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Abstract. We apply Scholten’s construction to give explicit isogenies between the Weil
restriction of supersingular Montgomery curves with full rational 2-torsion over Fp2 and
corresponding abelian surfaces over Fp. Subsequently, we show that isogeny-based public key
cryptography can exploit the fast Kummer surface arithmetic that arises from the theory of
theta functions. In particular, we show that chains of 2-isogenies between elliptic curves can
instead be computed as chains of Richelot (2, 2)-isogenies between Kummer surfaces. This
gives rise to new possibilities for efficient supersingular isogeny-based cryptography.
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1 Introduction

Public key cryptography based on supersingular isogenies is gaining increased popularity due
to its conjectured quantum-resistance. In November 2017, an actively secure key encapsulation
mechanism called SIKE [22], which is based on Jao and De Feo’s supersingular isogeny Diffie-
Hellman (SIDH) protocol [23,16], was submitted to NIST in response to their call for quantum-
resistant public key solutions [34]. When compared to other proposals of quantum-resistant key
encapsulation mechanisms, SIKE currently offers an interesting bandwidth versus performance
trade-off; its keys are appreciably smaller than its code- and lattice-based counterparts, but the
times required for encapsulation and decapsulation are significantly higher. This performance
drawback of supersingular isogeny-based cryptography is the main practical motivation for this
paper.

This work. 15 years ago, Scholten [31] showed that if E is an elliptic curve defined over a
quadratic extension field L of a non-binary field K, and if its entire 2-torsion is L-rational, then
a genus-2 curve C can be constructed over K such that its Jacobian JC is isogenous to the Weil
restriction ResLK(E). Fortuitously, supersingular isogeny-based cryptography currently uses ellip-
tic curves that precisely meet these requirements. In particular, state-of-the-art implementations
(e.g., [14,15]) of SIDH fix a large prime field K = Fp with p = 2i3j − 1 for i > j > 100, con-
struct L = Fp2 , and work in the supersingular isogeny class of elliptic curves over Fp2 whose
group structures are all isomorphic to Zp+1 × Zp+1. This necessarily means that all curves in the
supersingular isogeny class have full rational 2-torsion, can be written in Montgomery form, and
that for any such curve E/Fp2 , Scholten’s construction can be used to write down the curve C/Fp
whose Jacobian JC is isogenous to the Weil restriction of E with respect to Fp2/Fp.

In Proposition 1 we use Scholten’s construction to write down a curve whose Jacobian is
isogenous to the Weil restriction of any supersingular curve that satisfies the above requirements.
Although the existence of this isogeny is guaranteed by his construction, Scholten does not provide
the isogeny itself, and as is pointed out in [6, §2], the construction does not guarantee that this
isogeny is efficiently computable. In our supersingular setting, however, we are able to derive
simple explicit isogenies between the two varieties; these turn out to be dual (2, 2)-isogenies whose
compositions are, by definition, the multiplication-by-2 morphism on the corresponding varieties.

The application of Scholten’s construction and the derivation of the explicit maps above allows
us to study SIDH computations on abelian surfaces over Fp, rather than on elliptic curves over



Fp2 . In particular, rather than using Vélu’s formulas [35] to compute secret 2e-isogenies as chains
of 2- and/or 4-isogenies on elliptic curves over Fp2 [16], we show that the same secret isogenies can
instead be computed as a chain of (2, 2)-isogenies on Jacobian varieties over Fp. While computing
isogenies on higher genus abelian varieties is, in general, much more complicated than Vélu’s
formulas for elliptic curve isogenies, the special case of (2, 2)-isogenies between genus-2 Jacobians
dates back to the works of Richelot [29,30] from almost two centuries ago. Subsequently, the
computation of Richelot isogenies is already well-documented in the literature (cf. [10,33]), and
this allows us to tailor the explicit formulas to our scenario of computing chains of (2, 2)-isogenies
on supersingular Jacobians.

Crucial to the efficacy of this work is that we are able to compute (2, 2)-isogenies on the Kum-
mer surfaces associated to supersingular Jacobians, rather than in the full Jacobian groups. This
allows us to leverage the fast Kummer surface arithmetic arising from the classical theory of theta
functions, which was first proposed for computational purposes by the Chudnovsky brothers [12],
and which was brought to life in cryptography by Gaudry [19]. In his article [19, Remark 3.5],
Gaudry points out that the fast (pseudo-)doublings on Kummer surfaces are the result of pushing
points back and forth through a (2, 2)-isogenous variety, i.e., that the corresponding (2, 2)-isogenies
split the multiplication-by-2 map on the associated Kummer surface. This observation plays a key
role in deriving efficient isogenies on fast Kummer surfaces.

Related work. This paper relies on the results of several authors:-

– The construction in Scholten’s unpublished manuscript [31] is at the heart of this work. It
gives rise to Proposition 1 which paves the way for the rest of the paper.

– In 2014, Bernstein and Lange [6] revived Scholten’s work when they proposed using his con-
struction in the context of (hyper)elliptic curve cryptography (H)ECC to convert keys back
and forth between elliptic and hyperelliptic curves, in such a way so as to exploit advantageous
properties of both settings. They were also the first to explicitly derive instances of the isoge-
nies alluded to by Scholten, and to show that they can be efficient enough to be used in online
cryptographic computations. The setting considered in [6] has the advantage of having a single
elliptic-and-hyperelliptic curve pair that is fixed once-and-for-all (meaning the back-and-forth
maps also remain fixed), while in our scenario we will need general-purpose maps that can
handle any supersingular Montgomery curves efficiently at runtime. However, in the super-
singular setting, we have the advantage that our Jacobians have a fixed embedding degree of
k = 2, and we can therefore exploit the existence of an efficiently computable trace map; this
allows us to derive much simpler back-and-forth isogenies than those presented in [6].

– Renes and Smith [28] recently introduced qDSA: the quotient digital signature algorithm. In
order to instantiate their scheme on fast Kummer surfaces, they deconstructed the pseudo-
doubling map into the explicit (2, 2)-isogenies alluded to by Gaudry [19, Remark 3.5]; this
deconstruction (depicted in [28, Figure 1]) plays a key role in this paper. Indeed, it was their
explicit treatment of the dual Kummer surface and subsequent illustration of simple (2, 2)-
isogenies between fast Kummer surfaces that, in part, inspired the present work.

– Being able to study Kummer surface arithmetic as a viable alternative in the supersingular
isogeny landscape is made easier by virtue of the fact that state-of-the-art SIDH implemen-
tations already work entirely in the Kummer variety, E/{±}, of a given supersingular elliptic
curve E. In their article introducing SIDH, Jao and De Feo [23] showed that, in addition
to its widely known application of computing scalar multiplications, fast Montgomery x-only
style arithmetic [25] could also be used to push points through isogenies. In more recent work,
Costello, Longa and Naehrig [14] exploited a similar optimisation when computing the isoge-
nous curves in SIDH, observing that isogeny arithmetic is twist-agnostic in SIDH in a similar
fashion to point arithmetic being twist-agnostic in Bernstein’s Curve25519 ECC software [3].
Subsequently, in the SIKE proposal [22], all elliptic curve points are only ever represented up
to sign and all elliptic curves are only ever represented up to quadratic twist. Ultimately, this
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means that when we move to genus 2, we are able to work in the pre-existing SIDH infrastruc-
ture and replace abelian surfaces with Kummer surfaces and points on abelian surfaces with
points on these Kummer surfaces.

– One significant hurdle to overcome in order to exploit fast isogenies on our Kummer surfaces
it that the (2, 2)-isogeny that splits pseudo-doublings1 corresponds to a special kernel, and in
SIDH computations we need isogenies that work identically for general kernel elements, or at
least identically for all of the kernel elements that can arise in a large-degree supersingular
isogeny routine. This was achieved in the elliptic curve case by De Feo, Jao and Plût [16], who
use an isomorphism to move the general Montgomery 2-torsion point (α, 0) with α 6= 0 to the
special 2-torsion point (0, 0). However, in our case, the kernels of Richelot isogenies are non-
cyclic, and finding the isomorphism to move general kernels to special kernels is less obvious.
Our overcoming this hurdle on Jacobians (see Section 4) is aided by the use of quadratic
splittings introduced by Smith in his treatment of Richelot kernels [33, Chapter 8], and our
overcoming this hurdle on fast Kummer surfaces (see Section 5) employs the technique of [16,
§4.3.2], which uses higher order torsion points (lying above the kernel) to avoid square root
computations.

Roadmap. Section 2 provides background and sets notation. Section 3 defines the abelian surfaces
corresponding to supersingular Montgomery curves (by way of Proposition 1), and gives the back-
and-forth maps between these two objects. Section 4 then studies (2, 2)-isogenies on supersingular
abelian surfaces and, in particular, it shows how to replace even-power elliptic curve isogenies
defined over Fp2 with chains of (2, 2)-isogenies inside full Jacobians defined over Fp. This lays
the foundations to move to Kummer surfaces in Section 5, where the (2, 2)-isogenies simplify and
become much faster. Implications for isogeny-based cryptography are discussed in Section 6.

There are many constants, variables and formulas in this work, so the risk of typographical
error is high. Thus, for readers wanting to verify or replicate this work, illustrative Magma source
files can be found at

https://www.microsoft.com/en-us/download/details.aspx?id=57309.

Before going any further, we stress that this paper in no way changes the security picture of isogeny-
based cryptography, and that using Kummer surfaces over Fp instead of elliptic curves over Fp2
can be viewed as a mere implementation choice. The efficient back-and-forth maps in Section 3
show that any conceivable hard problem that can be posed in one setting can be efficiently ported
over to the other setting.

Acknowledgements. Big thanks to Joost Renes for his help in ironing out some kinks on the
Kummer surfaces, to Michael Naehrig for several helpful discussions during the preparation of this
work, and to the anonymous reviewers for their useful comments.

2 Preliminaries

This section gives the necessary background for the remainder of the paper. We start with a brief
summary of some jargon for non-experts. An abelian variety is a general term for a projective
algebraic variety that possesses an algebraic group law. When we quotient an abelian variety by
the map that takes elements to their inverses, we get the associated Kummer variety. There are
two examples that are relevant in this paper. An elliptic curve is an abelian variety of dimension
1, and its quotient by {±1} gives the associated Kummer line; if E is a short Weierstrass or
Montgomery curve, then a geometric point P ∈ E can be parameterised on the Kummer line

1 By definition, every (2, 2)-isogeny will give the multiplication-by-2 map when composed with its dual,
but here we are referring to the specific (2, 2)-isogeny alluded to in [19, Remark 3.5], and made explicit
by the dualising procedure in [28, Figure 1].
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E/{±1} by its x-coordinate, x(P ), which is why it is often called the x-line. An abelian surface
is an abelian variety of dimension 2, and all such instances in this work occur as Jacobian groups
of genus-2 hyperelliptic curves; if C is a genus-2 curve and JC is its Jacobian, then the quotient
JC/{±1} is called a Kummer surface.

Supersingular Montgomery curves. State-of-the-art SIDH implementations (cf. [14,15]) cur-
rently employ large prime fields of the form p = 2i3j − 1 with i > j > 100, so that, over Fp2 ,
the supersingular isogeny class consists entirely of curves whose abelian group structure is isomor-
phic to Zp+1 × Zp+1. This necessarily means that all of the curves in the isogeny class have full
Fp2 -rational 2-torsion, and moreover, that they can be written in Montgomery form over Fp2 as
By2 = x3 + Ax2 + x. Rather than parameterising Montgomery curves in this way, we will make
an arbitrary choice of one of the two rational 2-torsion points (α, 0) with α /∈ {−1, 0, 1} (the other
is (1/α, 0)), and from hereon will use Eα to denote the curve

Eα/K : y2 = x(x− α)(x− 1/α), (1)

the j-invariant of which is

j(Eα) = 256
(α4 − α2 + 1)3

α4(α2 − 1)2
.

Note that the j-invariant is the same for Eα as it is for the curve δy2 = x(x − α)(x − 1/α); this
is because δ only helps fix the quadratic twist, i.e., only fixes the curve up to K̄-isomorphism. As
mentioned in Section 1, point and isogeny arithmetic is independent of δ, so our curves need only
be defined up to twist.

Throughout the paper we will often be making implicit use of the following result, which is
essentially due to Auer and Top [1].

Lemma 1. If Eα/Fp2 : y2 = x(x − α)(x − 1/α) is supersingular, then α ∈ (F×p2)2, and α2 − 1 ∈
(F×p2)8.

Proof. The group structure of Eα implies that at least one of the three 2-torsion points (0, 0), (α, 0)
and (1/α, 0) must be in [2]E(Fp2), so α ∈ (F×p2)2 by [1, Lemma 2.1]. Thus, there exists ε ∈ Fp2 such

that ε2 = −α3, and it follows that E is isomorphic over Fp2 to the curve Ẽ : y2 = x(x−1)(x+α2−1)
via (x, y) 7→ (−αx+ 1, εy). Applying [1, Proposition 3.1] yields that α2 − 1 ∈ (F×p2)8. ut

Abelian surfaces. Over a field K of characteristic not 2, every genus-2 curve is birationally
equivalent to a curve of the form C : y2 = f(x), where f(x) ∈ K[x] is of degree 6 and has no
repeated factors. In this work we will only encounter such curves where f(x) splits completely in
K[x], so we will often be writing them in the form

C/K : y2 = (x− z1)(x− z2)(x− z3)(x− z4)(x− z5)(x− z6), (2)

where zi ∈ K for i ∈ {1, . . . , 6}, and where we write y2 instead of δy2 for the same reason as for
the elliptic curve case above.

Denote the difference zi − zj by (ij). Following Igusa [21, p. 620], define the quantities

I2 :=
∑

(12)2(34)2(56)2,

I4 :=
∑

(12)2(23)2(31)2(45)2(56)2(64)2,

I6 :=
∑

(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36)2,

I10 :=
∏

(12)2, (3)

where the sums and product above run over all of the distinct expressions obtained by permuting
the index set {1, . . . , 6}. The invariants I2, I4, I6, and I10 are called the Igusa-Clebsch invariants,
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and they play an analogous role to the j-invariant of an elliptic curve: two curves C and C ′, with
respective Igusa-Clebsch invariants (I2, I4, I6, I10) and (I ′2, I

′
4, I
′
6, I
′
10), are isomorphic over K̄ if and

only if

(I2 : I4 : I6 : I10) = (I ′2 : I ′4 : I ′6 : I ′10) ∈ P(2, 4, 6, 10)(K̄),

i.e., if and only if there exists a λ ∈ K̄× such that (I ′2, I
′
4, I
′
6, I
′
10) = (λ2I2, λ

4I4, λ
6I6, λ

10I10).
Observe that, as in the elliptic curve case, the invariants here are independent of δ, i.e., are
twist-independent. For a, b, c, d ∈ K with ad 6= bc and e ∈ K×, the map

κ(a,b,c,d) : C → C ′, (x, y) 7→
(
ax+ b

cx+ d
,

ey

(cx+ d)3

)
(4)

is a K-rational isomorphism to the curve C ′. Up to isomorphism and quadratic twist, and by
abuse of notation, we can write C ′ as C ′ : y2 =

∏6
i=1(x− z′i), where z′i = (azi + b)/(czi + d). Let

{`0, `1, `∞, `λ, `µ, `ν} = {z1, . . . , z6} be some relabeling of the roots of the sextic in (2). Setting

a = `1 − `∞, b = `0(`∞ − `1), c = `1 − `0, and d = `∞(`0 − `1)

in (4) yields a map κ(a,b,c,d) : C → Cλ,µ,ν , where

Cλ,µ,ν : y2 = x(x− 1)(x− λ)(x− µ)(x− ν)

is the so-called Rosenhain form of C. Under κ(a,b,c,d), the points (`λ, 0), (`µ, 0) and (`ν , 0) on C are
respectively sent to (λ, 0), (µ, 0) and (ν, 0) on Cλ,µ,ν , while the points (`0, 0), (`1, 0) and (`∞, 0) are
respectively sent to (0, 0), (1, 0), and the point at infinity on Cλ,µ,ν . There are 6! = 720 possible
relabelings of the six zi, and as such there are 720 possible (ordered) triples (λ, µ, ν) of Rosenhain
invariants. In this work we can and will identify the Jacobian variety, JC , of the curve C/K with
the degree zero divisor class group of C, i.e., with Pic0K(C) = Div0

K(C)/PrinK(C) (cf. [18, §7.8]).
In this way a point in the affine part of JC (see [18, p. 204]) is represented using the Mumford
representation of the corresponding divisor D ∈ Pic0K(C); if D is reduced and non-zero, then the
effective component of the support of D either contains 1 or 2 (not necessarily unique) K̄-rational
points on C. In the first (so-called degenerate) case, if (x1, y1) is the only such point (and its
multiplicity is 1) in the support of D, then (x1, y1) ∈ C(K), and its Mumford representation is
(x − x1, y1) ∈ K[x] ×K[x]. In the general case, when (x1, y1) and (x2, y2) with x1 6= x2 are the
two K̄-rational points on C in supp(D), then the corresponding Mumford representation is

(x2 + u1x+ u0, v1x+ v0) ∈ K[x]×K[x],

where

u1 = −x1 − x2 , u0 = x1x2 , v1 =
y2 − y1
x2 − x1

, and v0 =
y1x2 − x1y2
x2 − x1

. (5)

Note that, in general, the Mumford representation of a point in JC(K) can always be written in
K[x]×K[x], but this does not imply that the underlying points on C(K̄) are K-rational.

If (x2 + u1x + u0, v1x + v0) is a generic point in JC , then the map κ(a,b,c,d) : C → C ′ in (4)
induces a map between their Jacobians, where, for elements with `1 = c2u0 − cdu1 + d2 and
`2 = ad − bc such that `1`2 6= 0, we have (x2 + u1x + u0, v1x + v0) 7→ (x2 + u′1x + u′0, v

′
1x + v′0),

with

u′1 = `−11 ((ad+ bc)u1 − 2acu0 − 2bd) , u′0 = `−11

(
a2u0 − abu1 + b2

)
,

v′0 = −e(`21`2)−1
(
ac2(u0u1v1 − u21v0 + u0v0)− c(2ad+ bc)(u0v1 − u1v0)− d(ad+ 2bc)v0 + bd2v1

)
,

and v′1 = e(`21`2)−1
(
c2(cu1 − 3d)(u0v1 − u1v0) + cv0(c2u0 − 3d2) + d3v1

)
. (6)
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Weil restriction of scalars. The Weil restriction of scalars is the process of re-writing a system
of equations over a finite extension L/K as a system of equations in more variables over K – we
refer to [18, §5.7] for a more general discussion. In this work it can be considered as merely a
formality to increase dimension so that speaking of isogenies makes sense. The Weil restriction of
our one-dimensional varieties Eα/Fp2 (with respect to the extension Fp2 = Fp(i) with i2 + 1) is
the two-dimensional variety

Wα := Res
Fp2
Fp (Eα) = V

(
W0(x0, x1, y0, y1),W1(x0, x1, y0, y1)

)
,

where

W0 = (α2
0 + α2

1)
(
α0(x20 − x21)− 2α1x0x1 + δ0(y20 − y21)− 2y0y1δ1 − x0(x20 − 3x21 + 1)

)
+ α0(x20 − x21) + 2α1x0x1 and

W1 = (α2
0 + α2

1)
(
α1(x20 − x21) + 2α0x0x1 + δ1(y20 − y21) + 2y0y1δ0 − x1(3x20 − x21 + 1)

)
+ α1(x21 − x20) + 2α0x0x1

are obtained by putting x = x0 + x1 · i, y = y0 + y1 · i as well as α = α0 + α1 · i and δ = δ0 + δ1 · i
(with x0, x1, y0, y1, α0, α1, δ0, δ1 ∈ Fp) into (1). In terms of dimension, it now makes sense to speak
of isogenies between Wα and the two-dimensional abelian surfaces described in the next section.

We make the disclaimer that oftentimes we will speak loosely and refer to isogenies and maps
between Eα, intermediate curves, and abelian surfaces, but that from hereon it should be clear
that, technically speaking, these maps are only well-defined when speaking of the corresponding
Weil restrictions of these elliptic curves with respect to Fp2/Fp.

Power-of-2 elliptic curve isogenies in SIDH. Understanding how 2e-isogenies are computed
in SIDH is key in understanding the directions we take in Section 4 and Section 5. Recall the
three 2-torsion points on Eα as (0, 0), (α, 0) and (1/α, 0); in general, each of these corresponds to
a different 2-isogeny emanating from Eα. Following [16, §4.3.2] and [27, §4.2], when the kernel is
generated by the special point (0, 0), applying Vélu’s formulas [35] to write down the isogeny allows
us to (re)write the image curve in Montgomery form2. However, when the kernel is generated by
one of the other two points, direct application of Vélu’s formulas makes writing the image curve
in Montgomery form much less obvious. This was achieved in [16,27] by using an isomorphism to
move these two kernel points to (0, 0) on an isomorphic curve (which differs depending whether
the kernel is 〈(α, 0)〉 or 〈(1/α, 0)〉), prior to invoking Vélu.

In our case we follow an analogous path. From the work in [28], we have a very simple Kummer
surface isogeny that corresponds to a special kernel O, and we use an isomorphism to move our
two more general kernels, Υ and Υ̃ , prior to applying the isogeny (see sections 4 and 5 for the
definitions of O, Υ and Υ̃ ).

We point out that this analogue is not a coincidence, and is made concrete in Lemma 2.
Moreover, just like in the elliptic curve case where (0, 0) cannot arise as the kernel of a repeated
isogeny in SIDH (because it gives rise to the dual isogeny – see [16]), in our case it is O that
corresponds to the dual so our kernel will, with the possible exception of the very first (2, 2)-
isogeny, only ever correspond to Υ and Υ̃ .

3 Abelian surfaces isogenous to supersingular Montgomery curves

This section links supersingular Montgomery curves defined over Fp2 with abelian surfaces defined
over Fp. We start with Proposition 1, which writes down the genus-2 curve Cα/Fp arising from
Scholten’s construction; its proof is postponed until after we have derived the back-and-forth (2, 2)-
isogenies between the given Weil restriction and abelian surface. We point out that the exposition

2 The importance of the codomain curve sharing the same form as the domain curve is a result of our need
to repeat many small isogeny computations (which we want to be as efficient and uniform as possible).
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below is simplified by assuming3 p ≡ 3 mod 4 so that Fp2 = Fp(i) with i2 + 1 = 0, but treating
the complimentary or general case is analogous. The only impactful restriction made in addition
to Scholten’s requirements is that of supersingularity. As mentioned in Section 1, this gives rise
to simpler maps than those in [6] by way of the trace map, but several of our intermediate steps
may still be useful beyond the supersingular scenario.

Proposition 1. Let p ≡ 3 mod 4, let Fp2 = Fp(i) with i2 + 1 = 0, and let

Eα/Fp2 : y2 = x(x− α)(x− 1/α)

be supersingular with α 6∈ Fp. Write α = α0 + α1 · i with α0, α1 ∈ Fp. The Weil restriction of
scalars of Eα(Fp2) with respect to Fp2/Fp is (2, 2)-isogenous to the Jacobian, JCα , of

Cα/Fp : y2 = f1(x)f2(x)f3(x), (7)

where

f1(x) = x2 +
2α0

α1
· x− 1,

f2(x) = x2 − 2α0

α1
· x− 1, and

f3(x) = x2 − 2α0(α2
0 + α2

1 − 1)

α1(α2
0 + α2

1 + 1)
· x− 1.

Remark 1 (Singular quadratic splittings and split Jacobians). We immediately point out that the
fi(x) in Proposition 1 are linearly dependent; namely, f3(x) = 1/(N+1) ·f1(x)+N/(N+1) ·f2(x),
where N = NFp2/Fp(α) = α2

0 + α2
1. Oftentimes in the literature, this is referred to as the singular

scenario, where the Jacobian of Cα is reducible, or split (e.g., [10, Theorem 14.1.1(ii)] and [33,
Proposition 8.3.1]). However, we stress that those results do not necessarily imply that this splitting
occurs over Fp; Cassels and Flynn assume that they are working in the algebraic closure [10, p. 154]
and Smith’s construction of the linear polynomials on [33, p. 119] also requires a field extension in
the general case. Indeed, if all of the elliptic curves in our isogeny graph were (2, 2)-isogenous to
a Jacobian that is split over Fp, this would have serious implications on the quantum security of
SIDH (see [11]). We conjecture that the Jacobian of Cα only splits over Fp when the j-invariant of
Eα is itself defined over Fp, and note that adhering to the constructions in [10] and [33] (over the
algebraic closure) yields an isogeny between JCα(Fp2) and E2

α(Fp2), which manifests JCα being
supersingular [26, Theorem 4.2].

Fixing roots of the sextic. Following Lemma 1, let γ, β ∈ Fp2 be such that

γ2 = α and β2 = (α2 − 1)/α, (8)

and write β = β0 + β1 · i and γ = γ0 + γ1 · i for β0, β1, γ0, γ1 ∈ Fp. The curve Cα/Fp from
Proposition 1 will henceforth be written as

Cα/Fp : y2 = (x− z1)(x− z2)(x− z3)(x− z4)(x− z5)(x− z6),

where

z1 :=
β0
β1
, z2 :=

γ0
γ1
, z3 := −γ0

γ1
, z4 := −β1

β0
, z5 := −γ1

γ0
, z6 :=

γ1
γ0
, (9)

and where we note at once that

z3 = −z2 , z4 = −1/z1 , z5 = −1/z2 , and z6 = 1/z2.

Furthermore, observe that any combination of the choices of roots for γ and β in (8) gives rise to
the same values of the zi in (9).

3 In the current landscape of isogeny-based cryptography, the assumption of p ≡ 3 mod 4 is stan-
dard [16,14,15,22].
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Mapping from Eα(Fp2) to JCα(Fp). The (2, 2)-isogeny from (the Weil restriction of) Eα(Fp2)
to the Jacobian JCα(Fp) will be derived as the composition of maps between intermediate curves.
We start by defining the curve

Ẽα/Fp2 : y2 = (x− r1)(x− r2)(x− r3),

with

r1 := (α− 1/α)p−1, r2 := αp−1, and r3 := 1/αp−1.

Fix β̂ such that β̂2 = r3 − r2 (it is easy to see that β̂ always exists over Fp2), and define an

isomorphism between Eα and Ẽα as

ψ : Eα → Ẽα, (x, y) 7→
(

(β̂/β)2 · x+ r1 , (β̂/β)3 · y
)
.

Following [31, Lemma 2.1], define C̃α/Fp2 as the hyperelliptic curve

C̃α/Fp2 : y2 = (x2 − r1)(x2 − r2)(x2 − r3),

where we have the map

ω : C̃α → Ẽα, (x, y) 7→ (x2, y).

Observing that r1, r2 and r3 are all square in Fp2 , let W be the set of x-coordinates of the six

Weierstrass points of C̃α. A key step in Scholten’s construction is to choose a map φ that, restricted
to x-coordinates, leaves φ(W ) invariant under the action of Galois. With Fp2 = Fp(i), our choice
is

φ : C̃α(Fp2)→ Cα(Fp2),

(x, y) 7→

(
−i · x− 1

x+ 1
,
y

w

(
1− x− 1

x+ 1

)3
)
,

where w := r3(1− r1)(r2− 1)2 and Cα is the curve from Proposition 1. An important observation
here is that Cα is defined over Fp, while C̃α is defined over Fp2 , and the map φ is between the
Fp2 -rational points on these curves.

Composing the image of the pullback ω∗ (see [18, Definition 8.3.1]) with φ (which is extended
linearly into JCα(Fp2) via the Abel-Jacobi map as in (5)), induces the map

ρ : Ẽα(Fp2)→ JCα(Fp2),

(x̃, ỹ) 7→ (x2 + u1x+ u0, v1 + v0),

where

u1 = 2i ·
(
x̃+ 1

x̃− 1

)
, u0 = −1, v1 = −4i · ỹ(x̃+ 3)

w(x̃− 1)2
, v0 =

4ỹ

w(x̃− 1)
.

Since JCα is defined over Fp and is supersingular with embedding degree k = 2, we can use
the trace map T to move elements from JCα(Fp2) into JCα(Fp), i.e.,

T : JCα(Fp2)→ JCα(Fp),

P 7→
∑

σ∈Gal(Fp2/Fp)

σ(P ),

which for generic elements in JCα(Fp2), becomes

T : (x2 + u1x+ u0, v1x+ v0) 7→ (x2 + u1x+ u0, v1x+ v0)⊕J (x2 + up1x+ up0, v
p
1x+ vp0),

where ⊕J denotes the addition law in JCα(Fp2), explicit formulas for which are in [20, §5].
Finally, we can now define the map from (the Weil restriction of) Eα(Fp2) to JCα(Fp) as

η : Eα(Fp2)→ JCα(Fp),
P 7→ (T ◦ ρ ◦ ψ)(P ).
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Mapping from JCα(Fp) to Eα(Fp2). We start by writing down φ−1, the inverse of φ, as

φ−1 : Cα(Fp2)→ C̃α(Fp2),

(x, y) 7→
(
−x− i
x+ i

, −i · yw

(x+ i)3

)
.

Extending φ−1 linearly to DivFp(Cα) (and recalling our identification of JCα(K) and Pic0K(Cα) –

see Section 2) induces a map ρ̂, defined for generic elements in the affine part of JCα(Fp) as

ρ̂ : JCα(Fp)→ Ẽα(Fp2)× Ẽα(Fp2),

P 7→
(
(ω ◦ φ−1)(x1, y1)), (ω ◦ φ−1)(x2, y2)

)
,

where the Mumford representation of P ∈ JCα(Fp) is exactly as in (5), with (x1, y1), (x2, y2) ∈
Cα(Fp2).

We can now define the full map from JCα(Fp) to Eα(Fp2) as

η̂ : JCα(Fp)→ Eα(Fp2),

P 7→
(
ψ−1 ◦ ⊕Ẽ ◦ ρ̂

)
(P ),

where ⊕Ẽ : Ẽα × Ẽα → Ẽα is the addition law on Ẽα, and the inverse of the isomorphism ψ is

ψ−1 : Ẽα → Eα, (x, y) 7→
(

(β/β̂)2 · (x− r1) , (β/β̂)3 · y
)
.

Kernels and group structures. Let OEα be the point at infinity on Eα. The kernel of the map
η : Eα(Fp2)→ JCα(Fp) is

ker(η) = Eα[2] = {OEα , (0, 0), (α, 0), (1/α, 0)} ,

which is isomorphic to Z2 × Z2.

Let OJ be the identity in JCα . The kernel of the map η̂ : JCα(Fp)→ Eα(Fp2) is

ker(η̂) = {OJ , ((x− z1)(x− z4), 0) , ((x− z3)(x− z6), 0) , ((x− z2)(x− z5), 0)} ,

a maximal 2-Weil isotropic subgroup of JCα [2], which is also isomorphic to Z2 × Z2. It is readily
verified that, up to isomorphism, we have (η̂ ◦ η) = [2]Eα , where [2]Eα is the multiplication-by-2
map on Eα. Similarly, up to isomorphism, we have (η ◦ η̂) = [2]J , where [2]J is the multiplication-
by-2 map on JCα . Thus, η and η̂ are the (unique, up to isomorphism) dual isogenies of one another.

As abelian groups, we have

Eα(Fp2) ∼= Zp+1 × Zp+1,

and

JCα(Fp) ∼= Z2 × Z2 × Z p+1
2
× Z p+1

2
. (10)

Proof (of Proposition 1). This follows from [31]. Eα is isomorphic to Ẽα under ψ (indeed, Ẽα
is a monic version of the second curve in [31, Lemma 3.1], when Eα is the first). Thus, under
ω : (x, y) 7→ (x2, y), Ẽα and JCα have the same L-polynomial and are therefore isogenous [31,
Lemma 2.1]. It remains to show that η is a (2, 2)-isogeny, which is an immediate consequence of
ker(ω∗) ⊆ Ẽα[2] [18, Exercise 10.5.2] and the definition of ρ. ut
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4 Richelot isogenies on supersingular abelian surfaces

This section studies Richelot (2, 2)-isogenies whose domain is the Jacobian, JCα , of the curve Cα
defined in Proposition 1. This lays the foundations for the following section, where we will study
these isogenies as they are pushed down onto a corresponding Kummer surface Kα = JCα/{±1}.
Readers should rest assured that, as is usual in the genus-2 landscape, the situation looks much
more complicated on the full Jacobian (e.g., in (13)) than it does once we move to a well-specified
Kummer surface.

In general, there are 15 Richelot isogenies emanating from JCα , but we will be restricting our
focus to the three that correspond to the 2-isogenies on Eα.

Kernels of (2, 2)-isogenies as quadratic splittings. Recall the labeling of the roots z1, . . . , z6 ∈
Fp of the sextic f(x) ∈ Fp[x] in (9). As an abelian group, the 2-torsion of JCα , JCα [2], is isomor-
phic to (Z/2Z)4; it consists of the zero element, OJ , together with the 15 points whose Mumford
representations are ((x−zi)(x−zj), 0), where i, j ∈ {1, . . . 6} and i 6= j. We will use Gi,j to denote
the quadratic polynomial (x−zi)(x−zj) ∈ Fp[x] and write Pi,j ∈ JCα [2] for the non-zero 2-torsion
point whose Mumford representation is Pi,j = (Gi,j , 0).

Following [33, §8.1], kernels of (2, 2)-isogenies are called (2, 2)-subgroups, and these correspond
to the maximal 2-Weil isotropic subgroups of JCα [2]. Smith [33, §8.2] formalises this connection by
introducing quadratic splittings. In our case, a quadratic splitting is simply a choice of factorisation
of the sextic polynomial f(x) in Proposition 1 into three quadratic factors in Fp[x]; one such
choice was already illustrated in (7). Henceforth, for any {i, j, k, l,m, n} = {1, 2, 3, 4, 5, 6}, we
use the notation (Gi,j , Gk,l, Gm,n) ∈ Fp[x]3 to denote the corresponding quadratic splitting of
f(x) = Gi,j · Gk,l · Gm,n. There are 15 choices of splittings, and each corresponds to a unique
(2, 2)-subgroup: the quadratic splitting (Gi,j , Gk,l, Gm,n) corresponds to the (2, 2)-subgroup of
JCα [2] generated by any two of the three points in {Pi,j , Pk,l, Pm,n} (the third point is the sum of
the other two). In this way, we see that (2, 2)-subgroups are isomorphic to (Z/2Z)2.

(2, 2)-subgroups corresponding to the Montgomery 2-torsion. Out of the 15 possible
splittings described above, there are three splittings we are interested in; those where the subse-
quent (2, 2)-isogenies on JCα correspond to the three 2-isogenies on Eα. We make these splittings
concrete in the following lemma.

Lemma 2. Let Eα̂/Fp2 , Eα′/Fp2 and Eα′′/Fp2 be three Montgomery curves that are respectively
Fp2-isomorphic to Eα/〈(0, 0)〉, Eα/〈(α, 0)〉, and Eα/〈(1/α, 0)〉, and let Cα̂/Fp, Cα′/Fp and Cα′′/Fp
be the corresponding hyperelliptic curves (as in Proposition 1). Furthermore, fix the three quadratic
splittings O, Υ , and Υ̃ , as

O = (O1, O2, O3) := (G2,3, G5,6, G1,4),

Υ = (Υ1, Υ2, Υ3) := (G4,5, G1,2, G3,6), and

Υ̃ = (Υ̃1, Υ̃2, Υ̃3) := (G1,6, G3,4, G2,5).

Then, up to isomorphism, the image curves CO, CΥ and CΥ̃ of the Richelot (2, 2)-isogenies (with

respective kernels corresponding to O, Υ and Υ̃ ) are such that

CO = Cα̂, and {CΥ , CΥ̃ } = {Cα′ , Cα′′}.

Proof. Direct substitution of (9) gives

O1 = x2 − γ20
γ21
, O2 = x2 − γ21

γ20
, O3 = x2 +

(
β2
1 − β2

0

β0β1

)
x− 1, (11)

Υ1 = x2 +

(
β1γ0 + γ1β0

β0γ0

)
x+

β1γ1
β0γ0

, Υ2 = x2 −
(
β0γ1 + γ0β1

β1γ1

)
x+

β0γ0
β1γ1

, Υ3 = x2 +

(
γ2
0 − γ2

1

γ0γ1

)
x− 1,
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and

Υ̃1 = x2 −
(
β0γ0 + γ1β1

β1γ0

)
x+

β0γ1
β1γ0

, Υ̃2 = x2 +

(
β0γ0 + γ1β1

β0γ1

)
x+

β1γ0
β0γ1

, Υ̃3 = x2 +

(
γ2
1 − γ2

0

γ0γ1

)
x− 1.

In each case, if the splitting is written as S =
(
x2 + g1,1x+ g1,0, x

2 + g2,1x+ g2,0, x
2 + g3,1x+ g3,0

)
,

then the curve with the corresponding (2, 2)-isogenous Jacobian (cf. [10, §9.2]) is isomorphic to

CS : y2 = h(x) = h1(x)h2(x)h3(x),

where

h1(x) = (g1,1 − g2,1)x2 + 2 (g1,0 − g2,0)x+ g1,0g2,1 − g2,0g1,1,
h2(x) = (g2,1 − g3,1)x2 + 2 (g2,0 − g3,0)x+ g2,0g3,1 − g3,0g2,1, and

h3(x) = (g3,1 − g1,1)x2 + 2 (g3,0 − g1,0)x+ g3,0g1,1 − g1,0g3,1. (12)

Now, following Section 2, and using (8), we first write α̂ = (α+ 1)/(1− α), α′ = 2α(α+ βγ)− 1
and α′′ = (2 − α2 + 2βγ · i)/α2, and then write each of these constants in terms of its two Fp
components (under the basis {1, i} for Fp2/Fp as usual). We can then apply Proposition 1 to write
down Cα̂, Cα′ and Cα′′ . Using (3), lengthy but straightforward calculations show that the result
follows from comparing the Igusa-Clebsch invariants of these three curves to those of the curves
CO, CΥ and CΥ̃ obtained above. ut

The explicit Richelot isogeny corresponding to O. Equation (12) writes down the curve
whose Jacobian is (2, 2)-isogenous to that of a given genus-2 curve; here the prescribed kernel can
be any (2, 2)-subgroup. To fully describe the isogeny, we also need to write down explicit formulas
for pushing points in the domain Jacobian through the corresponding isogeny, which is the purpose
of this subsection. However, we first note that we will only be needing explicit formulas for the
special case when the kernel subgroup corresponds to a quadratic splitting of the form of O in (11).
To compute isogenies when the splitting is of the form of Υ and/or Υ̃ , we will be (pre)composing
the isogeny described in this subsection with the isomorphisms (that transform these splittings
into splittings of the form of O) in the next subsection. For reasons analogous to Montgomery
2-isogenies in the elliptic curve case (see Section 2), proceeding in this way makes life easier when
we move down to the Kummer surface in Section 5.

Bost and Mestre [8] derive explicit (2, 2)-isogenies from Richelot correspondences [33, Definition
8.4.7]. In general, correspondences are divisors on the product C×C ′ of the two curves C and C ′,
and the theory of correspondences relates such divisors to homomorphisms between their Jacobians
(see [33, Chapter 3]). In this paper we focus on the particular case of the Richelot correspondence

VO := V

(
O1(x1)O′1(x2) +O2(x1)O′2(x2),
y1y2 −O1(x1)O′1(x2)(x1 − x2)

)
on Cα × CO. With O1 and O2 as in (11), and with O′1 and O′2 as their derivatives, we get

VO = V

(
4x2(x21 − 2α2

0/α
2
1 − 1),

α2
1y1y2 + 2x2(4α2

0 + 4α0γ
2
1 + α2

1(1− x21))(x1 − x2)

)
.

Following [33, §3.3], and viewing VO as a curve on Cα × CO, we make use of the coverings

πVO1 : VO → Cα, ((x1, y1), (x2, y2)) 7→ (x1, y1)

and

πVO2 : VO → CO, ((x1, y1), (x2, y2)) 7→ (x2, y2),
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and compose the pullback πVO∗1 with the pushforward πVO2∗ to obtain4 the induced isogeny

ϕO : JCα → JCO ,

defined on general elements of JCα as

ϕO : (x2 + u1x+ u0, v1x+ v0) 7→ (x2 + u′1x+ u′0, v
′
1x+ v′0), (13)

where

u′1 = −α1(u21 − 1)(N + 1)

α0(N − 1)
, u′0 = u21, v′0 = 2M · u1(α0(N − 1)− u1α1(N + 1))

v1α1(N + 1)
, and

v′1 = 2M · (α1u1(N + 1))2 − (N2 − 1)α1α0u1 −N(N + 2α0 + 1)(N − 2α0 + 1))

α0α1(N2 − 1)v1
,

with N = α2
0 + α2

1 and M = (u21 − 2α0/α1u1 − 1)(u21 + 2α0/α1u1 − 1), and with

CO : y2 = ε0x
(
x2 − ε1x− 1

) (
x2 − ε2x− 1

)
,

where ε0 = 4α0(N−1)
α1(N+1) , ε1 = 2α0(N+1)+4N

α1(N−1) and ε2 = 2α0(N+1)−4N
α1(N−1) .

Isomorphisms of (2, 2)-kernels. As mentioned in Section 2, we follow a similar path to that
which was taken in the elliptic curve case and precompose the isogeny described above with
isomorphisms that transform the (2, 2)-kernels Υ and Υ̃ to be of the same form as O, but on an
isomorphic curve.

Our situation is more complicated than the elliptic curve case because our kernels are non-
cyclic, meaning that they cannot be defined using a single point in the Jacobian. But, in the
scenario of chained (2, 2)-isogeny computations on supersingular abelian surfaces, we are able to
overcome this and still use individual 2-torsion points Pi,j to distinguish between the three kernel

splittings O, Υ , and Υ̃ . If n is the even integer (p + 1)/4, and if OJ is the identity on JCα , then
[n]JCα is a (2, 2)-subgroup (see (10)), and in our case is always one of

[n]JCα = {OJ , (O1, 0), (Υ1, 0), (Υ̃1, 0)},

or

[n]JCα = {OJ , (O2, 0), (Υ2, 0), (Υ̃2, 0)}.

In either case, if P is a point of exact order 2` with ` > 1 in JCα , then we see that [2`−1]P 6= OJ
reveals which of the three splittings O, Υ or Υ̃ , corresponds to our (2, 2)-kernel. Moreover, as
discussed at the end of Section 2, in SIDH our kernel will always correspond to one of Υ or Υ̃ ,
since O generates the dual of the previous isogeny.

Our task is now to define an isomorphism that moves the kernels Υ and Υ̃ into a kernel of the
same form as O, but on an isomorphic curve. For a given point P = (x2 + u1x+ u0, v1x+ v0) in
JCα , we define

ξP : JCα → JC′
α

as the isomorphism of Jacobians corresponding to κa,b,c,d : Cα → C ′α from (4), with

d = 1, c = −u0 − 1 +
√

(u0 − 1)2 + u21
u1

, b = −
√
−u1(2c(u0 − 1)− u1)

u1
, a = −b2u0 + cu1

2c+ u1
. (14)

4 Those unfamiliar with these maps can view this process informally as follows: for a fixed (x1, y1), take
the image as the divisor sum of the (in this case) two points, P and Q, whose coordinates satisfy the
resulting equations in (x2, y2). This gives a map (x1, y1) 7→ (P ) + (Q) between Div(Cα) and Div(CO)
that can be extended (linearly) to give a map from Pic0(Cα) to Pic0(CO), and then from JCα to JCO .
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When P = (x2 + u1x + u0, 0) is a 2-torsion point, the induced isomorphism of Jacobians
in (6) simplifies significantly. Straightforward calculations reveal that, when P corresponds to the
quadratic splitting Υ (i.e., when P ∈ {Υ1, Υ2}), we have{

ξ(Υ1,0)((Υ1, 0)) , ξ(Υ1,0)((Υ2, 0))
}

=
{
ξ(Υ2,0)((Υ1, 0)) , ξ(Υ2,0)((Υ2, 0))

}
=
{

((x2 − γ′20 /γ′21 ), 0) , ((x2 − γ′21 /γ′20 ), 0)
}
,

and

ξ(Υ1,0)((Υ3, 0)) = ξ(Υ2,0)((Υ3, 0)) =

(
x2 +

(
β′21 − β′20
β′0β

′
1

)
x− 1, 0

)
,

for some γ′0, γ
′
1, β
′
0, β
′
1 ∈ Fp such that β′ = β′0 + β′1 · i ∈ Fp2 and γ′ = γ′0 + γ′1 · i ∈ Fp2 satisfy

γ′2β′2 = γ′4− 1, which comes from the relation in (8). Thus, the (2, 2)-subgroup corresponding to
the splitting Υ on JCα is isomorphic (via either ξ(Υ1,0) or ξ(Υ2,0)) to the splitting

O′ =
(
x2 − γ′20 /γ′21 , x2 − γ′21 /γ′20 , x2 + (β′21 − β′20 )/(β′0β

′
1)x− 1

)
on JC′

α
.

Crucially, the analogous statements apply when the point P corresponds to the quadratic split-
ting Υ̃ (i.e., when P ∈ {Υ̃1, Υ̃2}), with the only difference being different values of γ′0, γ

′
1, β
′
0, β
′
1 ∈ Fp

and a different (but still isomorphic) image curve JC′
α

.

Finally, we fix

ϕP := (ϕO ◦ ξP )

as the (2, 2)-isogeny of Jacobians whose kernel is the (2, 2)-subgroup corresponding to Υ if P ∈
{(Υ1, 0), (Υ2, 0)}, or corresponding to Υ̃ if P ∈ {(Υ̃1, 0), (Υ̃2, 0)}. It is important to point out that
ϕP is computed in the same way regardless of whether P corresponds to Υ or to Υ̃ .

To summarise, we have so far derived all of the ingredients necessary to replace chained 2-
isogenies on elliptic curves over Fp2 with chained (2, 2)-isogenies on Jacobians over Fp. However,
the combination of a relatively inefficient ϕP and point doublings in the full Jacobian is what
prompts us to now push this arithmetic down onto the corresponding fast Kummer surfaces.

Remark 2. It is not surprising that the isomorphism in (14) that transforms the (2, 2)-kernels Υ
and Υ̃ into a kernel of the form of O (but on an isomorphic curve) seems to require square roots.
Indeed, De Feo, Jao and Plût [16] encountered the same problem in their treatment of 2-isogenies
between Montgomery curves, but noticed that the square roots were related to rational functions
of torsion elements lying above their kernels, so were able to use these higher order points to avoid
square roots and efficiently chain together 2-isogenies in the SIDH framework. We employ this
same technique in the next section to avoid square roots during Kummer isogeny computations,
and claim that (if there was any practical motivation to sort out these details) the square roots
in (14) could also be circumvented by using points of order 4 lying above P ∈ JCα . Indeed, the
functions of u0 and u1 in (14) being squares in Fp is undoubtedly related to their being the output
of a point doubling in JCα . Finally, we point out that in the case of 2-isogenies on Montgomery
elliptic curves, Renes [27, §4] recently removed the need for any higher order points, giving explicit
formulas that depend only on the kernel element of order 2.

5 Richelot isogenies on supersingular Kummer surfaces

The efficacy of this work relies on our being able to push ϕP down onto specific choices of Kummer
surfaces.
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Supersingular Kummer surfaces. Following the initial works of the Chudnovskys [12] and of
Gaudry [19], a number of authors have exploited the fast Kummer surface arithmetic in the context
of modern HECC (cf. [4,7,5]). We draw on the applicable techniques from that line of work in this
paper, and in particular adopt the Chudnovskys’ [12] squared Kummer surface approach that was
first exploited in high-speed HECC by Bernstein [4] and for fast factorisation by Cosset [13].

Choices of notations and parameterisations of Kummer surfaces have varied in the literature
(see [28, Table 1]). We will aim to stick to that used in [28], but warn that our supersingular
Kummer surfaces are special and will be defined as such. Kummer surfaces and their arithmetic
are defined by fixing four fundamental theta constants, and the special squared Kummer surfaces
used in this paper work entirely with their squares, denoted µ1, µ2, µ3 and µ4.

Following [7, §5.2], the µi can be computed from the Rosenhain form Cλ,µ,ν of the associated
genus-2 curve, as

µ4 = 1, µ3 =

√
λµ

ν
, µ2 =

√
µ(µ− 1)(λ− ν)

ν(ν − 1)(λ− µ)
, µ1 = µ2µ3

ν

µ
. (15)

In the supersingular scenario, with the sextic form of genus-2 curves as in (9), we will fix the
transformation to Rosenhain form that sends the point (z1, 0) to (0, 0), the point (z2, 0) to (1, 0),
the point (z4, 0) to the unique point at infinity, the point (z3, 0) to (λ, 0), the point (z6, 0) to (µ, 0),
and the point (z5, 0) to (ν, 0). We achieve this by taking a = z2 − z4, b = −az1, c = z2 − z1 and
d = −cz4, i.e.,

κ(a,b,c,d) : Cα → Cλ,µ,ν

(x, y) 7→

( (
β0γ0 + β1γ1
γ0β1 − γ1β0

)
·
(
β1x− β0
β0x+ β1

)
, ey ·

(
β0β1γ1

(β1γ0 − β0γ1)(β0x+ β1)

)3
)
,

with e2 = ac(a− c)(a− νc)(a− µc)(a− λc), and where

λ := − (β0γ1 + β1γ0)(β0γ0 + β1γ1)

(β0γ0 − β1γ1)(β0γ1 − β1γ0)
, µ :=

(β0γ0 + β1γ1)(β0γ0 − β1γ1)

(β0γ1 + β1γ0)(β0γ1 − β1γ0)
, ν := − (β0γ0 + β1γ1)2

(β0γ1 − β1γ0)2
.

Thus, we see that ν = λµ, meaning that (15) simplifies to

µ4 := 1, µ3 := 1, µ2 :=

(
γ20 − γ21
γ20 + γ21

)
/
√
λ, µ1 :=

(
γ20 − γ21
γ20 + γ21

)
·
√
λ.

Previous works in the realm of high-speed HECC do not have µ3 = 1 in addition to µ4 = 1
(because the chances of finding a secure such Kummer surface over a given field are very small),
which is why we stated above that our Kummer surfaces are special. One bonus of having µ3 = 1
is a simplified description of the Kummer surface, and for a fixed5 Kummer surface of this form,
another is more efficient arithmetic for the pseudo-group operations.

Our special squared Kummer surface, KSqr, is defined as

KSqr : F ·X1X2X3X4 =
(
X2

1 +X2
2 +X3

3 +X2
4 −G(X1 +X2)(X3 +X4)−H(X1X2 +X3X4)

)2
,

where

F := 4µ1µ2
(µ1 + µ2 + 2)2(µ1 + µ2 − 2)2

(µ1µ2 − 1)2
, G := µ1 + µ2, and H :=

µ2
1 + µ2

2 − 2

µ1µ2 − 1
.

Elements on KSqr are projective points (X1 : X2 : X3 : X4) ∈ P3 satisfying this equation, and
the zero element is OK = (µ1 : µ2 : 1 : 1).

5 When we move from Kummer to Kummer in SIDH, we will not be normalising µ3 and µ4, so the only
savings that remain are those that arise from µ3 = µ4.
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Let τ and τ̃ be the roots of x2−Gx+ 1 in Fp[x], and observe that τ · τ̃ = 1. On KSqr, the three
(2, 2)-subgroups corresponding to those defined in Section 4 are

O = (OK, O1, O2, O3) =
(

(µ1 : µ2 : 1 : 1), (1 : 1 : µ1 : µ2), (1 : 1 : µ2 : µ1), (µ2 : µ1 : 1 : 1)
)
,

Υ = (OK, Υ1, Υ2, Υ3) =
(

(µ1 : µ2 : 1 : 1), (1 : 0 : 0 : τ), (1 : 0 : τ : 0), (µ1 − τ : µ2 − τ : 0 : 0)
)
,

Υ̃ = (OK, Υ̃1, Υ̃2, Υ̃3) =
(

(µ1 : µ2 : 1 : 1), (1 : 0 : 0 : τ̃), (1 : 0 : τ̃ : 0), (µ1 − τ̃ : µ2 − τ̃ : 0 : 0)
)
. (16)

Pseudo-doublings and ϕO on KSqr. Our (2, 2)-isogenies and pseudo-doublings on KSqr will
be comprised of three sub-operations. Define H : P3 → P3 as the 4-way Hadamard transform in
P3, i.e.,

H : (`1 : `2 : `3 : `4) 7→ (`1 + `2 + `3 + `4 : `1 + `2 − `3 − `4 : `1 − `2 + `3 − `4 : `1 − `2 − `3 + `4),

together with the coordinate squaring operation S : P3 → P3, as

S : (`1 : `2 : `3 : `4) 7→ (`21 : `22 : `23 : `24),

and the coordinate scaling operation C(d1 : d2 : d3 : d4) : P3 → P3, as

C(d1 : d2 : d3 : d4) : (`1 : `2 : `3 : `4) 7→ (`1/d1 : `2/d2 : `3/d3 : `4/d4) = (π1`1 : π2`2 : π3`3 : π4`4),

where πi = d1d2d3d4/di for i ∈ {1, 2, 3, 4}. It follows that H requires at most 8 field additions, S
requires at most 4 field squarings, and C(d1 : d2 : d3 : d4) requires at most 10 field multiplications if
the πi are not precomputed, and at most 4 field multiplications if they are.

Following [28, §4], define the dual squared Kummer surface as

K̂Sqr
O : F̂ ·X1X2X3X4 =

(
X2

1 +X2
2 +X3

3 +X2
4 − Ĝ(X1 +X2)(X3 +X4)− Ĥ(X1X2 +X3X4)

)2
,

where

F̂ := 64µ2
1µ

2
2

(µ1 + µ2 + 2)(µ1 + µ2 − 2)

(µ1µ2 − 1)2(µ1 − µ2)2
, Ĝ := 2

(
µ1 + µ2

µ1 − µ2

)
, and Ĥ := 2

(
µ1µ2 + 1

µ1µ2 − 1

)
.

In the previous section we derived formulas for computing ϕO in the full Jacobian – see (13).
The corresponding isogeny on the Kummer surface is defined (with abuse of notation) as

ϕO : KSqr → K̂Sqr
O ,

P 7→
(
C(µ̂1 : µ̂2 : µ̂3 : µ̂4) ◦ S ◦ H

)
(P ),

where µ̂1 := (µ1 + µ2 + 2)/2, µ̂2 := (µ1 + µ2 − 2)/2, and µ̂3 := µ̂4 := (µ1 − µ2)/2.
For the pseudo-doubling map, we compose ϕO with its dual, ϕ̂O : K̂Sqr → KSqr, which simply

replaces C(µ̂1 : µ̂2 : µ̂3 : µ̂4) with C(µ1 : µ2 : µ3 : µ4). The kernel of ϕO is the (2, 2)-subgroup O in (16),
and the kernel of ϕ̂O is the (2, 2)-subgroup consisting of (µ̂1 : µ̂2 : µ̂3 : µ̂4), (µ̂2 : µ̂1 : µ̂4 : µ̂3),
(µ̂3 : µ̂4 : µ̂1 : µ̂2), and (µ̂4 : µ̂3 : µ̂2 : µ̂1).

Isomorphisms and ϕP on KSqr. We now turn to defining the (2, 2)-isogenies whose kernels
are Υ and Υ̃ in (16).

Observe that there is a subtle difference between our description ϕO and ϕ̂O above, and
those described in the journey around the hexagon in [28, Figure 1]. We define ϕO as ϕO =(
C(µ̂1 : µ̂2 : µ̂3 : µ̂4) ◦ S ◦ H

)
, swapping the order of the scaling and squaring morphisms in [28, Fig-

ure 1], which instead takes ϕO =
(
S ◦ C(ν̂1 : ν̂2 : ν̂3 : ν̂4) ◦ H

)
, where ν̂2i = µ̂i for i = 1, 2, 3, 4 (this is

analogous for ϕ̂O, but with ν2i = µi). In their intended application to HECC, this ordering makes
no difference, since the (presumably Fp-rational) νi and ν̂i are always fixed public parameters. In
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our case, however, all of the Kummer parameters change each time we compute an isogeny, and
the ordering here turns out to be crucial; we will never be computing the νi or ν̂i (or, at least,
not in time for their use in the pseudo-doublings that typically take place prior to the following
isogeny computation in the SIDH framework).

Nevertheless, viewing the first two steps from KSqr around the hexagon exactly as in [28, Figure
1] aids our derivation of the isomorphisms. The first step is the Hadamard isomorphism, which
moves us from KSqr to KInt, and the next step is the scaling isomorphism C(ν̂1 : ν̂2 : ν̂3 : ν̂4), which

takes us from KInt to K̂Can
O ; here KInt is exactly as in [28] and K̂Can

O corresponds to K̂Can in [28].
Writing OCan as the image of O under CO ◦ H with CO := C(ν̂1 : ν̂2 : ν̂3 : ν̂4), and similarly for Υ and

Υ̃ , reveals that

OCan =
(

(a : b : c : d), (a : −b : c : −d), (a : −b : −c : d), (a : b : −c : −d)
)
,

ΥCan =
(

(a : b : c : d), (d : c : b : a), (c : d : a : b), (b : a : d : c)
)
, and

Υ̃Can =
(

(a : b : c : d), (d : −c : −b : a), (c : −d : a : −b), (b : a : −d : −c)
)
, (17)

where (a : b : c : d) = (ν̂1 : ν̂2 : ν̂3 : ν̂4) is the neutral element on K̂Can
O . Note that K̂Can is the

Kummer surface used by Gaudry, which is why the points in (17) match up with those in [19,
§3.4].

We now proceed analogously to the treatment in Section 4. When ΥCan is the intended (2, 2)-
kernel, we seek an isomorphism that will transform ΥCan into a (2, 2)-subgroup whose four ele-
ments act like the four elements in OCan, but on an isomorphic surface. At the same time, this
isomorphism should also transform the two subgroups in {OCan, Υ̃Can} into two subgroups whose
elements act like those in the two subgroups in {ΥCan, Υ̃Can}, but on an isomorphic surface. Here
the term ‘act’ refers to the action of translation by the 2-torsion elements of the corresponding
Kummer surfaces. In the case of the 2-torsion on K̂Can

O , these actions (explained in [19, §3.4]) are

extremely simple: for example, translating (x : y : z : t) ∈ K̂Can
O by the element (c : −d : a : −b)

gives the point (y : − x : t : − z).
We observe that when the (2, 2)-kernel is ΥCan, its image under the Hadamard transform

satisfies these constraints, but when the (2, 2)-kernel is Υ̃Can, we need to use a modified transform
H̃ : (x : y : z : t) 7→ H(−x : y : z : t). Looking closer, and using the relationship τ τ̃ = 1 in (16),
we see that we can instead replace the scaling CO with scalings CΥ and CΥ̃ that depend on the
subgroup at hand, and to follow both by the original Hadamard transform H.

Importantly, the function for computing the constants for the coordinate scalings CΥ and CΥ̃
is independent of which subgroup we are in; the values of the torsion elements are what changes
the values of the scaling constants, which is crucial for obtaining a uniform isogeny algorithm. As
alluded to above, to avoid the computation of square roots, the formulas for computing the scaling
constants also take as input a point of order 4 on KSqr.

Let Q ∈ KSqr be a point of order 4 such that P = [2]Q ∈ {Υ, Υ̃}; writing Q′ = H(Q) =
(Q′1 : Q′2 : Q′3 : Q′4) and P ′ = H(P ) = (P ′1 : P ′2 : P ′3 : P ′4), then the coordinate scaling is

CQ,P : (X1 : X2 : X3 : X4) 7→ (π1X1 : π2X2 : π3X3 : π4X4),

where

π1 = P ′2Q
′
4, π2 = P ′1Q

′
4, and π3 = π4 = P ′2Q

′
1,

when P ∈ {Υ1, Υ̃1} (such that its last coordinate is non-zero), and where

π1 = P ′2Q
′
3, π2 = P ′1Q

′
3, and π3 = π4 = P ′2Q

′
1,

when P ∈ {Υ2, Υ̃2} (such that its second to last coordinate is non-zero).
In our target application of chained (2, 2)-isogenies in the SIDH framework, the 2-torsion points

that represent our (2, 2)-kernels are either always of the form of Υ1 and Υ̃1, or they are always of

16



the form of Υ2 and Υ̃2. Thus, the function that computes the scaling constants can be determined
at setup and fixed once-and-for-all in an implementation.

Let G ∈ {Υ, Υ̃} and let P ∈ G with P = [2]Q. We can now define the full (2, 2)-isogeny with
(2, 2)-kernel G as

ϕP : KSqr → KSqr/G,
R 7→ (S ◦ H ◦ CQ,P ◦ H) (R). (18)

Note that all four elements of the (2, 2)-kernel G map to the neutral element (µ′1 : µ′2 : 1 : 1) on
KSqr/G.

In Figure 1 we summarise the situation by making use of [28, Figure 1]. The arrows in the
middle comprise half of their hexagon; this corresponds to ϕO, whose kernel is the subgroup O.
Note that our SIDH-style computations will never compute this isogeny, and that we will always
be taking either the top or bottom path, depending on whether our (2, 2)-kernel is Υ or Υ̃ .

KInt′
Υ ∼=

H // K̂Can
Υ

S

(2,2)

// K̂Sqr
Υ = KSqr/Υ

KSqr
∼=
H // KInt CO

∼=
//

CΥ
∼=

==

C
Υ̃

∼=

!!

K̂Can
O

(2,2)

S // K̂Sqr
O = KSqr/O

KInt′

Υ̃

∼=
H

// K̂Can
Υ̃

S

(2,2)

// K̂Sqr

Υ̃
= KSqr/Υ̃

Fig. 1. An illustration of the two (2, 2)-isogenies corresponding to the subgroups Υ and Υ̃ , based on the
diagram in [28, Figure 1]. Here CΥ is used to denote CQ,P when P ∈ Υ , and CΥ̃ is used to indicate CQ,P
when P ∈ Υ̃ .

We point out that our use of the 4-torsion point Q above the 2-torsion point P means that we
must modify the computational strategy to account for this; we refer to [16, §4.3.2], where this
was done when 8-torsion points lying above 2-torsion kernel elements were incorporated into the
computational strategies.

Operation counts. Even though our Kummer surfaces are defined by the projective tuple
(µ1 : µ2 : 1 : 1), once we move into an SIDH computation (where we avoid inversions in the main
loop), we cannot expect the surface constants to be normalised in this fashion, so in our context
all multiplications by constants are counted as generic multiplications (the analogue in the elliptic
curve case was treating the Montgomery coefficient in P1 – see [14]). In the HECC context, pseudo-
doublings on fast Kummer surfaces incur 6 multiplications by curve constants, but this is because
2 of the constants were normalised; in our case, pseudo-doublings incur 4 multiplications during
each of the scalings D(µ1 : µ2 : µ3 : µ4) and D(µ̂1 : µ̂2 : µ̂3 : µ̂4). This brings the operation count for a
pseudo-doubling to 8 multiplications, 8 squarings, and 16 additions, and the operation count for
pushing a point through a (2, 2)-isogeny to 4 multiplications, 4 squarings, and 16 additions. Note
that both of these counts are obtained by assuming that the inverted constants in the coordinate
scalings have been precomputed during the computation of the (2, 2)-isogenous Kummer surface.

It therefore remains to tally the operations required to compute the isogenous Kummer surface
constants. Firstly, we point out that an optimised implementation does not actually need to
compute or use the constants F , G and H defining the surface, since these are not used directly
in the pseudo-group law computations. The only constants needed are those in the two coordinate
scalings that occur during pseudo-doublings; we obtain these by pushing any kernel point through
the (2, 2)-isogeny to get the squared theta constants (µ′1 : µ′2 : µ′3 : µ′4) that define the image surface,
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a further 6 multiplications to obtain a projective tuple equivalent to (1/µ′1 : 1/µ′2 : 1/µ′3 : 1/µ′4), and
then 8 more additions and 6 more multiplications to compute a projective tuple whose coordinates
are projectively equivalent to the inverses of the coordinates of H(µ′1 : µ′2 : µ′3 : µ′4). In total, the
computation of the set of isogenous surface constants requires 19 multiplications, 4 squarings, and
28 additions. These counts are used in Table 1 in the next section.

6 Implications for isogeny-based cryptography

We discuss potential implications and practical considerations of the Kummer surface approach in
the realm of SIDH. The takeaway message is that this paper is a first step towards exploring the
use of Kummer surfaces in isogeny-based cryptography, and that more work needs to be done to
determine whether they will be utilised in real-world implementations. For example, it is possible
that our approach to computing the isogeny ϕP is sub-optimal, and that faster methods will be
discovered, or that there are more specialised parameterisations of supersingular Kummer surfaces
that provide even faster arithmetic.

Efficiency of (2, 2)-isogenies in SIDH. In Table 1, we compare (2, 2)-isogenies on Kummer sur-
faces with 2-isogenies on elliptic curves, by comparing the operation counts for isolated operations
in both scenarios. On the elliptic curve side, the current state-of-the-art implementations actually
use repeated 4-isogenies as they are slightly faster [16,14,27], so to take this into account we simply
double the relevant operation counts for the (2, 2)-isogenies reported above (recall from Lemma 2
that our (2, 2)-isogenies correspond to 2-isogenies on the elliptic curves). Operation counts for the
relevant 4-isogeny operations in the elliptic curve case are exactly as in the optimised version of
the SIKE implementation [22], and for the relevant 2-isogeny operations are exactly as in [27,
Table 1].

We use M, S and A to denote multiplications, squarings and additions in Fp2 , and use m, s
and a to denote the same respective operations in Fp. It is common to approximate the former in
terms of the latter by assuming Karatsuba-like routines for Fp2 operations, but this can be rather
crude. To give a fairer comparison, we benchmarked these field operations directly using v3.0 of
Microsoft’s SIDH library 6: on a 3.4GHz Intel i7-6700 (Skylake) architecture, and over the 751-bit
prime from [14], this benchmarking reported M = 1004 cycles, S = 763 cycles, and A = 80 cycles,
while m = 349 cycles and a = 43 cycles. The current library does not have a tailored squaring
routine over Fp, because the routines for Fp2 operations never call Fp squarings as a subroutine.
Thus, we give two cycle count approximations for the Kummer case: one that assumes s = m (i.e.,
that the Fp multiplication routine is called to compute squarings), and one that assumes s = 0.8m,
a common ratio used to approximate the speedup obtained by optimising tailored field squarings.
We note that using cycle counts instead of Karatsuba approximations favours the elliptic curve
setting over this work. For example, when using the above clock cycles as units, we have M < 3m,
but a common approximation is that M ≈ 3m + 5a� 3m.

The approximations in Table 1 suggest that the Kummer surface approach of computing Rich-
elot isogenies over Fp will be competitive with the previous approaches that apply Vélu’s formulas
to the x-line of Montgomery elliptic curves over Fp2 . The main operations of interest are ‘qua-
drupling’ and ‘4-isog. point’, since these costs and their ratios are what determines the optimal
strategy (see [16]), and they are computed many more times than the ‘4-isog. curve’ operation.
Moreover, doubling the (2, 2)-isogeny operation counts is only accurate in the case of the point
operations; in terms of the curve operations, we would not need to compute the full set of the
surface constants of the intermediate curve in back-to-back (2, 2)-isogenies, so a more careful ap-
proach to computing the image curve in this case would likely lead to counts close to half of those
in this row (on our side). One caveat worth mentioning is that the special Kummer surfaces in this
work will also have a fast ladder for computing scalar multiplications, as well as a fast three-point
ladder that is typically used before any isogenies are computed in the SIDH framework.

6 See https://github.com/Microsoft/PQCrypto-SIDH.
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Operation

chained 2-isogenies on chained (2, 2)-isogenies on

Montgomery curves over Fp2 Kummer surfaces over Fp
(previous work) (this work)

M S A ≈ cycles m s a ≈ cycles

s = m s = 0.8m

doubling 4 2 4 5862 8 8 16 6272 5714

2-isog. curve - 2 1 2088 19 4 28 9231 8952

2-isog. point 4 0 4 4336 4 4 16 3480 3200

quadrupling 8 4 8 11724 16 16 32 12544 11427

4-isog. curve - 4 5 3452 38 8 56 18462 17903

4-isog. point 6 2 6 8030 8 8 32 6960 6401

Table 1. Field arithmetic required for the three main isolated operations on one side of the SIDH frame-
work, comparing chained 2-isogenies on Montgomery curves over Fp2 (previous work) with chained Richelot
isogenies on Kummer surfaces over Fp (this work). Further explanation in text.

Of course, the only way to determine if the Kummer approach can outperform the elliptic
curve approach is to present an optimised implementation of Kummer surface isogenies within the
SIDH framework, e.g., one that factors in the cost ratios of pseudo-doublings and (2, 2)-isogenies to
derive optimal strategies for the full SIDH isogeny computation – see [16, §4.2]. We leave such an
implementation as future work (perhaps until the motivation is heightened by odd-power Kummer
isogenies that can be used on the other side of the SIDH protocol, as we discuss below), but also
mention that Kummer arithmetic is especially amenable to aggressive vectorised implementations
(see [5]).

Utilising Kummer surfaces in practice. We discuss two potential options for taking advantage
of Kummer surface arithmetic in the SIDH framework, and the practical considerations of each.
The first option is that the public parameters and wire transmissions are as usual, i.e., using
(points on) elliptic curves, but that Kummer arithmetic is internally preferred by at least one
party. The second assumes that Kummer arithmetic is preferred everywhere, and that the SIDH
framework is defined to facilitate this.

Option 1 – Kummer arithmetic in private. Suppose Alice wants to compute her secret isogenies
on Kummer surfaces while engaging in an SIDH protocol that is specified entirely using elliptic
curves. In terms of the public parameters, her easiest option would be to convert them (offline and
once-and-for-all) into Kummer parameters by first using the map η : Eα → JCα in Section 3, and
then applying the usual maps from JCα to KSqr. While this process seems complicated at a first
glance, a closer inspection of these maps reveals that an optimised conversion in this direction
would only require a few dozen field multiplications; the x-coordinates of three co-linear points on
Eα (see [14,22]) are all Alice needs to compute the corresponding Kummer surface and the three
Kummer points required to kick-start her computations. Indeed, the only additional information
she needs to convert Bob’s public key down to the Kummer domain is the initial 2-torsion point
(α, 0) (assuming Bob sends her information for the curve coefficient instead), and this requires at
most one square root in Fp2 , which is not a deal-breaker.

In the other direction, after computing her public key or shared secret on KSqr, Alice needs
to lift this information back up to Eα in order to comply with Bob. The maps lifting from KSqr

back up to JCλ,µ,ν are naturally more complicated than their inverses [19,13], but again the SIDH
x-only framework simplifies the process significantly; we can recover the x-coordinate on Eα given
only the values of u1, u0 and v20 (corresponding to the Mumford coordinates of a point in JCα),
and we can lift up from K to these values without any square roots – see [19, §4.3].
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In any case, equipped with the efficient maps in Section 3, we do not see any theoretical or
practical obstacle preventing Alice from complying, should the efficiency of the Kummer warrant
a small conversion overhead at either or both sides of the main isogeny computation.

Option 2 – Kummer arithmetic everywhere. If both sides of the SIDH protocol eventually warrant
Kummer arithmetic (see below), then defining the public parameters to facilitate this is easy. The
main issues we foresee involve maintaining the size of the public keys in the compressed setting.

Firstly, in the uncompressed scenario, transmitting elliptic curves and Kummer surfaces in
the current framework has the same cost; Montgomery curves are specified up to twist with one
element in Fp2 , and our supersingular Kummer surfaces are completely specified by two elements
of Fp (µ1 and µ2). Unambiguously specifying points on Montgomery curves amounts to sending
one element of Fp2 and a sign bit; on the Kummer side, the elegant techniques in [28, §6] show
that Kummer points can be specified by two elements of Fp and two sign bits, meaning we lose at
most one bit per group element. Rather than sending any curve coefficients over the wire, recent
works (including the SIKE proposal [22]) have instead specified public keys as three co-linear
Montgomery x-coordinates, from which the underlying Montgomery curve can be recovered on
the other side [14]. We have not yet investigated this analogue in the Kummer surface setting, but
even if it does not work in a straightforward way, reverting back to the original form of public
keys (from [16]) adds at most 4 bits to the public key sizes. To summarise, we would lose at most
a few bits to specify uncompressed SIDH entirely using Kummer surfaces.

In terms of the shared secret, both parties would eventually arrive at a fast supersingular
Kummer surface specified by (µ1 : µ2 : 1 : 1). While we have yet to investigate convenient Kummer
surface invariants that could act as the shared secret, we remark that emperical evidence seems
to suggest that the approach of computing λ, µ and ν = λµ from (15) and normalising the
Igusa-Clebsch invariants in P(2, 4, 6, 10)(Fp) makes the SIDH protocol commute. We leave further
investigation into appropriate invariants as future work.

In terms of optimal compression of public keys, applying the techniques in [2] directly to the
Kummer setting seems less straightforward, but again we cannot see any reason preventing this
possibility7. This too needs further investigation, but we point out that as a fallback, we could of
course always map the problem of compression back to the elliptic curve setting (moving back to
the first option above), and specify the compressed public keys accordingly.

Of course, there are several other possibilities that lie somewhere between the two options
above, e.g., where the two parties send information in such a way that the overall cost of the
protocol is minimised.

Beyond (2, 2)-isogenies. The case for the Kummer approach in supersingular isogeny-based
cryptography would be much stronger if it were able to be applied efficiently for both parties.
There has been some explicit work done in the case of (3, 3)- and (5, 5)-isogenies (cf. [9,17]), but
those situations appear much more complicated than the case of Richelot isogenies, and we leave
their investigation as future work. One hope in this direction is the possibility of pushing odd
degree `-isogeny maps from the elliptic curve setting to the Kummer setting by way of the maps
in Section 3. This was difficult in the case of 2-isogenies because the maps themselves are (2, 2)-
isogenies (e.g., their kernel is the 2-torsion on Eα), but in the case of odd degree isogenies there
is nothing obvious preventing this approach.
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