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Abstract

Faced with the threats posed by man-in-the-middle attacks, messaging platforms rely on “out-
of-band” authentication, assuming that users have access to an external channel for authenticating
one short value. For example, assuming that users recognizing each other’s voice can authenticate
a short value, Telegram and WhatApp ask their users to compare 288-bit and 200-bit values,
respectively. The existing protocols, however, do not take into account the plausible behavior of
users who may be “lazy” and only compare parts of these values (rather than their entirety).

Motivated by such a security-critical user behavior, we study the security of lazy users in out-
of-band authentication. We start by showing that both the protocol implemented by WhatsApp
and the statistically-optimal protocol of Naor, Segev and Smith (CRYPTO ’06) are completely
vulnerable to man-in-the-middle attacks when the users consider only a half of the out-of-band
authenticated value. In this light, we put forward a framework that captures the behavior and
security of lazy users. Our notions of security consider both statistical security and computational
security, and for each flavor we derive a lower bound on the tradeoff between the number of
positions that are considered by the lazy users and the adversary’s forgery probability.

Within our framework we then provide two authentication protocols. First, in the statistical
setting, we present a transformation that converts any out-of-band authentication protocol into
one that is secure even when executed by lazy users. Instantiating our transformation with a new
refinement of the protocol of Naor et al. results in a protocol whose tradeoff essentially matches
our lower bound in the statistical setting. Then, in the computational setting, we show that the
computationally-optimal protocol of Vaudenay (CRYPTO ’05) is secure even when executed by
lazy users – and its tradeoff matches our lower bound in the computational setting.
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1 Introduction

Instant messaging platforms are gaining increased popularity and hold an overall user base of more
than 1.5 billion active users (e.g., WhatsApp, Signal, Telegram and many more [Wik20]). These
platforms recognize user authentication and end-to-end encryption as key ingredients for ensur-
ing secure communication within them, and extensive efforts are currently put into the security
of messaging, both commercially (e.g., [PM16, Tel20b, Wha17, Vib20]) and academically (e.g.,
[FMB+16, BSJ+17, CCD+17, KBB17, PR18, JS18, DV18, JMM19, ACD19]). A key challenge in
securing messaging platforms is that of protecting against man-in-the-middle attacks when setting
up secure end-to-end channels. This is exacerbated by the ad-hoc nature of these platforms.

Out-of-band authentication. Faced with the threats posed by man-in-the-middle attacks, exist-
ing messaging platforms enable “out-of-band” authentication, assuming that users have access to an
external channel for authenticating short values. These values are typically derived from the public
keys of the users, or more generally from the transcript of any key-exchange protocol that the users
execute for setting up a secure end-to-end channel.

For example, some messaging platforms offer users the ability to compare with each other a value
that is displayed by their devices (see Telegram [Tel20a], WhatsApp [Wha17], Viber [Vib20] and
more [Mem17]). This relies on the assumption two users can establish a low-bandwidth authenticated
channel (e.g., by recognizing each other’s voice): A man-in-the-middle adversary can view, delay or
even remove any message sent over this channel, but cannot undetectably modify its content.

Such an authentication model that assumes a low-bandwidth authenticated channel was con-
sidered back in 1984 by Rivest and Shamir [RS84].1 More recently, this model was formalized
by Vaudenay [Vau05] in the computational setting (i.e., considering computationally-bounded ad-
versaries) and extended by Naor et al. [NSS06, NSS08] to the statistical setting (i.e., considering
computationally-unbounded adversaries) and by Rotem and Segev [RS18] to the group setting. The
out-of-band message authentication problem considers a sender that would like to authenticate a mes-
sage m to a receiver.2 The users communicate over two channels: An insecure channel over which
a man-in-the-middle adversary has complete control, and a low-bandwidth authenticated channel,
enabling the sender to “out-of-band” authenticate one short value. The security requirement asks
for an upper bound on any man-in-the-middle adversary’s probability of fooling the receiver into
accepting a fraudulent message.

An effort vs. security tradeoff. Given that the out-of-band channel has only low bandwidth,
research on out-of-band authentication has so far focused on constructing protocols that offer the
best-possible tradeoff between the length of their out-of-band authenticated values (corresponding
to the amount of effort required from the users) and their security (corresponding to the adversary’s
forgery probability). Vaudenay [Vau05], Naor et al. [NSS06] and Rotem and Segev [RS18] provided
complete characterizations of this tradeoff in their above-mentioned respective settings, providing
both lower bounds and protocols that match them. However, these protocols rely on the assumption
that the human users indeed follow the protocol in its entirety. In particular, they rely on the
assumption that the users out-of-band authenticate the entire value that the protocols instruct them
to authenticate.

1Rivest and Shamir proposed the “Interlock” protocol which enables two users, who recognize each other’s voice, to
mutually authenticate their public keys in the absence of a trusted infrastructure. Potential attacks on the Interlock
protocol were identified later on [BM94, Ell96].

2As mentioned above, for messaging platforms the message m typically corresponds to the public keys of the users
or to the transcript of any key-exchange protocol that they execute.
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This assumption, however, may not always be realistic: The lengths of the out-of-band authen-
ticated values offered by the existing messaging platforms may not align with the potential effort of
different users. Specifically, existing messaging platforms ask their users to out-of-band authenticate
values whose lengths range from roughly 200 bits (e.g., WhatsApp and Signal) to 288 bits (e.g.,
Telegram) – see Figure 1. Given that the out-of-band channel is implemented in these platforms
via a manual comparison operation, the security of such protocols must take into account users that
may compare only a subset of the positions of these values. We refer to such users, who out-of-band
authenticate only a substring of the protocol’s out-of-band authenticated value, as “lazy users”.

As repeatedly demonstrated by research on usable security and human-computer interaction, it is
rather likely that a substantial part of the messaging platforms’ user base may in fact be considered
lazy (see, for example, [LS03, PLF03, BA04, Her09, HZF+14, AFJ15, DDB+16] and the references
therein). This state of affairs, where a security-critical user behavior is not taken into account, is
extremely bothering.

One possible approach to curb the potential insecurities caused by lazy users is to try and
tailor the protocols and the user interfaces in use in such a way that attacks are more likely to be
noticed. This can be done by making sure that differences between the strings displayed to the users
are highly perceptible: For instance, by a good choice of alphabet, or by making sure that if the
displayed strings are different, then they are different in locations that are likely to be examined by
the users. Such solutions are outside the scope of this paper. We are interested in theoretically-
sound solutions which are agnostic to the exact human behavior and provide optimal security for
any possible “laziness pattern”.

Figure 1: Out-of-band authentication in WhatsApp and Telegram. WhatApp and Telegram (as well as
many other messaging platforms) implement the out-of-band channel by asking their users to manually compare two
strings. WhatApp (on the left) asks its users to manually compare 60 decimal digits corresponding to an out-of-
band authenticated value [Wha17] of about 200 bits. Telegram (on the right) asks its users to manually compare 64
characters corresponding to a 288-bit out-of-band authenticated value [Tel20c]. The images are taken from [Mem17].
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1.1 Our Contributions

Motivated by the above-described plausible and security-critical behavior of “lazy” users, we put
forward a framework that captures the behavior and security of such users in out-of-band authen-
tication. Within our framework we characterize the possible security guarantees for lazy users by
presenting protocols together with essentially matching lower bounds both in the computational
setting and in the statistical setting. Our main contributions are as follows.

The insecurity of existing protocols. We strengthen our motivation by showing that the pro-
tocol implemented by WhatsApp [Wha17] and the protocol of Naor et al. [NSS06] are completely
vulnerable to man-in-the-middle attacks when the parties consider only a half (or fewer) of the
characters of the out-of-band authenticated value. This demonstrates that it is not only the case
that the existing protocols do not take security-critical user behavior into account, they may in fact
become completely insecure when executed by lazy users. In the following section, we discuss the
main underlying reason for these protocols’ vulnerability, and how our constructions overcome it.

Modeling the behavior and security of lazy users. We put forward a framework that captures
the behavior and security of lazy users. Our notions of security consider both computational security
and statistical security, and for each flavor we derive a lower bound on the tradeoff between the
number of positions that are considered by the lazy users out of the out-of-band authenticated value
and the adversary’s forgery probability. These lower bounds are summarized in Table 1, and we refer
the reader to Section 1.3 for a more detailed overview.

Our Protocols
Our Lower Bounds

Forgery Probability Alphabet Size |Σ|

Computational
Security

2−|I| 2 2−|I|·log |Σ| − 2−n

Statistical
Security

2−|I| 28 2−|I|·log |Σ|/2 − 2−n

Table 1: Summary of our results – protocols vs. lower bounds. We denote by I the subset of positions of the
out-of-band authenticated value that the users consider, by Σ the alphabet over which the out-of-band authenticated
value is defined, and by n the length of the sender’s input message. Our computationally-secure protocol relies on
the existence of any one-way function (see Theorem 6.1), whereas our statistically-secure protocol and our two lower
bounds do not rely on any computational assumptions (see Corollary 5.2, Theorem 7.1 and Corollary 7.3).
Note that our upper bound and lower bound in the computational setting match within an additive 2−n term (which is
a significantly lower-order term for not-too-short input messages). In the statistical setting our bounds match within
a constant factor (in addition to the additive 2−n term).

Immunizing statistically-secure protocols against lazy users. Recall that the statistically-
secure protocol of Naor et al. [NSS06] becomes completely insecure when executed by lazy users.
Intuitively, this is the case because the influence of each bit of the sender’s input message (i.e., the
message to be authenticated) is not “well-spread” across the out-of-band authenticated value (see
Section 4 for an in-depth discussion).

Addressing this property, we provide a transformation that converts any statistically-secure pro-
tocol (that does not necessarily provide any security for lazy users) into a protocol that is statistically-
secure for lazy users. Instantiating our transformation with the protocol of Naor et al. results in
a concrete statistically-secure protocol for lazy users. Moreover, we then show that by refining the
protocol of Naor et al. the resulting instantiation uses an alphabet whose size is as small as 28 –
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which nearly matches our above-mentioned lower bound in the statistical setting.3 We stress that
our transformation and the protocol resulted from applying it to the protocol of Naor et al. are
oblivious to the subset I of positions that users eventually read or even to the number of positions
they read. Meaning, we provide a single protocol that guarantees security for every possible subset
I. An interesting open question is whether a protocol which is statistically-secure for lazy users can
be constructed over a binary alphabet.

In fact, our transformation can also be applied to any computationally-secure protocol that
satisfies a natural parallel composability guarantee. However, as shown by our next result, this is
somewhat unnecessary.

Matching the optimal tradeoff for computationally-secure protocols. Whereas the statistically-
optimal protocol of Naor et al. is completely insecure for lazy users, we show that the computationally-
optimal protocol of Vaudenay [Vau05] is optimally secure for lazy users as well. Intuitively, this is
due to the following observation: Even though the out-of-band authenticated value in this protocol is
determined independently of the sender’s input message (which is reminiscent of the protocol of Naor
et al. in the statistical setting), the protocol “ties together” the message and the out-of-band authen-
ticated value in their entirety using a non-malleable commitment scheme (which, in practice, can be
replaced by a hash function modeled as a random oracle). Note that as in the statistical setting, the
protocol is oblivious to the particular subset of positions that the users eventually consider.

Extensions. We also discuss possible extensions of our framework. First, we consider the notion
of adaptive laziness, which gives the adversary the ability to choose the subset of positions to be
considered by the users even after the out-of-band authenticated value is determined. Although we
find this notion somewhat less motivated in the context of lazy users, we nevertheless extend our
definitions and proofs of security to this stronger notion.

Second, we note that our notions of security, lower bounds and protocols naturally extend to
the group setting considered by Rotem and Segev [RS18]. Specifically, in the computational setting
the protocol of Rotem and Segev can be shown to be optimally-secure for lazy users; and in the
statistical setting, our general transformation can be easily adapted to support group protocols (and
can then be instantiated with the statistically-secure protocol of Rotem and Segev).

1.2 Related Work

Bounds for out-of-band authentication. In the standard setting of out-of-band authentication
(i.e., with non-lazy users), Vaudenay [Vau05] and Vaudenay and Pasini [PV06] established tight
bounds for the tradeoff between the length of the (entire) out-of-band authenticated value and the
adversary’s forgery probability in the computational setting. They provided a protocol [Vau05]
in which the forgery probability is bounded by 2−`, where ` is the bit-length of the out-of-band
authenticated value, and a matching lower bound [PV06]. Naor et al. [NSS06] observed a gap
between the computational and the statistical settings: They proved that the forgery probability
in the statistical setting of any protocol is always at least 2−`/2, and provided a protocol that
matches this lower bound within a constant factor. We refer the reader to Table 2 for a summary of
these bounds, and note that our results provide a similar characterization for lazy users in both the
computational and the statistical settings (recall Table 1).

3As we discuss in more detail in Section 1.3, when moving to the setting of lazy users, the size of the alphabet
over which the out-of-band authenticated value is defined becomes of great importance. This is in contrast to the
traditional (non-lazy) setting, in which this has no impact on security.
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Protocols Lower Bounds

Computational
Security [Vau05, PV06]

2−` 2−` − 2−n

Statistical Security
[NSS06]

O
(
2−`/2

)
2−`/2 − 2−n

Table 2: Previous work – protocols vs. lower bounds. We denote by ` the length of the out-of-band authen-
ticated value and by n the length of the sender’s input message. The computationally-secure protocol of Vaudenay
[Vau05] relies on the existence of any one-way function, whereas the statistically-secure protocol of Naor et al. [NSS06]
and the two lower bounds [NSS06, PV06] do not rely on any computational assumptions.

The security of messaging platforms. Many recent works addressed the goals of formalizing
the security guarantees of messaging platforms, as well as analyzing the security of the protocols used
by these platforms and identifying potential weaknesses within them – see, for example, [FMB+16,
HL16, BSJ+17, CCD+17, CGC17, KBB17, SKH17, RMS18, Gre18a, Gre18b, CGCG+18] and the
references therein. Throughout this extensive line of research, the security of messaging protocols
assumes an initial authentication phase for avoiding man-in-the-middle attacks. As mentioned in
most of the afore-listed references, such an initial authentication phase is based on out-of-band
authentication.

1.3 Overview of Our Contributions

We extend the existing framework for out-of-band authentication protocols [Vau05, PV06, NSS06,
RS18] to accommodate the security-critical behavior of “lazy users”, that may consider only a certain
part of the out-of-band authenticated value (e.g., its left-most half, its right-most 10 characters, or a
few randomly-chosen positions). We model this behavior by having the sender send only a substring
of the out-of-band authenticated value, and requiring that for any such substring the man-in-the-
middle attacker’s forgery probability is bounded by some pre-defined parameter associated with it.
That is, whereas a standard (i.e., “non-lazy”) out-of-band authentication protocol is parameterized
by an upper bound ε ∈ (0, 1) on the adversary’s forgery probability, a protocol in our framework is
parameterized by a function ε(·) which maps every subset I of positions of the out-of-band authen-
ticated value to an associated upper bound ε(I).4

In addition, our definitions also extend those of Vaudenay and Naor et al. by accounting for out-
of-band authentication values over non-binary alphabets (indeed, in the existing real-world imple-
mentations of out-of-band authentication protocols, the out-of-band authenticated value is displayed
to the users as a string over some non-binary alphabet – recall Figure 1). When the users are as-
sumed to consider the entire out-of-band authenticated value, the particular choice of alphabet (and
alphabet size) is mainly a matter of providing a convenient user interface. In the presence of lazy
users, however, the size of the alphabet of the out-of-band authenticated value plays an important
role in what may be referred to as the “granularity” of the users’ laziness.

Let us consider for concreteness a pair of users that read some 32 bits out of a 64-bit out-of-
band authenticated value. If the out-of-band authenticated value is simply a 64-bit string (i.e., over
a binary alphabet), then the users may possibly read any of the

(
64
32

)
> 1.83 × 1018 many 32-bit

substrings of it. On the other hand, if the alphabet is of larger size, say 8 characters, the users’
4Note that protocols in our framework must explicitly address (in terms of both completeness and soundness) the

case where only part of the out-of-band authenticated value is considered. This is the case, in particular, in our
motivating example where verification is done by comparing the out-of-band authenticated string to a value that is
computed by the receiver.
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ability to partially access the out-of-band authenticated value is more coarse-grained. In particular,
they can still read only a substring of the authenticated value, but are restricted to reading specific
blocks of consecutive 8 bits in their entirety. In other words, users that read 32 bits in this setting
may read only one of

(
8
4

)
= 70 many 32-bit substrings of the out-of-band authenticated value.

Identifying the weakness in existing protocols. It is quite simple to construct a contrived
example of a secure protocol that is completely insecure when executed by lazy users. Thus, we chose
to focus on the protocols of WhatsApp [Wha17] and Naor et al. [NSS06] for the following reasons: (1)
the protocol implemented by WhatsApp is among the most widely-used out-of-band authentication
protocols, and (2) the protocol of Naor et al. offers the optimal tradeoff between the length of the
out-of-band authenticated value and the adversary’s forgery probability in the statistical setting
(thus showing that both computationally-secure protocols and statistically-secure ones may become
completely insecure when executed by lazy users).

Analyzing our rather simple attacks on these protocols (see Section 4), we identify a key property
that they have in common which makes them completely insecure when executed by lazy users:
Intuitively, different sections of the sender input message (i.e, the message m to be authenticated)
influence different sections of the out-of-band authenticated value. Hence, if the users only consider
a subset of positions of the out-of-band authenticated value that is independent in some sense from a
particular part of the message to be authenticated, the adversary can replace this part of the message
in an undetected manner (we refer to this property as “over locality”). In what follows, we discuss
why the protocol of Vaudenay in the computational setting does not suffer from over locality; and
how our general transformation in the statistical setting addresses it.

Naive approaches that fail. The most straightforward approach for out-of-band authentication
is perhaps to send a hash of the message to be authenticated as the out-of-band value (indeed, this
is similar to the approach taken by WhatsApp and Signal). On the face of it, if the hash function in
use is treated as an ideal random function, then this protocol should be secure even when executed
by lazy users. This approach, however, has the shortcoming of introducing a strong dependency
between the adversary’s running time and its success probability. An adversary that can compute T
computations of the hash function, can trivially break this protocol with probability T/2`, where `
is the bit-length of the hash output.5 If the users are lazy and only consider a subset I of the hash
value, then the situation is only aggravated, and the success probability of the adversary is at least
T/2|I|. When I is small (which is exactly the case with lazy users), then the asymptotics “do not
kick in”, and the latter forgery probability is significant. For example, if the adversary runs in time
that enables her to compute 240 computations of the hash function being used, and the users only
compare 60 bits of the hash value, then the adversary can break the security of the protocol with
probability roughly 2−20. It is not hard to see that this lacuna applies also to any non-interactive
protocol (which consists only of the message to be authenticated and the out-of-band value). We are
instead interested in protocols that guarantee a bound on the success probability of the adversary
that does not scale in a meaningful manner with the adversary’s running time.

Even so, one might be tempted to use a hash function in order to immunize any comparison-based
out-of-band authentication protocol against lazy users: Have the parties run the protocol and then
out-of-band authenticate to the hash of the original out-of-band value (in addition to transmitting
the original value in-band); meaning, if the out-of-band value according to the original protocol is

5By first observing the true out-of-band value v, and then sampling possible messages, with the hope of finding a
message m such that H(m) = v. For any hash function, after sampling T messages the probability of such a collision
is at least T/2−`. This is true even if the hash function is modeled as an ideal random function.
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v, then send H(v) as the new out-of-band value and send v over the insecure channel. On the
face of it, this resolves any over dependency on locality the initial protocol might have exhibited.
However, this approach may generally suffer from the same disadvantage that is described in the
previous paragraph. Consider for example the case, in which prior to the last message of the original
protocol, the out-of-band value of this protocol still has considerable entropy relative to the number
of bits that the users end up comparing. Where this is the case, the adversary can launch an attack
similar to the one from the previous paragraph (re-sampling the last message of the protocol, instead
of the input message).

An additional potential approach is to have the parties apply some fixed error-correcting code to
the out-of-band authenticated value. Though this may have the effect of increasing the fraction of
inconsistent positions in the out-of-band authenticated value at the end of any forgery attempt, it
does not provide the security guarantees we seek: If before applying the error-correcting code there
was some subset of t positions for some fixed t, for which there was an attack causing the receiver to
output a fraudulent message with probability ε, this may still be the case after applying the code.
Moreover, this approach has the consequence of worsening the tradeoff between the length of the out-
of-band authenticated value and the adversary’s forgery probability. Similarly, adding redundancy
to the input message itself (e.g., by applying an error-correcting code to it) is not necessarily helpful
in immunizing protocols against lazy users.

Another possibility is to reduce the number of characters in the out-of-band authenticated value
by mapping it to a larger alphabet. As discussed above, this has the effect of restricting the lazy
behavior of the users; in particular, assuming that the users read at least one character of the out-
of-band value, after increasing the alphabet size, this single character constitutes a larger fraction
of the out-of-band value. Alas, even if the new alphabet is sufficiently large so that the out-of-band
value consists just of two characters, the resulting protocol may still be insecure for lazy users who
read only one of them (this is the case, for example, with the protocols of WhatsApp [Wha17] and
Naor et al. [NSS06]). On the other hand, our lower bounds on the bit-length of the out-of-band value
(see Section 7) imply that in order for the out-of-band value to consist only of a single character, its
alphabet size has to be at least 1/ε, where ε is the forgery probability. For any reasonable level of
security, this means an impractical-sized alphabet has to be used.

Security for lazy users via “influence spreading”. Our transformation in the statistical setting
takes as input a parameter t ∈ N and any statistically-secure out-of-band authentication π with out-
of-band authenticated value of length ` and forgery probability at most ε. It proceeds by having
the sender S and the receiver R run t parallel executions of π with the same input message m to S.
Afterwards, S parses each of the resulting t out-of-band authentication values as a single character
from an alphabet of the appropriate size, concatenates them into a single string of length t (over the
larger alphabet) and sends it over the out-of-band channel. When considering some subset I ⊆ [t]
of the characters in the new out-of-band authenticated value, the receiver R accepts the message m
if and only if it accepts m in each of the executions corresponding to the subset I. We show that
for every subset I ⊆ [t], the forgery probability in this new protocol is bounded by ε′(I) ≤ ε|I|.

In light of our observations regarding protocols that are insecure for lazy users, this transformation
can be thought of in the following manner: We start with a protocol that might be insecure for lazy
users and suffer from over locality, and we “spread” the influence of each bit of the input message
across all characters of the new out-of-band authenticated value via the parallel invocations of the
basic protocol.

When instantiated with the protocol of Naor et al. [NSS06] (while setting its security to ε = 1/2),
our transformation yields a protocol with a constant-size alphabet which is statistically-secure for
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lazy users: For every subset I ⊆ [t], the forgery probability corresponding to I is bounded by 2−|I|.
However, using the protocol of Naor et al. and their analysis “off the shelf” results in an alphabet
which is, though constant-size, large and impractical (concretely, it is of size 216 = 65536). Hence,
in Section 8.2, we show by a refined analysis of the protocol of Naor et al. that this constant can
be reduced to 28 = 256 (which fits nicely, for example, in the set of 333 emoji Telegram uses as the
alphabet in the verification of their voice calls).

Leveraging the “local sensitivity” of non-malleable commitments. Informally speaking,
the protocol of Vaudenay [Vau05] consists of the following steps: (1) On input m, S sends m to R,
chooses a random rS and commits to the message (m, rS); (2) R sends a random rR to S; (3) S
reveals rS ; and (4) S sends rS ⊕ rR over the out-of-band authenticated channel. In the lazy user
setting, where the users only read the subset I of positions in the out-of-band authenticated value,
R accepts m if and only if the value (rS ⊕ rR)I sent over the out-of-band channel is consistent with
her view of the protocol.

In Section 6 we prove that when the commitment scheme used in Step (1) is a non-malleable
commitment scheme, then this protocol is optimal for lazy users (considering the matching lower
bound from Section 7). Our proof goes about by considering all potential synchronizations that a
man-in-the middle attacker might impose while attacking an execution of the protocol, and showing
that in each of them, an attack on the protocol that succeeds with probability noticeably larger than
2−|I| can be translated into an attack on a different property of the underlying commitment scheme.
(By “potential synchronizations”, we mean the possible orders in which the messages are delivered
to the users).

From a more conceptual point of view, our proof leverages the fact that the non-malleability of
commitment schemes is a property which is “locally sensitive” in the following sense. Informally, in
a non-malleable commitment scheme, it should be impossible, given a commitment c to some value
v, to produce a related commitment ĉ for some value v̂ such that v and v̂ satisfy any efficiently
recognizable relation. This includes, in particular, relations that are defined with respect to a subset
of the positions in v and v̂; and namely, the relation induced by a successful forgery in Vaudenay’s
protocol when the users only consider the subset I of positions of the out-of-band authenticated
value.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we present the notation and basic
definitions that are used in this work. In Section 3 we introduce our framework for modeling the
behavior and security of lazy users in out-of-band message authentication protocols. In Section 4
we show that existing out-of-band authentication protocols may become completely insecure when
executed by lazy users. In Sections 5 and 6 we present statistically-secure and computationally-
secure out-of-band authentication protocols, respectively. In Section 7 we derive lower bounds on the
tradeoff between the adversary’s forgery probability and the length of the out-of-band authenticated
value in out-of-band authentication protocols that are executed by lazy users. Finally, in Section 8
we discuss several extensions of our framework and results.

2 Preliminaries

In this section we present the notation and basic definitions that are used in this work. For a
distribution X we denote by x ← X the process of sampling a value x from the distribution X.
Similarly, for a set X we denote by x ← X the process of sampling a value x from the uniform
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distribution over X . For an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a string s and
a subset I ⊆ [|s|] of positions, we let sI (sometimes we may write (s)I) denote the substring of s
obtained by concatenating the characters of s in the positions specified by the set I in increasing
order. For a set X , we denote by 2X the power set of X . A function ν : N → R+ is negligible if for
any polynomial p(·) there exists an integer N such that for all n > N it holds that ν(n) ≤ 1/p(n).
Unless stated otherwise, all logarithms throughout this paper are in base 2.

Shannon entropy. For a random variable X defined over a finite domain Ω, we rely the standard
notion of Shannon entropy defined as H(X) = −

∑
x∈Ω Pr[X = x] · log2 Pr[X = x]. Note that for any

such X it holds that H(X) ≤ log2 |Ω|.

Non-malleable commitment schemes [DDN00]. We rely on the notion of statistically-binding
non-malleable commitments (for basic definitions and background on commitment schemes, we refer
the reader to [Gol01]). We follow the indistinguishability-based definition of Lin and Pass [LP11],
though we find it convenient to consider non-malleability with respect to content, other than with
respect to identities. Intuitively speaking, a non-malleable commitment scheme has the following
guarantee: Any efficient adversary cannot use a commitment to some value v in order to produce
a commitment to a value v̂ which is “non-trivially” related to v. For formal definitions regarding
commitment schemes and non-malleable commitment schemes in particular, see Appendix A.

Dolev et al. [DDN00] constructed non-malleable commitment schemes from any one-way function.
Subsequently, Lin and Pass [LP11] and Goyal [Goy11] have shown that constant-round non-malleable
commitments can be constructed from the same assumption. The round complexity was further
improved by Goyal et al. [GRR+14] to 4 rounds, and by Goyal et al. [GPR16] to 3 rounds assuming
the existence of an injective one-way function. Such schemes can also be constructed efficiently
in a simple manner in the random-oracle model [BR93]. For further information regarding non-
malleable commitment schemes in the standard model see the references above as well as, for example,
[Bar02, PR08, LP09, PPV08, PW10, Wee10, GLO+12] and the references therein.

3 Modeling the Security of Lazy Users

In this section we introduce our framework for modeling the behavior and security of lazy users in
out-of-band message authentication protocols. We start by reviewing the communication model and
existing notions of security for out-of-band message authentication [Vau05, NSS06], and then present
our notions of security for the case of lazy users.

3.1 Out-of-Band Authentication

Following the framework of Vaudenay [Vau05] and Naor et al. [NSS06], we model the interaction
between the sender and the receiver as occurring over two types of channels: A bidirectional insecure
channel that is completely vulnerable to man-in-the middle attacks, and an authenticated unidirec-
tional low-bandwidth channel from the sender to the receiver. The adversary is assumed to have
complete control over the insecure channel: She can read, delay and remove any messages sent by
the two parties, as well as insert new messages of her choice at any point in time. In particular, this
provides the adversary with considerable control over the synchronization of the protocol’s execution.
Nonetheless, the execution is still guaranteed to be “marginally synchronized”: Each party sends her
message in the ith round of the protocol only upon receiving the due message of round i − 1. As
for the out-of-band channel, we assume that the sender is equipped with a low-bandwidth channel,
through which the sender may send a short message to the receiver in an authenticated manner (but
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without any secrecy guarantee). The adversary may read or remove this message, and may delay it
for different periods of time, but cannot modify it in an undetectable manner.

One may also consider a scenario where the sender, as well as the receiver, may send multiple
messages over the out-of-band authenticated channel throughout the protocol. However, this is
less desirable from a practical standpoint, and in any case, will not be necessary in our protocols.
Furthermore, our lower bounds readily capture this more general case as well, providing a lower
bound on the total number of bits sent over the authenticated channel throughout the protocol.

We follow the definitions of Vaudenay [Vau05] and Naor et al. [NSS06], generalizing naturally
to consider out-of-band authenticated values over general alphabets and not only over the binary
alphabet. As we discuss later on, this is of little importance in the standard setting (where the
parties are assumed to read the entire out-of-band authenticated value), but will play a significant
role when considering lazy users. Following Naor et al. we differentiate between protocols that are
computationally secure and ones that are statistically secure. We formalize the notion of statistically-
secure out-of-band authentication protocols as:

Definition 3.1. Let n, `, r ∈ N, let ε ∈ (0, 1) and let Σ be an alphabet. A statistically-secure
out-of-band (n, `, r, ε)-authentication protocol over Σ is an r-round protocol in which the sender S is
invoked on an n-bit message and sends at most ` characters of Σ over the out-of-band authenticated
channel. The following requirements must hold:

1. Correctness: In an honest execution of the protocol, for any input message m ∈ {0, 1}n on
which S is invoked, R outputs m with probability 1.

2. Unforgeability: For any man-in-the-middle adversary A and for any adversarially-chosen
input message m ∈ {0, 1}n on which S is invoked, the probability that R outputs some message
m̂ 6∈ {m,⊥} in an execution with S that is attacked by A is at most ε.

The requirement of perfect correctness (i.e., that the receiver always accepts the input message
in an honest execution) in all definitions in this section is for ease of presentation only. One can just
the same consider a relaxed correctness definition in which R outputs m with probability 1 − δ(λ)
for some correctness error parameter δ.6

A computationally-secure out-of-band authentication protocol is defined similarly, except that
security need only hold against efficient adversaries, and the probability of forgery is also allowed
to additively grow (with respect to the statistical setting) by a negligible function of the security
parameter.

Definition 3.2. Let n = n(λ), ` = `(λ), r = r(λ), ε = ε(λ), and Σ = Σ(λ) be functions of the
security parameter λ ∈ N. A computationally-secure out-of-band (n, `, r, ε)-authentication protocol
over alphabet Σ is an r-round protocol in which the sender S is invoked on an n-bit message and sends
at most ` characters of Σ over the out-of-band authenticated channel. The following requirements
must hold:

1. Correctness: In an honest execution of the protocol, for any input message m ∈ {0, 1}n on
which S is invoked, R outputs m with probability 1.

2. Unforgeability: For any probabilistic polynomial-time man-in-the-middle adversary A there
exists a negligible function ν(·) such that: For any input message m ∈ {0, 1}n chosen by the
adversary and on which S is invoked, the probability that R outputs some message m̂ 6∈ {m,⊥}
in an execution with S that is attacked by A is at most ε+ ν(λ).

6Using this definition, one has to account for the cumulative correctness error in our general transformation in
Section 5. The protocol in Section 6 is perfectly correct in any case.
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3.2 The Security of Lazy Users

In order to formally capture the lazy-users setting, given an out-of-band authentication protocol we
define a collection of “lazy protocols”, one per each possible subset of positions of the out-of-band
authenticated value. Informally speaking, given a protocol π in which the out-of-band authenticated
value consists of ` characters, for a subset I ⊆ [`] of indexes, we consider the “lazy protocol” πI in
which the parties execute π, with the exception that S only sends over the out-of-band channel the
substring of the out-of-band authenticated value that corresponds to the positions in the set I.

Specifically, let π be a (statistically-secure or computationally-secure) out-of-band (n, `, r, ε)-
authentication protocol over an alphabet Σ (recall Definitions 3.1 and 3.2). For every subset I ⊆ [`]
of the positions of its out-of-band authenticated value, the “lazy protocol” πI is defined as follows:

1. On input m ∈ {0, 1}n to S, the sender S and receiver R run the first r − 1 rounds of π. Let
v ∈ Σ` be the out-of-band authenticated value that S is due to send in round r.

2. S receives I and sends only vI over the out-of-band authenticated channel.
3. R receives I and vI , and decides on her output according to π.7

Using this notion, Definitions 3.3 and 3.4 below formalize the extensions discussed above in the
statistical setting and computational setting, respectively. Intuitively, we define the security of out-
of-band authentication protocols for lazy users by letting the bound on the forgery probability be a
function of the subset I considered by the users. Concretely, an out-of-band authentication protocol
π is parameterized by some function ε, which maps each possible set of positions I of the out-of-band
authenticated value to be read by the users to a matching upper bound on the forgery probability.
That is, in case the users only read the out-of-band authentication value in positions I, an adversary
should be able to make the receiver output a fraudulent message with probability at most ε(I). This
approach has the benefit of being very general on the one hand, while coinciding with the standard
definitions (see Definitions 3.1 and 3.2) when I = [`]. We note, however, that one may still consider
a more restrictive notion where the forgery probability should only depend on the size of I (observe
that this is a strict restriction of our notion).

Definition 3.3. Let n, `, r ∈ N and let ε : 2[`] → [0, 1]. A protocol π is a statistically-secure out-of-
band (n, `, r, ε)-authentication protocol for lazy users over alphabet Σ if for every I ⊆ [`] the protocol
πI is a statistically-secure out-of-band (n, |I|, r, ε(I))-authentication protocol.

Definition 3.4. Let n = n(λ), ` = `(λ), r = r(λ) and Σ = Σ(λ) be functions of the security
parameter λ ∈ N, and let ε = ε(λ, ·) : 2[`] → [0, 1]. A protocol π is a computationally-secure out-of-
band (n, `, r, ε)-authentication protocol for lazy users over alphabet Σ if for every I = I(λ) ⊆ [`] the
protocol πI is a computationally-secure out-of-band (n, |I|, r, ε(·, I))-authentication protocol.

4 The Insecurity of Existing Protocols

In this section we show that existing out-of-band authentication protocols may become completely
insecure when executed by lazy users. We focus on the computationally-secure protocol implemented
by WhatsApp [Wha17] and on the statistically-secure protocol of Naor et al. [NSS06], and show that
these protocols are completely vulnerable to man-in-the-middle attacks when the parties consider
only a half (or less) of the out-of-band authenticated value.

Concretely, for each of these two protocols we present an efficient man-in-the-middle attacker
that fools the receiver into accepting a fraudulent message with probability 1. Then, we discuss the

7As noted before, the protocols we consider in this paper must be defined for every substring of the out-of-band
authenticated value.
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basic underlying structure that these two protocols share, which makes them completely insecure
when executed by lazy users.

WhatsApp’s protocol [Wha17]. Consider any protocol where in order to authenticate a message
m, the sender S partitions m into two halves m = m1‖m2, and authenticates each half using some
out-of-band authentication protocol separately and independently. The out-of-band authenticated
value is then σ = σ1‖σ2, where σ1 and σ2 are the out-of-band authenticated values of the two
executions. If the underlying out-of-band authentication protocol is secure and the users read the
entire string σ, then this newly-defined protocol is secure as well (though, possibly, with a sub-optimal
tradeoff between the adversary’s forgery probability and the length of the out-of-band authenticated
value). However, consider for example the case where the parties only read σ1 (or a substring of
it). In this case, no security is guaranteed and a man-in-the-middle adversary can trivially make R
output a fraudulent message of the form m̂ = m1‖m̂2 for some m̂2 6= m2. A similar problem arises
when the parties read only σ2 (or a substring of it).

The above protocol might seem like a pathological example, specifically contrived for our needs,
but this is in fact exactly the approach used by WhatsApp. Concretely, a pair of WhatsApp users
wishing to verify that each of them has the correct key of the other user compare a 60-digit sequence
displayed on each of their screens. This sequence is derived by hashing each user’s key into a 30-digit
string, and concatenating the two strings.8 It is not hard to see that if the users only compare the
first half of the out-of-band authenticated value, it might very well be the case that one of them
holds a fraudulent key, completely compromising the secrecy of their chat.

The protocol of Naor et al. [NSS06]. Naor et al. [NSS06] presented a construction of a
statistically-secure out-of-band authentication protocol that relies on the following idea (see Ap-
pendix B for a detailed description of their protocol). Loosely speaking, the two parties iteratively
hash the message into shorter intermediate values until reaching a short enough value that can be
transmitted out-of-band. More concretely, in each round of the protocol the parties cooperatively
choose an algebraic hash function: They treat the input message and the intermediate values as
polynomials over finite fields of appropriate sizes, and in each round, one party chooses a random
element in the field on which the polynomial is evaluated, and the other party chooses a random shift
to apply to the result. When choosing the last hash function, the sender S is the one to choose the
element on which the polynomial is evaluated. The out-of-band authenticated value then consists
of two parts: (1) The result of the last hash function (according to the view of S); (2) and the last
element S chose.

Yet again, if the parties read and compare the entire out-of-band authenticated value, then Naor
et al. proved that this protocol is secure (and provides the optimal tradeoff between the adversary’s
forgery probability and the length of the out-of-band authenticated value). Alas, if the users are
lazy, and read only one of the two parts of the out-of-band authenticated value, then the protocol
becomes completely insecure. Concretely, if the parties only read the part that corresponds to the
last field element chosen by S, then a trivial attack exists: The man-in-the-middle adversary simply
runs two independent executions, one with the sender S and one with the receiver R, on two different
input messages, with the exception of choosing the same field element as S does in the last hash
function of her interaction with R.

8From WhatsApp’s security white paper [Wha17, p. 10]: “WhatsApp users additionally have the option to verify
the keys of the other users with whom they are communicating so that they are able to confirm that an unauthorized
third party (or WhatsApp) has not initiated a man-in-the-middle attack. This can be done by scanning a QR code,
or by comparing a 60-digit number. [...] The 60-digit number is computed by concatenating the two 30-digit numeric
fingerprints for each user’s Identity Key”.
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Summary: The underlying weakness. The property that both of the above examples share
and which makes them completely insecure in the face of rather trivial attacks can be articulated
in the following manner: In both cases, different sections of the input message to be authenticated
affect different sections of the out-of-band authenticated value. In the case of WhatsApp, each user’s
key affects only half of the out-of-band authentication value (but both keys should be verified). In
the case of Naor et al. [NSS06], the input message to be authenticated goes into the computation
of only half of the out-of-band authenticated value, while the other half is simply a random value
generated during the execution of the protocol.

It is instructive to view our positive results also in this light, as this may provide the reader with
additional intuition regarding the security of our constructions:

1. In the statistical setting, our transformation (and its resulting protocol when instantiated
with that of Naor et al. [NSS06]) can be interpreted as follows. We start with an out-of-
band authentication protocol that guarantees no security for lazy users to begin with (but
does guarantee security for users who fully comply with the protocol), and in particular may
suffer from the same problematic property described above. We transform this protocol into
a protocol that provides security for lazy users by “spreading” the influence of each bit of the
input message m across all characters of the out-of-band authenticated value of the resulting
protocol.

2. In the computational setting we consider Vaudenay’s protocol [Vau05] whose out-of-band au-
thenticated value is simply a uniformly-distributed string that is generated during the execution
of the protocol. Intuitively speaking, even though this value is determined independently of the
input message, we “tie together” the message in its entirety and the out-of-band authenticated
value using cryptographic tools (namely, a non-malleable commitment scheme).

5 Immunizing Statistically-Secure Protocols Against Lazy Users

In this section we present a generic transformation that uses any out-of-band authentication protocol
that is secure under a certain form of parallel repetition for constructing an out-of-band authenti-
cation protocol for lazy users. In particular, our transformation can be applied to any statistically-
secure protocol, and can thus be instantiated with the protocol of Naor et al. [NSS06]. As our
transformation itself is statistically secure, this yields a statistically-secure protocol (that comes very
close to matching our lower bound on the tradeoff between adversary’s forgery probability and the
length of the partial out-of-band authenticated value considered by the lazy users – see Corollary
7.3).

We first present and analyze our transformation for statistically-secure protocols, as well as
discuss the properties of its instantiation with the protocol of Naor et al. [NSS06]. Then, we discuss
the specific composability property required of computationally-secure protocols in order for them
to be compatible with our transformation (this, however, is somewhat less motivated given that our
computationally-secure protocol in Section 6 already matches our lower bound in the computational
setting).

The transformation. The building block underlying our transformation is an out-of-band au-
thentication protocol that does not necessarily guarantee any form of security for lazy users. Loosely
speaking, our transformation proceeds as follows: On input message m, the parties run ` parallel
and independent executions of the underlying protocol with the same message m, and parse each
of the resulting ` out-of-band authentication values as a single character from an alphabet of the
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appropriate size. The sender S then concatenates these ` characters into a single string of length
` (over the larger alphabet) and sends it over the out-of-band authenticated channel. In a lazy
execution of the protocol, where the receiver considers only some number t ≤ ` out of the ` out-of-
band authenticated characters, the receiver accepts m if and only if it m is accepted in each of the
corresponding t executions.

Intuitively, if the forgery probability of the underlying protocol is bounded by ε′, then fooling a
receiver that reads only a predetermined t-character subset of the out-of-band authenticated value
requires the adversary to break the unforgeability (in the standard sense, not considering lazy users)
of t copies of the underlying protocol, and hence the adversary’s forgery probability is bounded by
(ε′)t in the statistical setting.

Two remarks are in order. First, for ease of presentation, we define our transformation assuming
that the out-of-band value of the underlying protocol is over the binary alphabet {0, 1}, but our
transformation can be easily extended to support alphabets of arbitrary sizes. Second, it is typically
the case that in out-of-band authentication protocols, one can set the length of the out-of-band value
as she pleases (changing also the security guarantees accordingly). Hence, an intuitive way to think
about how our transformation should be used is to use the original protocol with an out-of-band
value of length which is roughly the logarithm of the alphabet size one wants, and then set ` as one
would without using the transformation. This way, we end up with an out-of-band value which is
similar in terms of length and alphabet to what would have been without using the transformation
(but now, also with security for lazy users).

We now turn to formally define our transformation. Let n′, `′, r′ ∈ N, let ε′ ∈ (0, 1), and let π′

is a statistically-secure out-of-band (n′, `′, r′, ε′)-authentication protocol; that is, π′ is an r′-round
protocol for out-of-band authentication of messages of length n′, where the sender out-of-band au-
thenticates at most `′ bits, and the probability of forgery is bounded by ε′. We use π′ to construct
a statistically-secure out-of-band (n = n′, `, r = r′, ε)-authentication protocol for lazy users, denoted
πLazy, for any ` ∈ N, such that ε(I) = (ε′)|I| for every I ⊆ [`].

The protocol for lazy users, denoted πLazy, is defined as follows for every I ⊆ [`] (i.e., this is the
“lazy protocol” πLazy,I – see Section 3):

1. On input message m to S, S and R run ` parallel executions of π′ up to (and including)
round r′ − 1 with the same input message m to S in all executions. Denote the out-of-band
authenticated values that S computes in these executions by σ1 · · ·σ` ∈ {0, 1}`

′ .

2. For each i ∈ [`], S parses σi as a single character over an alphabet of size k = 2`
′ ; denote the

ith character by βi. S then receives I = {i1, . . . , i|I|} ⊆ [`] and sends σ = βi1‖ . . . ‖βi|I| over
the out-of-band authenticated channel.

3. R receives I, parses σ = σi1 · · ·σi|I| as |I| binary strings of length `′ each. For every i ∈ I,
denote by m̂i the output of R in the ith execution given R’s view of that execution (including
σi). If for every i, j ∈ I it holds that m̂i = m̂j , then R outputs m̂i1 . Otherwise, R outputs ⊥.

The correctness and security of the protocol πLazy are stated in the following theorem.

Theorem 5.1. Let π′ be a statistically-secure out-of-band (n, `′, r, ε′)-authentication protocol, let
k = 2`

′ and let ` ∈ N. Then, πLazy is a statistically-secure out-of-band (n, `, r, ε)-authentication
protocol for lazy users over an alphabet of size k, where ε(I) = (ε′)|I| for every I ⊆ [`].

The correctness and round complexity of πLazy follow immediately from the correctness and round
complexity of π′, respectively. The unforgeability of πLazy for lazy users (vis-à-vis Definition 3.3) is
proven in Lemma 5.3 below, yielding the above theorem.
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A concrete instantiation. Naor et al. [NSS06] constructed a statistically-secure out-of-bound
(n, `′, r, ε′)-authentication protocol for any n, r ∈ N and any ε′ ∈ (0, 1), where `′ ≤ log(1/ε′) +
log(r−1) +O(1). Instantiating our protocol πLazy with the protocol of Naor et al. as π′, while setting
r = Ω(log∗ n) and ε′ = 1/2, yields a statistically-secure out-of-band authentication protocol for
lazy users with the same round complexity and a constant-size alphabet. This is formalized by the
following corollary.

Corollary 5.2. For any n, ` ∈ N, there exists a statistically-secure out-of-band (n, `, log∗ n, ε)-
authentication protocol for lazy users over a constant size alphabet, where ε(I) = 2−|I| for every
I ⊆ [`].9

Specifically, a more refined analysis of the protocol of Naor et al. for the case ε′ = 1/2 shows
that a careful adjustment of the parameters of the protocol yields `′ ≤ 8, implying an out-of-band
authentication protocol for lazy users over an alphabet of size 28 (see Section 8.2 for the technical
details). This is already a reasonably-practical constant: Telegram, for example, uses an alphabet
comprised of 333 > 28 emoji symbols for its out-of-band key verification in voice calls [Tel20a].

We now turn to prove the security of our transformation. Lemma 5.3 yields the unforgeability
of our protocol πLazy, proving Theorem 5.1. Let t ∈ [`] denote the size of the subset I of indexes of
the out-of-band authenticated value sent. For an adversary A, let ForgeA denote the event in which
R outputs m̂ 6= {m,⊥} in an execution of πLazy with A.

Lemma 5.3. For any computationally unbounded adversary A and for any t ∈ [`], it holds that
Pr [ForgeA] ≤ (ε′)t.

Proof. For every i ∈ I, m̂i is the output of the receiver in an execution of the basic protocol π′

when S is invoked on the input m. Hence, by the unforgeability of basic protocol π′,

∀i ∈ I : Pr [m̂i 6∈ {m,⊥}] ≤ ε′.

We wish to prove that Pr [∀i ∈ I : m̂i 6∈ {m,⊥}] ≤ (ε′)t. This follows from a standard argument
(see, for example, [Gol98, p. 153]) that we briefly sketch here for completeness. Since the adversary
A is computationally unbounded, we may assume without loss of generality that A is deterministic.
Hence, the execution of πLazy with A is fully determined by the random tapes of S and R (the random
tape of each party can be viewed as the concatenation of ` independently sampled random tapes,
one per execution of the basic protocol π′). Let ri denote the random coins of S and R in the ith
execution of π′, and let r−i denote their random coins for all other executions. Then, it must hold
that

∀r−i ∈ {0, 1}∗ : Pr
ri

[m̂i 6∈ {m,⊥}|r−i] ≤ ε′.

If this is not the case – i.e., there exists some r∗−i ∈ {0, 1}∗ such that Prri
[
m̂i 6∈ {m,⊥}|r∗−i

]
> ε′ –

then we can construct an adversary A′ that breaks the unforgeability of π′. Concretely, A′ simply
invokes A, while simulating S and R in the remaining `−1 executions of π′ in πLazy with randomness
r∗−i. The above inequality implies in particular that

∀i ∈ I : Pr [m̂i 6∈ {m,⊥}|∀i > j ∈ I : m̂j 6∈ {m,⊥}] ≤ ε′.

Indeed, it thus holds that

Pr [∀i ∈ I : m̂i 6∈ {m,⊥}] =
∏
i∈I

Pr [m̂i 6∈ {m,⊥}|∀i > j ∈ I : m̂j 6∈ {m,⊥}] ≤ (ε′)t.

9Where log∗ n is the iterated logarithm function defined recoursively by log∗ n = 1 + log∗ (logn) of n > 1 and
log∗ n = 0 otherwise.
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Finally, R outputs some m̂ 6= ⊥ only if this is the output of all the executions corresponding to
I. Hence,

Pr [ForgeA] ≤ Pr [m̂ 6∈ {m,⊥}]
≤ Pr [∀i ∈ I : m̂i 6∈ {m,⊥}]
≤
(
ε′
)t
.

Applying our transformation to computationally-secure protocols. Should we consider
only efficient man-in-the-middle adversaries, then the proof of Lemma 5.3 only uses the statistical-
security of π′ to deduce that it permits parallel composition while maintaining the security of each
individual copy of the basic protocol exactly, independently of the other executions of the basic
protocol. Therefore, it is indeed the case that if π′ is a computationally-secure protocol that retains
its security under parallel composition, then the same approach will yield a computationally-secure
out-of-band authentication protocol for lazy users. More formally, the property we require of the
basic protocol is the following: If the forgery probability in a stand-alone execution of the protocol
is bounded by ε′, then the probability that in t parallel executions of the protocol with the same
input message m to S, the receiver R outputs some m̂ 6∈ {m,⊥} in all t executions is at most (ε′)t.

6 Matching the Optimal Tradeoff for Computationally-Secure Protocols

In this section we show that Vaudenay’s computationally-secure protocol [Vau05] can be extended
to allow execution by lazy users, and that the resulting protocol matches our lower bound on the
tradeoff between the adversary’s forgery probability and the length of the out-of-band authenticated
value for lazy users (see Theorem 7.1). That is, the protocol offers the optimal tradeoff between
the adversary’s forgery probability and the length of the partial out-of-band authenticated value
considered by the lazy users.

The basic building block used by the protocol is any non-malleable statistically-binding com-
mitment scheme Com. From a foundational point of view, such a scheme with a constant number
of rounds can be constructed based on any one-way function in the standard model, and from a
more practical point of view, such a scheme can be constructed by simply invoking a hash function
modeled as a random oracle (see Section 2).

The protocol, which we denote by πComp, is parametrized by the security parameter λ ∈ N, the
message length n = n(λ) ∈ N and the length of the out-of-band authenticated value ` = `(λ) ∈ N,
and is defined as follows:

1. On input the security parameter λ ∈ N and a message m ∈ {0, 1}n, the sender S chooses a
random rS ← {0, 1}`, sends m to the receiver R, and commits to the pair (m, rS) to receiver
R using Com. Denote the resulting commitment by cS and its corresponding decommitment
by dS .10 Denote the message and commitment as received by R by m̂ and ĉS , respectively.

2. The receiver R chooses a random rR ← {0, 1}` and sends it to the sender S. Denote by r̂R the
value that S receives.

10As a commitment scheme may be interactive, when referring to a commitment, we mean the transcript of the
interaction between the committer and the receiver during an execution of the commit phase of the commitment
scheme. When the scheme is non-interactive, a commitment is simply a single string sent from the committer to the
receiver.
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3. The sender S sends the decommitment dS to R. Denote by d̂S the decommitment R receives.
If d̂S is not a valid decommitment to ĉS or if the revealed value is not of the form (m̂, ∗), then
R outputs ⊥. Otherwise, let (m̂, r̂S) be the revealed value.

4. The sender S sends σ = rS ⊕ r̂R over the out-of-band channel. R checks if r̂S ⊕ rR = σ. If so,
R outputs m̂, and otherwise R outputs ⊥.

The following theorem captures the security of the above protocol, stating that it provides the
optimal tradeoff as discussed above.

Theorem 6.1. Let n = n(·), r = r(·) and ` = `(·) be functions of the security parameter λ ∈ N and
let Com be an r-round statistically-binding non-malleable commitment scheme. Then, protocol πComp

is a computationally-secure out-of-band (n, `, r+ 3, ε)-authentication protocol for lazy users (over the
alphabet Σ = {0, 1}), where ε(λ, I) = 2−|I| for every λ ∈ N and for every I ⊆ [`(λ)].

Our protocol incurs an almost minimal overhead in the number of rounds relative to the round
complexity of the underlying commitment scheme: The number of rounds of insecure communication
is r + 2 (this includes the r + 1 rounds necessary for commitment and decommitment), to which
we add only a single message over the insecure channel, and a single message over the out-of-band
authenticated channel. In the plain model, a non-malleable commitment is known to exist with
r = 3, while in the random oracle model, there exist non-interactive non-malleable commitments
(i.e., with r = 1).

The security proof of our protocol considers all possible synchronizations a man-in-the-middle
adversary may impose on an execution of the protocol. For each such synchronization and for every
possible subset I ⊆ [`] of positions of the out-of-band authenticated value, we bound the forgery
probability by 2−|I| + ν(λ), for a negligible function ν(λ), by converting an adversary achieving
better forgery probability into an adversary that breaks a specific security property of the underlying
commitment scheme (i.e., binding, hiding or non-malleability).

In what follows, for an adversary A we let ForgeA denote the event in which R outputs m̂ 6∈ {m,⊥}
in an execution of πComp with A, where m is the input to S. Then, the following lemma establishes
the unforgeability of πComp, yielding Theorem 6.1.

Lemma 6.2. For any probabilistic polynomial time adversary A there exists a negligible function
ν = ν(λ), such that for all sufficiently large λ ∈ N and for every I = I(λ) ⊆ [`(λ)] it holds that

Pr [ForgeA] ≤ 2−|I| + ν(λ).

Proof. For simplicity of presentation, we first prove Lemma 6.2 assuming Com is a non-interactive
commitment scheme (in addition to being statistically-binding and non-malleable), and then discuss
how the proof extends to interactive schemes as well.

For a message v sent in the execution of the protocol, we denote by T (v) the time in which v
was sent. By the definition of the protocol πComp, it always holds that

T (cS) < T (r̂R) < T (dS)

and
T (ĉS) < T (rR) < T (d̂S).

We also assume without loss of generality that any adversary abides by the following timing restric-
tions:
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1. Whenever a party (either S or R) is due to send a message according to the protocol, the
adversary waits until this message is sent before deciding on its next action. This implies, for
instance, that if T (cS) > T (ĉS) then it also holds that T (cS) > T (rR).11

2. The adversary delays sending d̂S until the end of the execution; i.e., T (d̂S) > T (dS).

Note that this assumption is indeed without loss of generality, as any adversary can be converted
into an adversary that adheres to the above timing restrictions without damaging the probability of
a successful forgery.

Given the above assumption, a man-in-the-middle adversary has three possible attack timings:

1. T (cS) < T (r̂R) < T (dS) < T (ĉS) < T (rR) < T (d̂S).

2. T (ĉS) < T (rR) < T (cS) < T (r̂R) < T (dS) < T (d̂S).

3. T (cS) < T (ĉS) < T (rR) < T (r̂R) < T (dS) < T (d̂S).

Denote the events in which each of the timings occurs by T1,T2,T3, respectively.
We can now turn to bound the probability of a successful forgery. Consider the event in which

one of the (at most two different) commitments sent during the execution of πComp can be opened
(information-theoretically speaking) to more than one value; denote this event by Coll. By the
statistical binding property of Com, there exists a negligible function ν1(·) such that Pr [Coll] < ν1(λ)
for all sufficiently large λ ∈ N. So for the remainder of the proof we will condition our analysis on
the event Coll.

We bound the probability of forgery for each of the three possible attack timings separately, in
three different claims below, and the lemma will then follow. The first claim address the first timing
listed above. Intuitively speaking, conditioned on T1, by the time R randomly chooses rR, the values
rS , r̂S and r̂R have already been determined and fixed. Hence, for any I ⊂ [`], the probability that
σI is consistent with the view of R is 2−|I|. Recall that for a string s and a set I ⊆ [|s|], the notation
sI denoted the substring of s obtained by concatenating the characters in positions I (we will use
this notation throughout the remainder of the proof).

Claim 6.3. Let λ ∈ N and let ` = `(λ). Then, for any adversary A and for every subset I ⊆ [`], it
holds that

Pr
[
ForgeA|Coll ∧ T1

]
= 2−|I|.

Proof of Claim 6.3. Conditioned on T1, it holds in particular that T (rR) > T (cS), T (ĉS), T (r̂R).
Moreover, conditioned on Coll, the commitments cS and ĉS can each be opened to (at most) a single
value. This means that the values rS , r̂S and r̂R have already been fixed when R chooses rR. Hence,
it holds that

Pr
[
ForgeA|Coll ∧ T1

]
≤ Pr

rR
[(rS ⊕ r̂R)I = (r̂S ⊕ rR)I ]

= Pr
rR

[(rR)I = (rS ⊕ r̂R ⊕ r̂S)I ]

= 2−|I|.

11Note that cS is sent only after A decides on the input message m to S.
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Claim 6.4. Let λ ∈ N and let ` = `(λ). Then, for every probabilistic polynomial-time adversary A,
there exists a probabilistic polynomial-time adversary B such that for every I ⊆ [`], it holds that

AdvBCom−Hiding(λ) ≥ Pr
[
Coll

]
· Pr [T2] ·

(
Pr
[
ForgeA|Coll ∧ T2

]
− 2−|I|

)
.

Recall that the adversarial advantage of an algorithm in breaking the hiding property of a com-
mitment scheme is defined in Appendix A.

Proof of Claim 6.4. Given an adversary A against protocol πComp, we construct an adversary B
that breaks the hiding property of Com whenever A succeeds in breaking the unforgeability of πComp

and Coll and T2 occur.
More concretely, conditioned on T2, the timing of A’s attack is the following:

1. A sends m̂ and a commitment ĉS to R, and R sends rR in response.

2. S sends m and a commitment cS ; A replies S with r̂R.

3. S opens the commitment cS followed by A opens the commitment ĉS .

Let r∗ = r∗(λ) and r∗R = r∗R(λ) be the random coins of A and the choice of rR, respectively, that
maximize A’s success probability on input 1λ conditioned on Coll ∧ T2. Note that in order for the
attack of A to succeed, the commitment in Step 1 above has to be a valid commitment to some
pair (m̂, r̂S) (at least one such pair). So, if A has non-zero probability of succeeding, it means that
conditioned on Coll, r∗ uniquely determines some m̂∗, r̂S∗ to which A commits in Step 1. r∗ and r∗R
also uniquely define the message m∗ which is set as the input to S.

Consider the following (non-uniform) adversary B, that on input 1λ and a commitment c, distin-
guishes between the case that c is a commitment to (m, rS) and the case that it is a commitment to
(m, 0) for strings m and rS of its choice. B gets r∗ = r∗(λ) and r∗R = r∗R(λ) as non-uniform advice,
as well as m̂∗ = m̂∗(λ), r̂S

∗ = r̂S
∗(λ) and m∗ = m∗(λ),12 and is defined as follows:

1. B invokes A(1λ; r∗). A first outputs m̂∗ and a commitment to (m̂∗, r̂S
∗) as her first message

to R. B replies to A with r∗R.

2. B chooses a random rS ← {0, 1}` and outputs v0 = (m∗, 0`) and v1 = (m∗, rS) as the challenge
values in the hiding experiment of Com (see Definition A.2). In response, B gets a commitment
c to vb for some b ∈ {0, 1}.

3. B forwards c to A as the commitment cS of S in Step 2 above. A replies with r̂R.

4. B receives r̂R and decides on her output as follows: If (r̂R)I = (r̂S
∗ ⊕ r∗R ⊕ rS)I , output 1;

otherwise, output 0.

For our analysis of B’s success probability, we consider the following two cases:

• If b = 1: In this case, conditioned on Coll ∧ T2 and on r∗R, B perfectly simulates an execution
of πComp to A (for Steps 1 and 2 above). Conditioned on Coll, each of the commitments sent
in this execution uniquely defines (at most) a single committed value. Hence, a necessary
condition for A to enforce a successful forgery is that indeed (r̂R)I = (r̂S

∗ ⊕ r∗R ⊕ rS)I . It
follows that in case b = 1,

Pr
[
HidingBCom(λ, 1) = 1|Coll ∧ T2

]
≥ Pr

[
ForgeA|Coll ∧ T2

]
.

12m∗ can be obtained from A given r∗ and r∗R. For a concise proof however, we give m∗ to B as non-uniform advice
as well.
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• If b = 0 : In this case, the view of A is independent of rS , and in particular of (rS)I which is
uniformly distributed over {0, 1}|I|. Hence,

Pr
[
HidingBCom(λ, 0) = 1|Coll ∧ T2

]
≤ Pr [(r̂R)I = (r̂S

∗ ⊕ r∗R ⊕ rS)I ] = 2−|I|.

Putting things together,

AdvBCom−Hiding(λ) ≥ Pr
[
Coll

]
· Pr [T2] ·

(
Pr
[
ForgeA|Coll ∧ T2

]
− 2−|I|

)
.

Claim 6.5. For every probabilistic polynomial-time adversary A, there exists a pair of probabilistic
polynomial-time algorithms (C,D) such that for every I ⊆ [`], it holds that

Adv
(C,D)
Com−NM(λ) ≥ Pr

[
Coll

]
· Pr [T3] ·

(
Pr
[
ForgeA|Coll ∧ T3

]
− 2−|I|

)
.

Recall that the adversarial advantage of a pair of algorithms in breaking the non-malleability of
a commitment scheme is defined in Appendix A.

Proof of Claim 6.5. Let r∗ = r∗(λ) be the random coins ofA that maximize the forgery probability
(over the randomness of S and R). Conditioned on T3, r∗ uniquely determines the input message
to S. Denote this message by m∗ = m∗(λ). The adversary C gets as input the security parameter
1λ and a uniformly chosen `-bit string the z ← {0, 1}` as an auxiliary input. C also gets r∗ as
non-uniform advice, and is defined in the following manner:

1. In the left interaction, C gets a commitment c to a value v.

2. C chooses rR ← {0, 1}` at random. It then invokes A(1λ; r∗) and simulates a partial execution
of πComp as follows:

(a) C forwards the commitment c to A as the commitment of S to (m∗, rS). A replies with ĉS
as the commitment that is to be delivered to R. C then outputs ĉS in its right interaction.

(b) C sends rR to A, who outputs r̂R in reply. After receiving r̂R, C terminates.

The distinguisher D then gets as input the random variable mimC
Com(v, z), which includes the

following information (among other things):

• The auxiliary input z.

• The random strings rR and r̂R.

• The value v which either the value to which ĉS may be opened or ⊥. Note that conditioned on
Coll, it holds that v = ⊥ either in the case that the ĉS is not a valid commitment (and cannot
be opened to any value) or that it is identical to c (the commitment of v received in the left
interaction). In the latter case, again by conditioning of Coll, this means that the only value
this commitment might be opened to is v.

We now turn to define the distinguisher D. On input 1λ and mimC
Com(v, z), the distinguisher D

acts as follows:

1. If v = ⊥, return 0.

2. Otherwise, parse v as (m∗, rS) and check if (z ⊕ r̂R)I = (r̂S ⊕ rR)I . If so, output 1; otherwise,
output 0.

For the analysis of the attack, we consider the following two cases.
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Case 1: If v = (m∗, z) (in particular, the second part of v is a uniformly distributed `-bit string),
then C perfectly simulates the honest parties of πComp to A until the latter terminates. Conditioned
in Coll, the commitment ĉS can be opened to at most one value. If such a value exists, denote it
by (m̂, r̂S). A necessary condition for a successful forgery is that ĉS may be opened to some (m̂, r̂S)
and that (rS ⊕ r̂R)I = (r̂S ⊕ rR)I . Therefore, a successful forgery implies that D outputs 1. Hence,

Pr
[
D(1λ,mimC

Com((m∗, z), z)) = 1|Coll ∧ T3

]
≥ Pr

[
ForgeA|Coll ∧ T3

]
.

Case 2: If v = (m∗, 0`), then the view of A (as ran by C) is independent of z. In particular, the
values r̂S and r̂R as produced by A are independent of z. The value rR is drawn by C uniformly at
random, and is therfore also independent of z. Hence, since z is distributed uniformly over {0, 1}`,
it holds that

Pr
[
D(1λ,mimC

Com((m∗, 0`), z)) = 1|Coll ∧ T3

]
≤ Pr [(z ⊕ r̂R)I = (r̂S ⊕ rR)I ]

= Pr [zI = (r̂S ⊕ rR ⊕ r̂R)I ]

= 2−|I|.

By an averaging argument, there exists some z∗ ∈ {0, 1}` such that

Adv
(C,D)
Com−NM(λ) ≥ Pr

[
Coll

]
· Pr [T3] ·

(
Pr
[
D(mimC

Com((m∗, z∗), z∗)) = 1|Coll ∧ T3

]
−Pr

[
D(mimC

Com((m∗, 0`), z∗)) = 1|Coll ∧ T3

])
≥ Pr

[
Coll

]
· Pr [T3] ·

(
Pr
[
ForgeA|Coll ∧ T3

]
− 2−|I|

)
.

and the claim follows.

We are now ready to conclude the proof of Lemma 6.2. By the above claims, it holds that

Pr [ForgeA] ≤ Pr [Coll] + Pr
[
ForgeA|Coll

]
· Pr

[
Coll

]
≤ Pr [Coll] + Pr

[
ForgeA|Coll ∧ T1

]
+ Pr

[
ForgeA|Coll ∧ T2

]
· Pr

[
Coll

]
· Pr [T2]

+ Pr
[
ForgeA|Coll ∧ T3

]
· Pr

[
Coll

]
· Pr [T3]

≤ 2−|I| + Pr [Coll] + AdvBCom−Hiding(λ) + Adv
(C,D)
Com−NM(λ).

By the security of Com (namely, the binding, hiding and non-malleability of Com), there exists a
negligible function ν = ν(·) such that

Pr [ForgeA] ≤ 2−|I| + ν(λ).

Uniform vs. non-uniform reductions. The proof of Theorem 6.1 relies on non-uniform security
reductions (namely, this is the case in the proofs of Claim 6.4 and of Claim 6.5). Hence, for security
to be guaranteed by our proof the protocol has to be instantiated with a commitment scheme that is
secure against non-uniform adversaries. From a theoretical standpoint, such constant-round schemes
are known to exist (see Section 2) assuming one-way functions (that are secure against non-uniform
adversaries), and from a more practical perspective, such schemes can be easily built in the random
oracle model (for further discussion on the possible instantiations, see [RS18]). It is nevertheless
possible to prove the security of the underlying approach of the protocol via a uniform reduction, if
one or more of the following adjustments is applied to the protocol and/or to the security proof:
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• One possibility is to have R commit to rR at the beginning of the protocol, before S commits
to (m, rS) (and then open the commitment after S finishes her commitment, but before she
opens it). In this case, πComp is a special case of the group out-of-band authentication protocol
of Rotem and Segev [RS18], and their (uniform) proof readily extends to apply to lazy users.

• Another possibility is to assume that the adversary chooses the input message m to S non-
adaptively. That is, she must choose m at the beginning of the protocol and cannot, for
example, send ĉS to R and then choose m only upon receiving rR. If the adversary chooses m
non-adaptively, then we can assume without loss of generality that the first message sent in the
execution is by S (since any adversary that does not obey this assumption can be transformed
into one that does without damaging the probability of forgery), essentially reducing timing
T2 to timing T3. We still need to address the non-uniformity in the proof of Claim 6.5. This
proof can be made uniform if we consider a “more uniform” definition for non-malleability of
commitments, in which the adversary first chooses the two values v0 and v1 from Definition A.1
(or a distribution from which they are sampled), and then receives a commitment c to one of
them (chosen randomly) in its left interaction. The distinguisher D then needs to distinguish
between the case where c is a commitment to v0 and the case where it is a commitment to v1.

Supporting interactive commitments. The proof of Lemma 6.2 can be easily extended to
support the use of non-malleable commitment schemes which are interactive. First, let’s observe that
any such commitment scheme can be converted into a scheme in which the sender’s first message is in
and of itself statistically binding; i.e., with overwhelming probability, once this message is sent, even
a computationally unrestricted adversary cannot complete the commitment phase in two different
ways, generating two different commitments c1 and c2, such that it is possible to open them into
two distinct messages. This can be done by first having the sender committing to the message using
Naor’s statistically-binding two-message commitment scheme [Nao91], and then committing to the
same message using the original non-malleable scheme. It is not hard to see that this transformation
achieves the afore-described property, while retaining non-malleability that is sufficient for our needs;
i.e., an efficient adversary cannot produce a commitment for a related yet different value.13

Now, for a commitment c, we denote by T (c) the time of the first message sent by the committer
as part of the commitment. Under this notation, Claim 6.3 still holds as conditioned on T1 ∧ Coll,
it is still true that rR is sampled after all other variables contributing to the computation of σ and
of σ̂ are uniquely determined. Claim 6.4 holds since it is still the case, conditioned on T2 ∧ Coll,
that by the time dS is due to be sent in the simulation of πComp that B conducts, B has sufficient
information to determine whether or not (r̂R)I = (r̂S

∗ ⊕ r∗R ⊕ rS)I . In addition, the “binding part”
(which consists of Naor’s commitment scheme) of the commitments c (which B forwards as cS) is
completed, and hence B can be seen as an adversary against Naor’s commitment scheme. Similarly,
Claim 6.5 holds since conditioned on T3 ∧ Coll, by the time dS is due in the simulation of πComp

that C conducts, sufficient information was generated for the distinguisher D to determine if indeed
(z ⊕ r̂R)I = (r̂S ⊕ rR)I .

A final, rather technical modification to the proof, is that in the proof of Claims 6.4 and 6.5, the
adversaries we construct have to synchronize between the commitments they receive/produce as part
of the security experiments in which they participate (i.e., the hiding and non-malleability experiment
defined in Appendix A) and the commitments they relay to and receive from the man-in-the middle
adversary A, in the simulations of πComp they conduct.

13The adversary might be able to produce a different commitment for the same value, but it is easy to see that this
is benign in our protocol, and our proof of security still holds.
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7 Lower Bounds on the Security of Lazy Users

Vaudenay [Vau05] and Naor et al. [NSS06] established tight bounds on the tradeoff between the
adversary’s forgery probability and the length of the out-of-band authenticated value in out-of-band
authentication. In this section we show that their lower bounds, in both the computational and
statistical setting, directly translate into corresponding lower bounds for protocols that are executed
by lazy users.

7.1 Computationally-Secure Protocols

In any computationally-secure out-of-band authentication protocol where the probability of forgery
is bounded by ε > 0, the sender must out-of-band authenticate at least log(1/ε) bits. This can be
seen, for example, by analyzing the collision probability of the random variable corresponding to
the out-of-band authenticated value (see for example, [PV06]). Below, we show that this reasoning
generalizes to the case of lazy users: Namely, for each number k ∈ [`] of bits read from the out-of-band
authenticated value, we provide a corresponding lower bound.

Theorem 7.1. For any computationally-secure out-of-band (n, `, r, ε)-authentication protocol for lazy
users over alphabet Σ, it holds that

ε(I) ≥ 2−|I|·log |Σ| − 2−n

for every I ⊆ [`].

Proof. Let π be any computationally-secure out-of-band (n, `, r, ε)-authentication protocol for lazy
users over alphabet Σ. Let λ ∈ N and ` = `(λ) and fix any I ⊆ [`]. Consider the following attack:

1. Choose a random m ← {0, 1}n and run an honest execution with S on input m (with the
adversary playing the role of R). Denote by v the out-of-band authenticated value S sends at
the end of the execution.

2. Choose a random m̂← {0, 1}n and run an honest execution with R, where the adversary plays
the role S on input m̂. Denote by v̂ the out-of-band authenticated value that the simulated
sender sends at the end of the execution. If v̂I 6= vI , terminate.14

Denote by VI the random variable corresponding to the substring of the out-of-band authenticated
value defined by the positions in I, where the distribution of VI is induced by an honest execution
of π on a randomly chosen input message to S. Then, the following holds:

Pr
(v̂I ,vI)←VI×VI

[v̂I = vI ] =
∑
vI

(Pr [VI = vI ])
2 = 2

log
∑
vI

(Pr[VI=vI ])2

≥ 2
∑
vI

Pr[VI=vI ] log(Pr[VI=vI ])
= 2−H(VI).

The inequality above follows from Jensen’s inequality.
Let ForgeI denote the event in which the above attack goes through; i.e., R outputs a fraudulent

message. By the correctness of π, it holds that

Pr [ForgeI ] ≥ Pr [v̂I = vI ∧ m̂ 6= m]

≥ Pr [v̂I = vI ]− Pr [m̂ = m]

≥ 2−H(VI) − 2n.

14Of course, the adversary makes sure that R receives the out-of-band value at the timing prescribed by the protocol.
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On the one hand, by the unforgeability of π, it must hold that ε(I) ≥ 2−H(VI) − 2n. On the other
hand, it is always the case that H(VI) ≤ |I| · log |Σ|. Taken together, these inequalities yield the
theorem.

The lower bound of Theorem 7.1 should be thought of in the following terms. On the one hand, if
the message to be authenticated is short (relative to the bandwidth of the out-of-band authenticated
channel), then the sender can just go ahead and send it over the out-of-band channel. On the
other hand, if it is long, then the term 2−n is small and of little significance, and the attack from
our proof succeeds with probability close to 2−|I|·log |Σ|. Specifically, for any protocol in which the
length of the out-of-band authenticated value is independent of the length of the input message to
be authenticated, the success probability of our attack can be made arbitrarily close to 2−|I|·log |Σ|

(while considering arbitrarily long input messages).

7.2 Statistically-Secure Protocols

Naor et al. [NSS06] proved a lower bound on the length of the out-of-band authenticated value in any
statistically-secure out-of-band authentication protocol. More precisely, they provided a lower bound
on the Shannon entropy of the random variable corresponding to the out-of-band authenticated value.
If we denote this random value by V , the lower bound of Naor et al. can be articulated as follow:

Theorem 7.2 ([NSS06]). For any statistically-secure out-of-band (n, `, r, ε)-authentication protocol
it holds that

ε ≥ 2−H(V )/2 − 2−n

Theorem 7.2 implies the following, more general, lower bound for out-of-band authentication
protocols for lazy users over possibly non-binary alphabets.

Corollary 7.3. For any statistically-secure out-of-band (n, `, r, ε)-authentication protocol for lazy
users over alphabet Σ, it holds that for every I ⊆ [`]

ε(|I|) ≥ 2−|I|·log(|Σ|)/2 − 2−n.

Proof. Let π be any (n, `, r, ε)-authentication protocol for lazy users over alphabet Σ. By definition,
this means that for any I ⊆ [`], the induced protocol πI is an (n, |I|, r, ε(I))-authentication protocol.
For every I ⊆ [`], denote by VI the random variable corresponding to the substring of the out-of-
band authenticated value that is induced by the subset I. Hence, by Theorem 7.2, for every I ⊆ [`]
it holds that

ε(|I|) ≥ 2−H(VI)/2 − 2−n.

For every I ⊆ [`] it holds that H(VI) ≤ |I| · log |Σ|, and combining this fact with the above inequality
completes the proof.

8 Extensions

In this section we consider two possible extensions of our work. First, in Section 8.1, we discuss
a stronger notion of security which we call “adaptive laziness” and how our definitions and results
extend to it. Then, in Section 8.2, we provide a refined version and analysis of the Naor et al.
[NSS06] protocol for the case where the forgery probability is bounded by a constant, yielding an
out-of-band authenticated value of a small constant size, which translates to a small alphabet in our
transformation of Section 5.
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8.1 Adaptive Laziness

In what follows we discuss a stronger notion of security to which we refer as “adaptive laziness”.
Informally, in the definitions of Section 3, the unforgeability property requires that an adversary
cannot make the receiver accept a fraudulent message, even if the parties consider only a substring
of the out-of-band authenticated value, where the positions to be considered may be arbitrarily
chosen – but are fixed before the execution. In some scenarios, it might make sense to consider an
adversary that can adaptively choose these positions after the execution of the protocol is completed
(and the out-of-band authenticated value is known).

8.1.1 Defining Adaptive Laziness

To formally define the notion of adaptive laziness, we introduce the following notation. For any
out-of-band authentication protocol π and an adversary A, we consider a related protocol πAL(A, t)
(where AL stands for “adaptive laziness”), in which A chooses the subset I of t locations after the
out-of-band authenticated value is sent. We start by considering the statistical setting. Let π be
a statistically-secure out-of-band (n, `, r, ε)-authentication protocol over alphabet Σ. The protocol
πAL(A, t) is comprised of three steps:

1. On input m ∈ {0, 1}n to S, the sender S and receiver R run the first r − 1 rounds of π. Let
v ∈ Σ` be the out-of-band authenticated value that S is due to send in round r.

2. A receives v, and chooses a subset I ⊆ [`] of t locations (after observing the transcript of the
protocol and in particular v).

3. S receives I and sends only vI over the out-of-band authenticated channel.
4. R receives vI and I and decides on her output according to π.

The modified protocol is defined similarly for the computational setting, with the exception that
the parameters involved may be functions of the security parameter λ ∈ N. Using the above notation,
we move on to define statistically-secure out-of-band authentication with adaptive laziness. For ease
of presentation, Definitions 8.1 and 8.2 below requires that the probability of forgery be bounded
as a function of the size of I (and not I itself, as in Definitions 3.3 and 3.4), but one can easily
generalize it to accommodate more refined bounds on the forgery probability as well.

Definition 8.1. Let n, `, r ∈ N and let ε : [`] → [0, 1]. A protocol π is a statistically-secure out-of-
band (n, `, r, ε)-authentication protocol with adaptive laziness over alphabet Σ if for every adversary
A and for every t ∈ [`], the protocol πAL(A, t) is a statistically-secure out-of-band (n, t, r, ε(t))-
authentication protocol.

Definition 8.2. Let n = n(λ), ` = `(λ), r = r(λ) and Σ = Σ(λ) be functions of the security
parameter λ ∈ N, and let ε = ε(λ, ·) : [`] → [0, 1]. A protocol π is a computationally-secure out-of-
band (n, `, r, ε)-authentication protocol with adaptive laziness over alphabet Σ if for every probabilistic
polynomial-time adversary A and for every t ∈ [`], the protocol πAL(A, t) is a computationally-secure
out-of-band (n, t, r, ε(·, t))-authentication protocol.

8.1.2 Extending Our Security Proofs to Adaptive Laziness

In this section we discuss how to extend our security proofs presented in Sections 5 and 6 to the
setting of adaptive laziness. We first introduce the notion of substring collision probability, denoted
SS-CP.
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Definition 8.3. Let `, t ∈ N, let Σ be an alphabet and let D be a distribution over strings of length
` over Σ. Then, the t-substring collision probability of D, denoted SS-CP(D, t) is defined as follows:

SS-CP(D, t)
def
= Pr

(x,x′)←D×D

[
∃I ∈

(
[`]

t

)
s.t. xI = x′I

]
where for a set IS and an integer c, the notation

(IS
c

)
denotes the family of all subsets of IS

consisting of exactly c elements.
As a particular case, we define the (k, `, t)-substring collision probability as follows:

SS-CP(k, `, t)
def
= SS-CP

(
U
[
[k]`
]
, t
)

where U
[
[k]`
]
is the uniform distribution over [k]`.

The computational setting. The proof of Lemma 6.2 can be adjusted to show that the protocol
πComp remains secure even in the face of adaptive laziness. Informally, in each of the claims used in
the proof of Lemma 6.2, the term 2−|I| may be easily replaced by the term SS-CP(2, `, |I|) (recall
Definition 8.3), yielding the following lemma.

Lemma 8.4. For any probabilistic polynomial-time adversary A there exists a negligible function
ν = ν(λ), such that for all sufficiently large λ ∈ N and for every t ∈ [`] it holds that

Pr

[
∃I ∈

(
[`]

t

)
: (rS ⊕ r̂R)I = (r̂S ⊕ rR)I

]
≤ SS-CP(2, `, t) + ν(λ).

Since the revised proof is very similar to the proof of Lemma 6.2, we skip the full proof and
briefly review the modifications required in each of the claims:

• Claim 6.3: In the case considered in this claim, rR is sampled once rS , r̂S and r̂R are fixed,
and hence

Pr

[
∃I ∈

(
[`]

t

)
: (rS ⊕ r̂R)I = (r̂S ⊕ rR)I |Coll ∧ T1

]
≤ SS-CP(2, `, t).

• Claim 6.4: The adversaryB against the hiding property of the commitment scheme is modified
as follows. Upon receiving r̂S , B outputs 1 if and only if there exists a subset I ⊂ [`] of size
t of positions such that (rS ⊕ r̂R)I = (r̂S ⊕ rR)I . Note that indeed this check can be made
efficiently, as the above condition holds if and only if the Hamming distance between rS ⊕ r̂R
and r̂S⊕rR is at most `− t. The analysis of the reduction can then be modified as follows. The
case b = 1 remains virtually unchanged, while in the case b = 0, rS is uniformly distributed
and independent of r̂S , r̂R and rR and hence the probability that the B outputs 1 in this case
is SS-CP(2, `, t).

• Claim 6.5: The distinguisher D against the non-malleability of the commitment scheme is
modified in a similar manner to the previous case. It checks weather there exists a subset
I ⊆ [`] of positions such that (z ⊕ r̂R)I = (r̂S ⊕ rR)I , and output 1 if and only if this is indeed
the case. The analysis then also changes similarly to the previous case.

By the way R decides on her output according to the definition of πComp, Lemma 8.4 immediately
implies the following theorem.

Theorem 8.5. Let n = n(·), r = r(·) and ` = `(·) be functions of the security parameter λ ∈ N and
let Com be an r-round statistically-binding non-malleable commitment scheme. Then, protocol πComp

is a computationally-secure out-of-band (n, `, r + 3, ε)-authentication protocol with adaptive laziness
over an alphabet of size 2, where ε(λ, t) = 2−t for every λ ∈ N and for every t ∈ [`(λ)].
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The statistical setting. Consider a protocol πLazy which is the result of applying our general
transformation from Section 5 to a statistically-secure out-of-band (n, `′, r, ε)-authentication protocol
π, using ` parallel repetitions of π. For every i ∈ [`], let M̂i be the random variable denoting the
intended output of R in the ith parallel execution of π. Observe, that for every (computationally
unbounded) adversary A and for every t ∈ [`], the following holds: The probability that after the
execution of πLazy, there exist a message m̂ 6∈ {m,⊥} (where m is the input message to S) and a
subset I ∈

(
[`]
t

)
such that M̂i = m̂ for every i ∈ I is bounded by SS-CP(1/ε, `, t). This follows

from the observation we make in the proof of Lemma 5.3, that for every i ∈ [`] the probability that
M̂i = m̂ is bounded by ε, even conditioned on any arbitrary outcome of all other executions.

Recall that by the definition of πLazy, in order for R to output some message m̂ 6∈ {m,⊥}, it
must be the case that M̂i = m̂ for every i ∈ I. Hence, when the adversary chooses a subset I
of t positions for the parties to compare, it holds that the probability that R outputs a fraudulent
message is bounded by SS-CP(1/ε, `, t) as well. Namely, where π is the protocol of Naor et al.
[NSS06] when instantiated with ε = 1/2 and `′ = 28 (see Section 8.2), we have that for every t ∈ [`],
the probability that an adversary can adaptively choose a subset of size t and make R outputs a
fraudulent message is at most SS-CP(2, `, t). This yields the following theorem (for which we omit
the formal proof, which is very similar to that of Theorem 5.1).

Theorem 8.6. Let π′ be a statistically-secure out-of-band (n, `′, r, ε′)-authentication protocol, let
k = 2`

′ and let ` ∈ N. Then, πLazy is a statistically-secure out-of-band (n, `, r, ε)-authentication
protocol with adaptive laziness over an alphabet of size k, where ε(t) = SS-CP(1/ε, `, t) for every
t ∈ [`].

8.2 Statistical Security with Smaller Alphabets

In this section we present a more refined analysis of the length ` of the out-of-band authenticated
value in the protocol Naor et al. [NSS06], when invoked with parameters that ensure a constant
bound on the forgery probability ε (we consider ε = 1/2 for concreteness). Concretely, we show that
a careful adjustment of the protocol and its parameters ensure ` ≤ 8. Hence, when their protocol
is plugged into our construction of Section 5, the resulted out-of-band authentication protocol for
lazy users is over an alphabet of size at most 28 (which for example, as discussed in Section 5, fits
in nicely in a sufficiently diverse set of emoji).

The protocol of Naor et al. relies on iterative hashing of the input message, where each party
computes a sequence of intermediate messages as a function of the transcript. Informally speaking,
the protocol advances in rounds, where in each round the two parties view the intermediate message
as a polynomial over a finite field of some carefully chosen size, evaluate it on a random field element,
and apply a random shift to the result. Denote the number of hashing rounds by r, and for j ∈ [r]
denote the length of the intermediate message of round j by nj and the size of the field of round j by
qj . The exact choice of the values {qj}j∈[r] should aim to strike a balance between two (supposedly
contradicting) objectives:

1. On the one hand, in terms of efficiency, the field sizes dictate the length of the intermediate
messages and of the out-of-band authenticated value. Namely, the out-of-band authenticated
value is made up of two elements from the final field, which is of size qr, and thus the length
of this value is bounded by d2 log qre. Hence, the sharper the decline in the sizes of the fields,
the faster the decrease in length of the intermediate messages. Intuitively, this means that if
choose small qj ’s, we can achieve a short out-of-band authenticated value in less rounds.
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2. On the other hand, large fields translate into better security guarantees. As Naor et al. note,
the first message to get hashed is the input message to the sender S, and the result of last hash
function is sent as part of the out-of-band authenticated value. This means that a prerequisite
for a successful forgery is the existence of a round j ∈ [r] such that the intermediate messages
the two parties see before the jth hash function is applied are different, but they both compute
the same hash value in round j. Denote this event by Collj . For every j ∈ [r], Naor et al.
bound Pr [Collj ] by max {1/qj , 1/qj · dnj/ log qje}, where nj is the length of the jth intermediate
message (i.e., just before the jth hash function is applied). For reasonable choices of qj , the
dominant term is 1/qj ·dnj/ log qje, which is simply an upper bound on the probability that two
distinct polynomials over a finite field of size qj , each of them encoded using nj bits, evaluate to
the same value when applied to a random field element (this follows from the Schwartz-Zippel
lemma, since an nj-bit string can be seen as a polynomial of degree at most dnj/ log qje over
a field of size qj). Taking a union bound, the total probability of forgery can be bounded by∑r

j=1 1/qj · dnj/ log qje.

Given these two considerations, Naor et al. set each qj to be in the segment
[

2r−j+1·nj
ε ,

2r−j+2·nj
ε

)
,

where nj = d2qj−1e for every j ∈ {2, . . . , r} (n1 is the length of the input message), and the parame-
ters r and ε (the number of hashing rounds and the desired bound on the forgery probability, respec-
tively) parametrize the protocol. In terms of security, this indeed assures that 1/qj · dnj/ log qje ≤
ε/2r−j+1 for every j ∈ [r], and hence

∑r
j=1 1/qj · dnj/ log qje < ε. In terms of efficiency however, if

the protocol is invoked with r = Ω(log∗ n) and a constant ε, their analysis yields a constant length
out-of-band authenticated value, but this constant is fairly large and impractical. This is to be
expected since their analysis applies to more general choices of the parameters, but in the context
of Corollary 5.2 setting r = Ω(log∗ n) and ε = 1/2 is sufficient.

Consider the following choice of parameters. Set r = r′ + 2 for r′ = Ω(log∗ n). For j ∈ [r′] set
qj to be in the interval

[
8 · 2r−j−1, 8 · 2r−j

)
, and set qr−1 = 33 and qr = 13. As before n1 = n and

nj = d2 log qj−1e for every j ∈ {2, . . . , r}. Indeed, since the length ` of the out-of-band authenticated
value is at most d2 log qre, our choice of parameters implies that ` ≤ d2 log 13e ≤ 8 as we wanted to
show.

We are left with showing that the total probability of forgery is at most 1/2. To that end, we note
that the above choice of parameters can be seen as first running the protocol of Naor et al. (with
their general purpose choices of {qj}j) for r′ = r− 2 hashing rounds and with ε = 1/8, and then run
two more hashing rounds with specifically tailored choices of qr−1 and qr. This view enables us to
use the analysis of Naor et al. “out of the box” to deduce nr−1, leaving us with the task of bounding
Pr [Collr−1 ∪ Collr].

Adopting the above point of view, the analysis of Naor et al. yields that nr−1 ≤ 19. By our
choice of qr−1, it follows that

Pr [Collr−1] ≤ 1/33 · d19/ log 33e < 1/8.

Moreover, nr = d2 log qr−1e = 8, implying

Pr [Collr] ≤ 1/13 · d8/ log 13e < 1/4.

Since the properties of the Naor et al. guarantee that Pr
[⋃

j∈[r−2] Collj
]
≤ 1/8, then by a simple

union bound, it holds that the probability of foregery is bounded by

Pr

 ⋃
j∈[r−2]

Collj

+ Pr [Collr−1] + Pr [Collr] ≤ 1/2.
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A Non-Malleable Commitment Schemes

As discussed in Section 2, we follow the indistinguishability-based definition of Lin and Pass [LP11],
though we find it convenient to consider non-malleability with respect to content, other than with
respect to identities. Let Com = (C,R) be a statistically-binding commitment scheme, and let
λ ∈ N be the security parameter. Consider an efficient adversary A that gets an auxiliary input
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z ∈ {0, 1}∗ (in addition to the security parameter) and participates in the following “man-in-the-
middle” experiment. A takes part in a single “left” interaction and a single “right” interaction: In the
left interaction, A interacts with the committer C, and receives a commitment to a value v. Denote
the resulting commitment (transcript of the interaction) by c. In the right interactions, A interacts
with the receiver R, resulting in some commitment ĉ. We define the related value v̂ in the following
manner. If ĉ = c, if ĉ is not a valid commitment, or if ĉ can be opened (information-theoretically
speaking) to more than one value, we let v̂ = ⊥ (note that by the statistical binding property of
Com, the latter case only happens with negligible probability). Otherwise, v̂ is the unique value to
which ĉ may be opened. Let mimA

Com(v, z) denote the random variable that includes the value v̂ and
A’s view at the end of the afore-described experiment.

Definition A.1. Let A and D be a pair of algorithms. We define the advantage of (A,D) in breaking
the non-malleability of Com, with respect to security parameter λ ∈ N as

AdvA,DCom−NM(λ)
def
= max

v,v′∈{0,1}λ

{
Pr
[
D(1λ,mimA

Com(v, z)) = 1
]
− Pr

[
D(1λ,mimA

Com(v′, z)) = 1
]}

.

We say that a statistically-binding commitment scheme is non-malleable if for any pair of prob-
abilistic polynomial-time algorithms (A,D) there exists a negligible function ν = ν(·) such that
AdvA,DCom−NM(λ) ≤ ν(λ) for all sufficiently large λ ∈ N.

For completeness, we also provide a formal definition for the hiding property of commitment
schemes, of which we make use in Section 6 (though in general, it is easy to see that a non-malleable
commitment scheme vis-á-vis Definition A.1 is also hiding). We first define the following experiment,
which we denote by HidingACom(λ, b) for every λ ∈ N and for each b ∈ {0, 1}:

1. v0, v1, st← A(1λ).

2. A(st) interacts with C (the commitment algorithm of Com) to receive a commitment to vb,
and outputs some state st′.

3. b′ ← A(st′).

4. The output of the experiment is b′.

The hiding property is then captured by the following definition.

Definition A.2. For an algorithm A and a commitment scheme Com, we define the advantage of
A in breaking the hiding of Com with respect to security parameter λ ∈ N as

AdvACom−Hiding(λ)
def
=
∣∣Pr
[
HidingACom(λ, 0) = 1

]
− Pr

[
HidingACom(λ, 1) = 1

]∣∣ .
We say that a commitment scheme is hiding if for any probabilistic polynomial-time algorithm A
there exists a negligible function ν = ν(·) such that AdvACom−Hiding(λ) ≤ ν(λ) for all sufficiently large
λ ∈ N.

B The Protocol of Naor, Segev and Smith

In this section, we give a full description of the statistically-secure out-of-band authentication protocol
of Naor, Segev and Smith [NSS06, NSS08].
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Notation. Denote the Galois field with q elements by GF (q). Then, a message m of length
n can be parsed as a polynomial of degree at most dn/ log qe over GF (q). Namely, a message
m = m1, . . . ,mt ∈ GF (q)t defines a polynomial in the following manner: For every x ∈ GF (q),
we let m(x) =

∑t
i=1m · xi. Then, for two distinct messages m, m̂ ∈ GF (q)t and any two field

elements y, ŷ ∈ GF (q), it holds that the polynomials m(·) + y and m̂(·) + ŷ are distinct and
thus Prx←GF (q) [m(x) + y = m̂(x) + ŷ] ≤ t/q. Let ε > 0 and let n1 = n. For every j ∈ [r − 1]
let qj be a prime number chosen in a deterministically and agreed upon manner in the interval[

2r−j ·nj
ε ,

2r−j+1·nj
ε

)
, and let nj+1 = d2 log qje.

The protocol. On input message m to S, the following steps define the protocol of Naor et al.
[NSS06, NSS08]:

1. S sends m1
S = m to R. Denote by m1

R the string received by R.

2. For j = 1 to r − 2:

(a) If j is odd:

i. S chooses yj ← GF (qj) and sends it to R.

ii. R receives ŷj , chooses xj ← GF (qj) and sends it to S.

iii. S receives x̂j and computes mj+1
S = x̂j‖mj

S(x̂j) + yj .

iv. R computes mj+1
R = xj‖mj

R(xj) + ŷj .

(b) if j is even:

i. R chooses yj ← GF (qj) and sends it to S.

ii. S receives ŷj , chooses xj ← GF (qj) and sends it to R.

iii. R receives x̂j and computes mj+1
R = x̂j‖mj

R(x̂j) + yj .

iv. S computes mj+1
S = xj‖mj

S(xj) + ŷj .

3. R chooses yr−1 ← GF (qj) and sends it to S.

4. S receives ŷr−1, chooses xr−1 ← GF (qr−1), and sends xr−1 to R.

5. R receives x̂r−1 and computes σ̂ = mr−1
R (x̂r−1) + yr−1. Denote mr

R = x̂r−1‖σ̂.

6. S computes σ = mr−1
S (xr−1)+ ŷr−1. Denote mr

S = xr−1‖σ. S sends mr
S over the authenticated

channel.

7. If mr
S = mr

R, R outputs m1
R. Otherwise, R outputs ⊥.
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