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Abstract. The lattice basis reduction algorithm is a method for solving
the Shortest Vector Problem (SVP) on lattices. There are many variants
of the lattice basis reduction algorithm such as LLL, BKZ, and RSR.
Though BKZ has been used most widely, it is shown recently that some
variants of RSR are quite efficient for solving a high-dimensional SVP
(they achieved many best scores in TU Darmstadt SVP challenge). RSR
repeats alternately the generation of new very short lattice vectors from
the current basis (we call this procedure “random sampling”) and the
improvement of the current basis by utilizing the generated very short
lattice vectors. Therefore, it is important for investigating and ameliorat-
ing RSR to estimate the success probability of finding very short lattice
vectors by combining the current basis. In this paper, we propose a new
method for estimating the success probability by the Gram-Charlier ap-
proximation, which is a basic asymptotic expansion of any probability
distribution by utilizing the higher order cumulants such as the skewness
and the kurtosis. The proposed method uses a “parametric” model for
estimating the probability, which gives a closed-form expression with a
few parameters. Therefore, the proposed method is much more efficient
than the previous methods using the non-parametric estimation. This
enables us to investigate the lattice basis reduction algorithm intensively
in various situations and clarify its properties. Numerical experiments
verified that the Gram-Charlier approximation can estimate the actual
distribution quite accurately. In addition, we investigated RSR and its
variants by the proposed method. Consequently, the results showed that
the weighted random sampling is useful for generating shorter lattice vec-
tors. They also showed that it is crucial for solving the SVP to improve
the current basis periodically.

1 Introduction

The shortest vector problem (SVP) on a lattice is to find the shortest non-
zero lattice vector. In other words, the Euclidean norm (namely, the length)



` = ‖
∑n
i=1 aibi‖ is minimized with respect to non-zero a = (ai) ∈ Zn, where

{b1, . . . , bn} (bi ∈ Rm) is a basis vector of the lattice and there is at least one
non-zero element in a. Here, the full-rank integral lattice (n = m and bi ∈ Zm)
is usually assumed. The SVP is a well-known problem in the field of combinato-
rial theory and is useful in many applications such as cryptography [12]. Many
algorithms have been proposed for finding the shortest vector, for example, enu-
meration [13] and sieving [2]. However, it is so hard for a high-dimensional lattice
to find the true shortest vector directly. Therefore, an approximate version of the
SVP is widely used in practice, where we search an extremely short a “near” to
the true shortest vector. In other words, we search a satisfying ‖

∑n
i=1 aibi‖ < ˆ̀,

where ˆ̀ is an extremely short threshold. The lattice basis reduction algorithm
is a method for solving the approximate SVP for a high dimensional lattice.
There are many variants such as the Lenstra-Lenstra-Lovász algorithm (LLL)
[14], the block Korkine-Zolotarev algorithm (BKZ) [17], random sampling reduc-
tion (RSR) [18], and so on. Recently, a novel lattice basis reduction algorithm
was proposed by Fukase and Kashiwabara (called the Fukase-Kashiwabara algo-
rithm (FK) in this paper) [10], which is a variant of RSR. FK and its improved
variants by Teruya, Kashiwabara, and Hanaoka [19] can solve the SVP efficiently
and has achieved many best scores in TU Darmstadt SVP challenge [16]. Though
the reason of the efficiency of FK has been investigated [10, 3], it has not been
clarified sufficiently.

RSR is a lattice basis reduction algorithm, which repeats alternately the
generation of very short lattice vectors by combining the current basis vectors
according to a random sampling distribution and the improvement of the cur-
rent basis by utilizing the generated very short lattice vectors. Therefore, it is
quite important for investigating and ameliorating RSR to estimate the “success”
probability of succeeding in generating very short lattice vectors from the cur-
rent basis [9, 11, 10, 3]. The success probability is defined as the probability that
the length of a generated lattice vector is lower than a given very short length.
The geometric description inspired by the Gaussian heuristic is a widely-used
principle for estimating the success probability by using the volume of the inter-
section between the lattice and a ball [9]. However, it is intractable in practice
if the dimension of lattice n is large. Though some more efficient algorithms es-
timating the intersection have been proposed recently [11, 3], such methods are
nevertheless time-consuming. It is because they need to numerically calculate
the volume of the intersection through many small partitions by some methods
such as constrained optimization and Monte Carlo simulation. We refer to these
method as the “non-parametric” approach in this paper. On the other hand, the
“parametric” approach is proposed in [10], where the probability distribution
is approximated as a normal distribution with only two parameters (the mean
and the variance) under the randomness assumption and the central limit theo-
rem. Though the normal approximation is simple and quite efficient, it cannot
estimate the actual distribution accurately as is pointed out in [3].

Our Contribution. In this paper, we propose a new parametric approach by
extending the normal approximation under the randomness assumption in order
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to estimate the success probability efficiently. The key feature of the proposed
method is that the probability is approximated by the Gram-Charlier A series,
which is a basic asymptotic expansion of any probability distribution by utilizing
the higher order cumulants (such as the skewness and the kurtosis). The proposed
method gives a parametric model (in other words, a closed-form expression with a
few parameters) for estimating the success probability. It is much more efficient
than the previous non-parametric approach and can estimate the probability
much more accurately than the simple normal approximation. The accuracy
of the proposed method was verified by numerical experiments. Moreover, the
intensive investigations with the proposed method discovered why the variants
of RSR are more efficient than other algorithms.

Road Map. This paper is organized as follows. Section 2 gives the back-
ground of this work: a brief introduction of RSR and its variant FK in Section
2.1, the explanation about both the previous non-parametric and parametric
approaches for estimating the success probability in Section 2.2, and the general
explanation of the Gram-Charlier approximation in Section 2.3. Section 3 ex-
plains our proposed approach which utilizes the Gram-Charlier approximation
for estimating the success probability in the SVP. In Section 4, the numerical
experiments show that the proposed approach can accurately estimate the suc-
cess probability. In Section 5, the experimental investigations with the proposed
method clarify the two reasons (the weighted random sampling and the period-
ical improvement of the basis) why FK is quite efficient for solving the SVP. In
Section 6, the validity of the randomness assumption and the accuracy of our
proposed approach are discussed. Moreover, the dependence among the indices
of the natural number representation in our approach is discussed. In addition,
the convergence property of the Gram-Charlier approximation is discussed ex-
perimentally. Lastly, this paper is concluded in Section 7.

2 Background

2.1 Random Sampling Reduction and Fukase-Kashiwabara
Algorithm

Preliminaries. Here, the preliminary notations and definitions are introduced.
A full-rank integral lattice basis is given as an n × n matrix B = (b1, . . . , bn),
where each bi = (bij) ∈ Zn is a basis vector. The lattice L (B) is defined as an
additive group consisting of

∑n
i=1 aibi for ai ∈ Z. The Euclidean inner product

of x and y is denoted by 〈x,y〉 = xTy. The Euclidean norm (length) of x
is defined as ‖x‖ =

√
〈x,x〉. bi can be orthogonalized to b∗i =

(
b∗ij
)

by the
following Gram-Schmidt process:

b∗i = bi −
i−1∑
j=1

ηjib
∗
j and ηji =

〈b∗j , bi〉∥∥b∗j∥∥2 . (1)

Then, 〈b∗i , b∗j 〉 = 0 holds for i 6= j. Note that ‖b∗i ‖ is not constrained to be 1. B

provides the fundamental parallelpiped {
∑n
i=1 tibi : ti ∈ [0, 1)}, the volume of
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which is independent on the choice of the basis for the same lattice. This volume
is called the determinant (or co-volume) of L (B). Note that the determinant is
equal to

∏n
i=1 ‖b∗i ‖.

A lattice vector
∑n
i=1 aibi (ai ∈ Z) is given as

∑n
i=1 ζib

∗
i . The squared length

of the lattice vector (denoted by `2) is given as

`2

(
n∑
i=1

aibi

)
=

∥∥∥∥∥
n∑
i=1

ζib
∗
i

∥∥∥∥∥
2

=

n∑
i=1

ζ2
i ‖b∗i ‖

2
. (2)

Because each ζi ∈ R is given as the sum of ζ̄i (− 1
2 ≤ ζ̄i <

1
2 ) and an integer, ζi

is uniquely determined by a natural number di satisfying

−di + 1

2
≤ ζi < −

di
2

or
di
2
≤ ζi <

di + 1

2
, (3)

where the natural numbers begin with 0 (namely, di = 0 is allowed). The se-
quence d = (d1, . . . , dn) is called the natural number representation. It was
shown in [10] that any vector in the lattice is uniquely determined by d and
B∗ = (b∗1, . . . , b

∗
n). In other words, there is a one-to-one correspondence between

a natural number representation and a lattice vector.
The randomness assumption is defined as follows.

Assumption 1 (Randomness Assumption) Each ζ̄i is uniformly distributed
in
[
− 1

2 ,
1
2

)
and is statistically independent of ζ̄j for j 6= i.

Though there are several different definitions of the randomness assumption, we
employ the above one based on Schnorr’s assertion [18]. Though the randomness
assumption cannot hold rigorously [3], this paper verifies that this assumption
is quite useful for estimating the success probability.

By assuming that the volume of L (B) is approximately equal to the volume
of a ball with the diameter of the shortest lattice vector length, the length of the
shortest lattice vector is estimated as

`GH =

(
Γ
(
n
2 + 1

)∏n
i=1 ‖b∗i ‖

) 1
n

√
π

, (4)

where Γ is the gamma function occurring in the calculation of the volume of
an n-dimensional ball [12]. This approximation is called the Gaussian heuristic.
Though the original shortest vector problem (SVP) is to find the shortest non-
zero lattice vector, it is generally too difficult to solve. In the similar way as in TU
Darmstadt SVP challenge [16], we define the SVP as finding an extremely short
lattice vector whose length is less than (1 + ε) `GH where ε is a small positive
constant (ε = 0.05 in TU Darmstadt SVP challenge).

Random Sampling Reduction. Here, RSR [18] is explained in brief. It is
assumed that the Gram-Schmidt orthogonalized basis B∗ is roughly reduced
by BKZ with block size 20 (or other classical efficient algorithms such as LLL)
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so that b∗i is roughly arranged in descending order of ‖b∗i ‖. Then, RSR solves
the SVP by alternately repeating the generation of very short lattice vectors
from the current basis (we call this process “Random Sampling” (RS)) and the
reduction of the basis by the generated lattice vectors. First, RSR generates the
candidates for a very short lattice vector randomly by the following sampling
distribution in the natural number representation:

di =


0 (i ≤ n− u− 1),

0 or 1 (n− u ≤ i ≤ n− 1),

1 (i = n),

(5)

where u is a constant integer (u < n). In other words, di is sampled randomly
from 0 and 1 with equal probability if n − u ≤ i ≤ n − 1. At most 2u lattice
vectors are sampled. Second, RSR selects a lattice vector reducing ‖b∗i ‖ greatly
for an index i, inserts the selected lattice vector to a column of B, and utilizes
BKZ for generating a new lattice basis B. Consequently, the basis is reduced.
The brief algorithmic description of RSR and its variants is given in Algorithm
1.

Algorithm 1 The brief description of RSR and its variants.

Require: B.
1: Roughly reduce B by BKZ (or other efficient algorithms).
2: while B does not converge under a given condition do
3: Pick up some possible natural number representations randomly, and generate

the corresponding lattice vectors.
4: for all the generated “short” lattice vectors do
5: Generate a new basis by inserting the lattice vector to B and applying BKZ

(or other efficient algorithms) to B.
6: if the new basis is “better” than the current B under a given condition then
7: Update B.
8: end if
9: end for

10: end while
11: return the reduced B.

Note that all the possible natural number representations are sampled de-
terministically in many practical cases. It is because a probabilistic algorithm
generates a large number of duplicate samples. The upper bound of the complex-
ity of RSR can be estimated theoretically under the randomness assumption [18],
which is lower than that of other widely-used methods such as BKZ. However,
it was not as efficient as BKZ in practice until its variant FK was proposed.

Fukase-Kashiwabara Algorithm. FK was a lattice basis reduction algorithm
for solving the SVP, which was originally proposed by Fukase and Kashiwabara
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[10] and has been developed by Teruya, Kashiwabara, and Hanaoka [19]. FK
and its variants are currently known to be the most efficient algorithm which
achieves the best scores for n = 132, . . . , 150 in TU Darmstadt SVP challenge
[16]. It has not been clarified sufficiently why FK is quite efficient. One main
motivation of this work is to clarify the reason. Here, FK is briefly described
in comparison with RSR. FK is a variant of RSR, which generates new lattice
vectors randomly from the current basis and update the basis by using a new
lattice vector. On the other hand, FK and its variants differ from RSR in many
aspects, for example, the sampling of new lattice vectors, the evaluation of the
reduced bases, the utilization of parallel processing, the storing of the candidate
lattice vectors, and so on. In this paper, we focus on only the two aspects: the
sampling distribution of new lattice vectors and the evaluation of the reduced
bases. They are emphasized in the original paper of FK [10].

First, FK generalizes the sampling distribution in the natural number repre-
sentation. The random sampling of the original RSR (which is called the standard
RS) chooses only 0 or 1 with the equal probability. An extended version of the
random sampling (the extended RS) is proposed in [4, 15], which extended the
possible natural numbers di ∈ {0, 1} to di ∈ {0, 1, . . . , Ti} with equal probability.
Here, Ti is a small natural number such as Ti = 3. FK generalizes the extended
random sampling furthermore so that a possible number p for the index i occurs
by a probability αip, where αip ≥ 0 and

∑Ti

p=0 αip = 1. In other words, the
sampling distribution is determined by an n × T matrix α = (αip) where T is
the maximum of Ti over i. It is called the weighted RS. As ζ̄i is assumed to be
a uniformly distributed random variable, the probability of ζi is given as

Pζ (ζi) =

{
αip −p+1

2 ≤ ζi
2 < −p2 or p

2 ≤
ζi
2 < p+1

2 (p ≤ T ),

0 otherwise.
(6)

Fig. 1 shows the examples of the probability distributions of ζi for the standard
RS, the extended RS, and the weighted RS. Note that the standard RS and the
extended RS can sample all the possible natural number representations deter-
ministically. Such deterministic sampling methods are mainly used in practice.
On the other hand, the weighted RS cannot be actualized deterministically. Al-
though the original FK employs a deterministic sampling method by allowing
the dependence among ζi’s, it is assumed in this paper that every ζi is indepen-
dent of each other in order to facilitate the efficient calculation. It is because this
paper focuses on the efficient estimation of the success probability more heavily
than the construction of the deterministic sampling. Moreover, we discuss the
relationship between our sampling distribution without the dependence and the
previous deterministic methods in Section 6.2.

Second, FK improves the basis periodically so that the following target func-
tion Φ (B) is reduced:

Φ (B) =

n∑
i=1

‖b∗i ‖
2
. (7)

6



Fig. 1. Examples of probability distributions of ζi for the standard RS (T = 1, αip =
1
2
), the extended RS (T = 2, αip = 1

3
), the weighted RS (a) (T = 1, αi0 = 2

3
, αi1 = 1

3
),

and the weighted RS (b) (T = 2, αi0 = 1
2
, αi1 = 1

3
, αi1 = 1

6
).
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Though it was partially explained by the normal approximation in [10] why this
target function is effective, the explanation was insufficient (see Section 2.2).

2.2 Estimation of the Success Probability of Finding Very Short
Lattice Vectors

In order to investigate the behaviors of RSR and its variants, it is important
to estimate accurately the success probability that the current basis generates
very short lattice vectors over a given random sampling. Here, we explain the
two previous approaches for estimating the probability: the non-parametric ap-
proach using the geometric description and the parametric one using the normal
approximation.

Non-parametric Approach. The geometric description inspired by the Gaus-
sian heuristic estimates the success probability by approximately counting the
number of very short generated lattice vectors. The number can be defined as
the intersection between all the generated lattice vectors and a ball with a very
short diameter R. For example, R is given as (1 + ε) `GH at the final stage of the
SVP, where ε is a small constant. The geometric description is a non-parametric
estimation of the probability distribution, which gives a direct and accurate es-
timation under an arbitrary sampling distribution. However, it was generally
intractable to count the actual intersection because quite many lattice vectors
are generated from a given basis. Recently, some state of the art methods were
proposed for estimating the intersection in practice by dividing the lattice space
into small partitions such as cylinders [11] and boxes [3] and utilizing various
techniques for acceleration. Nevertheless, they are still time-consuming because
their complexity depends on a large number of generated lattice vectors and
small partitions. Moreover, it is difficult to investigate their estimation analyti-
cally because it is non-parametric.

Parametric Approach. The normal approximation is a parametric approach
under the randomness assumption and the central limit theorem [10]. It approxi-
mates the probability distribution of the squared length `2 of a generated lattice
vector as a normal distribution whose parameters are only the mean and the
variance. The mean of `2 for a generated lattice vector is given as the first order
moment of `2:

E
(
`2
)

=

n∑
i=1

E
(
ζ2
i

)
‖b∗i ‖

2
, (8)

where E () is the expectation operator over all the possible bases. ζi is the sum of
ζ̄i (a uniformly distributed random variable in [− 1

2 ,
1
2 )) and ±di2 (a half integer).

Fukase and Kashiwabara calculated E
(
`2
)

analytically by assuming that every
di is equal to 0 [10]. The distribution of ζ̄i is formally given by

Pζ̄(x) =

{
1 − 1

2 ≤ x <
1
2 ,

0 otherwise.
(9)
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Then, the mean µ = E
(
`2
)

is given as

µ =

n∑
i=1

‖b∗i ‖
2
∫ 1

2

− 1
2

x2dx =

∑n
i=1 ‖b∗i ‖

2

12
. (10)

Similarly, the second order moment E
(
`4
)

is given as

E
(
`4
)

=

n∑
i=1

E
(
ζ4
i

)
‖b∗i ‖

4
+

n∑
i=1

E
(
ζ2
i

)
‖b∗i ‖

2
n∑

j=1,j 6=i

E
(
ζ2
j

) ∥∥b∗j∥∥2
, (11)

where we utilize the statistical independence between ζi and ζj (i 6= j) under
the randomness assumption. Then, the variance σ2 = E

(
`4
)
− µ2 is given as

σ2 =

n∑
i=1

E
(
ζ4
i

)
‖b∗i ‖

4 −
∑n
i=1 ‖b∗i ‖

4

144
=

∑n
i=1 ‖b∗i ‖

4

180
. (12)

µ and σ2 determine the simple normal distribution function which can be inves-
tigated both numerically and analytically [10]. However, the serious weakness
of this approximation is that the estimation is different from the actual distri-
bution especially when the length of a generated lattice vector is very short as
is pointed out in [3]. In other words, the normal approximation is too rough to
estimate accurately the success probability. In addition, it does not consider any
sampling distribution because every di is assumed to be a constant (0 in FK).

2.3 Gram-Charlier A Series

The normal approximation cannot estimate the actual distribution sufficiently
accurately. In this paper, we improve the simple normal approximation by uti-
lizing higher order cumulants. We employ the Gram-Charlier A series [7, 21] for
this purpose. Here, we explain this technique in brief.

Overview. Let P (x) be a probabilistic distribution function satisfying P (x) ≥
0 and

∫∞
−∞ P (x) dx = 1. There are three well-known series expansion of P (x):

the Edgeworth series, the Gram-Charlier A series, and the Gram-Charlier B se-
ries [7]. The Edgeworth series expansion is not suitable to estimate the success
probability because it assumes that x is the sum of the independent and iden-
tically distributed random variables. The Gram-Charlier B series expansion is
also not suitable because the principal probability distribution is the exponen-
tial one. Therefore, we employ the Gram-Charlier A series. We assume that the
random variable x is normalized. In other words, its mean µ and its variance σ2

are 0 and 1, respectively. This assumption does not lose the generality because
the variable of P (x) is easily transformed by

P (z) =
P (x)

σz
, (13)

9



where x = (z − µz) /σz (µz and σz are the mean and the standard deviation of
z, respectively). Then, the Gram-Charlier A series of P (x) is given as

P (x) =

(
1 +

∞∑
r=3

crHr (x)

)
e−

x2

2

√
2π

, (14)

where Hr (x) is the r-th degree Hermite polynomial defined as

Hr (x) e−
x2

2 = (−1)
r dr

dxr
e−

x2

2 . (15)

cr is the r-th coefficient depending on the r-th and lower order cumulants (the
details are described below). The series is guaranteed to converge if P (x) de-

creases faster than e−
x2

4 [6, 21]. This condition is generally satisfied in the search
in the natural number representation because there exists a bound T .

Cumulants. Here, we explain the cumulants, which are the most important
statistics for the Gram-Charlier approximation. The cumulants of P (x) are for-
mally defined as follows. The cumulant generating function K (t) is defined as

K (t) = log

∫ ∞
−∞

etxP (x) dx. (16)

The power series expansion of K (t) is given as

K (t) =

∞∑
r=1

κr
tr

r!
, (17)

where κr is the r-th order cumulant of P (x). By using the r-th derivative of
K (t), κr is given as

κr = K(r) (0) . (18)

κr is calculated in practice by the moments of P (x). The r-th order moment of
P (x) (denoted by µr) is given as

µr =

∫ ∞
−∞

xrP (x) dx. (19)

Then, the r-th order cumulant is recursively given as

κr = µr −
r−1∑
m=1

(
r − 1

m− 1

)
κmµr−m. (20)

κ1 = µ and κ2 = σ2 are the mean and the variance. κ3 and κ4 are called the skew-
ness and the kurtosis, respectively. The cumulants are the important statistics
characterizing any probability distribution and have various good mathematical
properties. In this paper, we utilize the homogeneity and the additivity in the
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following. Let κr (x) be the r-th order cumulant of a random variable x. Then,
the following equation holds:

κr (ax) = arκr (x) , (21)

where a is an arbitrary constant. This property is called the homogeneity. If
x and y are statistically independent random variables, the following equation
holds:

κr (x+ y) = κr (x) + κr (y) . (22)

This property is called the additivity. By utilizing these two properties under
the randomness assumption, the distribution of the length of a generated lat-
tice vector in the SVP is easily estimated. In addition, the following important
property holds for any normal distribution: κr = 0 for r ≥ 3. Therefore, the
cumulant generating function of a normal distribution is given as

Knormal (t) = κ1t+
κ2t

2

2
. (23)

When a random variable z is normalized to x = (z − κ1 (z)) /
√
κ2 (z), the (nor-

malized) cumulants of x (denoted by λr) are given as

λr (x) =
κr (z)

(κ2 (z))
r
2

(24)

for r ≥ 3 (λ1 = 0 and λ2 = 1).

Coefficients. Here, we briefly explain the derivation of the Gram-Charlier A se-
ries and give its coefficient cr. Let P (x) be any probability distribution function
of a normalized random variable x (see [21] for the details). The characteristic
function of P (x) (denoted by f (t)) is defined as

f (t) =

∫ ∞
−∞

eitxP (x) dx, (25)

where i is the imaginary unit. Using the cumulant generating function K (t),
f (t) is given as

f (t) = eK(it) = exp

(
it+

−t2

2
+

∞∑
r=3

λr
(it)

r

r!

)
. (26)

On the other hand, the characteristic function of the unit normal distribution

( 1
2π e

−x2

2 ) is given as

g (t) = exp

(
it+

−t2

2

)
. (27)
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Then, f (t) is given as

f (t) = exp

( ∞∑
r=3

λr
(it)

r

r!

)
g (t) =

( ∞∑
p=0

1

p!

( ∞∑
r=3

λr
(it)

r

r!

)p)
g (t)

=

(
1 +

∞∑
r=3

cr (it)
r

)
g (t) , (28)

where the Maclaurin series of the exponential function is utilized and cr is a
coefficient. Because the characteristic function f (t) (replacing t with −t) can be
regarded as the inverse Fourier transform of any P (x), the following equation
holds:

(−it)r f (t) =

∫ ∞
−∞

drP (x)

dxr
eitxdx. (29)

By applying the Fourier transformation to f (t), the following equation is derived:

P (x) =

(
1 +

∞∑
r=3

cr (−1)
r dr

dxr

)
e

−x2

2

2π
=

(
1 +

∞∑
r=3

crHr (x)

)
e−

x2

2

√
2π

. (30)

This is the Gram-Charlier A series. Each cq is the coefficient of uq of the following
polynomial ψ (u):

ψ (u) =

∞∑
p=0

1

p!

( ∞∑
r=3

λr
ur

r!

)p
. (31)

Though ψ (u) includes the infinite summation, cq can be calculated from a finite
sets of the terms with r ≤ q and p ≤ q

3 . The complexity of calculating cq is

O
(
q

q
3

)
if every λr (r ≤ q) is given.

There is another formulation of the coefficients, which is often more efficient
than this usual formulation. See Section 6.4 for the details.

Cumulative Distribution Function. The cumulative distribution function
of P (x) is defined as

F (x) =

∫ x

−∞
P (x) dx. (32)

The integration of the Hr (x) e−
x2

2 is given as∫ x

−∞
Hr (u) e−

u2

2 du = −
∫ x

−∞

dHr−1 (u) e−
u2

2

du
du = −Hr−1 (x) e−

x2

2 . (33)

Therefore, the Gram-Charlier A series of F (x) is given as

F (x) =

∫ x

∞

e−
u2

2

√
2π

du−

( ∞∑
r=3

crHr−1 (x)

)
e−

x2

2

√
2π

, (34)

where the first term of the right side is a sort of the Gaussian error function.
The Gaussian error function is easily calculated numerically and has some ap-
proximate forms.
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Examples. Lastly, we show the concrete examples of the Hermite polynomials
Hr (x) for r = 2, . . . , 9 and the coefficients cr for r = 3, . . . , 10 in the following:

H2 (x) = x2 − 1,

H3 (x) = x3 − 3x,

H4 (x) = x4 − 6x2 + 3,

H5 (x) = x5 − 10x3 + 15x,

H6 (x) = x6 − 15x4 + 45x2 − 15,

H7 (x) = x7 − 21x5 + 105x3 − 105x,

H8 (x) = x8 − 28x6 + 210x4 − 420x2 + 105,

H9 (x) = x9 − 36x7 + 378x5 − 1260x3 + 945x,

(35)

and

c3 =
λ3

3!
,

c4 =
λ4

4!
,

c5 =
λ5

5!
,

c6 =
λ6 + 10λ2

3

6!
,

c7 =
λ7 + 35λ3λ4

7!
,

c8 =
λ8 + 56λ3λ5 + 35λ2

4

8!
,

c9 =
λ9 + 84λ3λ6 + 126λ4λ5 + 280λ3

3

9!
,

c10 =
λ10 + 120λ3λ7 + 210λ4λ6 + 126λ2

5 + 2100λ2
3λ4

10!
.

(36)

3 Method

Here, we propose a method for estimating the success probability of succeeding
in generating very short lattice vectors. This method is much more efficient than
the other estimation methods because it uses a few parameters depending on the
sampling distribution (α) and the norm of each column of the orthogonalized
lattice basis (‖b∗i ‖). The key idea of the proposed method is to approximate the

probability distribution of the squared length `2 =
∑
i ζ

2
i ‖b∗i ‖

2
of a generated

lattice vector from a given lattice basis by using the Gram-Charlier A series and

13



assuming the randomness assumption. For this purpose, we need to calculate
the r-th order moment of ζ2

i . As the probability of ζi is generally given by Eq.
(6) under the randomness assumption, the r-th order moment µr

(
ζ2
i

)
is given

as

µr
(
ζ2
i

)
=

T∑
p=0

2

∫ p+1
2

p
2

αipζ
2r
i dζi =

T∑
p=0

αipβpr, (37)

where βpr can be analytically calculated as

βpr =

(
(p+ 1)

2r+1 − p2r+1
)

(2r + 1) 22r
. (38)

Then, the r-th order cumulant κr
(
ζ2
i

)
can be calculated by the following recur-

sion:

κr = µr −
r−1∑
m=1

(
r − 1

m− 1

)
κmµr−m. (39)

Note that ζ2
i and ζ2

j are independent for i 6= j under the randomness assumption.

Therefore, the r-th order cumulant of `2 is given as

κr
(
`2
)

=

n∑
i=1

κr
(
ζ2
i

)
‖b∗i ‖

2r
, (40)

where we utilize the homogeneity and the additivity of the cumulants. The r-th
order normalized cumulant of `2 is given by λr

(
`2
)

= κr√
κr
2

. Then, the coefficients

of the Gram-Charlier A series (cr) are calculated by λ3, . . . , λr. Let Q ≥ 3 be a
positive integer determining the degree of approximation. When `2 is normalized
to a random variable x, the Gram-Charlier approximation of the cumulative
distribution function F (x) is given as

F̄Q (x) =

∫ x

∞

e−
u2

2

√
2π

du−

(
Q∑
r=3

crHr−1 (x)

)
e−

x2

2

√
2π

. (41)

As the shape of a cumulative distribution function is invariant under an affine
transformation of the variable, the Gram-Charlier approximation of F (z) for
z = `2 is given as

FQ (z) = F̄Q

(
z − κ1√
κ2

)
. (42)

FQ (z) is uniquely determined by the sampling distribution α = (αip), the or-
thogonalized lattice basis B∗ =

(
b∗ij
)
, and the degree of approximation Q. Fi-

nally, FQ

(
ˆ̀2
)

gives the approximation of the success probability of generating a

lattice vector whose squared length is shorter than a threshold ˆ̀2. Note that ˆ̀2

can be changed easily because FQ (z) can be calculated for any z. For example,
the approximation of the success probability in TU Darmstadt SVP challenge
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is given as FQ

(
(1.05)

2
`2GH

)
. The probability distribution PQ (z) = dFQ (z) /dz

is also easily calculated by Eq. (14) if necessary. The algorithmic description of
the above process is given in Algorithm 2.

Algorithm 2 The Gram-Charlier approximation of the cumulative distribution
of the squared lengths of generated lattice vectors.

Require: α, B∗, and Q.
Calculate the moments µr

(
ζ2i
)

by α (r ≤ Q, the same hereinafter).
Calculate the cumulants κr

(
ζ2i
)

by µr

(
ζ2i
)
.

Calculate the cumulants κr

(
`2
)

and the normalized ones λr

(
`2
)

by κr

(
ζ2i
)

and B∗.
Calculate the coefficients cr by λr

(
`2
)
.

return the approximate cumulative distribution FQ (z) (and the probability distri-
bution PQ (z) if necessary).

The complexity of this algorithm is O
(
n2
)

+O (nQT ) +O
(
nQ2

)
+O

(
Q

Q
3

)
(the calculations of every ‖b∗i ‖

2
, every µr

(
ζ2
i

)
, every κr

(
ζ2
i

)
, and every cr).

If T is a finite number, FQ (z) converges to the true probability for Q → ∞
[6, 21]. Unfortunately, no theoretical bound of Q has been achieved. However,
the numerical experiments in Section 4 will show that FQ (z) can approximate
the actual distributions if Q is larger than 50. It will be also shown that the
calculation time can be within one minute even for Q = 70.

There is another (often more efficient) algorithm using a different calculation
method of the coefficients. See Section 6.4 for the details.

4 Experiment

Here, it is numerically verified whether the Gram-Charlier approximation FQ (z)
can estimate the actual success probability for various lattice basesB and various
sampling distributions α. The following four lattice bases are used:

– B128 was originally generated in TU Darmstadt SVP challenge [16] (n =
128, seed = 0) and was roughly reduced by the BKZ algorithm of the fplll
package [20] with block size 20. The target function of FK was not reduced
(Φ (B) = 195.3 where the Gaussian heuristic is normalized to 1).

– B128reduced was reduced largely from B128 by a variant algorithm of FK
(Φ (B) = 102.5).

– B100 was generated in the same way as B128 except for n = 100.
– B150 was generated in the same way as B128 except for n = 150.

The following two sampling distributions are used, which are based on the stan-
dard RS and the extended RS:

– 225-RS consists of 225 samples generated by the standard RS with u = 25.
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– 21735-RS consists of 217 × 35 ' 225 samples, where Ti was set to 3 for
n − 5 ≤ i ≤ n − 1 and 2 for n − 22 ≤ i ≤ n − 6 (Ti = 1 for the others). In
other words, di for i = n− 5, . . . , n− 1 is selected uniformly randomly from
0, 1, 2 instead of 0, 1.

Note that the above sampling distributions were estimated accurately (namely,
without any sampling error) because they enumerated all the possible samples
deterministically. The weighted RS was not employed in this experiment because
of its inevitable sampling error. The actual probability of the squared length `2

over a sampling on a basis was estimated by a histogram of the squared lengths
over all the generated lattice vectors. The logarithm with base 2 of the cumulative
distribution was used for displaying the result because it clarifies the differences
among the cumulative distribution functions when `2 is short.

Fig. 2 shows the results for B128 and B128reduced over 225-RS. The actual
distributions over the sampling are displayed by the bumpy blue curves. The
normal approximation is displayed by the uppermost orange curve. The corre-
sponding Gram-Charlier approximations FQ (z) are also displayed (Q = 10, 50,
60, and 70). Note that the complete form of the approximation with Q = 10 can
be described in Section 2.3. The approximation with the highest degree (Q = 70)
is displayed by the light blue curve. The pre-estimated minimal squared length
`2GH (by the Gaussian heuristic) is displayed by the dashed vertical line. The
squared lengths of the generated lattice vectors are normalized so that `2GH is
equal to 1. Moreover, the squared length of the current shortest vector (namely,
the first index) of the basis (denoted by `2CSV) is displayed by the dot-dashed
vertical line. First, we can observe that FQ (z) estimated the actual distributions
quite accurately if Q is larger than 50. It verifies that our method is useful at least
when the cumulative probability is more than 2−25. Next, we can observe that
FQ (z) with Q ≥ 50 approximately converged to a decreasing curve at least when
the cumulative distribution is more than 2−50. Though it is hard to guarantee
that these converged curves can estimate the actual cumulative probability, it
can be asserted that the curves are accurate under the randomness assumption
because they are determined only by α and B∗. Third, FQ (z) with Q ≥ 50 con-
verged around `2CSV. Therefore, it can be determined easily whether the current
shortest vector is improved by a given sampling distribution or not. Fourth, the
converged curves fell sharply below thresholds around the Gaussian heuristic in
comparison with the gently-reducing normal approximations. It shows that the
curve for B128 cannot achieve a very short lattice vector even if the number of
samplings is near the infinity. On the other hand, the curve for B128reduced
seems to achieve the Gaussian heuristic by a sufficiently large number of sam-
plings. The results show that it is crucial for finding a very short lattice vector
to reduce the lattice basis.

In order to verify the applicability of the Gram-Charlier approximations in
various cases, different sizes of lattice bases (Fig. 3) and a different sampling dis-
tribution (Fig. 4) were employed. Fig. 3 shows the results for different sizes of lat-
tice bases (B100 and B150) over 225-RS. In both cases, FQ (z) with Q ≥ 50 con-
verged to a curve, which was approximately equivalent to the actual cumulative
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distribution. Fig. 4 shows the results of the bases with B128 and B128reduced
over a different sampling distributions 21735-RS. The results were quite similar
to those in Fig. 2, where FQ (z) with Q ≥ 50 converged to a curve and could es-
timate the actual cumulative distribution accurately. In summary, these results
verify that the Gram-Charlier approximations are useful for various lattice bases
and various sampling distributions.

Regarding the efficiency of our method, Fig. 5 shows the actual calculation
time for the above experimental settings ({B128, B128reduced, B100, B150}
over 225-RS and {B128, B128reduced} over 21735-RS). for various degrees of
approximation Q from 3 to 70. It shows that the calculation time mostly did not
depend on the lattice bases nor the sampling distribution. However, the time is
increased exponentially according to the degree of approximation Q. The time
was within about one minute even for the largest Q = 70. The state of the art
method proposed by Aono and Nguyen could estimate the success probability for
one natural number representation within about 2 seconds (see Table 1 in Section
5.4 of [3]). Note also that their method estimates essentially only one point in the
cumulative distribution curve because it is non-parametric. Though [3] proposed
some acceleration techniques such as random sampling and parallel computing,
it does not seem to be available for exponentially increasing number of samples.
On the other hand, our parametric method can estimate the complete form of
the curve over 250 natural number representations. It shows that our method is
much more efficient than the state of the art method [3]. In addition, our method
could give sufficiently accurate results at least within the observable range.

In summary, the numerical experiments verified the following points. First,
if the cumulative probability is larger than 2−25, the Gram-Charlier approxima-
tion FQ (z) with Q ≥ 50 can estimate accurately the actual distribution of the
squared length of generated lattice vectors for any lattice bases and any sampling
distributions. Second, FQ (z) with Q ≥ 50 converges to a curve at least when
the cumulative probability is larger than 2−50. Because the computation over
250-RS is expected to take hundreds of years [19], the limit 2−50 is sufficiently
small in practice. Third, FQ (z) can be calculated efficiently within one minute
even for the largest Q = 70.

5 Investigation of RSR and FK

Here, we investigate RSR and its variant FK by the Gram-Charlier approxima-
tion in order to clarify why FK is superior to other methods in the SVP. Note
that the following investigation is actualized only by the proposed Gram-Charlier
approximation. It is quite hard for the non-parametric approach to investigate
the detailed behavior of the algorithms over a huge size of samples such as 250.

5.1 Utilization of Weighted Sampling Distribution

One of the two important features of FK is that it employs the weighted RS
(see Section 2.1). Here, it is verified experimentally by the Gram-Charlier ap-
proximation that the weighted RS is useful for finding very short lattice vectors.
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(a) B128 over 225-RS.

(b) B128reduced over 225-RS.

Fig. 2. Cumulative distributions of the squared length from the bases with n = 128
over 225-RS and the Gram-Charlier approximations: The histograms of the squared
lengths of the 225 generated lattice vectors are displayed by blue (slightly bumpy)
curves. The curves of the normal approximation (in orange) and the Gram-Charlier
approximations FQ (z) (Q = 10, 50, 60, and 70) are also displayed. The Gaussian
heuristic `2GH (normalized to 1) is displayed by the dashed vertical line. The squared
length of the current shortest vector `2CSV is displayed by the dot-dashed vertical line.
The two bases generated from the same basis are used (B128 and B128reduced).

18



(a) B100 over 225-RS.

(b) B150 over 225-RS.

Fig. 3. Cumulative distributions of the squared length and the Gram-Charlier approx-
imations over 225-RS from the bases of a small lattice (B100) and a large one (B150)
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(a) B128 over 21735-RS.

(b) B128reduced over 21735-RS.

Fig. 4. Cumulative distributions of the squared length from the basis with n = 128
over 21735-RS and the Gram-Charlier approximations.
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Fig. 5. Calculation time for various degrees of approximation: The actual calculation
time for the Gram-Charlier approximation was measured for {B128, B128reduced,
B100, B150} over 225-RS and {B128, B128reduced} over 21735-RS. The degree of ap-
proximation Q was set from 3 to 70.

We used the two lattice bases B128 and B128reduced in Section 4. 225-RS and
325-RS were employed as an example of the standard RS and that of the ex-
tended RS, respectively. They consist of 225 and 325 ' 240 possible samples.
The natural number for each index occurs equally in 0, 1 for 225-RS or 0, 1, 2 for
325-RS. FK can give different weights to each natural number p. It is suggested
in [10] that the inverse of βp1 of Eq. (38) gives an appropriate weight, where
β11 = 1

12 , β21 = 7
12 , and β31 = 19

12 . Therefore, the appropriate weighted distri-
bution is given as (αi1, αi2) ∝

(
1, 1

7

)
for Ti = 2 and (αi1, αi2, αi3) ∝

(
1, 1

7 ,
1
19

)
for Ti = 3. Two sampling distributions were constructed by applying the ap-
propriate weighted distribution to 225-RS and 325-RS, which are referred as to
weighted-225-RS and weighted-325-RS. Each of the two sampling distributions
corresponds to an example of the weighted RS.

Fig. 6 shows the Gram-Charlier approximation of the cumulative distribu-
tions of the squared length of a generated lattice vector (F70 (z)) over 225-RS and
325-RS, weighted-225-RS, and weighted-325-RS. It shows that weighted-225-RS
and weighted-325-RS are clearly superior to 225-RS and 325-RS. The weighted
sampling distributions are always expected to find shorter lattice vectors than
the non-weighted ones when the same number of samples are given. Though
weighted-325-RS seems to be slightly inferior to weighted-225-RS, there is a sig-
nificant advantage of weighted-325-RS. The maximum number of samples over
weighted-225-RS is 225. Therefore, the lower bound of the cumulative probabil-
ity is 2−25 (the upper horizontal line in Fig. 6) even if additional computational
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resources are available. On the other hand, the maximum number of samples
over weighted-325-RS is about 240. Therefore, the cumulative probability can be
reduced to the lower horizontal line if available. It is expected to generate shorter
lattice vectors than weighted-225-RS.

5.2 Periodical Improvement of Current Basis by Target Function

Another important feature of FK is that it periodically improves the basis so
that the target function Φ (B) of Eq. (7) is reduced. Fukase and Kashiwabara
[10] attempted to explain why this feature can accelerate the SVP by the normal
approximation, where Φ (B) can be regarded as the mean of `2 over generated
lattice vectors. They asserted that the success probability becomes higher as the
mean of `2 is smaller. Though this tendency is also observed in the form of the
Gram-Charlier approximation of FQ (z), it is not essential to utilize higher order
cumulants. However, it cannot be explained by the normal approximation why
the basis needs to be improved periodically. Although the normal approximation
in Fig. 2 seems to achieve `2GH by using about 230 samples even for the initial
basis B128, it is not true. Here, the investigation with the Gram-Charlier ap-
proximation is carried out for explaining why the periodical improvement of the
basis is essential.

Fig. 7 shows the Gram-Charlier approximations over the 2u-RS, which is
denoted by F70 (z; 2u). The exponent parameter u determines the size of the
search space over the random sampling distribution. u was set to 10, 15, 20, 25,
30, 35, 40, 45, and 50. B128 and B128reduced are employed as the basis. The
horizontal lines correspond to the lower bounds of the cumulative probability
2−u. Each black circle displays a cross-point between F70 (z; 2u) and the cor-
responding lower bound 2−u. As u becomes larger, the cumulative distribution
gets worse because the distribution moves to the right. On the other hand, as u
becomes larger, the lower bound of the cumulative distribution becomes smaller
(namely, better) because the search space becomes larger. Each cross-point rep-
resents an equilibrium point between the above two factors. We can regard the
squared length at the cross-point as an estimated minimum for given u. The
estimated minimum is calculated by solving the following equation with respect
to z for given u:

F70 (z; 2u) =
1

2u
. (43)

It is easily solved numerically because it is a continuous single-variable function.
Fig. 8 shows the transitions of the estimated minimum of the squared length
of generated lattice vectors for u = 10, . . . , 50. It shows that the estimated
minimum for B128 is saturated to about 1.5 even if 2u is intractably large. In
other words, unless the basis is improved periodically, the shortest length of
generated lattice vectors cannot be reduced below a certain value even if the
computational resources are provided sufficiently. It verifies that it is crucial for
solving the SVP to improve the lattice basis periodically. It seems strange that
the estimated minimum length for u = 50 is slightly larger than that for u = 45.
In the deterministic search, the accurate minimum never increases as u is larger.
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(a) B128.

(b) B128reduced.

Fig. 6. Cumulative distributions of the squared length from B128 and B128reduced
over the weighted RS: The Gram-Charlier approximations F70 (z) are displayed over the
four sampling distributions (225-RS, 325-RS, weighted-225-RS, and weighted-325-RS).
The two horizontal lines are also displayed, which correspond to 2−25 and 2−40 ' 3−25.
See text for the details.
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Though it may be because the estimated minimum is based on the probabilistic
search which allows duplicate samples, it is beyond the scope of this paper to
clarify this phenomenon.

6 Discussions

6.1 Validity of Randomness Assumption

The accuracy of our method heavily relies on the randomness assumption. Re-
versely, the converged Gram-Charlier approximation with sufficiently large Q
is rigorously accurate if the randomness assumption holds. Though it is hard
currently to verify the validity of the randomness assumption, the assumptions
on the Gaussian heuristic [12] suggest that its validity depends on the relative
squared vector length `2/`2GH. If the relative length is 1 (namely, `2 is equal
to `GH), the randomness assumption does not hold because the distribution in-
cludes only one sample. On the other hand, if the relative length is sufficiently
large, the randomness assumption seems to be valid because the number of pos-
sible lattice vectors within the corresponding volume is expected to be high.
Letting `2/`2GH be 1+ ε, the number is approximately estimated as (1 + ε)

n
2 . For

example, it is 1.164 ' 445 for n = 128 and ε = 0.1. The estimated number seems
to be sufficiently high to approximate a continuous distribution even for such a
small ε = 0.1.

6.2 Dependence among Indices of Natural Number Representation

One of the disadvantages of our proposed model is that it cannot allow the de-
pendence among the indices of the natural number representation (see Section
2.1). In addition, our model seems to be based on an inefficient non-deterministic
search. On the other hand, almost all of the state of the art algorithms employ a
deterministic search enumerating a set of candidate natural number representa-
tions, where the dependence among the indices is often allowed. Here, we show
that our model can give a probabilistic approximation of such a deterministic
search and the optimal α can be calculated by minimizing the Kullback-Leibler
divergence. In other words, by regarding any set of candidate natural number
representations in any algorithm as a probability distribution, our model can ap-
proximate this distribution as accurately as possible. Though there are various
metrics such as the Euclidean distance, we employed the Kullback-Leibler diver-
gence here. It is because its optimum can be derived easily and its mathematical
properties have been extensively investigated [5].

When only a single natural number representation d = (di) is given, we
can estimate the Gram-Charlier approximation of the conditional probability
PQ (z|d) by letting αip be 1 only if p = di (otherwise αip = 0). Let Ω be
the set of candidate (namely, enumerated) natural number representations in a
deterministic search. This deterministic search is equivalent to the uniformly dis-
tributed search over Ω if the number of samplings is sufficiently large. Therefore,
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(a) B128.

(b) B128reduced.

Fig. 7. Cumulative distributions of the squared length from B128 and B128reduced
over the various search spaces 2u of RS: The Gram-Charlier approximations F70 (z; 2u)
are displayed over the various RS distributions with different search spaces (u =
10, 15, 20, 25, 30, 35, 40, 45, 50). The horizontal lines are also displayed by 2−u. Each
black circle displays the cross-point of the Gram-Charlier approximation and the hor-
izontal line which corresponds to the search space. See text for the details.
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(a) B128.

(b) B128reduced.

Fig. 8. Estimated minimum of the squared length from B128 and B128reduced for
the exponent parameter u of RS: The parameter u of 2u-RS determines the size of
the search space. Each estimated minimum corresponds to a cross-point in Fig. 7.
The squared length of the current shortest vector `2CSV is displayed by the dot-dashed
horizontal line.
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PQ (z) is given as

PQ (z) =
∑
d

PQ (z|d)P (d) =

∑
d∈Ω PQ (z|d)

|Ω|
, (44)

where |Ω| is the cardinality (the number of members) of Ω. P (d) is the proba-
bility that d occurs in the search, which is defined as

P (d) =

{
1
|Ω| d ∈ Ω,
0 otherwise.

(45)

We can estimate PQ (z) over any Ω by these equations. However, the calcula-
tion is time-consuming because it requires the estimation of PQ (z|d) for every
d ∈ Ω. Our proposed model is essentially equivalent to employing the following
approximation:

P (d) '
∏
i

P (di) =
∏
i

αidi . (46)

PQ (z) is efficiently calculated by our model, because the summation over Ω
can be divided into the estimation of an independent probability distribution
for each index i (see Section 3). Now, the Kullback-Leibler divergence between
P (d) and

∏
i αidi is given as

DKL

(
P (d) |

∏
i

αidi

)
=
∑
d

P (d) log

(
P (d)∏
i αidi

)
=
∑
d∈Ω

1

|Ω|
log

(
1

|Ω|
∏
i αidi

)
= − log (|Ω|)−

∑
d∈Ω

∑
i log (αidi)

|Ω|
. (47)

This divergence is equal to 0 only if the two distributions are completely the
same, and otherwise always positive. Therefore,

∏
i αidi can approximate P (d)

as accurately as possible by minimizing DKL. Then, the optimum of α (denoted
α̂ = (α̂ip)) is given as

α̂ = arg max
α

∑
d∈Ω

∑
i

log (αidi) subject to
∑
p

αip = 1. (48)

By the method of Lagrange multipliers, α̂ip is given as

α̂ip =

∑
d∈Ω δpdi
|Ω|

, (49)

where δpdi is the Kronecker delta. In other words, α̂ip is proportional to the
number of occurrences of p in the index i of Ω. It is easily calculated for any Ω.

Reversely, there is also a promising approach from our proposed model to
a deterministic search framework. For a given natural number representation
d = (di), its occurrence probability is given as

∏
i αidi . Then,

∏
i αidi can be
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regarded as a score measuring the “goodness” of d. Using the logarithm, the
score ϕ (d) is given as

ϕ (d) =
∑
i

logαidi . (50)

ϕ is the sum of weights, each of which depends on only the index i and di. If
the natural number representations with high scores can be collected, we can
construct deterministically a set Ω including only the “better” candidates. This
principle is similar to the enumeration of the lattice vectors with the smaller
lengths in the previous lattice basis reduction algorithms. Therefore, our pro-
posed model is promising for improving the previous algorithms.

6.3 Convergence Property of Gram-Charlier Approximation

Here, we investigate experimentally the convergence property of the Gram-
Charlier approximation of the cumulative distribution function with the degree
of approximation. One of the important factors is the convergence of cr (the
coefficients of the Hermite polynomials Hr (x)). Another important factor is the
convergence of the value of crHr−1 (x). The bound of |Hr (x) | is given as

|Hr (x) | < 1.09π
1
4 e

x2

4

√
r!, (51)

which holds for any r and x (see 22.14.17 and 22.5.19 in [1].) Therefore, crHr−1 (x)
converges if

√
(r − 1)!cr converges. Fig. 9 shows the transitions of |cr| and

|
√

(r − 1)!cr| for 3 ≤ r ≤ 70. Note that cr is determined only by the basis
and the sampling distribution. We used {B128, B128reduced, B100, B150} over
225-RS and {B128, B128reduced} over 21735-RS. Fig. 9 experimentally verified
that the coefficients and the bounds converges to 0 roughly exponentially. It
is interesting that the transitions are similar irrespective of the basis and the
sampling distribution. It suggests that some theoretical approximations may be
available.

6.4 Accelerated Algorithm for Estimating Coefficients

The standard formulation of the coefficients of the Gram-Charlier approximation
is given in Section 2.3. Here, another formulation is utilized, which can accelerate
Algorithm 2. The new formulation is based on the orthogonality property of the
Hermite polynomials, which is given as∫ ∞

−∞
Hp (x)Hq (x) e−

x2

2 dx =
√

2πp!δpq. (52)

Using this property, the expectation of Hr (x) (r ≥ 3) over a normalized proba-
bility distribution function P (x) is given as∫ ∞

−∞
Hr (x)P (x) dx = crr!, (53)
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(a) Coefficients.

(b) Bounds.

Fig. 9. Transitions of the coefficients and the bounds of the Hermite polynomials: |cr|
and

√
(r − 1)!|cr| (3 ≤ r ≤ 70) are calculated for {B128, B128reduced, B100, B150}

over 225-RS and {B128, B128reduced} over 21735-RS.

29



where cr is the r-th coefficient of the Gram-Charlier approximation. Now, the
explicit expression of Hr (x) is given as

Hr (x) = r!

b r2 c∑
p=0

(−1)
p
x(r−2p)

2pp! (r − 2p)!
. (54)

Then, cr is given as

cr =

b r2 c∑
p=0

(−1)
p
µr−2p (x)

2pp! (r − 2p)!
, (55)

where µr−2p (x) is the (r − 2p)-th order moment of a random variable x over
P (x). In the similar way as in Eq. (39), µr (x) can be calculated recursively
from the normalized cumulants λr by

µr = λr +

r−1∑
m=1

(
r − 1

m− 1

)
λmµr−m. (56)

Consequently, the new algorithm calculating the coefficients is given as follows.

Algorithm 3 The accelerated Gram-Charlier approximation of the cumulative
distribution of the squared lengths of generated lattice vectors.

Require: α, B∗, and Q.
Calculate the moments µr

(
ζ2i
)

by α (r ≤ Q, the same hereinafter).
Calculate the cumulants κr

(
ζ2i
)

by µr

(
ζ2i
)
.

Calculate the cumulants κr

(
`2
)

and the normalized ones λr

(
`2
)

by κr

(
ζ2i
)

and B∗.
Calculate the moments µr

(
¯̀2
)

by λr

(
`2
)
.

Calculate the coefficients cr by µr

(
¯̀2
)
.

return the approximate cumulative distribution FQ (z) (and the probability distri-
bution PQ (z) if necessary).

Here, ¯̀2 denotes the normalized squared length. This algorithm avoids the
combinatorial problem in the direct estimation of the coefficients from the cu-
mulants by utilizing an additional step calculating the moments from the cu-
mulants. Because the bottleneck process is the recursive interconversion be-
tween the moments and the cumulants, the complexity of this algorithm is

O
(
n2
)

+O (nQT )+O
(
nQ2

)
, where the term of O

(
Q

Q
3

)
is removed. Therefore,

Algorithm 3 is much more rapid than Algorithm 2 if Q is large. However, there
is one practical problem in Algorithm 3. Because the recursive calculation accu-
mulates small rounding errors repeatedly, the estimation error of a high degree
coefficient is not negligible. We are now constructing an implementation with
keeping a high accuracy.
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7 Conclusion

In this paper, we proposed a new method for estimating the success probability
of finding very short lattice vectors in the lattice basis reduction algorithm. The
proposed method is based on a parametric approach using the Gram-Charlier
approximation and gives a closed-form expression with a few parameters. It could
estimate the actual distribution quite accurately and quite efficiently. The in-
vestigations with the proposed method discovered some important properties of
RSR and FK. The most significant advantage of the proposed method is that it
can estimate the success probability quite efficiently with keeping the accuracy.
The investigation in Section 5 is intractable for the non-parametric approach
because it needs to manage 250-RS. On the other hand, the Gram-Charlier ap-
proximation estimated all the distributions within at most one minute. The ex-
perimental results showed that the calculation time and the accuracy of our pro-
posed method do not depend on the lattice basis and the sampling distribution.
In other words, they verified that our method is useful for a high-dimensional
lattice over a large number of samplings.

An unsolved problem of the proposed method is that we have not clarified
yet the theoretical relationship between the degree of approximation Q and the
convergence of the estimation. We are planning to investigate the relationship
furthermore in order to set Q to an appropriate value. In addition, we are plan-
ning to investigate furthermore the validity of the randomness assumption by the
Gram-Charlier approximation. Another problem is that the Gram-Charlier ap-
proximation was used only for verifying the superiority of the previous algorithms
in this paper. It is promising to use this method for finding the optimal settings
and parameters adaptively and for solving the SVP much more efficiently. For
example, we are planning to estimate the optimal weighted sampling distribu-
tion according to a given basis and to set the optimal size of the search space by
u. Moreover, we are planning to investigate the state of the art algorithms (for
example, [3], [19], and [8]) by the approximation method in Section 6.2.
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