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Abstract. Since (t, n)-threshold secret sharing (SS) was initially pro-
posed by Shamir and Blakley separately in 1979, it has been widely
used in many aspects. Later on, Asmuth and Bloom presented a (t, n)-
threshold SS scheme based on the Chinese Remainder Theorem (CRT)
for integers in 1983. However, compared with the most popular Shamir’s
(t, n)-threshold SS scheme, existing CRT based schemes have a lower in-
formation rate, moreover, they are harder to construct due to the strin-
gent condition on moduli. To overcome these shortcomings of CRT based
schemes, 1) we first propose a generalized (t, n)-threshold SS scheme
based on the CRT for polynomial ring over a finite field. We show that
our scheme is ideal, i.e., it is perfect in security and has the informa-
tion rate 1. Comparison show that our scheme has a better information
rate and is easier to construct compared with the existing threshold
SS schemes based on the CRT for integers. 2) We prove that Shamir’s
scheme, which is based on the Lagrange interpolation, is a special case
of our scheme. Therefore, we establish the connection among threshold
schemes based on the Lagrange interpolation, schemes based on the CRT
for integers and our scheme. 3) As a natural extension of our threshold
scheme, we present a weighted threshold SS scheme based on the CRT for
polynomial rings, which inherits the above advantages of our threshold
scheme over existing weighted schemes based on the CRT for integers.

Keywords: Threshold, Ideal Secret Sharing, Chinese Remainder The-
orem, Polynomial Ring

1 Introduction

Secret sharing (SS) was first introduced respectively by Shamir [27] and Blak-
ley [4] in 1979 to construct robust key management schemes for cryptographic
systems. Shamir’s scheme is constructed based on the Lagrange interpolation
polynomial, as a (t, n)-threshold SS scheme (i.e., (t, n)-SS), it divides a secret
into n shares and distributes each share to one of n parties called shareholders;
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only t or more shareholders pooling their shares together can recover the secret
while t− 1 or less shareholders cannot obtain any information about the secret.
So far, many schemes [32,25,17,10,16] have been proposed based on Shamir’s
scheme. Later on, threshold schemes based on the Chinese Remainder Theorem
(CRT) for integer ring were proposed by Mignotte [23] and Asmuth-Bloom [1].

Different from Shamir’s scheme, Mignotte’s scheme and Asmuth-Bloom’s
scheme illustrated a new method to construct (t, n)-threshold SS schemes using
the CRT for integers. Both schemes are highly similar except that the latter im-
proves the former in perfectness of security. Therefore, Asmuth-Bloom’ scheme
is our main concern among CRT based SS schemes in this paper. In nature,
CRT-based schemes are capable of assigning shares of distinct size to different
shareholders, this capability can in turn be used to implement new functionality,
e.g., the weighted schemes of [19,33,13]. In constructing weighted SS schemes,
CRT-based SS schemes allow a shareholder to possess only one share each. In
contrast, Shamir’s scheme needs to allocate trivially multiple shares to a share-
holder, who has the weight more than 1. Moreover, the shareholder leaking any
of its shares may cause the disclosure of the secret.

Asmuth-Bloom’s scheme has become a popular and fundamental schemes.
Based on the scheme, a lot of work [20,14,15,22,16] has been done to extend
the original idea and meet different requirements of practical applications. One
type of extension is to construct new access structures, e.g., the general access
structure[16] and the multipartite scheme[14]. Another type of extension aims to
improve functionality, e.g., the verifiable SS [15,22] to prevent malicious action
of dishonest shareholders and the proactive secret sharing for strengthening the
security.

As we all know, Shamir’s scheme is based on Lagrange interpolation and thus
is easy to construct. Moreover, it is an ideal SS scheme, i.e., it is perfect in se-
curity and has the maximum information rate 1. Roughly speaking, information
rate is the ratio of secret to share in size, which denotes the information effi-
ciency of secret sharing. In comparison, the CRT-based Asmuth-Bloom’s scheme,
on one hand, is lower in information rate since each share is larger than the secret
in size; on the other hand, it is difficult to construct because the scheme requires
a series of pairwise coprime integers satisfying some stringent condition.

In a word, Shamir’s scheme is ideal and easy to construct while Asmuth-
Bloom’s scheme is not ideal, hard to construct but more natural and neat in
constructing weighted SS scheme. In this case, we are faced the following 2
questions,

– Is there any CRT-based SS scheme which is ideal as Shamir’s scheme?
– If such a scheme exists, how to construct it in practice? and what is the

connection in theory among Shamir’ scheme, Asmuth-Bloom’s scheme and
the new scheme ?

To answer the above questions, we need to study new CRT based schemes
free from the above mentioned drawbacks in Asmuth-Bloom’s scheme. To this
end, this paper mainly focuses on constructing a generalized (t, n)-threshold SS
scheme based on the CRT for the polynomial ring and further finds out the
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connection among these (t, n)-threshold SS schemes. Our contribution can be
summarized as follows

– We propose a generalized (t, n)-threshold SS scheme based on the CRT for
the polynomial ring over a finite field. Our scheme is perfect in security and
has the information rate 1. Compared with Asmuth-Bloom’s scheme, it is
better in information rate, easier to construct and more computationally ef-
ficient. Therefore, our scheme can serve as a better substitution for Asmuth-
Bloom’s scheme. That is, existing schemes based on Asmuth-Bloom’s scheme
are allowed to base themselves on our scheme to overcome the above draw-
backs inherited from Asmuth-Bloom’s scheme.

– We show that Shamir’s scheme is a special case of our scheme. As a result,
we establish the connection among (t, n) threshold SS schemes based on
Lagrange interpolation polynomial (the family of Shamir’s scheme), CRT
for integers (the family of Asmuth-Bloom’s scheme) and CRT for polynomial
rings (our proposed scheme).

– We present a weighted SS scheme based on the above proposed thresh-
old scheme. Compared with[13,19,33], which are based on Asmuth-Bloom’s
scheme, our new weighted scheme enjoys advantages inherited from our (t, n)
threshold SS scheme, which illustrates the power of our threshold scheme as
a better base than Asmuth-Bloom’s scheme.

The rest of this paper is organized as follows: Section 2 introduces some
preliminaries about secret sharing and the CRT. In Section 3, we present our
threshold scheme and compare it with Shamir’s scheme and Asmuth-Bloom’s
scheme. Section 4 shows that Shamir’s scheme is a special case of our threshold
scheme. In Section 5, a weighted threshold scheme is given and compared with
other existing CRT based schemes. Finally, Section 6 concludes our work.

2 Preliminaries

In this section, we introduce some fundamentals as a preliminary. Subsection 2.1
introduces some notations for convenience. In Subsection 2.2, the CRT for dif-
ferent rings are discussed. Subsection 2.3 is devoted to some results on the irre-
ducible polynomials in the polynomial ring over a finite field. We introduce some
fundamental notions about secret sharing in Subsection 2.4. Finally, Asmuth-
Bloom’s scheme and Shamir’s scheme are reviewed in Subsection 2.5 and Sub-
section 2.6 respectively.

2.1 Notation

Here, we introduce some notations that will be used all the way.

– Let Z denote the usual ring of integers. Let n ∈ Z, [n] denotes the set
{1, 2, . . . , n} of n elements.

– Let p ∈ Z be a prime number, Fp denotes the finite field of p elements.
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– Let R be some ring, for any a, b ∈ R, 〈a〉 denotes the principal ideal generated
by a. Also, a | b means that a divides b, that is, there is c ∈ R such that
b = ac.

– Let R be some ring, R[x] denotes the univariate polynomial ring in the
variable x over R. For any f(x) ∈ R[x], deg(f(x)) represents the degree of
f(x).

– Let I be an ideal of a ring R and x, y ∈ R, x ≡ y (mod I) means that
x− y ∈ I. If I = 〈a〉 is a principal ideal for some a ∈ R, it is also written as
x ≡ y (mod a).

– gcd denotes the the greatest common divisor.
– Let S be a finite set, |S| denotes the number of elements in S; 2S denotes

the power set of S, that is, 2S contains all subsets of S as elements.

2.2 The Chinese Remainder Theorem (CRT)

In this subsection, we introduce the CRT for different rings, especially, for Z
and K[x] with K being a field. This subsection serves as the fundamental of
Asmuth-Bloom’s scheme and our proposed scheme.

The Asmuth-Bloom’s scheme is based on the CRT for Z. Actually, the CRT
for Z can be generalized to any other ring as follows.

Theorem 1 (Theorem 2.1 of [21]). Let I1, . . . , In be ideals of a ring R such
that Ii + Ij = R for all i, j ∈ [n], i 6= j. Given elements x1, . . . , xn ∈ R, there
exists x ∈ R such that

x ≡ xi (mod Ii) for all i ∈ [n].

And x is unique in the sense that if y is another element satisfies all the con-
gruences, then

x ≡ y (mod I1 ∩ I2 · · · ∩ In).

To have an intuitional understanding of this theorem, we can consider the case
when R = Z. Since Z is a principal ideal domain (PID), for all i ∈ [n], Ii = 〈mi〉
for some mi ∈ Z. The condition Ii+Ij = R becomes that the linear combination
of mi and mj with integer coefficients can represent any integer in Z, specifically,
can represent 1 ∈ Z, that is gcd(mi,mj) = 1. Also, the congruence x ≡ xi
(mod Ii) becomes x ≡ xi (mod mi). In conclusion, by letting R = Z, we have
the following ordinary version of the CRT for Z.

Theorem 2. Let m1, . . . ,mn ∈ Z be pairwise coprime integers. Given integers
x1, . . . , xn ∈ Z, there exists x ∈ Z such that

x ≡ xi (mod mi) for all i ∈ [n].

And x is unique in the sense that if y is another integer satisfies all the congru-
ences, then

x ≡ y (mod
∏n
i=1mi).
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Note that the uniqueness also means that x is unique if we only consider numbers
in the range [0,

∏n
i=1mi − 1].

The reason that we can replace the ideals with the elements generating that
ideal is that Z is a PID. It is well known that K[x] is also a PID if K is a field.
Similarly, we have the following CRT for the ring of polynomials over a field.

Theorem 3. Let K be a field and m1(x), . . . ,mn(x) ∈ K[x] be pairwise coprime
polynomials. Given polynomials f1(x), . . . , fn(x) ∈ K[x], there exists f(x) such
that

f(x) ≡ fi(x) (mod mi(x)) for all i ∈ [n].

And f(x) is unique in the sense that if g(x) is another polynomial satisfies all
the congruences, then

f(x) ≡ g(x) (mod
∏n
i=1mi(x)).

Note that the uniqueness also means that f(x) is unique if we only consider
polynomials of degree less than deg(

∏n
i=1mi(x)).

The above different versions of CRT (Theorem 1,Theorem 2,Theorem 3) does
not give a concrete method of finding out the exact solution of a given system of
congruences. For the most general case, it may be difficult to find such a method.
But for Euclidean domains, we can explicitly write out and efficiently compute
the solution as the following theorem states.

Theorem 4 (Generalized Algorithm 1.3.11 in [8]). Let R be a Euclidean
domain and m1, . . . ,mn ∈ R be pairwise coprime elements. Given elements
x1, . . . , xn ∈ R and a system of congruences

x ≡ xi (mod mi) for all i ∈ [n],

let M =
∏n
i=1mi, Mi = M/mi and ai ∈ R with aiMi ≡ 1 (mod mi), then,

x =
∑n
i=1 aiMixi

is a solution of the system of congruences.

2.3 Irreducible Polynomials over a Finite Field

In this subsection, we introduce some existing results about the number of ir-
reducible polynomials and how to find irreducible polynomials in Fp[x]. These
results enable the practicality of our scheme.

Most results here are derived from the following theorem.

Theorem 5 (Theorem 1 in Chapter 26 of [7]). xp
n − x is the product of

all monic irreducible polynomials in Fp[x] of degree d, for all d | n.

First, Theorem 5 shows a way to count the number of irreducible polynomials
in Fp[x]. Let N(n, p) be the number of monic irreducible polynomials in Fp[x],
by Theorem 5, considering the factorization of xp

n − x and counting the degree,
it is clear that

pn =
∑

d|n
dN(d, p). (1)

Applying the Mobius inversion formula to Expression 1 results in Theorem 6.
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Theorem 6 (Theorem 7 in Chapter 26 of [7]). N(n, p) = 1
n

∑
d|n µ(n/d)pd

where µ is the Mobius function.

Fixing p, N(n, p) grows rapidly with respect to n, which can be seen in Table 1
and we have Theorem 7 to bound N(n, p).

Theorem 7 (Theorem 19.12 of [29]). For any prime number p, for all n ≥ 1,
we have

pn

2n ≤ N(n, p) ≤ pn

n and N(n, p) = pn

n +O(p
n/2

n ).

Table 1. Number of Irreducible Polynomials

n N(n, p) N(n, 2) N(n, 3) N(n, 5) N(n, 7)

1 p 2 3 5 7
2 (p2 − p)/2 1 3 10 21
3 (p3 − p)/3 2 8 40 112
4 (p4 − p2)/4 3 18 150 588
5 (p5 − p)/5 6 48 624 3360
6 (p6 − p2 − p3 + p)/6 9 116 2580 19544
7 (p7 − p)/7 18 312 11160 117648
8 (p8 − p4)/8 30 810 48750 720300
9 (p9 − p3)/9 56 2184 217000 4483696
10 (p10 − p5 − p2 + p)/10 99 5880 976248 28245840

On the other hand, Theorem 5 also results in a primality testing algorithm
in Fp[x]. Suppose f ∈ Fp[x] is of degree d, if f is not irreducible, f has an
irreducible divisor of degree at most k = bd2c. Therefore, by Theorem 5, at least
one term in Expression 2

gcd(xp − x, f), gcd(xp
2

− x, f), . . . , gcd(xp
k

− x, f) (2)

will return a non-trivial divisor of f . Thus, by checking each term in Expression 2,
we can determine the primality of f as is in Algorithm 1.

With Algorithm 1, we have the probabilistic Algorithm 2 for finding irre-
ducible polynomials of a given degree d in Fp[x].

Theorem 8 (Theorem 20.2 of [29]). Algorithm 2 takes an expected number
of O(d3 log d log p) operations in Fp.

2.4 Secret Sharing

Secret sharing was first introduced by Shamir [27] and Blakley [4] in 1979 to con-
struct robust key management schemes for cryptographic systems. Nowadays, it
has become a cryptographic primitive and is widely used in many applications,
including multiparty computations [3,9], threshold cryptography [11,20] and gen-
eralized oblivious transfer [28,31] and so on.
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Input: f(x) ∈ Fp[x] of degree d > 0
Output: whether f(x) is irreducible or not

h← x mod f ;
for k ← 1 to bd/2c do

h← hp mod f ;
if gcd(h− x, f) 6= 1 then

return false;
end

end
return true;

Algorithm 1: Algorithm for Irreducible Polynomial Testing [29]

Input: the given degree d
Output: an irreducible polynomial of degree d

repeat
choose a polynomial f of degree d at random;
test whether f is irreducible using Algorithm 1;

until f is irreducible;
return f ;

Algorithm 2: Generation Algorithm of Random Irreducible Polynomial [29]

In a secret sharing scheme, a dealer with a secret to share, a set [n] =
{1, 2, . . . , n} of n parties and a collection Γ ⊆ 2[n] of authorized subsets are
involved. In such a scheme, the dealer generates n shares and allocates each
party a share such that

– any authorized subset of parties in Γ pooling their shares together can de-
termine the secret

– any subset of parties not in Γ cannot get any information about the secret

The collection Γ is called the access structure realized by the secret sharing
scheme. It is reasonable to assume that if some subset of parties can recover the
secret, with any other parties taking participant, they can still recover the secret.
That is, if A ⊆ [n] can recover the secret, then, for any B ⊆ [n] with A ⊆ B,
B is also able to recover the secret. Therefore, Γ has the following monotone
property.

∀A ∈ Γ,∀B ⊆ [n], A ⊆ B =⇒ B ∈ Γ (3)

And we use Expression 3 as the definition of access structure.

Definition 1 (Access Structure [2]). Let [n] denote a set of parties. A col-
lection Γ ⊆ 2[n] is monotone if ∀A ∈ Γ,∀B ⊆ [n], A ⊆ B =⇒ B ∈ Γ . An access
structure is a monotone collection of subsets of [n].

Next, we introduce a mathematical model for secret sharing schemes and for-
malize the meaning of “determining the secret” and “cannot get any information
about the secret”.
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Definition 2 (Perfect Secret Sharing Scheme [18]). Suppose we have n
parties {1, 2, . . . , n}. For a monotone access structure Γ ⊆ 2[n], a perfect secret
sharing scheme realizing Γ is a list of discrete random variables (S, S1, S2, . . . , Sn)
over some finite sample space such that

– (correctness) - for any A ∈ Γ , H(S | {Si | i ∈ A}) = 0
– (perfectness) - for any B ⊆ [n] with B /∈ Γ , H(S | {Si | i ∈ B}) = H(S)

where H(·) stands for the Shannon entropy and H(· | ·) denotes the conditional
entropy.

Naturally, we have the information rate represented by the ratio of the length
of the secret to that of shares, which is used to measure the efficiency of each
party sharing the secret.

Definition 3 (Information Rate [18]). The (worst-case) information rate of
a secret sharing scheme (S, S1, . . . , Sn) is

ρ = H(S)
max{H(Si)|i∈[n]} .

A lot of research has been carried out to study the bounds of the information rate
for different kinds of access structures. In [6], it was shown that, in any perfect
secret sharing scheme, H(S) ≤ H(Si), i ∈ [n]. Therefore, an upper bound for
the information rate is ρ ≤ 1. For a perfect scheme with information rate 1, its
share size is at most as small as the secret and we call it an ideal scheme.
Threshold Access Structure: A fundamental case of secret sharing is the
threshold case. The access structure realized by a (t, n)-threshold scheme is

Γ = {A ⊆ [n] | |A| ≥ t}.

That is, only t or more parties can recover the secret while any t − 1 or less
parties cannot gain any information about the secret.
Weighted Access Structure: The weighted threshold secret sharing is a direct
generalization of the threshold case. In a weighted threshold case, a threshold
t is set and each party is associated with a positive weight. Only subset of
parties, whose sum of weights is larger than or equal to t, can recover the secret
while parties, whose sum of weights is less than t, cannot gain any information
about the secret. Formally, the access structure realized by a (t, n, ω)-weighted
threshold scheme is

Γ = {A ⊆ [n] |
∑
i∈A ω(i) ≥ t}

where ω : [n]→ N+ is the weight function and ω(i) is the weight of the i-th party.
In [24], it was shown that weighted threshold access structures with a positive
rational or real weight can always be converted to the same access structure
with a weight of positive natural numbers. Therefore, we often only consider the
weight as a positive natural number. Usually, we also require the condition that

∀i ∈ [n], ω(i) < t.
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Otherwise, there is a party knowing the secret and there will be no sharing
in some sense. Note that the weighted threshold case degenerates to the basic
threshold case if

∀i, j ∈ [n], ω(i) = ω(j).

2.5 Review of Asmuth-Bloom’s Scheme [1]

In this subsection, we review Asmuth-Bloom’s (t, n)-threshold SS scheme.
Share Distribution: The dealer selects integers m0 and m1 < m2 < · · · < mn

satisfying Expression 4 and Expression 5.

∀i, j ∈ [n] ∪ {0}, i 6= j =⇒ gcd(mi,mj) = 1 (4)

m0

∏n

i=n−t+2
mi <

∏t

i=1
mi (5)

The dealer then chooses the secret s ∈ [0,m0 − 1] and randomly selects an
integer α such that

s+ αm0 ∈ (
∏n

i=n−t+2
mi,

∏t

i=1
mi).

The share si for the i-th party would be

si = s+ αm0 mod mi

and is sent to the i-th party privately.
Secret Reconstruction: Suppose t parties {i1, . . . , it} ⊆ [n] want to recover
the secret. They pool their shares together and get the following system of con-
gruences 

x ≡ si1 (mod mi1)

x ≡ si2 (mod mi2)

. . . . . .

x ≡ sit (mod mit)

By Theorem 4 and Theorem 2, they would get a unique solution x0 in the range
[0,

∏t
k=1mik − 1]. Since s+ αm0 also satisfies this system of congruences and

s+ αm0 <
∏t

i=1
mi ≤

∏t

k=1
mik ,

that is, s + αm0 is also in the range [0,
∏t
k=1mik − 1]. By the uniqueness,

s+ αm0 = x0 and the secret can be recovered by computing s = x0 mod m0.
There are papers studying the perfectness or the information rate of Asmuth-

Bloom’s scheme. In [1], it is shown that the entropy of the secret in Asmuth-
Bloom’s scheme decreases “not too much” when t− 1 shares are known. In [12],
it is advised to choose m0,m1, . . . ,mn being primes as close as possible and it
is proved that t− 2 shares or less give no information on the secret for a (t, n)-
threshold scheme. In [26], it is shown that Asmuth-Bloom’s scheme with moduli
being consecutive primes is asymptotically ideal. However, for fixed values of
moduli, the scheme always has an lower information rate (less than 1), especially
for not too large moduli.
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2.6 Review of Shamir’s Scheme [27]

In this subsection, we review Shamir’s (t, n)-threshold SS scheme.
Share Distribution: The dealer selects a prime number p and randomly se-
lects t− 1 elements a1, . . . , at−1 independently with a uniform distribution over
Fp. The secret is also some element s from Fp. Then the dealer constructs a
polynomial

f(x) = s+
∑t−1
i=1 aix

i ∈ Fp[x]

and computes si = f(i), i ∈ [n] as the private share of the i-th party. Finally,
the dealer sends si to the i-th party in private.
Secret Reconstruction: Suppose t parties {i1, . . . , it} want to recover the
secret. They pool their shares together and get the following system of linear
equations 

1 i1 i
2
1 . . . i

t−1
1

1 i2 i
2
2 . . . i

t−1
2

...
...

...
...

...
1 it i

2
t . . . i

t−1
t




s
a1
a2
...

at−1

 =


si1
si2
...
sit


Since the coefficient matrix is a Vandermonde square matrix over the field Fp
of size t × t, it is invertible and this system of linear equations has a unique
solution. Therefore, they can recover the secret s by solving this system of linear
equations.

We have described this scheme from the point of view of solving systems of
linear equations. Another way to recover the secret is based on the Lagrange
interpolation (Theorem 7.15 of [29]). In this way, f(x) can be written directly
as

f(x) =
∑t
k=1 sik

∏t
j=1,j 6=k

x−ij
ik−ij

and the secret is

s = f(0) =
∑t
k=1 sik

∏t
j=1,j 6=k

0−ij
ik−ij .

There are some works studying the perfectness or the information rate of
Shamir’s scheme [5,30,10]. We show in Section 4 that Shamir’s scheme is a special
case of our scheme and provide in Subsection 3.2 a strict proof of the perfectness
of our scheme, which also indicates that Shamir’s scheme is perfect. Since the
secret and the shares of Shamir’s scheme are all selected in Fp, its information
rate is obviously 1. Thus, Shamir’s scheme is ideal.

3 Threshold Scheme based on CRT for Polynomial Ring
over Finite Field

In this section, we first propose a (t, n)-threshold SS scheme based on the CRT
for polynomial ring over finite field, and show that it can be ideal. Then, we show
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that Shamir’s scheme is a special case of our scheme, revealing the connection
among Shamir’s scheme, Asmuth-Bloom’s scheme and our scheme. Finally, we
compare our scheme with the other two schemes.

3.1 The Scheme

In this subsection, we propose a (t, n)-threshold SS scheme. The scheme can be
seen as the counterpart of Asmuth-Bloom’s scheme for the polynomial ring over
a finite field. It can also be regarded as a generalization of Shamir’s scheme.
Share Distribution: The dealer chooses an integer d0 ≥ 1 and sets m0(x) =
xd0 . The dealer chooses a prime integer p and pairwise coprime polynomials
mi(x) ∈ Fp[x], i ∈ [n]. Let di = deg(mi(x)) for all i ∈ [n]. The polynomials must
satisfy each of Expression 6, Expression 7 and Expression 8.

∀i ∈ [n],m0(x) and mi(x) are coprime (6)

d0 ≤ d1 ≤ d2 ≤ · · · ≤ dn (7)

d0 +
∑n

i=n−t+2
di ≤

∑t

i=1
di (8)

The secret space is the set

S = {g(x) ∈ Fp[x] | deg(g) < d0},

i.e., all polynomials of degree at most d0−1. Suppose that the dealer has picked
his secret s(x) ∈ S. Then, the dealer randomly chooses a polynomial α(x) from
the set

A = {g(x) ∈ Fp[x] | deg(g) ≤ (
∑t
i=1 di)− d0 − 1}

and computes

f(x) = s(x) + α(x)m0(x) = s(x) + α(x)xd0 .

Let dα = deg(α) and df = deg(f). It is clear that df ≤
∑t
i=1 di − 1. Finally, for

each i ∈ [n], the dealer computes si(x) = f(x) mod mi(x) as the share for the
i-th party and sends si(x) privately to the i-th party.
Share Reconstruction: If t parties {i1, . . . , it} ⊆ [n] want to reconstruct the
secret, they pool their private shares together and get the following system of
congruences 

X(x) ≡ si1(x) (mod mi1(x))

X(x) ≡ si2(x) (mod mi2(x))

. . .

X(x) ≡ sit(x) (mod mit(x))

(9)

According to Theorem 4 and Theorem 3, they can solve Expression 9 and get a
unique solution X0(x) among polynomials of degree less than d =

∑t
j=1 dij . Let

Π =
∏t
j=1mij (x). It is clear that

11



d ≥
∑t
j=1 dj >

∑t
j=1 dj − 1 ≥ df .

Since f(x) also is a solution of the above system of congruences, by the unique-
ness, f(x) = X0(x) and they can recover the secret by computing

s(x) = X0(x) mod m0(x) = X0(x) mod xd0 .

Before finishing this subsection, we would like to discuss some practical issues.
In our scheme, the dealer is required to find a series of n pairwise coprime
polynomials in Fp[x]. In practice, it is convenient for the dealer to directly select
distinct irreducible polynomials of specified degrees and these distinct irreducible
polynomials with m0(x) are automatically pairwise coprime. By Theorem 7, we
know that there are enough irreducible polynomials for this purpose in practice.
Also, Algorithm 2 shows an efficient way to accomplish this job.

3.2 Security Analysis

In this subsection, we show that our scheme is perfect. The road map of the
proof is as follows.

– First, Theorem 9 shows that coefficients of the computed f(x) in the scheme
regarded as random variables are independently identically distributed(i.i.d)
of a uniform distribution over Fp, if coefficients of both s(x) and α(x) are
i.i.d with respect to a uniform distribution over Fp.

– Since t−1 parties together can eliminate some choices for f(x), we must show
that the number of choices for f(x) left after the elimination is still greater
than or equal to the number of choices for s(x). Otherwise, the conditional
probability distribution of s(x) under the condition of knowing t− 1 shares
would not be a uniform distribution. And this part is completed in the proof
of Theorem 10.

– However, what we get so far cannot imply that the conditional probability
distribution of s(x) is a uniform one, since Theorem 10 is only a necessary
condition. Therefore, we need to study the correspondence between s(x) and
f(x) under the relationship that f(x) = s(x) + α(x)xd0 . In particular, we
show that after eliminating impossible choices for f(x) with t − 1 shares,
the number of possible choices for f(x) corresponding to a selected s(x) is a
constant. And this part is completed in the proof of Theorem 11.

– Finally, according to all the results above, we conclude that our scheme is
perfect.

Theorem 9. If the coefficients of s(x) and α(x), regarded as random variables,
are independently identically distributed(i.i.d) of a uniform distribution, then,
the coefficients of f(x), viewed as random variables, are also i.i.d with respect to
a uniform distribution over Fp.

Proof. In the scheme, f(x) is computed as

f(x) = s(x) + α(x)m0(x) = s(x) + α(x)xd0

12



where the coefficients of s(x) and α(x) are i.i.d with respect to a uniform distri-
bution over Fp. Since

– f [i] = s[i] for 0 ≤ i ≤ d0 − 1
– f [i] = α[i− d0] for d0 ≤ i

therefore, coefficients of f are i.i.d of a uniform distribution over Fp. �

To show that our scheme is perfect, it suffices to consider the worst case where
the t − 1 parties {n, n − 1, . . . , n − t + 2} with moduli of the highest degree
pool their shares together and try to recover the secret. But they only get the
following system of t− 1 congruences

X(x) ≡ sn(x) (mod mn(x))

X(x) ≡ sn−1(x) (mod mn−1(x))

. . .

X(x) ≡ sn−t+2(x) (mod mn−t+2(x))

(10)

By solving Expression 10, they can only find a unique solution X0(x) ∈ Fp[x]
among polynomials of degree less than

∑n
i=n−t+2 di. Since f(x) also satisfies

Expression 10 and all the moduli are pairwise coprime, let Π =
∏n
i=n−2+tmi(x),

they know f(x) ≡ X0(x) (mod Π), that is,

s(x) + α(x)xd0 = f(x) = X0(x) + k(x)Π (11)

By Expression 11, t − 1 parties can eliminate some choices of f(x). We must
consider how many possible f(x) still satisfy this equation for given X0(x). That
is, fixing X0(x), we need to find the cardinality of the set

F = {g(x) ∈ Fp[x] | deg(g) ≤
∑t
i=1 di − 1 and g mod Π = X0(x)}.

Let d =
∑n
i=n−t+2 di. Let δ =

∑t
i=1 di−d. It is clear that δ ≥ d0 by the selection

of the parameters di during the scheme construction. We claim that |F | = pδ as
Theorem 10 states. Note that |S| = pd0 and |F | ≥ |S| for the secret space S.

Theorem 10. |F | is equal to pδ.

Proof. Any element g(x) ∈ F is of the form g(x) = X0(x)+k(x)Π with deg(g) ≤∑t
i=1 di − 1. Therefore, one choice for k(x) corresponds to one choice for g(x) ∈

F . Since deg(X0) < deg(Π), deg(g) = deg(k) + deg(Π). Therefore, deg(k) ≤∑t
i=1 di− 1−deg(Π). That is, deg(k) ≤ δ− 1. Therefore, the number of choices

for k(x) is pδ. Hence, |F | = pδ. �

From Theorem 10, we can see that t − 1 parties would know that the dealer
must have selected one of the pδ polynomials in F . And the probability that
each polynomial is selected by the dealer is the same by Theorem 9.

Next, we study how these polynomials in F , modulo m0(x) = xd0 , map to the
secret s(x) to find out the conditional probability distribution of s(x) regarded
as a random variable.
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Theorem 11. Let

ψ : F → S, g(x) 7→ g(x) mod m0(x).

For any s(x) ∈ S, let

ψ−1(s(x)) = {g(x) ∈ F | ψ(g(x)) = s(x)}.

Then, the following proposition holds.

∀s1(x), s2(x) ∈ S, |ψ−1(s1(x))| = |ψ−1(s2(x))|.

Proof. For any fixed s(x) ∈ S, since ψ−1(s(x)) ⊆ F , elements of ψ−1(s(x)) is of
the form X0(x) + k(x)Π with deg(k) ≤ δ such that

X0(x) + k(x)Π ≡ s(x) (mod m0(x)). (12)

Therefore, to count the number of elements in ψ−1(s(x)) is to count how many
k(x) with deg(k) ≤ δ − 1 satisfy Expression 12.
Subtracting X0(x) through Expression 12, we have

k(x)Π ≡ s(x)−X0(x) (mod m0(x)).

Since m0(x) and Π are coprime in our scheme, Π has a multiplicative inverse
modulo m0(x), then,

k(x) ≡ (s(x)−X0(x))Π−1 (mod m0(x)).

Let k0(x) = (s(x) −X0(x))Π−1 mod m0(x). Then, any k(x) satisfying Expres-
sion 12 is of the form k(x) = k0(x) + n(x)m0(x) with n(x) ∈ Fp[x]. Since
deg(k0) < deg(m0), deg(k) = deg(n) + deg(m0). In addition, deg(k) ≤ δ − 1,
deg(n) ≤ δ − d0 − 1. Therefore, the number of such satisfiable n(x) is pδ−d0 .
Hence, |ψ−1(s(x))| = pδ−d0 is a constant. �

So far, we have the foundation to discuss the conditional probability distribution
of s(x) under the condition that t−1 shares are known. It’s clear that t−1 parties
knowing X0(x) can determine the set F of all possible randomly selected f(x),
by Theorem 10, |F | = pδ. Over all the pδ choices, by Theorem 11, only pδ−d0

choices lead to the correct secret. Therefore, the conditional probability that

t− 1 parties can guess out the secret is pδ−d0

pδ
= 1

pd0
. That is,

∀s0(x) ∈ S, Pr(s(x) = s0(x) | X0(x)) = 1
pd0

= Pr(s(x) = s0(x)).

This implies that our scheme is perfect in security.

3.3 Information Rate

In this subsection, we discuss the information rate of our newly proposed scheme.
In our scheme, the secret is a polynomial of degree at most d0−1 and it takes d0
elements in Fp to represent the secret. On the other hand, the n-th party holds
the largest share which is a polynomial of degree at most dn − 1 and consists
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of dn elements in Fp. Therefore, the information rate of our threshold scheme is
d0
dn

.
Note that our scheme does not require d0 < dn, instead, the dealer can select

the modulus polynomials with the identical degree, i.e.,

d0 = d1 = · · · = dn. (13)

In this case, the information rate is 1 and our scheme is an ideal one. By The-
orem 7, we know that Expression 13 can be easily satisfied in practice and
Algorithm 2 provides an efficient way.

3.4 Comparison

In this subsection, we compare our scheme with Asmuth-Bloom’s scheme and
Shamir’s scheme. We show that our scheme has its advantage in some aspects,
which encourages us to consider our scheme as a good base when designing new
secret sharing schemes.

We start with the comparison with Asmuth-Bloom’s scheme and our scheme
enjoys the advantages in

– Perfectness and Information rate: From Subsection 2.5, we know that Asmuth-
Bloom’s is neither perfect nor ideal. However, in Subsection 3.2, we have
shown that our scheme is perfect and in Subsection 3.3, we have discussed
that our scheme can reach information rate 1. Although, [26] has shown that
Asmuth-Bloom’s scheme is asymptotically ideal, it takes moduli of huge size
to achieve this asymptotic property, which is not practical at all.

– Simplicity: During the construction of our scheme, the dealer only needs
to find n distinct irreducible polynomials of degree d0 with Algorithm 2
and these polynomials automatically satisfy the required conditions (Ex-
pression 6, Expression 7 and Expression 8) of our scheme. However, Asmuth-
Bloom’s scheme failed to give an explicit way to find its moduli and to our
knowledge, there is no such specialized algorithm. One candidate may be se-
lecting consecutive prime numbers. But when the prime numbers are small,
such consecutive prime numbers are not guaranteed to satisfy the required
Expression 5. When the prime numbers are large, Expression 5 may be easier
to satisfy, but it would be impractical if the number of secrets is small.

– Computing efficiency in certain cases: First, different from public key cryp-
tosystems, where the private key related with the security level is usually
large, the secret sharing schemes mentioned in this paper does not put its
base on some intractable problem. Therefore, we usually do not put a re-
striction on the parameters related with security, but the parameters are
determined considering both security level and practical needs. Now, sup-
pose we are in the situation where we want to share a secret of huge size, e.g.,
a 2048 or larger bits key for the RSA cryptosystem, with Asmuth-Bloom’s
scheme, we may need to find prime moduli of this size (larger than 22048).
However, it suffers from the fact that
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• to find a prime number or test the primality of numbers of such size
takes a long time,

• and the basic operations on numbers of such size is also time-consuming.
In contrast, using our scheme with a proper d0 selected (say d0 = 64), a prime
number around 232 will handle this case without extremely huge numbers
involved, thus, required computation can be completed efficiently.
Another situation is when the secret can be expressed as a d0 bit number.
Then, by working in F2[x], polynomial operations of our scheme can be
implemented with bitwise operations to speed up.

When it comes to the comparison with Shamir’s scheme, the above-mentioned
advantages fade. Since Shamir’s scheme is already ideal, our scheme can only
draw with Shamir’s scheme in perfectness and information rate. Shamir’s scheme
is also easy to construct, since the dealer only needs to find one prime number
and the rest steps are clear. As for the last point, Shamir’s scheme can also
naturally work in the finite field of pn elements to deal with the situation when
the secret is of huge size and in the finite field of 2d0 elements to enjoy the speed
up of bitwise operations. Therefore, in all the aspects discussed, we can only say
that our scheme draws with Shamir’s scheme.

However, the important difference between Shamir’s scheme and our scheme
is that our scheme still preserves the structure of the CRT as Asmuth-Bloom’s
scheme does. That is,

– in Shamir’s scheme, all parties are equal,
– while in our scheme, different parties can be easily assigned shares of different

size to be distinguished from each other. Therefore, our scheme is more
flexible than Shamir’s scheme.

This may also be the reason why Asmuth-Bloom’s scheme is significant even
though Shamir’s scheme behaves better than Asmuth-Bloom’s scheme in per-
fectness,information rate and computing efficiency. In practice, schemes based
on Asmuth-Bloom’s scheme mostly take advantages of the property of CRT. For
example,

– In the weighted scheme of [13], parties with larger weights are assigned larger
moduli while parties with smaller weights are assigned smaller moduli. This
can be easily achieved by the property of CRT.

– In the multilevel threshold scheme of [14], parties in different security levels
are assigned moduli of different size to ensure different threshold for each
level.

4 Shamir’s Scheme as a Special Case of Our Scheme

As we know, Lagrange interpolation is closely related to CRT over polynomial
ring[7].

In this section, we show that Shamir’s scheme can be regarded as a special
case of our scheme, indicating that Shamir’s scheme, Asmuth-Bloom’s scheme
and our scheme are all tightly connected in essence.
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To derive Shamir’s scheme, we can select the parameters of our proposed
scheme as follows.

– p is still a prime number
– let d0 = 1 and m0(x) = x ∈ Fp[x]
– for all i ∈ [n] let mi(x) = x− ai ∈ Fp[x] such that

∀j, l ∈ [n], j 6= l =⇒ aj 6= al

– let s(x) = a0 ∈ Fp[x]
– let α(x) be a random polynomial in {g(x) ∈ Fp[x] | deg(g(x)) ≤ t− 2}

It is easy to check that the above selection of parameters satisfies all the required
conditions of our scheme. Then, f(x) = s(x) + α(x)m0(x) = a0 + α(x)x is a
random polynomial of degree at most t − 1 and the secret is exactly s(x) =
a0 = f(0), which coincides with Shamir’s scheme. The share for the i-th party
would be si(x) = (f(x) mod mi(x)) = (f(x) mod (x − ai)) = f(ai), which also
coincides with Shamir’s scheme.

To see that f(x) (mod x − ai) = f(ai), just divide f(x) with x − ai and
get f(x) = (x − ai)q(x) + r for some unique q(x), r ∈ Fp[x] with deg(r) <
deg(x− a1) = 1. Therefore, r is actually a constant in Fp[x]. Then, replacing x
with ai in both side will result in f(ai) = r, that is, f(x) (mod x− ai) = f(ai).

In the secret reconstruction phase, for brevity of symbols, suppose t parties
{1, 2, . . . , t} want to recover the secret. Pooling their shares together, they have
the following system of congruences

X(x) ≡ f(a1) (mod x− a1)

X(x) ≡ f(a2) (mod x− a2)

. . .

X(x) ≡ f(at) (mod x− at)

(14)

Let

M(x) =
∏t
i=1 (x− ai) and Mj(x) = M(x)

x−aj =
∏t
k=1,k 6=j (x− ak), j ∈ [t]

For all i ∈ [t], since

Mi(x) ≡Mi(ai) ≡
∏t
k=1,k 6=i (ai − ak) (mod x− ai)

and gcd(Mi(x), x− ai) = 1, we have

M−1i (x) ≡ (
∏t
k=1,k 6=i (ai − ak))−1 (mod x− ai)

Therefore, by Theorem 4, the solution of Expression 14 can be written as

X(x) =
∑t
i=1 f(ai)Mi(x)(M−1i (x) (mod x− ai))

=
∑t
i=1 f(ai)

∏t
k=1,k 6=i (x− ak)(

∏t
k=1,k 6=i (ai − ak))−1

=
∑t
i=1 f(ai)

∏t
k=1,k 6=i

x−ak
ai−ak

which coincides with the Lagrange interpolation polynomial for recovering the
secret in Shamir’s scheme.
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5 A Weighted Threshold Secret Sharing Scheme

In this section, we propose a weighted secret sharing scheme based on our thresh-
old scheme in Subsection 3.1. The weighted scheme can also be seen as a coun-
terpart of the scheme based on Asmuth-Bloom’s scheme [13] for the polynomial
ring over a finite field. By this weighted scheme, we illustrate that our scheme
can serve as a better substitution for Asmuth-Bloom’s scheme. Also, we recom-
mend our threshold scheme for users who need some CRT based scheme as a
base in the future. In Subsection 5.1, we describe the weighted scheme. Then, in
Subsection 5.2, we discuss its security, information rate and comparison.

5.1 The Weighted Threshold Scheme

As is in Subsection 2.4, the access structure realized by a (t, n, ω)-weighted
threshold secret sharing scheme is of the form

Γ = {A ⊆ [n] |
∑
i∈A ω(i) ≥ t}

where ω is the weight function evaluated over Z. For simplicity of notations, let
wi = ω(i) for all i ∈ [n] and assume that

1 ≤ w1 ≤ w2 ≤ · · · ≤ wn < t.

Share Distribution: The dealer chooses a prime p and pairwise coprime poly-
nomials m0(x) = x,m1(x), . . . ,mn(x) ∈ Fp[x]. Let

di = deg(mi) for all i ∈ [n] ∪ {0}.

The chosen polynomials must satisfy the condition that ∀i ∈ [n], di = wi. The
secret space is Fp. Suppose that the dealer has picked his secret s ∈ Fp. Then,
the dealer randomly chooses a polynomial α(x) from the set

A = {g(x) ∈ Fp[x] | deg(g(x)) ≤ t− 2}.

That is, α(x) is a polynomial of degree at most t− 2. Next, the dealer computes
f(x) = s+ α(x)m0(x) = s+ α(x)x. Let df = deg(f(x)) and dα = deg(α(x)). It
is clear that

df = dα + d0 ≤ t− 2 + 1 = t− 1

Finally, the dealer computes

si(x) = f(x) mod mi(x)

as the share of the i-th party and sends si(x) privately to the i-th party.
Secret Reconstruction: If k parties {i1, . . . , ik} ⊆ [n] with∑k

j=1 ω(ij) ≥ t

want to reconstruct the secret, they pool their private shares together and form
the following system of congruences
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
X(x) ≡ si1(x) (mod mi1(x))

X(x) ≡ si2(x) (mod mi2(x))

. . .

X(x) ≡ sik(x) (mod mik(x))

They can solve this system of congruences and get a solution X0(x) ∈ Fp[x]. By
the CRT for polynomial rings over a field (Theorem 3), the solution is unique if

only polynomials of degree less than
∑k
j=1 dij are considered. Since∑k

j=1 dij ≥ t > t− 1 ≥ df

and f(x) also is a solution of the above system of congruences, they have f(x) =
X0(x). Then, the secret can be recovered by computing

s(x) = X0(x) mod m0(x).

5.2 Discussion of the Weighted Threshold Scheme

Since our weighted scheme can also be seen as a parameterization of our thresh-
old scheme, we only briefly discuss the security and information rate of our
weighted scheme in this subsection. Then, we compare it with the existing
weighted scheme.

First, as a fundamental criterion, our weighted threshold scheme is perfect.
This conclusion should be clear since the weighted scheme can be seen as a pa-
rameterization of our threshold scheme, except that, in the weighted scheme, one
party with weight w is thought of as equivalent with w parties in the threshold
scheme.

In our weighted scheme, the secret ranges over Fp while the largest share is
the polynomial of degree wn−1 which consists of wn coefficients in Fp. Therefore,
the information rate is 1

wn
.

To our knowledge, there are several existing weighted threshold schemes
based on the CRT for integers, like [19,33] and [13]. In [13], it is commented
that

– Both schemes of [19] and [33] are not perfect while [13] is perfect.
– In the scheme of [19], the dealer needs to find out all minimal subsets of

authorized access structure and then determines the modulus of each share-
holder accordingly and it is a time-consuming process.

– The size of the CRT moduli and private shares of [13] is smaller than the
moduli of [19] and [33].

Still, compared with the scheme of [13], our weighted scheme enjoys the following
advantages in

– Information rate: Our information rate is 1
wn

while the information rate of

the scheme of [13] is less than 1
wn

.
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– Simplicity: In the scheme of [13], the constraint on the modulus for each
party is stricter than that in Asmuth-Bloom’s scheme. As mentioned in
Subsection 3.4, to find such a series of moduli is not trivial and there’s
no specialized algorithm. But it is simpler to find the moduli of our scheme
with Algorithm 2.

– Computing efficiency: Our weighted scheme still inherits the advantage of
the computing efficiency in certain cases over the scheme based on the CRT
for integers as mentioned in Subsection 3.4.

6 Conclusion

Currently, existing CRT based (t, n)-threshold SS schemes are not ideal. Com-
pared with Shamir’s scheme, they have a lower information rate and are harder
to construct. In this paper, we present the generalized (t, n)-threshold SS scheme
based on the CRT for the ring of polynomials over a finite field. In particular, our
scheme is perfect in security and has information rate 1. Moreover, we showed
that Shamir’s scheme is a special case of our threshold scheme and thus estab-
lish the connection among Shamir’s scheme, Asmuth-Bloom’s scheme and our
proposed scheme. Finally, we present a weighted threshold scheme based on our
threshold scheme. Comparison shows that our weighted scheme has great advan-
tages over existing schemes based on Asmuth-Bloom’s scheme, which enables our
scheme to be a better substitution for Asmuth-Bloom’s scheme.
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