗ ∈ Fm′ .
Let sj∗ = (xj∗ , yj∗).

(c) For each layer i ∈ [j∗ + 1, . . . , D], do the following:

Sample a random element ri−1 ∈ F and let gi−1 = 〈ri−1〉hi−1
. Using the encoding [si−1]

2
hi−1

,

compute the encoding [si−1]
2
gi−1

.

• If i ∈ [D − 1], compute

([si−1|ti]2hi
, (SC.pki,SC.vki))← SC.S(1κ, 13m, [si−1]

2
gi−1

).

Let (wi−1, xi, yi) = ti where wi−1, xi, yi ∈ Fm. Let si = (xi, yi).

29

• If i = D, compute

([sD−1|tD]
2
hD
, (SC.pkD,SC.vkD))← SC.S(1κ, 1m+2m′ , [sD−1]

2
gD−1

).

Let (wD−1, xD, yD) = tD where wD−1 ∈ Fm and xD, yD ∈ Fm′ . Let si = (xi, yi).

(d) For each layer i ∈ [D], use [si−1|ti]2hi
= [xi−1, yi−1, wi−1, xi, yi]

2
hi

to compute

ADDi,x,MULTi,x,ADDi,y,MULTi,y

as defined in Equation (25).

2. Sample (x,Π)← P∗(pk, vk) where

Π = {(Ai,x, Bi,x),SC.Πi,x, (Ai,y, Bi,y),SC.Πi,y, Ai+1,x·y}i∈[D] .

3. Randomly sample z∗ ∈ {x, y}. Let z, z′ be variables in Fm. If z∗ = x, then let F ∗(z, z′, w, x, y) =
fj∗,z(w, x, y) and otherwise let F ∗(z, z′, w, x, y) = fj∗,z′(w, x, y).

4. Output
(F ∗, (Aj∗,z∗ , Bj∗,z∗),SC.Πj∗,z∗) .

The distribution of (pk, vk) is identical to the output distribution of S(1κ, n) conditioned on the first

j∗ − 1 sum-check keys equaling
{[

s∗i−1|t∗i
]2
hi
, (SC.pk∗i ,SC.vk

∗
i)
}
i∈[j∗−1]

.

By the definition of PREFIX(j∗),

Pr [(x,Π) ∈ CHEATvk(j
∗)] ≥ 1

2D · p(κ)
.

For any (x,Π) ∈ CHEATvk(j
∗),(

Aj∗,z 6=
〈
Ṽj∗−1(zj∗−1)

〉
gj∗−1

)∧(
Bj∗,z =

〈
f
zj∗−1

j∗ (wj∗−1, xj∗ , yj∗)
〉
hj∗

)
for some z ∈ {x, y} by definition.

With probability at least 1/2, AdvSC samples z∗ = z. Thus, we conclude that with probability at least
1/(4D · p(κ)), AdvSC outputs a cheating proof for the sum-check protocol. Since S(n(κ)) = poly(κ), this
contradicts Theorem 3.6.

Efficiency. Since Protocol 5.7 consists of O(D) sum-checks, the prover’s runtime is poly(S) and the com-
munication complexity is D ·polylog(S). This follows from the efficiency guarantees of the sum-check protocol
(Protocol 3.4) and the efficiency of rerandomization and evaluation with respect to a monomial encoding
(Fact 3.2).

For the verifier, it takes D · polylog(S) time to verify the sum-check proofs and perform the additional
verifications to check consistency between sum-checks. It takes n · polylog(S) time to compute encodings of
points in the low-degree extension ṼD of the input layer since ṼD is a polynomial in m′ = log n variables so
it consists of n monomials.

Acknowledgements We would like to thank Dan Boneh for helpful discussions regarding bilinear groups.

30

References

[ACC+16] Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung, Huijia Lin, and Wei-Kai Lin. Delegating
RAM computations with adaptive soundness and privacy. In Theory of Cryptography - 14th
International Conference, TCC 2016-B, Beijing, China, October 31 - November 3, 2016, Pro-
ceedings, Part II, pages 3–30, 2016.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.

[AS92] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs; A new characterization of
NP. In 33rd Annual Symposium on Foundations of Computer Science, Pittsburgh, Pennsylvania,
USA, 24-27 October 1992, pages 2–13, 1992.

[BCC+14] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein,
and Eran Tromer. The hunting of the SNARK. IACR Cryptology ePrint Archive, 2014:580,
2014.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and
bootstrapping for SNARKS and proof-carrying data. In Boneh et al. [BRF13], pages 111–120.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE
Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages
459–474, 2014.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct
non-interactive arguments via linear interactive proofs. In TCC, pages 315–333, 2013.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations
in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium on Theory of
Computing, pages 21–31, 1991.

[BGKW88] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover interactive
proofs: How to remove intractability assumptions. In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, pages 113–131, 1988.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct randomized
encodings and their applications. IACR Cryptology ePrint Archive, 2015:356, 2015.

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delegation and batch
NP verification from standard computational assumptions. In Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017, pages 474–482, 2017.

[BKK+17] Saikrishna Badrinarayanan, Yael Tauman Kalai, Dakshita Khurana, Amit Sahai, and Daniel
Wichs. Non-interactive delegation for low-space non-deterministic computation. Cryptology
ePrint Archive, Report 2017/1250, 2017. https://eprint.iacr.org/2017/1250.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and
Victoria Ashby, editors, ACM Conference on Computer and Communications Security, pages
62–73. ACM, 1993.

[BRF13] Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors. Symposium on Theory of Com-
puting Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013. ACM, 2013.

31

https://eprint.iacr.org/2017/1250

[CCC+16] Yu-Chi Chen, Sherman S. M. Chow, Kai-Min Chung, Russell W. F. Lai, Wei-Kai Lin, and Hong-
Sheng Zhou. Cryptography for parallel RAM from indistinguishability obfuscation. In ITCS,
pages 179–190. ACM, 2016.

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-shamir and correlation
intractability from strong kdm-secure encryption. In Advances in Cryptology - EUROCRYPT
2018 - 37th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part I, pages 91–122, 2018.

[CH16] Ran Canetti and Justin Holmgren. Fully succinct garbled RAM. In ITCS, pages 169–178. ACM,
2016.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct garbling
and indistinguishability obfuscation for RAM programs. In STOC, pages 429–437. ACM, 2015.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio, USA,
pages 151–158, 1971.

[Dam92] Ivan Damg̊ard. Towards practical public key systems secure against chosen ciphertext attacks.
In Proceedings of CRYPTO91, pages 445–456, 1992.

[DFH12] Ivan Damg̊ard, Sebastian Faust, and Carmit Hazay. Secure two-party computation with low
communication. In Theory of Cryptography - 9th Theory of Cryptography Conference, TCC
2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings, pages 54–74, 2012.

[FGL+91] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Approximating
clique is almost np-complete (preliminary version). In FOCS, pages 2–12. IEEE Computer
Society, 1991.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In CRYPTO, pages 186–194, 1986.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct nizks without pcps. In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Athens,
Greece, May 26-30, 2013. Proceedings, pages 626–645, 2013.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: Inter-
active proofs for muggles. J. ACM, 62(4):27, 2015.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASIACRYPT,
volume 6477 of Lecture Notes in Computer Science, pages 321–340. Springer, 2010.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsi-
fiable assumptions. In Proceedings of the Forty-third Annual ACM Symposium on Theory of
Computing, STOC ’11, pages 99–108, New York, NY, USA, 2011. ACM.

[HR18] J. Holmgren and R. Rothblum. Delegating computations with (almost) minimal time and space
overhead. 2018.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a symposium
on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J.
Watson Research Center, Yorktown Heights, New York, USA, pages 85–103, 1972.

32

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In
Proceedings of the 24th Annual ACM Symposium on Theory of Computing, pages 723–732. ACM,
1992.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfuscation for
turing machines with unbounded memory. In STOC, pages 419–428. ACM, 2015.

[KP16] Yael Tauman Kalai and Omer Paneth. Delegating RAM computations. In Theory of Cryptog-
raphy - 14th International Conference, TCC 2016-B, Beijing, China, October 31 - November 3,
2016, Proceedings, Part II, pages 91–118, 2016.

[KR09] Yael Tauman Kalai and Ran Raz. Probabilistically checkable arguments. In CRYPTO, 2009.

[KRR13] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. Delegation for bounded space. In Boneh
et al. [BRF13], pages 565–574.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations: the power
of no-signaling proofs. In STOC, pages 485–494. ACM, 2014.

[KRR16] Yael Tauman Kalai, Ran Raz, and Oded Regev. On the space complexity of linear programming
with preprocessing. In Proceedings of the 2016 ACM Conference on Innovations in Theoretical
Computer Science, Cambridge, MA, USA, January 14-16, 2016, pages 293–300, 2016.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. J. ACM, 39(4):859–868, 1992.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge
arguments. In TCC, pages 169–189, 2012.

[Mic94] Silvio Micali. CS proofs (extended abstracts). In 35th Annual Symposium on Foundations of
Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994, pages 436–453. IEEE
Computer Society, 1994. Full version in [Mic00].

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Proceedings of the 23rd Annual
International Cryptology Conference, pages 96–109, 2003.

[PR17] Omer Paneth and Guy N. Rothblum. On zero-testable homomorphic encryption and publicly
verifiable non-interactive arguments. In Theory of Cryptography - 15th International Conference,
TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part II, pages 283–315,
2017.

[PRV12] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and verify in
public: Verifiable computation from attribute-based encryption. In Theory of Cryptography -
9th Theory of Cryptography Conference, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012.
Proceedings, pages 422–439, 2012.

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive proofs
for delegating computation. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 49–62, 2016.

[Sha92] Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, 1992.

[Val76] Leslie G. Valiant. Universal circuits (preliminary report). In Proceedings of the Eighth Annual
ACM Symposium on Theory of Computing, STOC ’76, pages 196–203, New York, NY, USA,
1976. ACM.

33

	Introduction
	This Work
	Our Techniques
	The Interactive Sum-Check Protocol.
	A Non-interactive Sum-Check Protocol.
	The Non-interactive Delegation Scheme.
	Discussion

	Preliminaries
	Low Degree Extension
	The Sum-Check Protocol

	Publicly Verifiable Non-interactive Sum-Check
	Definitions
	The Protocol
	Analysis of protocol:sum-check:homo

	Modified Interactive GKR Protocol
	The Protocol

	Publicly Verifiable Non-interactive GKR
	Definitions
	The Protocol for a Fixed Family of Circuits
	Analysis of protocol:gkr-fixed-circuit:homo

