
(Tightly) QCCA-Secure Key-Encapsulation Mechanism
in the Quantum Random Oracle Model

Keita Xagawa and Takashi Yamakawa

NTT Secure Platform Laboratories
3-9-11, Midori-cho Musashino-shi, Tokyo 180-8585 Japan

{keita.xagawa.zv,takashi.yamakawa.ga}@hco.ntt.co.jp
August 25, 2021

Abstract. This paper studies indistinguishability against quantum chosen-ciphertext attacks (IND-qCCA se-
curity) of key-encapsulation mechanisms (KEMs) in quantum random oracle model (QROM). We show that
the SXY conversion proposed by Saito, Yamakawa, and Xagawa (EUROCRYPT 2018) and the HU conver-
sion proposed by Jiang, Zhang, and Ma (PKC 2019) turn a weakly-secure deterministic public-key encryption
scheme into an IND-qCCA-secure KEM scheme in the QROM. The proofs are very similar to that for the
IND-CCA security in the QROM, easy to understand, and as tight as the original proofs.
keywords: Tight security, quantum chosen-ciphertext security, post-quantum cryptography, KEM.

1 Introduction

Quantum Superposition Attacks: Scalable quantum computers will threaten classical cryptography because of
e�cient quantum algorithms, e.g., Grover’s algorithm for DB search [Gro96] and Shor’s algorithms for fac-
torization and discrete logarithms [Sho97]. Hence, we study classical cryptography secure against quantum
adversaries (see e.g., the technical report from NIST [CJL+16]). Moreover, several researchers studied stronger
quantum adversaries that can mount quantum superposition attacks, that is, quantum adversaries that can obtain
the result of quantum computations with secret. For example, the adversary can obtain

∑
2 k2 |2, � (:, 2)〉 by

querying
∑
2 k2 |2〉, where � is a decryption circuit of a symmetric-key encryption scheme and : is a secret

key. There are several quantum superposition attacks that break classically-secure cryptographic primitives:
Kuwakado and Morii [KM12] presented a quantum chosen-plaintext attack against the Even-Mansour construc-
tion of a block cipher if the inner permutation is publicly available as quantum oracle, which employed Simon’s
algorithm [Sim97] neatly. Kaplan, Leurent, Leverrier, and Naya-Plasencia [KLLN16] also studied quantum super-
position attacks against several block ciphers and modes.1 Boneh and Zhandry [BZ13b] also gave a block cipher
that is secure against chosen-plaintext-and-ciphertext attacks but vulnerable against quantum chosen-ciphertext
attacks.

The stronger attack model in which adversaries can issue quantum queries is worth investigating. We moti-
vate to investigate this model from following arguments:

– If a source code containing secret information is available, then a quantum adversary can implement a quan-
tum machine containing secret information by itself and mount quantum superposition attacks. For example,
a reverse engineering of a physical machine containing secret information allows an adversary to obtain an
obfuscated code containing secret information. Moreover, white-box cryptography and obfuscation allows
us to publish an obfuscated code containing secret information [GHS16].2

– In the future, quantum machines and quantum channels will be ubiquitous. Protocols and primitives will
handle quantum data as discussed in Damgård, Funder, Nielsen, and Salvail [DFNS14].

– Even if they handle classical data, we can consider the quantum-ubiquitous world as Boneh and Zhandry
discussed [BZ13a, BZ13b]. In this world, the end-user device is quantum and, thus, the device should mea-
sure the �nal quantum state and output a classical information, which prevents the quantum superposition
attacks. This last step would be eventually avoided by an implementation bug or be circumvented by a neat
hack of a quantum adversary in the future.

1 We also note that Anand, Targhi, Tabia, and Unruh [ATTU16] showed several modes are secure against quantum super-
position attacks if the underlying block cipher is quantumly-secure PRF.

2 This means that if there is quantum chosen-plaintext or quantum chosen-ciphertext attack that breaks a cryptographic
scheme easily, we should not publish an obfuscated code by the white-box cryptography or obfuscation.

– Moreover, if they handle classical data and are implemented in classical machines, one can consider special
techniques that force the classical machines behave quantumly. For example, Damgård, Funder, Nielsen,
and Salvail [DFNS14] and Gagliardoni, Hülsing, and Scha�ner [GHS16] discussed the ‘frozen smart-card’
scenario.

Security of PKE and KEM against Quantum Chosen-Ciphertext Attacks: Boneh and Zhandry [BZ13b] introduced
the security against quantum chosen-ciphertext attacks (qCCA security in short) for public-key encryption
(PKE), which is the security against quantum adversaries that make quantum decryption queries. Boneh and
Zhandry [BZ13b] showed that a PKE scheme obtained by applying the Canetti-Halevi-Katz conversion [BCHK07]
to an identity-based encryption (IBE) scheme and one-time signature is IND-qCCA-secure if the underlying IBE
scheme is selectively-secure against quantum chosen-identity queries and the underlying one-time signature
scheme is (classically) strongly, existentially unforgeable against chosen-message attacks. They also showed
that if there exists an IND-CCA-secure PKE, then there exists an ill-formed PKE that is IND-CCA-secure but not
IND-qCCA-secure [BZ13b].

As far as we know, this is the only known PKE scheme that is proven to be IND-qCCA secure (excluding the
concurrent work by Zhandry [Zha18, 2018-08-14 ver.]).

1.1 Our Contribution

We show that the SXY conversion in Saito, Yamakawa, and Xagawa[SXY18] and the HU conversion proposed
by Jiang, Zhang, and Ma [JZM19] turn a PKE scheme into an IND-qCCA-secure KEM scheme in the QROM,
if the underlying PKE scheme is perfectly-correct and disjoint-simulatable. We also observed that the perfect
correctness can be relaxed as X-correctness with negligible X [HHK17].

Our idea is summarized as follows: In the last step of the IND-CCA security proofs of the above conversions,
the challenger should simulate the decapsulation oracle on a query of any ciphertext 2 except the challenge
ciphertext 2∗. Roughly speaking, we observe that, if this simulation is “history-free,” i.e., if the simulation does
not depend on previously made queries at all, this procedure can be quantumly simulated by implementing this
procedure in the quantum way. 3 For example, in the last step of the IND-CCA security proof in [SXY18], the
decapsulation oracle on input 2 returns = H@ (2) if 2 ≠ 2∗, where H@ is a random function chosen by the
reduction algorithm. Therefore, intuitively speaking, this simulation is “history-free” and can be implemented
quantumly.

1.2 Concurrent Works

Zhandry [Zha18, 2018-08-14 ver.] showed that the PKE scheme obtained by applying the Fujisaki-Okamoto con-
version [FO13] to a PKE scheme PKE and a DEM scheme DEM is IND-qCCA-secure in the QROM, if PKE is
OW-CPA-secure and well-spread, DEM is OT-secure 4. Zhandry proposed recording and testing techniques to
simulate the decryption oracles. We note that his security proof is non-tight unlike ours.

1.3 Organizations

section 2 reviews basic notations and de�nitions. section 3 reviews security notions of PKE and KEM. section 4
gives our new qCCA-security proof for the KEM in [SXY18] as known as the SXY conversion. section 5 gives our
new qCCA-security proof for the KEM in [JZM19] as known as the HU conversion.

2 Preliminaries

2.1 Notation

A security parameter is denoted by ^. We use the standard $-notations: $, Θ, Ω, and l. DPT and PPT stand
for deterministic polynomial time and probabilistic polynomial time. A function 5 (^) is said to be negligible if

3 Boneh et al. [BDF+11] de�ned history-free reductions for signature schemes. They also discussed the di�culties to model
history-free reductions in the case of (public-key) encryption schemes. We also do not de�ne history-free property of
reductions for KEMs.

4 Any e�cient adversary cannot distinguish � (:, <0) from � (:, <1) even if it chooses <0 and <1 with |<0 | = |<1 |.

2

5 (^) = ^−l (1) . We denote a set of negligible functions by negl(^). For two �nite sets X and Y, Map(X,Y)
denote a set of all functions whose domain is X and codomain is Y.

For a distribution j, we often write “G ← j,” which indicates that we take a sample G from j. For a �nite set
(,* (() denotes the uniform distribution over (. We often write “G ← (” instead of “G ← * (().” For a set (and
a deterministic algorithm A, A(() denotes the set {A(G) | G ∈ (}.

If inp is a string, then “out ← A(inp)” denotes the output of algorithm A when run on input inp. If A is
deterministic, then out is a �xed value and we write “out := A(inp).” We also use the notation “out := A(inp; A)”
to make the randomness A explicit.

For the Boolean statement %, boole(%) denotes the bit that is 1 if % is true, and 0 otherwise. For example,
boole(1′ = 1) is 1 if and only if 1′ = 1.

2.2 Quantum Computation

We refer to [NC00] for basic of quantum computation.

Quantum RandomOracle Model. Roughly speaking, the quantum random oracle model (QROM) is an idealized
model where a hash function is modeled as a publicly and quantumly accessible random oracle. See [BDF+11] for
a more detailed description of the model.

Lemma. We review useful lemmas regarding the quantum oracles.

Lemma 2.1. Let ℓ be an integer. Let H : {0, 1}ℓ × X → Y and H′ : X → Y be two independent random oracles. If
an unbounded time quantum adversary A makes a query to H at most @H times, then we have���Pr[B← {0, 1}ℓ : AH,H(B, ·) () → 1] − Pr[AH,H′ () → 1]

��� ≤ 2@H · 2−ℓ/2,

where all oracle accesses of A can be quantum. 5

Though this seems to be a folklore, Saito et al. [SXY18] and Jiang et al. [JZC+18] gave the proof.
The second one is the hardness of generic search problem. If the oracle � rarely returns 1, then it is hard to

distinguish � from the zero oracle # .

Lemma 2.2 (Generic Search Problem ([ARU14, Lemma 37], [HRS16, Thm.1], [JZC+18])). Let W ∈ [0, 1]. Let Z
be a �nite set. Let � : Z → {0, 1} be the following function: For each I, � (I) = 1 with probability ?I at most W and
� (I) = 0 else. Let # be the zero function, that is, # (I) = 0 for any I ∈ Z. If an oracle algorithm A makes at most
& quantum queries to � (or #), then��Pr[A� () → 1] − Pr[A# () → 1]

�� ≤ 2@
√
W.

Particularly, the probability that A �nds a I satisfying � (I) = 1 is at most 2@√W.

Simulation of RandomOracle. In the original quantum random oracle model introduced by Boneh et al. [BDF+11],
they do not allow a reduction algorithm to access a random oracle, so it has to simulate a random oracle by it-
self. In contrast, in this paper, we give a random oracle access to a reduction algorithm. We remark that this is
just a convention and not a modi�cation of the model since we can simulate a random oracle against quantum
adversaries in several ways; 1) 2@-wise independent hash function [Zha12], where @ is the maximum nubmer
of queries to the random oracle, 2) quantumly-secure PRF [BDF+11], and 3) hash function modeled as quantum
random oracle [KLS18]. In addition, Zhandry proposed a new technique to simulate the quantum random oracle,
the compressed oracle technique [Zha18]. His new simulation of the quantum random oracle is perfect even
for unbounded number of queries. In what follows, we use CRO to denote a time needed to simulate a quantum
random oracle.

5 23 Aug. 2021: We correct the upper bound @H · 2
−ℓ+1
2 to 2@H · 2−ℓ/2. See [SXY18, ePrint version].

3

3 De�nitions

3.1 Public-Key Encryption (PKE)

The model for PKE schemes is summarized as follows:

De�nition 3.1. A PKE scheme PKE consists of the following triple of polynomial-time algorithms (Gen, Enc,Dec).

– Gen(1^ ; A6) → (ek, dk): a key-generation algorithm that on input 1^ , where ^ is the security parameter, outputs
a pair of keys (ek, dk). ek and dk are called the encryption key and decryption key, respectively.

– Enc(ek, <; A4) → 2: an encryption algorithm that takes as input encryption key ek and message < ∈ M and
outputs ciphertext 2 ∈ C.

– Dec(dk, 2) → </⊥: a decryption algorithm that takes as input decryption key dk and ciphertext 2 and outputs
message < ∈ M or a rejection symbol ⊥ ∉M.

De�nition 3.2. We say a PKE scheme PKE is deterministic if Enc is deterministic. DPKE stands for deterministic
public key encryption.

We review X-correctness in Hofheinz, Hövelmanns, and Kiltz [HHK17].

De�nition 3.3 (X-Correctness [HHK17]). Let X = X(^). We say that PKE = (Gen, Enc,Dec) is X-correct if

Ex
(ek,dk)←Gen(1^)

[
max
<∈M

Pr[2 ← Enc(ek, <) : Dec(dk, 2) ≠ <]
]
≤ X(^).

In particular, we say that PKE is perfeclty correct if X = 0.

We also de�ne key’s accuracy.

De�nition 3.4 (Accuracy). We say that a key pair (ek, dk) is accurate if for any < ∈ M,

Pr[2 ← Enc(ek, <) : Dec(dk, 2) = <] = 1.

Remark 3.1. We observe that if PKE is deterministic, then X-correctness implies that

Ex
(ek,dk)←Gen(1^)

[(ek, dk) is inaccurate] ≤ X(^).

In other words, if PKE is deterministic and X-correct, then a key pair is accurate with probability ≥ 1 − X. We
�nally stress that, if PKE is deterministic but derandomized by the random oracle, then we cannot apply the
above argument.

Disjoint Simulatability Saito et al. de�ned disjoint simulatability of DPKE [SXY18]. Intuitively speaking, a DPKE
scheme is disjoint-simulatable if there exists a simulator that is only given an encryption key and generates a
“fake ciphertext” that is computationally indistinguishable from a real ciphertext of a random message. Moreover,
we require that a fake ciphertext falls in a valid ciphertext space with negligible probability. The formal de�nition
is as follows.

De�nition 3.5 (Disjoint simulatability [SXY18]). Let DM denote an e�ciently sampleable distribution on a set
M. A deterministic PKE scheme PKE = (Gen, Enc,Dec) with plaintext and ciphertext spacesM and C is DM-
disjoint-simulatable if there exists a PPT algorithm S that satis�es the followings.

– (Statistical disjointness:)

DisjPKE,S (^) := max
(ek,dk) ∈Gen(1^ ;R)

Pr[2 ← S(ek) : 2 ∈ Enc(ek,M)]

is negligible, where R denotes a randomness space for Gen.
– (Ciphertext-indistinguishability:) For any PPT adversary A,

Advds-indPKE,DM ,S,A (^) :=

������� Pr
[
(ek, dk) ← Gen(1^);<∗ ← DM ;
2∗ := Enc(ek, <∗) : A(ek, 2∗) → 1

]
− Pr

[
(ek, dk) ← Gen(1^); 2∗ ← S(ek) : A(ek, 2∗) → 1

]
�������

is negligible.

4

Exptind-qccaPKE,A (^)

1 ← {0, 1}
(ek, dk) ← Gen(1^)

(<0, <1, BC) ← AqDec⊥ (·)
1 (ek)

2∗ ← Enc(ek, <1)

1′ ← AqDec2∗ (·)
2 (2∗, BC)

return boole(1′ = 1)

qDec0 (
∑
2,I q2,I |2, I〉)

return
∑
2,I

q2,I |2, I ⊕ 50 (2)〉

50 (2)

< := Dec(dk, 2)
if 2 = 0, set < := ⊥
return <

Fig. 1: Game for PKE schemes

IND-QCCA Boneh and Zhandry showed that if we consider a quantum challenge oracle, then there exists a
quantum adversary that can distinguish the superposition of plaintexts [BZ13b]. They showed that indistin-
guishability against fully-quantum chosen-plaintext attack (IND-fqCPA) and indistinguishability against fully-
quantum chosen-left-right-plaintext attack (IND-fqlrCPA) is impossible. (For the details, see their paper [BZ13b].)
Thus, we only consider a classical challenge oracle.

We need to de�ne the result of < ⊕ ⊥, where ⊥ ∉M. In order to do so, we encode ⊥ as a bit string outside
of the message space. The security de�nition follows:
De�nition 3.6 (IND-qCCA for PKE [BZ13b]). For any adversaryA, we de�ne its IND-qCCA advantages against
a PKE scheme PKE = (Gen, Enc,Dec) as follows:

Advind-qccaPKE,A (^) :=
���2 Pr[Exptind-qccaPKE,A (^) = 1] − 1

���,
where Exptind-qccaPKE,A (^) is an experiment described in Figure 1.6 We say that PKE is IND-qCCA-secure if Advind-qccaPKE,A (^)
is negligible for any PPT adversary A.

3.2 Key Encapsulation Mechanism (KEM)

The model for KEM schemes is summarized as follows:
De�nition 3.7. AKEM schemeKEM consists of the following triple of polynomial-time algorithms (Gen, Encaps,Decaps):
– Gen(1^ ; A6) → (ek, dk): a key-generation algorithm that on input 1^ , where ^ is the security parameter, outputs

a pair of keys (ek, dk). ek and dk are called the encapsulation key and decapsulation key, respectively.
– Encaps(ek; A4) → (2,): an encapsulation algorithm that takes as input encapsulation key ek and outputs

ciphertext 2 ∈ C and key ∈ K .
– Decaps(dk, 2) → /⊥: a decapsulation algorithm that takes as input decapsulation key dk and ciphertext 2

and outputs key or a rejection symbol ⊥ ∉ K .
De�nition 3.8 (X-Correctness). Let X = X(^). We say that KEM = (Gen, Encaps,Decaps) is X-correct if

Pr[(ek, dk) ← Gen(1^); (2,) ← Encaps(ek) : Decaps(dk, 2) ≠] ≤ X(^).

In particular, we say that KEM is perfeclty correct if X = 0.

IND-qCCA We also de�ne indistinguishability under quantum chosen-ciphertext attacks (denoted by IND-qCCA)
for KEM by follwoing [BZ13b].
De�nition 3.9 (IND-qCCA for KEM). For any adversary A, we de�ne its IND-qCCA advantage against a KEM
scheme KEM = (Gen, Encaps,Decaps) as follows:

Advind-qccaKEM,A (^) :=
���2 Pr[Exptind-qccaKEM,A (^) = 1] − 1

���,
where Exptind-qccaKEM,A (^) is an experiment described in Figure 2. 7

We say that KEM is IND-qCCA-secure if Advind-qccaKEM,A (^) is negligible for any PPT adversary A.
6 23 Aug. 2021: We change |Pr[...] − 1/2| to |2 Pr[...] − 1|.
7 23 Aug. 2021: We change |Pr[...] − 1/2| to |2 Pr[...] − 1|.

5

Exptind-qccaKEM,A (^)

1 ← {0, 1}
(ek, dk) ← Gen(1^)
(2∗, ∗0) ← Encaps(ek);
 ∗1 ← K

1′ ← AqDec2∗ (·) (ek, 2∗, ∗
1
)

return boole(1′ = 1)

qDec0 (
∑
2,I q2,I |2, I〉)

return
∑
2,I

q2,I |2, I ⊕ 50 (2)〉

50 (2)

 := Decaps(dk, 2)
if 2 = 0, set := ⊥
return

Fig. 2: Game for KEM schemes

Table 1: Summary of Games for the Proof of Theorem 4.1
Decryption of

Game H 2∗ ∗0 ∗1 valid 2 invalid 2 justi�cation

Game0 H(·) Enc1 (ek, <∗) H(<∗) random H(<) H′(B, 2)
Game1 H(·) Enc1 (ek, <∗) H(<∗) random H(<) H@ (2) Lemma 2.1
Game1.5 H′@ (Enc1 (ek, ·)) Enc1 (ek, <∗) H(<∗) random H(<) H@ (2) if key is accurate
Game2 H@ (Enc1 (ek, ·)) Enc1 (ek, <∗) H(<∗) random H(<) H@ (2) if key is accurate
Game3 H@ (Enc1 (ek, ·)) Enc1 (ek, <∗) H@ (2∗) random H@ (2) H@ (2) if key is accurate
Game4 H@ (Enc1 (ek, ·)) S(ek) H@ (2∗) random H@ (2) H@ (2) DS-IND

4 IND-qCCA Security of SXY

Gen(1^)

(ek, dk) ← Gen1 (1^)

B← {0, 1}ℓ

dk ← (dk, ek, B)

return (ek, dk)

Enc(ek)

< ← DM
2 := Enc1 (ek, <)
 := H(<)
return (, 2)

Dec(dk, 2), where dk = (dk, ek, B)

< := Dec1 (dk, 2)
if < = ⊥, return := H′(B, 2)
if 2 ≠ Enc1 (ek, <), return := H′(B, 2)
else return := H(<)

Fig. 3: KEM := SXY[PKE1,H,H′].

Let PKE1 = (Gen1, Enc1,Dec1) be a deterministic PKE scheme and let H : M → K and H′ : {0, 1}ℓ ×C → K
be random oracles. We review the conversion SXY in Figure 3. We show that KEM := SXY[PKE1,H,H′] is
IND-qCCA-secure if the underlying PKE1 is a disjoint-simulatable DPKE.

Theorem 4.1 (IND-qCCA security of SXY in the QROM). Let PKE1 be a X-correct DPKE scheme. Suppose that
PKE1 is DM-disjoint-simulatable with a simulator S. For any IND-qCCA quantum adversary A against KEM
issuing @H and @H′ quantum random oracle queries to H and H′ and @Dec decapsulation queries, there exists an
adversary B against the disjoint simulatability of PKE1 such that

Advind-qccaKEM,A (^) ≤ 2Advds-indPKE1 ,DM ,S,B (^) + DisjPKE1 ,S (^) + 4X + 4@H′ · 2
−ℓ/2

and Time(B) ≈ Time(A) + @H · Time(Enc1) + (@H + @H′ + @Dec) · CRO.

We note that the proof of Theorem 4.1 is essentially equivalent to that of the CCA security in the QROM
in [SXY18] except that at the �nal game we require quantum simulation of decapsulation oracle.

Security Proof. We use a game-hopping proof. The overview of all games is given in Table 1.

6

Game0: This is the original game, Exptind-qccaKEM,A (^).

Game1: This game is the same as Game0 except that H′(B, 2) in the decapsulation oracle is replaced with H@ (2)
where H@ : C → K is another random oracle. We remark that A is not given direct access to H@ .

Game1.5: This game is the same as Game1 except that the random oracle H(·) is simulated by H′@ (Enc1 (ek, ·))
where H′@ is yet another random oracle. We remark that a decapsulation oracle and generation of ∗0 also use
H′@ (Enc1 (ek, ·)) as H(·) and that A is not given direct access to H′@ .

Game2: This game is the same as Game1.5 except that the random oracle H(·) is simulated by H@ (Enc1 (ek, ·)) in-
stead of H′@ (Enc1 (ek, ·)). We remark that the decapsulation oracle and generation of ∗0 also use H@ (Enc1 (ek, ·))
as H(·).

Game3: This game is the same as Game2 except that ∗0 is set as H@ (2∗) and the decapsulation oracle always
returns H@ (2) as long as 2 ≠ 2∗. We denote the modi�ed decapsulation oracle by qDec’.

Game4: This game is the same as Game3 except that 2∗ is set as S(ek).

The above completes the descriptions of games. We clearly have

Advind-qccaKEM,A (^) = 2|Pr[Game0 = 1] − 1/2|

by the de�nition. We upperbound this by the following lemmas.

Lemma 4.1. We have

|Pr[Game0 = 1] − Pr[Game1 = 1] | ≤ @H′ · 2
−ℓ+1
2 .

Proof. This is obvious from Lemma 2.1. ut

Lemma 4.2. Let Acc and Acc denote the event that the key pair (ek, dk) is accurate and inaccurate, respectively. We
have

|Pr[Game1 = 1] − 1/2| ≤ |Pr[Acc] · Pr[Game1 = 1 | Acc] − 1/2| + X.

Proof. By the de�nition, we have
Pr[Acc] ≥ 1 − X and Pr[Acc] ≤ X.

We have

|Pr[Game1 = 1] − 1/2|

=

���Pr[Acc] · Pr[Game1 = 1 | Acc] + Pr[Acc] · Pr[Game1 = 1 | Acc] − 1/2
���

≤ Pr[Acc] · Pr[Game1 = 1 | Acc] + |Pr[Acc] · Pr[Game1 = 1 | Acc] − 1/2|
≤ Pr[Acc] + |Pr[Acc] · Pr[Game1 = 1 | Acc] − 1/2|
≤ |Pr[Acc] · Pr[Game1 = 1 | Acc] − 1/2| + X

as we wanted. ut

Lemma 4.3. We have

Pr[Game1 = 1 | Acc] = Pr[Game1.5 = 1 | Acc] .

Proof. Since we assume that the key pair (ek, dk) of PKE1 is accurate, Enc1 (ek, ·) is injective. Therefore, if H′@ (·)
is a random function, then H′@ (Enc1 (ek, ·)) is also a random function. Remarking that access to H′@ is not given
to A, it causes no di�erence from the view of A if we replace H(·) with H′@ (Enc1 (ek, ·)). ut

Lemma 4.4. We have

Pr[Game1.5 = 1 | Acc] = Pr[Game2 = 1 | Acc] .

7

Proof. We say that a ciphertext 2 is valid if we have Enc1 (ek,Dec1 (dk, 2)) = 2 and invalid otherwise. We remark
that H@ is used only for decrypting an invalid ciphertext 2 as H@ (2) in Game1.5. This means that a value of H@ (2)
for a valid 2 is not used at all in Game1.5.

On the other hand, any output of Enc1 (ek, ·) is valid due to the accuracy of (ek, dk). Since H′@ is only used
for evaluating an output of Enc1 (ek, ·), a value of H′@ (2) for an invalid 2 is not used at all in Game1.5.

Hence, it causes no di�erence from the view of A if we use the same random oracle H@ instead of two
independent random oracles H@ and H′@ . ut

Lemma 4.5. We have

Pr[Game2 = 1 | Acc] = Pr[Game3 = 1 | Acc] .

Proof. Since we setH(·) := H@ (Enc1 (ek, ·)), for any valid 2 and< := Dec1 (dk, 2), we haveH(<) = H@ (Enc1 (ek, <)) =
H@ (2). Therefore, responses of the decapsulation oracle are unchanged. We also have H(<∗) = H@ (2∗). ut

Lemma 4.6. We have

|Pr[Acc] · Pr[Game3 = 1 | Acc] − 1/2| ≤ |Pr[Game3 = 1] − 1/2| + X.

Proof. We have

|Pr[Acc] · Pr[Game3 = 1 | Acc] − 1/2|

≤
����Pr[Acc] · Pr[Game3 = 1 | Acc] + Pr[Acc] · Pr[Game3 = 1 | Acc]

− Pr[Acc] · Pr[Game3 = 1 | Acc] − 1/2

����
≤

���Pr[Game3 = 1] − 1/2 − Pr[Acc] · Pr[Game3 = 1 | Acc]
���

≤ |Pr[Game3 = 1] − 1/2| + Pr[Acc] · Pr[Game3 = 1 | Acc]
≤ |Pr[Game3 = 1] − 1/2| + Pr[Acc]
≤ |Pr[Game3 = 1] − 1/2| + X.

In the third inequality, we use the fact that for any reals 0, 1, and 2 with 2 ≥ 0, we have |0 − 1 − 2 | ≤ |0 − 1 | + 2.
(See Lemma A.1 for the proof.) We use this inequality by setting 0 = Pr[Acc] · Pr[Game3 = 1 | Acc], 1 = 1/2 and
2 = Pr[Acc] · Pr[Game3 = 1 | Acc]. ut

Lemma 4.7. There exists a quantum adversary B such that

|Pr[Game3 = 1] − Pr[Game4 = 1] | ≤ Advds-indPKE1 ,DM ,S,B (^).

and Time(B) ≈ Time(A) + @H · Time(Enc1) + (@H + @H′ + @Dec) · CRO.

Proof. We construct an adversary B, which is allowed to access two random oracles H@ and H′, against the
disjoint simulatability as follows 8.

BH@ ,H′ (ek, 2∗) : It picks 1 ← {0, 1}, sets ∗0 := H@ (2∗) and ∗1 ← K , and invokes 1′ ← AH,H′,qDec’ (ek, 2∗, ∗
1
)

where A ′B oracles are simulated as follows.
– H(·) is simulated by H@ (Enc1 (ek, ·)).
– H′ can be simulated because B has access to an oracle H′.
– qDec’(·) is simulated by �ltering 2∗ and using H@ (·); that is, on input

∑
2,I q2,I |2, I〉,

B returns
∑
2≠2∗ ,I q2,I |2, I ⊕ H@ (2)〉 +

∑
I q2∗ ,I |2∗, I ⊕ ⊥〉.

Finally, B returns boole(1 = 1′).

This completes the description of B. It is easy to see that B perfectly simulates Game3 if 2∗ = Enc1 (ek, <∗)
and Game4 if 2∗ = S(ek). Therefore, we have

|Pr[Game3 = 1] − Pr[Game4 = 1] | ≤ Advds-indPKE1 ,DM ,S,B (^)

as wanted. Since H is simulated by one evaluation of Enc1 plus one evaluation of a random oracle H@ , and H′

and qDec’ are simulated by one evaluation of random oracles, we have Time(B) ≈ Time(A) +@H ·Time(Enc1) +
(@H + @H′ + @Dec) · CRO. ut
8 We allow a reduction algorithm to access the random oracles. See subsection 2.2 for details.

8

Lemma 4.8. We have

|2 Pr[Game4 = 1] − 1| ≤ DisjPKE1 ,S (^).

Proof. Let Bad denote the event that 2∗ is in Enc1 (ek,M) in Game4. It is easy to see that we have

Pr[Bad] ≤ DisjPKE1 ,S (^).

When Bad does not occur, i.e., 2∗ ∉ Enc1 (ek,M),A obtains no information about ∗0 = H@ (2∗). This is because
queries to H only reveal H@ (2) for 2 ∈ Enc1 (ek,M), and qDec’(2) returns ⊥ if 2 = 2∗. Therefore, we have

Pr[Game4 = 1 | Bad] = 1/2.

Combining the above, we have

|2 Pr[Game4 = 1] − 1|

=

���Pr[Bad] · 2(Pr[Game4 = 1 | Bad] − 1/2) + Pr[Bad] · 2(Pr[Game4 = 1 | Bad] − 1/2)
���

≤ Pr[Bad] · |2 Pr[Game4 = 1 | Bad] − 1| + Pr[Bad] · 2
���Pr[Game4 = 1 | Bad] − 1/2

���
≤ Pr[Bad] + 2 ·

���Pr[Game4 = 1 | Bad] − 1/2
���

≤ DisjPKE1 ,S (^)

as we wanted. ut

Proof (Proof of Theorem 4.1). Combining all lemmas in this section, we obtain the following inequality:

Advind-qccaKEM,A (^) = |2 Pr[Game0 = 1] − 1|

≤ 2|Pr[Game1 = 1] − 1/2| + 4@H′ · 2−ℓ/2

≤ 2|Pr[Acc] · Pr[Game1 = 1 | Acc] − 1/2| + 2X + 4@H′ · 2−ℓ/2

= 2|Pr[Acc] · Pr[Game1.5 = 1 | Acc] − 1/2| + 2X + 4@H′ · 2−ℓ/2

= 2|Pr[Acc] · Pr[Game2 = 1 | Acc] − 1/2| + 2X + 4@H′ · 2−ℓ/2

= 2|Pr[Acc] · Pr[Game3 = 1 | Acc] − 1/2| + 2X + 4@H′ · 2−ℓ/2

≤ 2|Pr[Game3 = 1] − 1/2| + 4X + 4@H′ · 2−ℓ/2

≤ 2|Pr[Game4 = 1] − 1/2| + 2Advds-indPKE1 ,DM ,S,B (^) + 4X + 4@H′ · 2
−ℓ/2

≤ DisjPKE1 ,S (^) + 2Adv
ds-ind
PKE1 ,DM ,S,B (^) + 4X + 4@H′ · 2

−ℓ/2.

ut

5 IND-qCCA Security of HU

Gen(1^)

(ek, dk) ← Gen1 (1^)
dk ← (dk, ek)

return (ek, dk)

Enc(ek)

< ← DM
21 := Enc1 (ek, <)
22 := H′(<)
 := H(<)
return (, (21, 22))

Dec(dk, (21, 22)), where dk = (dk, ek)

< := Dec1 (dk, 21)
if < = ⊥, return := ⊥
if 21 ≠ Enc1 (ek, <), return := ⊥
if 22 ≠ H′(<), return := ⊥
else return := H(<)

Fig. 4: KEM := HU[PKE1,H,H′].

9

Table 2: Summary of Games for the Proof of Theorem 5.1. We let 6(·) = Enc1 (ek, ·).
Decryption

Game H H′ 2∗1 2∗2 ∗0 ∗1 condition justi�cation

Game0 H H′ Enc1 (ek, <∗) H′ (<∗) H(<∗) random H(<) if 21 = Enc1 (ek, <) and 22 = H′ (<)
Game1 H@ ◦ 6 H′@ ◦ 6 Enc1 (ek, <∗) H′@ (2∗1) H@ (2∗1) random H(<) if 21 = Enc1 (ek, <) and 22 = H′ (<) if key is accurate
Game2 H@ ◦ 6 H′@ ◦ 6 Enc1 (ek, <∗) H′@ (2∗1) H@ (2∗1) random H@ (21) if 21 = Enc1 (ek, <) and 22 = H′@ (21) if key is accurate
Game3 H@ ◦ 6 H′@ ◦ 6 Enc1 (ek, <∗) H′@ (2∗1) H@ (2∗1) random H@ (21) if 22 = H′@ (21) Statistical
Game3 H@ ◦ 6 H′@ ◦ 6 S(ek) H′@ (2∗1) H@ (2∗1) random H@ (21) if 22 = H′@ (21) DS-IND

Very recently, Jiang, Zhang, and Ma [JZM19] proposed a conversoin HU, which allows an explicit rejection
but requires additional hash value 22 of <. Let PKE1 = (Gen1, Enc1,Dec1) be a deterministic PKE scheme and
let H : M → K and H′ : M → H be random oracles. We review the conversion HU in Figure 4. We show that
KEM := HU[PKE1,H,H′] is IND-qCCA-secure if the underlying PKE1 is a disjoint-simulatable DPKE.

Theorem 5.1 (IND-qCCA security ofHU in the QROM). Let PKE1 be a X-correct DPKE scheme. Suppose that PKE1
is DM-disjoint-simulatable with a simulator S. For any IND-qCCA quantum adversary A against KEM issuing
@H and @H′ quantum random oracle queries to H and H′ and @Dec decapsulation queries, there exists an adversary
B against the disjoint simulatability of PKE1 such that

Advind-qccaKEM,A (^) ≤ 2Advds-indPKE1 ,DM ,S,B (^) + DisjPKE1 ,S (^) + 4@Dec |H |
−1/2 + 4X

and Time(B) ≈ Time(A) + (@H + @H′) · Time(Enc1) + (@H + @H′ + 2@Dec) · CRO.

The proof of Theorem 5.1 follows.

Security Proof. We use a game-hopping proof. The overview of all games is given in Table 2.

Game0: This is the original game, Exptind-qccaKEM,A (^).

Game1: This game is the same as Game0 except that the random oracle H(·) and H′(·) are simulated by
H@ (Enc1 (ek, ·)) and H′@ (Enc1 (ek, ·)), respectively, where H@ : C → K and H′@ : C → H are random oracles.
We remark that a decapsulation oracle and generation of ∗0 also use H@ (Enc1 (ek, ·)) as H(·), and generation of
2∗2 uses H′@ (Enc1 (ek, ·)) as H′(·). We also remark that A is not given direct access to H@ and H′@ .

Game2: This game is the same as Game1 except that the decapsulation oracle returns := H@ (21) if 21 =
Enc1 (ek, <) and H′@ (21) = 22, instead returns := H(<) if 21 = Enc1 (ek, <) and H′(<) = 22.

Game3: This game is the same asGame2 except that the decapsulation oracle returns := H@ (21) ifH′@ (21) = 22.
That is, the decapsulation oracle never use the re-encryption check.

Game4: This game is the same as Game3 except that 2∗1 is set as S(ek).

The above completes the descriptions of games. We clearly have

Advind-qccaKEM,A (^) = 2|Pr[Game0 = 1] − 1/2|

by the de�nition. We upperbound this by the following lemmas.

Lemma 5.1. Let Acc denote the event that the key pair (ek, dk) is accurate. We have

|Pr[Game0 = 1] − 1/2| ≤ |Pr[Acc] · Pr[Game0 = 1 | Acc] − 1/2| + X.

We omit the proof, since the proof is the same as that of Lemma 4.2.

Lemma 5.2. We have

Pr[Game0 = 1 | Acc] = Pr[Game1 = 1 | Acc] .

10

Proof. Since we assume that the key pair is accurate, Enc1 (ek, ·) is injective. Therefore, if H@ (·) (and H′@ (·), resp.)
is a random function, then H@ (Enc1 (ek, ·)) (and H′@ (Enc1 (ek, ·)), resp.) is also a random function. Remarking that
access to H@ and H′@ is not given toA, it causes no di�erence from the view ofA if we replace H(·) (and H′(·),
resp.) with H@ (Enc1 (ek, ·)) (and H′@ (Enc1 (ek, ·)), resp.). ut

Lemma 5.3. We have

Pr[Game1 = 1 | Acc] = Pr[Game2 = 1 | Acc] .

Proof. This change is just conceptual. Suppose that 21 = Enc1 (ek, <). We have that 22 = H′(<) holds if and only
if 22 = H′@ (21) and = H(<) = H@ (21). ut

Lemma 5.4. We have

|Pr[Game2 = 1 | Acc] − Pr[Game3 = 1 | Acc] | ≤ 2@Dec |H |
−1/2.

Proof. Recall that we have H′(<) = H′@ (Enc(ek, <)) and H′@ (21) = 22.
Let us see the details how the decapsulation oracle treats the query |21, 22, I〉. Let < = Dec1 (dk, 21).

– Case 1 that 21 = Enc1 (ek, <): in this case, the decapsulation oracles in both games return |21, 22, I ⊕ 〉,
where := H@ (21) or ⊥ depending on that 22 = H′@ (21).

– Case 2 that 21 ≠ Enc1 (ek, <) and 22 ≠ H′@ (22): In this case, the decapsulation oracles in both games return
|21, 22, I ⊕ ⊥〉.

– Case 3 that 21 ≠ Enc1 (ek, <) and 22 = H′@ (21): In this case, the decapsulation oracle in Game2 returns
|21, 22, I ⊕ ⊥〉, but the decapsulation oracle in Game3 returns |21, 22, I ⊕ H@ (21)〉.

If the query is classical, we can argue the di�erence as in [JZM19]: Since the adversary cannot access to H′@
directly, it cannot know the value of H′@ (21) if 21 lies outside of Enc(ek, ·). Therefore, any 22 hits the value H′@ (21)
with probability at most 1/|H |.

Even if the query is quantum, the problem is distinguishing problem and we invoke Lemma 2.2. We now
reduce from generic search problem to distinguishing Game2 with Game3. We de�ne the distribution D� over
� := { 5 : C ×H → {0, 1}} as follows: for each 21 ∈ C, choose ℎ21 ←H uniformly at random and set

5 (21, ℎ) :=
{
1 if ℎ = ℎ21
0 otherwise.

For each (21, ℎ), we have Pr[5 (21, ℎ) = 1] ≤ |H |−1.
The reduction algorithm is de�ned as follows: Suppose that we are given 5 : C×H → {0, 1}, which is chosen

according to D� or set as the zero function # . We construct H, H′, and the decapsulation oracle as follows:

– H@ and H′@ : we choose H@ |Enc1 (ek,M) and H′@ |Enc1 (ek,M) uniformly at random.
– H: on input |<, I〉, it returns |<, I ⊕ H@ (Enc1 (ek, <))〉.
– H′: on input |<, I〉, it returns |<, I ⊕ H′@ (Enc1 (ek, <))〉.
– qDec2∗ : On input |21, 22, I〉, it computes < = Dec1 (dk, 21) and computes as follows:
• if 21 = 2∗1 and 22 = 2∗2, then let = ⊥.
• if 21 = Enc1 (ek, <) and 22 = H′@ (21), then let = H@ (21).
• if 21 = Enc1 (ek, <) and 22 ≠ H′@ (21), then let = ⊥.
• if 21 ≠ Enc1 (ek, <) and 5 (21, 22) = 1, then let = H@ (21).
• if 21 ≠ Enc1 (ek, <) and 5 (21, 22) = 0, then let = ⊥.

it returns |21, 22, I ⊕ 〉.

If 5 = # , then this algorithm perfectly simulates Game2. On the other hand, if 5 ← D� , then this algo-
rithm perfectly simulates Game3, since any adversary cannot access H′@ on C \ Enc(ek,M). Thus, according
to Lemma 2.2, we have upperbound 2@Dec |H |

−1/2 as we wanted. ut

Lemma 5.5. We have

|Pr[Acc] · Pr[Game3 = 1 | Acc] − 1/2| ≤ |Pr[Game3 = 1] − 1/2| + X.

11

We omit the proof, since the proof is the same as that of Lemma 4.6.

Lemma 5.6. There exists an adversary B such that

|Pr[Game3 = 1] − Pr[Game4 = 1] | ≤ Advds-indPKE1 ,DM ,S,B (^).

and Time(B) ≈ Time(A) + @H · Time(Enc1) + (@H + @H′ + @Dec) · CRO.

Proof. Let 6(·) := Enc1 (ek, ·). For ease of notation, we de�ne a new function 5H@ ,H′@ : C × H → K ∪ {⊥} as
follows:

5H@ ,H′@ (21, 22) :=
{
H@ (21) if H′@ (21) = 22
⊥ otherwise.

We construct an adversary B, which is allowed to access two random oracles H@ and H′@ , against the disjoint
simulatability as follows 9.

BH@ ,H′@ (ek, 2∗1) : It picks 1 ← {0, 1}, sets ∗0 := H@ (2∗1) and ∗1 ← K , and invokes 1′ ← AH,H′,Dec
′
(ek, 2∗1, ∗1)

where A ′B oracles are simulated as follows.
– H(·) is simulated by H@ (Enc1 (ek, ·)).
– H′(·) is simulated by H′@ (Enc1 (ek, ·)).
– Dec

′(·) is simulated by �ltering 2∗1; on input
∑
21 ,22 ,I q21 ,22 ,I |21, 22, I〉, B returns∑

21≠2
∗
1 ,I

q21 ,22 ,I |21, 22, I ⊕ 5H@ ,H′@ (21, 22)〉 +
∑
22 ,I

q2∗1 ,22 ,I |2
∗
1, 22, I ⊕ ⊥〉

Finally, B returns boole(1 = 1′).

This completes the description of B.
Since 2∗2 := H@ (2∗1), if 22 ≠ 2∗2, then the decapsulation oracle in both games and 5H@ ,H′@ return ⊥ on input

(2∗1, 22). Thus, we have∑
22 ,I

q2∗1 ,22 ,I |2
∗
1, 22, I ⊕ ⊥〉 =

∑
22≠2

∗
2 ,I

q2∗1 ,22 ,I |2
∗
1, 22, I ⊕ ⊥〉 + q2∗1 ,2∗2 ,I |2

∗
1, 2
∗
2, I ⊕ ⊥〉

and B perfectly simulate the decapsulation oracle.
It is easy to see that B perfectly simulates Game3 if 2∗1 = Enc1 (ek, <∗) and Game4 if 2∗1 ← S(ek). Therefore,

we have
|Pr[Game3 = 1] − Pr[Game4 = 1] | ≤ Advds-indPKE1 ,DM ,S,B (^)

as wanted. We have Time(B) ≈ Time(A) + (@H + @H′) · Time(Enc1) + (@H + @H′ + 2@Dec) · CRO, since B invokes
A once, H is simulated by one evaluation of Enc1 plus one evaluation of a random oracle, and H′ and Dec

′
are

simulated by two evaluations of random oracles. ut

Lemma 5.7. We have

|2 Pr[Game4 = 1] − 1| ≤ DisjPKE1 ,S (^).

Proof. Let Bad denote the event that 2∗1 ∈ Enc1 (ek,M) happens in Game4. It is easy to see that we have

Pr[Bad] ≤ DisjPKE1 ,S (^).

When Bad does not occur, i.e., 2∗1 ∉ Enc1 (ek,M),A obtains no information about ∗0 = H@ (2∗1). This is because
queries to H only reveal H@ (2) for 2 ∈ Enc1 (ek,M), and Dec

′(2) returns ⊥ if 2 = 2∗1. Therefore, we have

Pr[Game4 = 1 | Bad] = 1/2.
9 We allow a reduction algorithm to access the random oracles. See subsection 2.2 for details.

12

Combining the above, we have

|2 Pr[Game4 = 1] − 1|

=

���Pr[Bad] · 2(Pr[Game4 = 1 | Bad] − 1/2) + Pr[Bad] · 2(Pr[Game4 = 1 | Bad] − 1/2)
���

≤ Pr[Bad] + 2
���Pr[Game4 = 1 | Bad] − 1/2

���
≤ DisjPKE1 ,S (^)

as we wanted. ut

Proof (Proof of Theorem 5.1). Combining all lemmas in this section, we obtain the following inequality:

Advind-qccaKEM,A (^) = 2|Pr[Game0 = 1] − 1/2|
≤ 2|Pr[Acc] · Pr[Game0 = 1 | Acc] − 1/2| + 2X
= 2|Pr[Acc] · Pr[Game1 = 1 | Acc] − 1/2| + 2X
= 2|Pr[Acc] · Pr[Game2 = 1 | Acc] − 1/2| + 2X
≤ 2|Pr[Acc] · Pr[Game3 = 1 | Acc] − 1/2| + 4@Dec |H |

−1/2 + 2X
≤ 2|Pr[Game3 = 1] − 1/2| + 4@Dec |H |

−1/2 + 4X
≤ 2|Pr[Game4 = 1] − 1/2| + 2Advds-indPKE1 ,DM ,S,B (^) + 4@Dec |H |

−1/2 + 4X

≤ DisjPKE1 ,S (^) + 2Adv
ds-ind
PKE1 ,DM ,S,B (^) + 4@Dec |H |

−1/2 + 4X.

ut

Acknowledgments

We would like to thank Haodong Jiang and anonymous reviewers of PQCrypto 2019 for insightful comments.

References

ARU14. Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks on classical proof systems: The
hardness of quantum rewinding. In 55th FOCS, pages 474–483. IEEE Computer Society Press, October 2014. 3

ATTU16. Mayuresh Vivekanand Anand, Ehsan Ebrahimi Targhi, Gelo Noel Tabia, and Dominique Unruh. Post-quantum
security of the CBC, CFB, OFB, CTR, and XTS modes of operation. In Tsuyoshi Takagi, editor, Post-Quantum
Cryptography - 7th International Workshop, PQCrypto 2016, pages 44–63. Springer, Heidelberg, 2016. 1

BCHK07. Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryp-
tion. SIAM J. Comput., 36(5):1301–1328, 2007. 2

BDF+11. Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Scha�ner, and Mark Zhandry. Random
oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of
LNCS, pages 41–69. Springer, Heidelberg, December 2011. 2, 3

BZ13a. Dan Boneh and Mark Zhandry. Quantum-secure message authentication codes. In Thomas Johansson and
Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 592–608. Springer, Heidelberg, May
2013. 1

BZ13b. Dan Boneh and Mark Zhandry. Secure signatures and chosen ciphertext security in a quantum computing world.
In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 361–379. Springer,
Heidelberg, August 2013. 1, 2, 5

CJL+16. Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray Perlner, and Daniel Smith-Tone. Report
on post-quantum cryptography. Technical report, National Institute of Standards and Technology (NIST), 2016. 1

DFNS14. Ivan Damgård, Jakob Funder, Jesper Buus Nielsen, and Louis Salvail. Superposition attacks on cryptographic
protocols. In Carles Padró, editor, ICITS 13, volume 8317 of LNCS, pages 142–161. Springer, Heidelberg, 2014. 1, 2

FO13. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption schemes.
Journal of Cryptology, 26(1):80–101, January 2013. 2

GHS16. Tommaso Gagliardoni, Andreas Hülsing, and Christian Scha�ner. Semantic security and indistinguishability in
the quantum world. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS,
pages 60–89. Springer, Heidelberg, August 2016. 1, 2

13

Gro96. Lov K. Grover. A fast quantum mechanical algorithm for database search. In 28th ACM STOC, pages 212–219. ACM
Press, May 1996. 1

HHK17. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the Fujisaki-Okamoto transforma-
tion. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 341–371. Springer,
Heidelberg, November 2017. 2, 4

HRS16. Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating multi-target attacks in hash-based signatures. In
Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part I, volume 9614 of
LNCS, pages 387–416. Springer, Heidelberg, March 2016. 3

JZC+18. Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. IND-CCA-secure key encapsulation
mechanism in the quantum random oracle model, revisited. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 96–125. Springer, Heidelberg, August 2018. 3

JZM19. Haodong Jiang, Zhenfeng Zhang, and Zhi Ma. Key encapsulation mechanism with explicit rejection in the quan-
tum random oracle model, 2019. To appear PKC 2019. 2, 10, 11

KLLN16. Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María Naya-Plasencia. Breaking symmetric cryptosystems
using quantum period �nding. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II, volume
9815 of LNCS, pages 207–237. Springer, Heidelberg, August 2016. 1

KLS18. Eike Kiltz, Vadim Lyubashevsky, and Christian Scha�ner. A concrete treatment of Fiat-Shamir signatures in the
quantum random-oracle model. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III,
volume 10822 of LNCS, pages 552–586. Springer, Heidelberg, April / May 2018. 3

KM12. Hidenori Kuwakado and Masakatu Morii. Security on the quantum-type even-mansour cipher. In Proceedings
of the International Symposium on Information Theory and its Applications, ISITA 2012, Honolulu, HI, USA, October
28-31, 2012, pages 312–316. IEEE, 2012. 1

NC00. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University
Press, 2000. 3

Sho97. Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer.
SIAM J. Comput., 26(5):1484–1509, 1997. 1

Sim97. Daniel R. Simon. On the power of quantum computation. SIAM J. Comput., 26(5):1474–1483, 1997. 1
SXY18. Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-encapsulation mechanism in the

quantum random oracle model. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III,
volume 10822 of LNCS, pages 520–551. Springer, Heidelberg, April / May 2018. 2, 3, 4, 6

Zha12. Mark Zhandry. Secure identity-based encryption in the quantum random oracle model. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 758–775. Springer, Heidelberg, August 2012. 3

Zha18. Mark Zhandry. How to record quantum queries, and applications to quantum indi�erentiability. Cryptology
ePrint Archive, Report 2018/276, 2018. https://eprint.iacr.org/2018/276. 2, 3

A Simple Lemma

Lemma A.1. For any reals 0, 1, and 2 with 2 ≥ 0, we have

|0 − 1 − 2 | ≤ |0 − 1 | + 2.

Proof. We consider the three cases below:

– Case 0 − 1 ≥ 2 ≥ 0: In this case, we have 0 − 1 − 2 ≥ 0. Thus, we have |0 − 1 − 2 | = 0 − 1 − 2 ≤ 0 − 1 + 2 =
|0 − 1 | + 2.

– Case 0 − 1 ≤ 0 ≤ 2: In this case, we have 0 − 1 − 2 ≤ 0. We have |0 − 1 − 2 | = −(0 − 1 − 2) = −(0 − 1) + 2 =
|0 − 1 | + 2.

– Case 0 ≤ 0 − 1 ≤ 2: Again, we have 0 − 1 − 2 ≤ 0. We have |0 − 1 − 2 | = −(0 − 1 − 2) = −(0 − 1) + 2 ≤
0 − 1 + 2 = |0 − 1 | + 2.

In all three cases, we have |0 − 1 − 2 | ≤ |0 − 1 | + 2 as we wanted. ut

14

https://eprint.iacr.org/2018/276

	(Tightly) QCCA-Secure Key-Encapsulation Mechanism in the Quantum Random Oracle Model

