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Abstract. Recently, Bellare et al. defined subversion-resistance (secu-
rity in the case the CRS creator may be malicious) for NIZK. In particu-
lar, a Sub-ZK NIZK is zero-knowledge, even in the case of subverted CRS.
We study Sub-ZK QA-NIZKs, where the CRS can depend on the lan-
guage parameter. First, we observe that subversion zero-knowledge (Sub-
ZK) in the CRS model corresponds to no-auxiliary-string non-black-box
NIZK in the Bare Public Key model, and hence, the use of non-black-
box techniques is needed to obtain Sub-ZK. Second, we give a precise
definition of Sub-ZK QA-NIZKs that are (knowledge-)sound if the lan-
guage parameter but not the CRS is subverted and zero-knowledge even
if both are subverted. Third, we prove that the most efficient known
QA-NIZK for linear subspaces by Kiltz and Wee is Sub-ZK under a new
knowledge assumption that by itself is secure in (a weaker version of)
the algebraic group model. Depending on the parameter setting, it is
(knowledge-)sound under different non-falsifiable assumptions, some of
which do not belong to the family of knowledge assumptions.

Keywords: Bare public key model · no-auxiliary-string zero knowledge
· non-black-box zero knowledge · QA-NIZK · subversion-security

1 Introduction

Zero-knowledge argument systems introduced by Goldwasser et al. [22] enable a
prover to convince a verifier of the veracity of a statement while leaking no ad-
ditional information. Blum et al. [6] introduced non-interactive zero-knowledge
(NIZK) argument systems where the prover outputs just one message (the argu-
ment) that convinces the verifier of the truth of the statement. Unfortunately,
NIZKs are impossible in the standard model [21], and thus in all such applica-
tions, one has to rely on some trust assumption like the common reference string
(CRS) model stating that there exists a trusted third party who has created the
CRS from a correct distribution. Other, weaker, trust models include the regis-
tered public key (RPK, [3], where the authority is trusted to check that a party
knows the secret key corresponding to the public key and then store her key)
model and the bare public key (BPK, [9], where the authority is only trusted to
store the public key of each party) model. However, very few NIZKs are known
in the RPK model while black-box NIZK [38] (the simulator uses adversarial
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algorithm only by giving inputs and receiving outputs) and even auxiliary-string
non-black-box [21,42] (the simulator may use the code of the adversary, who has
access to an arbitrary auxiliary string) NIZK is impossible in the BPK model.

There has been a recent surge of the research to decrease the trust in the CRS
model due to the use of succinct non-interactive zero knowledge argument sys-
tems of knowledge (zk-SNARKs, [11,18,26,27,35,36,40]) in real-life applications
like verifiable computation and cryptocurrencies. Recently, [2, 15] constructed
subversion-zero knowledge (Sub-ZK) zk-SNARKs, where the prover does not
have to trust the CRS creator. According to an impossibility result of [4], this
means that such SNARKs cannot have soundness when the CRS has been mali-
ciously generated.) Abdolmaleki et al. [2] proposed the following concrete recipe
for constructing Sub-ZK zk-SNARKs: first, construct an efficient public CRS
verification algorithm CV that rejects malformed CRSs. Second, when proving
Sub-ZK, use a non-falsifiable knowledge assumption [10] to obtain an extractor
that recovers the CRS trapdoor td from a CV-accepted CRS; td is then used
by the simulator (that works when the CRS has been honestly generated) to
simulate the argument. Based on this recipe, [2, 15] showed that the most ef-
ficient known zk-SNARK by Groth [27] is Sub-ZK. One principal weakness of
zk-SNARKs is that zk-SNARKs for languages outside of BPP have to rely on
non-falsifiable assumptions, based on the impossibility result of [19]. However, we
are not aware of any prior result indicating whether non-falsifiable assumptions
are needed to obtain Sub-ZK.

Another important recent direction in the NIZK arena is that of quasi-
adaptive NIZKs (QA-NIZKs, [28]). In a QA-NIZK, the CRS can depend on a
language parameter %, where % can be thought of as a properly distributed public
key of some cryptosystem. One consequence of this definition is that up to now,
QA-NIZKs have been only considered in the CRS model. The dependence of CRS
on correctly generated % means that one can construct very efficient QA-NIZKs
for non-trivial languages based on standard assumptions like KerMDH [39]. Im-
portantly, very efficient pairing-based QA-NIZKs [1, 23, 28, 30–32] for the linear
subspace language have been constructed in the CRS model. A QA-NIZK argu-
ment system for linear subspaces allows the prover to convince the verifier that
a vector of group elements4 [y]1 belongs to the column space of a fixed public
matrix % = [M ]1 ∈ Gn×m1 , i.e., y = Mx for some vector x ∈ Zmp .

Although QA-NIZKs for other languages are known (e.g., the language of bit-
strings [23] and the languages of shuffles [24], both requiring a quadratic-length
CRS, and a recent QA-NIZK [12] for SSP [11], that relies on non-succinct com-
mitment), research on QA-NIZKs has been mostly concentrated on designing
efficient QA-NIZKs for linear subspaces. Such focus is motivated because of the
broad applicability of QA-NIZKs for linear subspaces in the design of various
cryptographic primitives (see [28, 30–32] for examples and references). In addi-
tion, [14] combined SNARKs and QA-NIZKs for linear subspaces to construct
an efficient pairing-based NIZK shuffle argument systems. This and other recent

4 We use pairing-based setting and the additive bracket notation of [13] (see Section 2).
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work [8,25,37] that use QA-NIZKs to construct SNARKs shows that the study of
different properties of QA-NIZKs can be also beneficial in the world of SNARKs.

In particular, Campanelli et al. [8] proposed a toolbox called LegoSNARK
that allows building complex zk-SNARK arguments from other zk-SNARKs
given that the building blocks of the final zk-SNARK are so-called commit-
and-prove SNARKs (CP-SNARKs). A linear subspace QA-NIZK plays a crucial
role in the Campanelli et al. framework. First, it is used in a transformation
that makes commit-carrying SNARKs (CC-SNARKs), like [27], CP-SNARKs.
Second, it is used as a building block in several CP-SNARKs proposed in [8].
Thus, one interested in having Sub-ZK LegoSNARK or Sub-ZK CP-SNARKs in-
evitably needs a Sub-ZK QA-NIZK for linear subspaces. Importantly, in [8, 14],
one uses a QA-NIZK to prove that an element belongs to the trivial full space;
in this case, a QA-NIZK is sound by default. Instead, one has to prove that the
stronger property of knowledge-soundness holds.

The main goal of the current paper is the study and construction of
subversion-secure QA-NIZKs. According to the original security definitions of
QA-NIZKs [28], one aims for soundness (alternatively, knowledge-soundness in
applications like [8, 14]) and zero-knowledge in the case when both % and the
CRS are honestly generated. In reality, it means that in the case of QA-NIZKs,
one will have one more subversion-attack vector than in the case of SNARKs:
namely, one has to consider both the case of a subverted language parameter
(the Sub-PAR case) and the case of a subverted CRS. The Sub-PAR case with
honestly generated CRS was tackled in [29] (updated full version of [28] from
September 2018) where both Sub-PAR soundness and Sub-PAR zero-knowledge
were shown to be achievable for a large family of subspace languages.5 Since the
simulator does not need access to a language parameter trapdoor td%, one does
not have to extract td% for the simulation to be possible. Moreover, in the Sub-
PAR case, the CRS is still honestly generated, which means that the simulator
has access to the CRS trapdoor td.

Translated to the language of QA-NIZKs, by the impossibility result of [4],
one cannot achieve both soundness and zero-knowledge in the case both % and
the CRS have been subverted. Therefore, in the rest of the paper, we study
the slightly more relaxed case when (knowledge-)soundness holds if only % has
been subverted and zero-knowledge holds when both % and the CRS have been
subverted. It is unclear whether one can use existing techniques to construct a
Sub-ZK version of the most efficient QA-NIZKs like Πkw by Kiltz and Wee [31]
in this case. First, % has to be modeled separately from other inputs; no such
parameter exists in the case of SNARKs. The existence of % (and the dependence
of the CRS on it) is the main reason why falsifiable QA-NIZKs are so efficient.

Second, known QA-NIZKs have a very different structure compared to
SNARKs. For example, the most efficient known QA-NIZK for linear subspaces
Πkw by Kiltz and Wee [31] has a trapdoor matrix K, but [K]1 is not explic-

5 This does not contradict the impossibility result of [4] (that achieving Sub-CRS
soundness and Sub-CRS zero-knowledge at the same time is impossible for non-
trivial languages) since % plays a different role compared to CRS.
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itly given in the CRS. This means that the knowledge assumptions of [2, 15] or
knowledge-of-exponent assumptions [10] (that all rely on [α]ι being in the CRS
for each trapdoor α) cannot be directly translated to the case of (Kiltz-Wee)
QA-NIZK, and thus one seems to need quite different knowledge assumptions.

Third, another significant difference is that the soundness of efficient QA-
NIZKs like [1, 28, 30–32] is based on standard falsifiable assumptions like
KerMDH. Thus, intuitively, the use of non-falsifiable assumptions to prove Sub-
ZK of a (sound) QA-NIZK seems to be less justifiable than in the case of proving
Sub-ZK of zk-SNARKs since in the case of zk-SNARKs, non-falsifiable assump-
tions are needed to get soundness anyhow [19]. Moreover, while Bellare et al.
had a discussion motivating the use of knowledge assumptions to obtain Sub-
ZK, they did not have a formal proof of their necessity. Can one base Sub-ZK
QA-NIZKs on falsifiable assumptions or prove it is impossible? (Non-subversion
zero-knowledge) QA-NIZKs do not always rely on falsifiable assumptions: in the
applications of QA-NIZKs in [8, 14, 25, 37], one proves the “membership” in the
full space that only makes sense under knowledge assumptions.

This brings us to the main questions of the current work:

(i) Are non-black-box techniques needed to prove Sub-ZK of NIZKs for
languages outside of BPP?

(ii) Are (knowledge-)soundness and zero-knowledge achievable in the
previously described model, i.e., only % has been subverted in the
case of soundness, and both % and the CRS are subverted in the
case of zero-knowledge? From this point on, we assume Sub-ZK
QA-NIZK works in this model.

(iii) Can one obtain Sub-ZK QA-NIZKs for linear subspaces without
modifying the existing constructions?

Our Contributions. We answer to the above main questions (with yes, yes,
and mostly yes). It turns out that achieving Sub-ZK for state-of-the-art QA-
NIZKs is considerably more complicated than for state-of-the-art SNARKs. This
follows partly from the nature of QA-NIZKs (the existence of separate % and pk)
and from the construction of the concrete QA-NIZK. In the most relevant case
(k = 1), it turns out that the most efficient existing QA-NIZK by Kiltz and
Wee [31] is Sub-ZK (in the model described above) under a (novel) knowledge
assumption given suitable algorithms that verify the correctness of both % and pk.
Hence, in this case, Sub-ZK comes almost for free: one only has to perform some
additional computations that verify the correctness of the (language parameter
and) CRS, and the proof of Sub-ZK relies on a non-falsifiable assumption.

First, we make a conceptually important observation that Sub-ZK in the
CRS model, as defined in [2, 4, 15], is equal to no-auxiliary-string non-black-box
zero knowledge [21] in the BPK model [9, 38]. In the BPK model, the verifier
(but not the prover) has a public key; and the key authority executes the func-
tionality of an immutable bulletin board by storing the received public keys.
A zero-knowledge argument in the BPK model is either designated-verifier (the
argument convinces only the designated verifier) when using the verifier’s own
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public key or transferable (the verifier can transfer the argument to other veri-
fiers and convince them of its validity) when using the public key pk of a third
party; the latter case is essentially equivalent to the CRS model with pk being
the CRS, pk = crs. The BPK model is significantly weaker than the CRS model,
being arguably the weakest public key or parameter based trust model under
which complicated functionalities like zero-knowledge are known to exist.

This important positive connection between no-auxiliary-string non-black-
box zero knowledge and Sub-ZK was missed in the prior work on Sub-ZK; we
hope it will simplify the construction and analysis of the future Sub-ZK argument
systems. Because of that connection, we will usually use the abbreviation Sub-
ZK to denote no-auxiliary-string non-black-box zero knowledge, but we explicitly
emphasize that we are working in the BPK model.

Since three messages are needed to achieve auxiliary-string zero knowledge
in the plain model for languages outside of BPP [21], it follows that in the BPK
model, auxiliary-string non-black-box NIZK is possible only for languages in
BPP. This provides a simple proof that one can only construct non-auxiliary-
string non-black-box NIZK for languages outside of BPP and thus provides an
answer to the open question (i).

In Section 3, we define the security of QA-NIZK arguments in the BPK
model; for this, we strengthen the “strong” QA-NIZK security definitions
from [29] (as updated on September 2018) that consider the case of subverted
% but honestly generated pk. We allow for both % and pk to be subverted. We
model the resulting definition of persistent zero-knowledge after the Sub-ZK def-
inition of SNARKs in [2], allocating a special role for the language parameter
%. More precisely, we require that for any efficient malicious C that creates the
language parameter creator and the public key, there exists an efficient extractor
ExtC , s.t. if C, by using random coins r, generates a language parameter % and a
public key pk (since there is no auxiliary input, % and pk have to be generated
by C) then ExtC , given r, outputs the secret key sk corresponding to pk.

Since we allow both % and pk to be subverted, it is possible that the subverter
sets sk = td% for td% being a trapdoor for a parameter %, e.g. for Kiltz-Wee
QA-NIZK, % = [M ]1 and td% = M . As we show in Section 4, this can result
in pathological QA-NIZK argument systems that are persistent zero-knowledge
but not standard zero-knowledge. (This is possible since we consider an extractor
that extracts the trapdoor behind % and returns this as the secret key.) Hence, we
say that a QA-NIZK argument system is no-auxiliary-string non-black-box zero-
knowledge (i.e., Sub-ZK) iff it is both standard zero-knowledge and persistent
zero-knowledge.

As the next main contribution, we study a variant Πbpk of the most-efficient
known QA-NIZK for linear subspaces Πkw by Kiltz and Wee [31] (denoted there
asΠ ′as).Πkw is known to be perfectly zero-knowledge and computationally sound
in the CRS model under a suitable KerMDH assumption, [31] for a matrix
distribution Dk where k is a small security-assumption-related integer; k = 1 in
the case of asymmetric pairings. In Πkw, the CRS includes a matrix [Ā]2 ∈ Gk×k2

(assumed to be distributed according to Dk) and the argument consists of only
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k group elements (thus, smaller k results in better efficiency). In the variant of
Πkw proposed in the current paper, pk of Πbpk includes a new component pkpkv

that helps to publicly check that even adversarially generated [Ā]2 in pk has
full rank k. In the case of many distributions Dk that are important in practice
(we will call such distributions efficiently verifiable), the latter verification can
be done efficiently only based on the knowledge of [Ā]2 itself and thus pkpkv

will be an empty string. Similarly to [2], we also define an efficient public-key
verification algorithm that we denote by PKV. On top of it, we also define an
efficient %-verification algorithm PARV. We emphasize that we analyze Πkw since
it is the most efficient known QA-NIZK for linear subspaces. We leave analyzing
other QA-NIZKs (that will hopefully be easier to do following our definitional
framework and analysis of Πkw) to the further work.

Since in the case of verifiable Dk, we do not modify the public-key generation
and the prover (thus, essentially Πkw = Πbpk), the (non-subversion) soundness
of Πbpk in the BPK model follows directly from [31]. In the non-verifiable special
case Dk = U2, we add some extra elements to pk and then prove the (non-
subversion) soundness of Πbpk under the SKerMDH assumption of [23]. In the
subversion-case, when the language parameter could have been subverted, we
prove (subverted-%) soundness under KerMDHdl or SKerMDHdl assumption.
Here, if X and Y are two assumptions, XY is the interactive assumption that
X holds even if the adversary was given non-adaptive access to a Y oracle.
See [34] for a thorough treatment of XY -type assumptions. Interestingly, up
to now, the only non-falsifiable assumptions that have been used to construct
efficient succinct NIZKs are knowledge assumptions; the use of (seemingly more
standard) XY -type assumptions instead is one of the possibly most interesting
contributions of the current paper.

As mentioned before, knowledge-sound QA-NIZKs are also interesting in the
case when one uses them to prove the membership in the full space. We prove
that Πbpk is knowledge-sound by modifying a similar knowledge-soundness proof
from [8] that, however, was only given in the non-subversion case, and only for
k = 1. We use a SDLdl (where SDL is the symmetric discrete logarithm assump-
tion, [5]) assumption, like in the case of soundness proofs, to get knowledge-
soundness even in the subversion case. We modify the proof of [8] so that it
generalizes to arbitrary k. Moreover, knowledge-soundness will rely on both the
SDLdl and a hash-algebraic knowledge (HAK) assumption. In [37], Lipmaa re-
cently defined the framework of HAK assumptions to make the algebraic group
model (AGM) of Fuchsbauer et al. [16] more concrete and applicable. While in
the AGM, it is assumed that every adversary is algebraic, a HAK assumption is
defined with respect to a concrete input distribution of the adversary. I.e., a D-
HAK assumption states that if an adversary obtains an input (a vector of group
elements) distributed according to a fixed distribution D then she knows how
the group elements that she outputs depend on the input. HAK assumptions
are even weaker: they allow for the case an adversary has additionally gener-
ated high min-entropy (but not necessarily uniformly random) group elements
by using say elliptic-curve hashing.
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Since Πkw is perfectly zero-knowledge [31], we now only have to prove that
it is also persistent zero-knowledge; from this, it follows that it is Sub-ZK in
the BPK model. We prove that Πbpk is statistically persistent zero-knowledge
under either one of the two new knowledge assumptions KWKE (the Kiltz-Wee
Knowledge of Exponent assumption) and SKWKE (the strong KWKE assump-
tion)6, assuming that its whole pk is generated by the verifier or a verifier-trusted
authority — even if we are set to prove Sub-ZK that interests the prover. Intu-
itively, (S)KWKE guarantees that if an adversary A has succeeded in creating a
pk accepted by PKV then one can extract corresponding sk = K. We prove that
both assumptions hold under a hash-algebraic knowledge (HAK, [37]) assump-
tion, see Theorem 1. (Here, SKWKE also relies on a computational assumption
that depends on the matrix distribution Dk but is equal to the discrete logarithm
assumption for all standard distributions Dk.)

The proof of Theorem 1 is quite intricate. More precisely, we use a HAK as-
sumption to extract some outputs of A as polynomials in indeterminates created
by A. To extract an integer sk, we use the Schwartz-Zippel lemma and let the ex-
tractor output evaluation of the polynomials at a random point. We then use the
specific form of PKV to argue that such sk is correct. In the case of SKWKE, we
evaluate the polynomials at two random points and use an additional reduction
to a computational assumption, see Theorem 1.

Interestingly, under KWKE we only get the guarantee that the part pkzk

of the pk, used either by the prover or the simulator, has been correctly com-
puted. This, however, suffices to prove that Πbpk is Sub-ZK. (Thus, Sub-ZK can
be achieved even if the correctness of the whole public key cannot be verified.)
Hence, in the case Dk is efficiently verifiable, one can get Sub-ZK essentially for
free (efficiency-wise, the only added cost will be the need for a prover to verify
the correctness of the public key; this can, however, be done once per public
key). This is important since it means that in the case of efficiently verifiable
matrix distributions, we get a stronger security property (Sub-ZK) without hav-
ing to design a new, more complicated, and less efficient QA-NIZK. Arguably,
in practice, one is only interested in efficiently verifiable distributions: the case
k = 1 is the most one, and the case k = 2 is only needed in some applications
(e.g., when one wants to rely on a weaker assumption). However, in such cases,
one can usually use an efficiently verifiable distribution like L2 that corresponds
to the 2-Lin assumption. This answers to the open questions (ii–iii).

We also show that under a stronger knowledge assumption SKWKE, one
can guarantee that the whole pk has been correctly computed. However, as a
drawback, the SKWKE assumption only holds if the language parameter [M ]1
comes from a suitable hard distribution. The latter is, however, often the case
in QA-NIZK applications, where [M ]1 is a public key of a cryptographic prim-
itive like an encryption or commitment scheme. In both cases, the soundness is
guaranteed by a KerMDH assumption.

6 It is possible to achieve the same level of security using more standard BDHKE
assumption [2] by making both [M ]1 and [M ]2 public. Unfortunately, such a solution
is less efficient; our goal was to achieve maximum efficiency.
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2 Preliminaries

A random variable X has min-entropy k, H∞(X) = k, if maxx Pr[X = x] =
2−k. Let PPT denote probabilistic polynomial-time. Let λ ∈ N be the security
parameter. All adversaries will be stateful. For an algorithm A, let im(A) be the
image of A (the set of valid outputs of A), let RNDλ(A) denote the random tape
of A (assuming the given value of λ), and let r←$RNDλ(A) denote the random
choice of the randomizer r from RNDλ(A). We denote by negl(λ) an arbitrary
negligible function. We write a ≈λ b if |a− b| ≤ negl(λ). We follow Bellare et
al. [4] by using “cryptographic” style in security definitions where all complexity
(adversaries, algorithms, assumptions) is uniform, but the adversary and the
security (say, soundness) is quantified over all inputs chosen by the adversary.
See [4] for a discussion.

A bilinear group generator PGen(1λ) returns (p,G1,G2,GT , ê, [1]1, [1]2),
where G1, G2, and GT are additive cyclic groups of prime order p = 2Ω(λ),
[1]1, [1]2 are generators of G1, G2, resp., and ê : G1 × G2 → GT is a non-
degenerate PPT-computable bilinear pairing. We assume the bilinear pairing to
be Type-3, i.e., that there is no efficient isomorphism from G1 to G2 or from
G2 to G1. We use the by now standard bracket notation, i.e., we write [a]ι to
denote agι where gι is a fixed generator of Gι. We denote ê([a]1, [b]2) as [a]1[b]2.
Thus, [a]1[b]2 = [ab]T . We freely use the bracket notation with matrices, e.g., if
AB = C then A[B]ι = [C]ι and [A]1[B]2 = [C]T .

In the Bare Public Key (BPK) model [9, 38], parties have access to a public
file F , a polynomial-size collection of records (id, pkid), where id is a string
identifying a party (e.g., a verifier), and pkid is her alleged public key. In a typical
zero-knowledge protocol in the BPK model, a key-owning party Pid works in two
stages. In stage one (the key-generation stage), on input a security parameter 1λ

and randomizer r, Pid outputs a public key pkid and stores the corresponding
secret key skid. After that, F will include (id, pkid). In stage two, each party
has access to F , while Pid has possible access to skid (however, the latter is
not required by us). It is commonly assumed that only the verifier of a NIZK
argument system in the BPK model has a public key [38]; see also Section 3.

In a zero-knowledge proof or argument system, a prover convinces the veri-
fier of the veracity of a statement without leaking any side information except
that the statement is true. Here, a proof (resp., an argument) system guar-
antees soundness against an unbounded (resp., a PPT) cheating prover. The
zero-knowledge property is proven by constructing a simulator that can simulate
the view of a cheating verifier without knowing the secret information (witness)
of the prover. A non-interactive zero-knowledge proof or argument system [6]
consists of just one message by the prover.

We will only deal with no-auxiliary-string non-black-box NIZK argument
systems in the plain model, but to explain this choice, it is important to know
that there are many possibility and impossibility results about zero knowledge
in the BPK model. Goldreich and Oren [21] proved that three rounds are needed
for auxiliary-string zero knowledge in the plain model. From this, it follows that
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there exists no auxiliary-string non-black-box NIZK argument system in the BPK
model for a language L outside of BPP, see Lemma 1.

The Symmetric Discrete Logarithm (SDL) [5] assumption holds relative to
PGen, if for any PPT A, Pr

[
p← PGen(1λ);x←$Zp : A(p, [x]1, [x]2) = x

]
≈λ 0.

Kernel Matrix Diffie-Hellman Assumption (KerMDH) is a well-known as-
sumption family formally introduced in [39]. Let D`k be a probability distribu-
tion over matrices in Z`×kp , where ` > k. Next, we define five commonly used
distributions (see [13] for references), where a, ai, aij ←$Z∗p: Uk (uniform), Lk
(linear), ILk (incremental linear), Ck (cascade), SCk (symmetric cascade):

Uk: A =

( a11 ... a1k
... ... ...
ak1 ... akk

ak+1,1 ... ak+1,k

)
, Lk: A =

 a1 0 ... 0 0
0 a2 ... 0 0
0 0 ... 0 0
... ... ... ... ...
0 0 ... 0 ak
1 1 ... 1 1

 ,

ILk: A =

 a 0 ... 0 0
0 a+1 ... 0 0
0 0 ... 0 0
... ... ... ... ...
0 0 ... 0 a+k−1
1 1 ... 1 1

 , Ck: A =

 a1 0 ... 0 0
1 a2 ... 0 0
0 1 ... 0 0
... ... ... ... ...
0 0 ... 1 ak
0 0 ... 0 1

 ,

SCk: A =

 a 0 ... 0 0
1 a ... 0 0
0 1 ... 0 0
... ... ... ... ...
0 0 ... 1 a
0 0 ... 0 1

 .

Assume that D`k outputs matrices A where the upper k × k submatrix Ā
is always invertible. I.e., D`k is robust, [28]. All the above distributions can be
made robust with minimal changes. Denote the lower (` − k) × k submatrix of
A as A. Denote Dk = Dk+1,k.
D`k-KerMDHG1

[39] holds relative to PGen, if for any PPT A,
Pr
[
p← PGen(1λ);A←$D`k; [c]2 ← A(p, [A]1) : A>c = 0k ∧ c 6= 0`

]
≈λ 0.

D`k-SKerMDH [23] holds relative to PGen, if for any PPT A, Pr[p ←
PGen(1λ);A←$D`k; ([c1]1, [c2]2)← A(p, [A]1, [A]2) : A>(c1 − c2) = 0k ∧ c1 −
c2 6= 0`] ≈λ 0. According to Lem. 1 of [23], if D`k-KerMDH holds in generic
symmetric bilinear groups then D`k-SKerMDH holds in generic asymmetric bi-
linear groups. The KerMDH assumption holds also for Type-1 pairings, where
G1 = G2, but then one needs k ≥ 2, which affects efficiency.

Hash-Algebraic Knowledge Assumptions. The Algebraic Group Model
(AGM) is a new model [16] that one can use to prove the security of a crypto-
graphic assumption or protocol. Essentially, in AGM one assumes that each PPT
algorithm (including the adversaries) is algebraic in the following sense: if the ad-
versary A’s input includes [xι]ι and no other elements from the group Gι and A
outputs group elements [yι]ι, then A knows matrices N ι, such that yι = N ιxι.
Lipmaa [37] considered AGM to be as a family of algebraic knowledge assump-
tions. He defined the AGM with hashing (AGMH), where the adversary is addi-
tionally allowed to create new group elements that have high min-entropy from
the adversary’s viewpoint (and in particular, without knowing their discrete log-
arithms). This takes into account the existence of efficient elliptic curve hashing
algorithms that can be used to generate such new group elements.
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Following [37], we say that a PPT algorithm A is hash-algebraic (in p) if there
exists an efficient extractor ExtA, such that for any PPT sampleable distribution
D, Advhakp,D,A(λ) :=

Pr

x = ([x1]1, [x2]2)←$D; r←$RNDλ(A); ([y1]1, [y2]2)←$A(x; r);

(N1,N2, [q1]1, [q2]2)← ExtA(x; r) :

(y1 6= N1( x1
q1 ) ∨ y2 6= N2( x2

q2 )) ∨ (∃ι, s : H∞([qιs]ι) = O(log λ))

 .

A bilinear group p is hash-algebraic if every PPT algorithm A that obtains
inputs from G1 / G2 and outputs elements in G1 / G2 is hash-algebraic. Clearly,
a hash-algebraic adversary is less restricted than an algebraic adversary.

The requirement that A is hash-algebraic for a concrete D is a
specific (p,D,A)-hash-algebraic knowledge (HAK) assumption stating that
Advhakp,D,A(λ) ≈λ 0. In AGMH, one assumes that (p,D,A)-HAK holds for all
choices of (D,A). Alternatively, [37] calls it the p-HAK assumption. While prov-
ing the security of a concrete protocol in a fixed group p, it is sufficient to rely on
the following assumption for a single specified distribution D. A (p,D,A)-HAK
assumption states that Advhakp,D,A(λ) ≈λ 0. A (p,D)-HAK assumption states that
Advhakp,D,A(λ) ≈λ 0 for all PPT A. Analogously, the (D,A)-algebraic knowledge
(AK) assumption in p states that Advakp,D,A(λ) ≈λ 0.

Lipmaa [37] demonstrated the usefulness of the HAK assumption showing
that Damgård’s original Knowledge-of-Exponent (KE, [10]) assumption is secure
under the DL and HAK assumptions. The opposite does not always hold: KE
assumption (and its generalizations) cannot be used to extract unless each input
group element [z]ι is accompanied with a “knowledge” input [xz]ι for random
x. Thus, protocols that rely on HAK assumptions can, in principle, be more
efficient than protocols that rely on KE assumptions only.

Intuitively, a security proof under the (p,D)-HAK assumption constitutes
essentially an AGMH security proof, but without one assuming that all PPT
algorithms in the group p are (hash-)algebraic. Finally, according to the anal-
ysis of [37], it is sufficient to assume that [qι]1 has high min-entropy while the
previous approach of generic model with hashing as in [2, 4, 7, 41] assumed that
adversarially created group elements are uniformly random.

3 Defining QA-NIZK in the BPK Model

Quasi-Adaptive Non-Interactive Zero-Knowledge (QA-NIZK) argument sys-
tems [28] are quasi-adaptive in the sense that the CRS depends on a language
parameter % that has been sampled from a fixed distribution Dp. QA-NIZKs
are of great interest since they are succinct and based on standard assumptions.
Since QA-NIZKs have many applications, they have been a subject of intensive
study, [1,23,28,30–33]. The main limitation of known QA-NIZKs is that efficient
QA-NIZKs are only known for a restricted set of languages like the language of
linear subspaces (see [12,23,24] for QA-NIZKs for other languages).
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The original QA-NIZK security definitions [28] were given in the CRS model.
Jutla and Roy strengthened the definitions in the full version of their paper, [29],
allowing for the case when the language parameter is maliciously picked. We will
lift the latter definitions to the weaker BPK model. Sometimes, the only differ-
ence compared to the definitions of [29] is in notation (a CRS will be replaced
by a public key). The rest of the definitional changes are motivated by the def-
inition of Sub-ZK zk-SNARKs in [2], e.g., a QA-NIZK in the BPK model will
have a public-key verification algorithm PKV and the zero-knowledge definition
mentions a subverter and an extractor. We also define a %-verification algo-
rithm PARV. Since black-box [38] and even auxiliary-input non-black-box [21]
(see Lemma 1) NIZK in the BPK model is impossible we will give an explicit
definition of no-auxiliary-string non-black-box NIZK.

As in [4], we will implicitly assume that the system parameters p are gener-
ated deterministically from λ; in particular, the choice of p cannot be subverted.
A QA-NIZK argument system enables to prove membership in a language de-
fined by a relation R% = {(x,w)}, which in turn is completely determined by a
parameter % sampled (in the honest case) from a distribution Dp. We will assume
implicitly that % contains p and thus not include p as an argument to algorithms
that also input %; recall that we assumed that p cannot be subverted. A distri-
bution Dp on L% is witness-sampleable [28] if there exists a PPT algorithm D′p
that samples (%, td%) ∈ Rp such that % is distributed according to Dp.

The zero-knowledge simulator is usually required to be a single (non-black-
box) PPT algorithm that works for the whole collection of relations Rp =
{R%}%∈im(Dp); that is, one usually requires uniform simulation (see [28] for a dis-
cussion). Following [2], we accompany the universal simulator with an adversary-
dependent extractor. We assume Sim also works in the case when one cannot
efficiently establish whether % ∈ im(Dp). The simulator is not allowed to create
new % or pk but has to operate with one given to it as an input.

A tuple of PPT algorithms Π = (PGen,KGen,PARV,PKV,P,V,Sim) is a
no-auxiliary-string non-black-box zero knowledge (Sub-ZK) QA-NIZK argument
system in the BPK model for a set of witness-relations Rp = {R%}%∈Supp(Dp ),
if the following Items i, ii, iv and v hold. Π is a Sub-ZK QA-NIZK argument
of knowledge, if additionally Item iii holds. Here, PGen is the parameter gen-
eration algorithm, KGen is the public key generation algorithm, PARV is the
%-verification algorithm, PKV is the public-key verification algorithm, P is the
prover, V is the verifier, and Sim is the simulator.

(i) Perfect Completeness: for any λ, p ∈ im(PGen(1λ)), PPT A,

Pr

%←$Dp; (pk, sk)← KGen(%); (x,w)← A(pk);

π ← P(%, pk, x,w) : PARV(%) = 1 ∧ PKV(%, pk) = 1∧
((x,w) 6∈ R% ∨ V(%, pk, x, π) = 1)

 = 1 .
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(ii) Computational Quasi-Adaptive Sub-PAR Soundness: for any p ∈
im(PGen(1λ)), and stateful PPT A,

Pr

[
%← A(p); (pk, sk)← KGen(%); (x, π)← A(pk) :

PARV(%) = 1 ∧ V(%, pk, x, π) = 1 ∧ ¬(∃w : R%(x,w) = 1))

]
≈λ 0 .

(iii) Computational Quasi-Adaptive Sub-PAR Knowledge-Soundness:
for every PPT stateful adversary adversary A, there exist a PPT extractor
ExtA, s.t. for all p ∈ im(PGen(1λ)),

Pr

r←$RNDλ(A); %← A(p; r); (pk, sk)← KGen(%);

(x, π)← A(pk; r);w← ExtA(p, pk; r) : PARV(%) = 1∧
V(%, pk, x, π) = 1 ∧ R%(x,w) = 0

 ≈λ 0 .

A knowledge-sound argument system is called an argument of knowledge.
(iv) Statistical Zero Knowledge: for any λ, p ∈ im(PGen(1λ)), and compu-

tationally unbounded adversary A, |εzk0 − εzk1 | ≈λ 0, where εzkb :=

Pr
[
%← Dp; (pk, sk)← KGen(%) : AOb(·,·)(%, pk) = 1

]
.

The oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R%, and otherwise it
returns P(%, pk, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R%,
and otherwise it returns Sim(%, pk, sk, x).

(v) Statistical Persistent Zero Knowledge: for any PPT subverter C, there
exists a PPT extractor ExtC , s.t. for any λ, p ∈ im(PGen(1λ)), and compu-
tationally unbounded adversary A, |εzk0 − εzk1 | ≈λ 0, where

εzkb := Pr

[
r←$RNDλ(C); (%, pk, aux)← C(p; r); sk← ExtC(p; r) :

PARV(%) = 1 ∧ PKV(%, pk) = 1 ∧ AOb(·,·)(%, pk, aux) = 1

]
.

The oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R%, and otherwise it
returns P(%, pk, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R%,
and otherwise it returns Sim(%, pk, sk, x).

Π is statistically no-auxiliary-string7 non-black-box zero knowledge (Sub-ZK) if
it is both statistically zero-knowledge and statistically persistent zero-knowledge.

Knowledge-sound QA-NIZKs are useful in situations where the witness re-
lations R% are trivial in the sense that for each x, there exists a w such that
(x,w) ∈ R%. In such cases, one must argue that the prover knows this w.
Knowledge-sound QA-NIZK argument systems have applications in shuffles [14]
and SNARKs [8,25,37].

In their definition of strong soundness for strong QA-NIZK, Jutla and
Roy [29] made the assumption that C% also returns td%. This assumption re-
minds the AGM [16], where in the security proofs, the adversary is assumed to
7 Auxiliary-string non-black-box ZK [21] means that definitions hold even if any aux ∈
{0, 1}poly(λ) is given as an additional input to A and Cpk (and ExtC).
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output a part of her secret state but might be stronger depending on the defini-
tion of Dp. Thus, one should not make such an assumption per se but prove (say,
in the AGM) that it holds. In several recent reinterpretations of AGM [37], one
has reworded AGM by requiring the existence of an extractor that returns the
secret state. In our Sub-PAR (knowledge-)soundness definition, we require that
PARV(%) = 1 (thus, % ∈ im(Dp) and a td% exists). We do not require td% can be
extracted; we only require that w can be extracted. In our security proof, the
extractor of w will first extract td% by using a DL oracle; we prove knowledge-
soundness under a non-falsifiable assumption (more precisely, under the SDLdl

assumption that states that solving SDL is intractable even if the adversary is
given non-adaptive access to a DL oracle, see Fig. 6).

More precisely, in the case of the concrete construction of Πbpk, extraction
of td% is needed since the Πkw argument system [31] (and thus also the Πbpk

argument system in Section 5) is only sound if Dp is witness-sampleable. In the
soundness proof in [31], one obtains td% from the honest %-creator. In the Sub-
PAR knowledge-soundness proof in Section 5, we extract td% from the malicious
%-creator A and then use td% to extract w. However, we use the DL oracle to
extract td% and thus will need not have to rely on witness-sampleability of Dp.

We assume that a single subverter C produces % and pk in the case of Sub-ZK,
and the extractor will get access to the code of C and its inputs and random coins.
The extractor never works with probability 1 since C can randomly sample (with
a non-zero but negligible probability) a well-formed pk. However, if it works, then
in our constructions, the simulation will be perfect. For the sake of simplicity,
we will not formalize this as perfect zero-knowledge. (One reason for this is that
differently from [2], the secret key extracted by ExtC is not unique in our case;
see discussion in Section 5.)

The existence of PKV is not needed in the CRS model, assuming the CRS
creator is trusted by the prover, and thus PKV was not included in the prior QA-
NIZK definitions. Since soundness is proved in the case pk is chosen correctly (by
the verifier or a trusted third party, trusted by her), V does not need to execute
PKV. However, PKV should be run by P. Similarly, the existence of PARV is not
needed in the CRS model; the algorithm PARV needs to be run both by P and
V. The simulator is only required to simulate correctly in the case PARV accepts
% and PKV accepts pk.

For Sub-ZK, we require that both standard zero-knowledge (with trusted
% and pk generators) and persistent zero-knowledge (with possibly subverted %
and pk) generators hold. The reason behind requiring both is subtle and will
be explained in Section 4. Very briefly, since one considers a single subverter
C that creates both % and pk, persistent zero-knowledge leaves one vulnerable
against the subverter who just sets sk ← td%. While this attack is not possible
in the case of all QA-NIZKs, as we show in Section 4, one can design a QA-
NIZK argument system that is persistent zero-knowledge but not standard zero-
knowledge. Intuitively, requiring that the same simulator Sim also works without
the knowledge of td% makes it possible to avoid such pathological cases. However,
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it means that persistent zero-knowledge is not a strictly stronger notion than the
standard zero-knowledge, and one requires both to obtain Sub-ZK.

Comparison to Earlier Sub-ZK Definitions. Subversion-security was de-
fined by Bellare et al. [4] for the CRS model; further CRS-model subversion-
security definitions were given in [2, 15]. As proven in [4], one cannot achieve
Sub-SND (soundness even if the CRS was generated maliciously) and non-
subversion zero knowledge at the same time. Thus, subsequent efforts have con-
centrated on achieving either Sub-SND and witness-indistinguishability [4], sub-
version knowledge-soundness and witness-indistinguishability [17], or Sub-ZK
(zero knowledge in the case the CRS was generated maliciously) and sound-
ness [2, 4, 15]. In the latter case, the CRS is trusted by the verifier V while
(following the definitions of [2]) the prover checks that the CRS is well-formed
by using a publicly available algorithm. Thus, Sub-ZK in the CRS model is the
same as zero-knowledge in the BPK model: the CRS has to be trusted by (or,
even chosen by) V and hence can be equal to the public key of an entity trusted
by V (or of V herself). Since black-box NIZK [38] and even auxiliary-string
non-black-box NIZK [21] in the BPK model is impossible, one has to define
no-auxiliary-string non-black-box zero knowledge (Sub-ZK) as above. Bellare et
al. [4] motivated not incorporating auxiliary strings to the definition of Sub-
ZK by known impossibility results. We will formalize this (folklore, see [42] for
discussion) impossibility result as the following straightforward lemma.

Lemma 1. Auxiliary-string non-black-box NIZK in the BPK model is only pos-
sible for languages in BPP.

Proof. The notions of (no-)auxiliary-string and (non-)-black-box zero-knowledge
were defined by Goldreich and Oren [21] who proved that auxiliary-string (even
non-black-box) zero-knowledge argument systems for languages outside of BPP
require at least three messages in the plain model. An auxiliary-string (non-
black-box) NIZK argument system in the BPK model can be interpreted as a
two-message auxiliary-string (non-black-box) zero-knowledge argument system
in the plain model, where the verifier creates BPK and sends it as her first
message. Thus, an auxiliary-string NIZK argument system for languages outside
of BPP would contradict the impossibility result of [21]. ut

Auxiliary-input zero-knowledge is usually used to achieve sequential composi-
tion of interactive zero-knowledge protocols, [21]. Sub-ZK guarantees sequential
security in the case of NIZK, see [2] for a proof. In particular, the main re-
sult of [2, 15], reformulated in our language, is that there exist computationally
knowledge-sound Sub-ZK zk-SNARKs for NP in the BPK model.

In the case of QA-NIZKs, one has to deal with two parameters, % (the lan-
guage parameter) and pk (the public key). As shown in [29] (updated version
from September 2018), one can achieve both soundness and zero-knowledge in
the case when % is subverted but pk is honestly chosen. In the persistent zero-
knowledge definition, we allow for subverted pk and %. Due to the impossibility
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KGen([M ]1 ∈ Gn×m1 ): A←$Dk;K ←$Zn×kp ; C ←KĀ ∈ Zn×kp ; [P ]1 ← [M ]>1 K ∈
Zm×kp ; pk← ([Ā,C]2, [P ]1); sk←K; return (pk, sk);

P([M ]1, pk, [y]1,w): return [π]1 ← [P ]>1 w ∈ Gk1 ;
Sim([M ]1, pk, sk, [y]1): return [π]1 ←K>[y]1 ∈ Gk1 ;
V([M ]1, pk, [y]1, [π]1) : check that [y]>1 [C]2 = [π]>1 [Ā]2;

Fig. 1. Kiltz-Wee QA-NIZK argument system Πkw for [y]1 = [M ]1w

result of [4], we are not aiming to achieve Sub-SND. Thus, in the definition of
soundness, we assume that pk is honestly generated.

Language of linear subspaces and Kiltz-Wee QA-NIZK. An important
application of QA-NIZK is in the case of the following language. Assume we need
to show that [y]1 ∈ colspace([M ]1), where [M ]1 is sampled from a distribution
Dp over Gn×m1 . We assume, following [28], that (n,m) is implicitly fixed by Dp.
That is, a QA-NIZK for linear subspaces handles languages

L[M ]1 =
{

[y]1 ∈ Gn1 : ∃w ∈ Zmp s.t. y = Mw
}
.

The corresponding relation is defined as R[M ]1 = {([y]1,w) ∈ Gn1 × Zmp : y =
Mw}. This language is useful in many applications, [8, 28]. As a typical appli-
cation, let [M ]1 = [1, sk]>1 be a public key of the Elgamal cryptosystem; then
ciphertext [y]1 ∈ L[M ]1 iff it encrypts 0. Here, [M ]1 comes from a KerMDH-hard
witness-sampleable distribution Dp.

The most efficient known QA-NIZK for linear subspaces in the CRS model
was proposed by Kiltz and Wee [31]. In particular, they proposed a QA-NIZK
Πkw that assumes that the parameter % = [M ]1 ∈ Gn×m1 is sampled from a
witness-sampleable distribution Dp. Πkw results in the argument that consists of
k group elements, where k is the parameter (k = 1 being usually sufficient in the
case of asymmetric pairings) related to the underlying KerMDH distribution.
More precisely, given n > m, the Kiltz-Wee QA-NIZK is computationally quasi-
adaptively sound under the Dk-KerMDHG1 assumption relative to PGen, [31].
Importantly, Πkw is significantly more efficient than the Groth-Sahai NIZK for
the same language. For the sake of completeness, Fig. 1 describes the Kiltz-Wee
QA-NIZK argument system Πkw for linear subspaces in the CRS model.

Some Applications of QA-NIZK in the BPK Model. The simplest ex-
ample application is that of UC-commitments from [28], where a trusted third
party generates a commitment key % together with a QA-NIZK public key pk,
and P opens the commitments later by disclosing a QA-NIZK argument of proper
commitment under the commitment key %. Here, % should not be generated by
P (who could then equivocate) or by V (who could then extract the message).
However, pk can be generated by V. This allows one, securely generated %, to be
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used in many applications, from UC-commitments to identity-based encryption.
In each such application, a trusted authority trusted by V (e.g., V herself) can
create her pk that takes the particularities of that application into account.

Another, arguably much more important application, is the use of Sub-ZK
QA-NIZKs in the construction of Sub-ZK SNARKs. Several recent papers [8,
14, 25, 37] have used QA-NIZKs for subspace language to construct SNARKs.
In these cases, one proves the membership in the trivial full vector space under
knowledge assumption, resulting in a statement that (say) the argument belongs
to the span of certain CRS elements only like in [37] or that two commitments
that possibly use different commitment keys commit to the same vectors like
in [14]. To obtain Sub-ZK SNARKs (under a knowledge assumption), in such
cases also the QA-NIZK has to be Sub-ZK (under a knowledge assumption).

In many other applications, it is desirable that zero-knowledge holds even if
both % and pk both are chosen by V (or by possibly different parties, neither of
which is trusted by P). The above Sub-ZK definitions cover this more realistic
scenario; in addition, they do not require V to trust %. One such application is
in the LegoSNARK framework by Campanelli et al. [8]. LegoSNARK uses QA-
NIZK for linear subspace to build Commit-and-Prove (CP) SNARKs, which can
be securely and efficiently combined together, creating a complex proof system
able to perform well even for heterogeneous instance representation. Unfortu-
nately, most of the modern zk-SNARKs are not CP-SNARKs. Hence [8] proposed
a QA-NIZK-based transformation that builds them using any Commit-Carrying
(CC) SNARK; the latter are much more common, e.g., the most efficient zk-
SNARK for QAP by Groth [27] is a CC-SNARK. Despite that, Campanelli et
al. propose a number of CP-SNARKs that are QA-NIZK-based.

4 Persistent Zero-Knowledge 6⇒ Zero-Knowledge

Intuitively, it seems that persistent zero-knowledge follows from the standard
zero-knowledge since the set of all possible PPT subverters C also includes honest
algorithms. However, this intuition is wrong. We will next show that one can
construct pathological QA-NIZK argument systems that achieve persistent zero-
knowledge, but do not satisfy the usual definition of zero-knowledge and actually
leak some information about the witness.

Let us consider a slight variation of the subspace language where % =
([M ]1, [M ]2) 8 and the statement is that [y]1 belongs to the subspace spanned
by the matrix [M ]1. Moreover, for simplicity let us take M ←$Z2×1

p . Consider
the QA-NIZK argument system (a leaky QA-NIZK ) in Fig. 2. It has secret keys
from the same set Z2×1

p , and thus, M can pass as a secret key. Leaky QA-
NIZK does not have a public key, the argument is simply [π]1 = [w]1, and the
verification is done by checking that [π]>1 [M ]>2 = [Mw]>1 [1]2 = [y]>1 [1]2. It is
not standard zero-knowledge since the simulator only knows [M ]1, [M ]2, and
8 Even if % is maliciously created, one can efficiently check whether it has the correct
form. More precisely, given % = ([M ]1, [M

′]2), one can assure that M = M ′ by
checking [M ]1[1]2 = [1]1[M

′]1 and accepting only when that is the case.
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Dp: M ←$Z2×1
p ; return % = ([M ]1, [M ]2);

KGen(%): return (pk← ⊥, sk← Z2×1
p );

ExtC(aux%; r): Extract sk = (M1,M2)
> by using BDHKE; return sk;

P(%, pk, [y]1, w): return [π]1 ← [w]1 ∈ G1
1;

Sim(%, pk, sk, [y]1): if M−1
1 [y1]1 6= M−1

2 [y2]1 then return ⊥; else return [π]1 ←
M−1

1 [y1]1 ∈ G1
1; fi

V(%, pk, [y]1, [π]1) : check that [y]>1 [1]2 = [π]>1 [M ]>2 ;
PKV(%, pk): check that pk = ⊥;

Fig. 2. A contrived leaky subspace QA-NIZK where % = ([M ]1, [M ]2)

[y]1 = [M1w,M2w]1 and outputting [w]1 breaks the following symmetric com-
putational Diffie-Hellman (CDH) assumption: given input ([1, a, b]1, [1, a, b]2) for
a←$Z∗p, b←$Zp, it is difficult to compute [ab]1. To see this, let us suppose that
the symmetric CDH challenge is [1, a, b]1, [1, a, b]2 for a←$Z∗p, b←$Zp. We de-
note M1 = 1/a, w = b, M2 = M ′2M1 = M ′2/a where M ′2←$Zp. We also reset
generators of G1 and G2 to be [g]1 = [a]1 and [g]2 = [a]2. Now if such simulator
existed, we could run it with input [M1g,M2g,M1wg,M2wg]1 = [1,M ′2, b,M

′
2b]1,

[M1g,M2g]2 = [1,M ′2]2 and it would output [wg]1 = [ba]1; this would break the
CDH assumption.

Surprisingly, simulation is possible (under a knowledge assumption) if we try
to prove persistent zero-knowledge. We remind that the Bilinear Diffie-Hellman
Knowledge of Exponent (BDHKE) [2] assumption says that if a PPT adversary
A(p) outputs ([x]1, [x]2) on random coins r, then there exists an extractor that
extracts x with an overwhelming probability given the same random coins r.
Thus, assuming BDHKE and because ExtC is given access to the random coins
of C, ExtC can extract M and provide it to the simulator as sk. The simulator
then computes [w]1 = M−11 [y1]1.

We could divide C into C%, which generates %, and Cpk, which generates pk,
such that the extractor only gets random coins of Cpk. This would make it im-
possible to extract M . However, this will not work since we cannot exclude
communication between C% and Cpk, e.g., C% can compute pk herself and send it
to Cpk. Cpk outputs pk without having any knowledge of sk, making extracting
sk impossible.

Because of that, we adopted a different solution: namely, we require that a
Sub-ZK QA-NIZK argument system must satisfy both standard zero-knowledge
and persistent zero-knowledge with respect to the same simulator. This solution
rules out the intuitively insecure arguments like the one in Fig. 2.

5 Construction of a QA-NIZK in the BPK Model

In this section, we will show that if the membership of [Ā]2 in Dk can be effi-
ciently verified, then a slight variant Πbpk of the Kiltz-Wee QA-NIZK Πkw for
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MATV([Ā]2) // Dk ∈ {Lk, ILk, Ck,SCk}

check [a11]2 6= [0]2 ∧ . . . ∧ [akk]2 6= [0]2;

if Dk = Lk then check i 6= j ⇒ [ai,j ]2 = [0]2;
elseif Dk = ILk then check i 6= j ⇒ [aij ]2 = [0]2; ∀i, [ai,i]2 = [a1,1]2 + [i− 1]2;
elseif Dk = Ck then check i 6∈ {j, j + 1} ⇒ [aij ]2 = [0]2; ∀i, [ai+1,i]2 = [1]2;
elseif Dk = SCk then check i 6∈ {j, j + 1} ⇒ [aij ]2 = [0]2;
∀i ([ai+1,i]2 = [1]2 ∧ [aii]2 = [a11]2) ;fi

return 1 if all checks pass and 0 otherwise;

Fig. 3. Auxiliary procedure MATV for Dk ∈ {Lk, ILk, Ck,SCk}.

linear subspaces [31] is secure (including Sub-ZK) in the BPK model. More pre-
cisely, we say that the distribution Dk is efficiently verifiable, if there exists an
algorithm MATV([Ā]2) that outputs 1 if Ā is invertible (recall that we assume
that the matrix distribution is robust) and well-formed with respect to Dk and
otherwise outputs 0. Clearly, the distributions D1, Lk, ILk, Ck, and SCk (for
any k) are verifiable, as can be seen in Fig. 3, while the verification whether
[Ā]2 is invertible is intractable for the distribution Uk if k > 1. Indeed, if k = 2
then in the latter case, one needs to test if a11a22− a12a21 = 0, given only [Ā]2;
the case k > 2 is even more complicated. Nevertheless, we show that a slightly
modified version of our construction works with the distribution D2.

Recall that in the BPK model, the public key pk (corresponds to the CRS
in Πkw) belongs either to the verifier V or to a party trusted by V. One proves
computational soundness in the setting where V trusts that pk is honestly gen-
erated, i.e., that the corresponding sk is secret and pk is well-formed. Since pk
is not trusted by the prover P, one proves Sub-ZK in the case of a maliciously
generated pk. We assume that [M ]1 is sampled by a PPT subverter, and more-
over, the simulator does not know the corresponding witnessM or any function
of M not efficiently computable from [M ]1.

To modify Πkw so that it would be secure in the BPK model instead of
the CRS model, the most straightforward idea is to divide pk into pkzk = [P ]1
(the part of pk that is used by P and thus intuitively needed to guarantee zero
knowledge) and pksnd = [Ā,C]2 (the part of pk is used by V and thus intuitively
needed to guarantee soundness). Thus, P (resp., V) has to be assured that pkzk

(resp., pksnd) is generated honestly. Hence, one could use pkzkP from P’s public
key and pksndV from V’s public key to create an argument. However, it is not clear
how to do this since both pksndV and pkzkP depend on the same secretK. Moreover,
in this case, both P and V have public keys while we want to have a situation,
common in the BPK model, where only V has a public key.

Instead, we assume that V’s public key pk is equal to the whole CRS and
then construct a public-key verification algorithm PKV. For PKV to be efficient
in the case Dk is not efficiently verifiable, we need to add some new elements
(collectively denoted as pkpkv) to pk. Fig. 4 describes the new QA-NIZK Πbpk.
The construction of PKV will be explained in Section 6.
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KGen(% := [M ]1 ∈ Gn×m1 ): A←$Dk; K ←$Zn×kp ; [C]2 ← [KĀ]2 ∈ Gn×k2 ; [P ]1 ←
[M ]>1 K ∈ Gm×k1 ;
if Dk is efficiently verifiable then pkpkv ← ε; elseif Dk = U2 then pkpkv ←
[a11, a12]1; fi ; pksnd ← [Ā,C]2; pkzk ← [P ]1; pk ← (pksnd, pkzk, pkpkv); sk ← K;
return (pk, sk);

P([M ]1, pk, [y]1,w): return [π]1 ← [P ]>1 w ∈ Gk1 ;
Sim([M ]1, pk, sk, [y]1): // sk is extracted by using a knowledge assumption;

return [π]1 ←K>[y]1 ∈ Gk1 ;
V([M ]1, pk, [y]1, [π]1) : check that [y]>1 [C]2 = [π]>1 [Ā]2; // ∈ G1×k

T

PKV([M ]1, pk): Return 1 only if the following checks all succeed:
pk = (pksnd, pkzk, pkpkv) ∧ pksnd = [Ā,C]2 ∧ pkzk = [P ]1;

[P ]1 ∈ Gm×k1 ∧ [Ā]2 ∈ Gk×k2 ∧ [C]2 ∈ Gn×k2 ;

(∗) [M ]>1 [C]2 = [P ]1[Ā]2;
if Dk is efficiently verifiable then MATV([Ā]2);

else check pkpkv = [a∗11, a
∗
12]1 ∈ G1×2

1 ∧ [a∗11]1[1]2 = [1]1[a11]2 ∧
[a∗12]1[1]2 = [1]1[a12]2 ∧ [a∗11]1[a22]2 − [a∗12]1[a21]2 6= [0]T ;fi

Fig. 4. Sub-ZK QA-NIZK Πbpk for [y]1 = [M ]1w in the BPK model, where either (1)
Dk is efficiently verifiable or (2) Dk = U2.

We will prove that in the BPK model, Πbpk is statistically persistent zero-
knowledge under a novel non-falsifiable assumption, computationally quasi-
adaptively Sub-PAR sound under another novel non-falsifiable assumption, and
(if M has full rank) computationally quasi-adaptively Sub-PAR knowledge-
sound under two non-falsifiable assumptions, one of which is novel. Some of
the new non-falsifiable assumptions do not belong to the family of knowledge
assumptions, which is an interesting result by itself. We will study new assump-
tions in Section 6, before stating and proving the security of Πbpk in Section 7.

6 New Non-Falsifiable Assumptions

We will next motivate and define the new assumptions. We will also prove the
security of KWKE and SKWKE under the HAK assumptions.

KWKE and SKWKE Assumptions. In the Sub-ZK proof, we will need two
different (tautological) knowledge assumptions, KWKE (Kiltz-Wee Knowledge
of Exponent), and SKWKE (Strong Kiltz-Wee Knowledge of Exponent). Simi-
larly to Sub-ZK SNARKs [2, 15], the knowledge assumption is needed to equip
the simulator Sim of Πkw with the correct secret key sk = K.

The KWKE assumption guarantees that one can extract a secret key sk = K
from which one can compute pkzk = [P ]1 but not necessarily pksnd. Since pkzk

does not fix K uniquely, KWKE extracts one possible K. Since for achieving
Sub-ZK, it is not needed that pksnd can be computed from sk, KWKE is sufficient.
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To argue that KWKE is a reasonable knowledge assumption, we prove that it
holds under a hash-algebraic knowledge assumption.

We also introduce a stronger knowledge assumption SKWKE that allows
extracting the unique secret key K that was used to generate the whole pub-
lic key pk. We prove that SKWKE holds under a HAK and a WKerMDH as-
sumption, given that Dk is a WKerMDH-hard distribution. (Here, WKerMDH
is a weaker variant of the well-known KerMDH distribution.) The assumption
of WKerMDH-hardness often holds in practice, e.g., when % corresponds to a
randomly chosen public key of a cryptosystem or a commitment scheme (see
Section 3 for an example). After that, we will prove that Πbpk is Sub-ZK under
either KWKE or SKWKE; in the latter case, we additionally get a guarantee
that the public key is correctly formed.

We will now define the new knowledge assumptions needed in the Sub-ZK
proof. In KWKE, we assume that if A outputs a % accepted by PARV and a pk
accepted by PKV, then there exists an extractor ExtA who, knowing the secret
coins of A, returns a secret key K that could have been used to compute pkzk.
SKWKE will additionally guarantee that the sameK was used to compute pksnd.

Definition 1. Fix k ≥ 1, n > m ≥ 1, and a distribution Dk. Let PKV be
as in Fig. 4. Then (Dp, k,Dk)-KWKEG1

(resp., (Dp, k,Dk)-SKWKEG1
) holds

relative to PGen if for any p ∈ im(PGen(1λ)) and PPT adversary A, there exists
a PPT extractor ExtA, s.t. Adv

s kwke
Dp,k,Dk,G1,PGen,A,ExtA(λ) :=

Pr


r←$RNDλ(A); (% := [M ]1, pk)← A(p; r);K ← ExtA(p; r) :

pk = ([Ā,C]2, [P ]1, pk
pkv) ∧ PARV([M ]1) = 1∧

PKV([M ]1, pk) = 1 ∧ (P 6= M>K ∨C 6= KĀ )

 ≈λ 0 .

Here, the boxed part is only present in the definition of SKWKE.

In Theorem 1, we also need the following “weak KerMDH” assumption.

Definition 2. D`k-WKerMDHG1 holds relative to PGen, if for any PPT A,
Pr[p← PGen(1λ);A←$D`k; c← A(p, [A]1) : A>c = 0k ∧ c 6= 0`] ≈λ 0.

Clearly, D`k-WKerMDHG1 is not stronger and it is ostensibly weaker than D`k-
KerMDHG1 since computing c may be more complicated than computing [c]2.
(Although, it is easy to show that Dk-KerMDH follows from Dk-HAK and Dk-
WKerMDH.) The Discrete Logarithm (DL) assumption is a classical example of
WKerMDH (consider matrices A = ( a

−1 ) for a←$Zp). In the case of say SCk,
the non-trivial co-kernel element c has to satisfy c2 = −ac1 which enables to
recover a; thus, SCk-WKerMDH is secure under the DL assumption. Similarly,
in the case of Ck, c2 = −a1c1.

Next, we will prove that KWKE (resp., SKWKE) holds under the Dk-
HAK (resp., Dk-HAK and Dp-WKerMDH) assumption. Note that the use of
WKerMDH, and thus of SKWKE, is questionable if C% is malicious; neverthe-
less, we consider this case for the sake of completeness.
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ExtA(p; r)

([M ]1, pk)← A(p; r); if PKV([M ]1, pk) = 0 then return ⊥;fi ;

(N1, [q1]2,N2, [q2]2)← ExthakA (p; r); Abort if this fails;
Let Ā[i], C[i] be such that Ā =

∑
i≥0 Ā[i]q2i and C =

∑
i≥0C[i]q2i;

For each i > 0, sample random yi ←$Zp;
(])if det(Ā(y)) = 0 then return ⊥;fi ; // Probability k/p

return K ← C(y)Ā(y)−1;

Ext2A(p; r)

([M ]1, pk)← A(p; r); if PKV([M ]1, pk) = 0 then return ⊥;fi ;

(N1, [q1]2,N2, [q2]2)← ExthakA (p; r); Abort if this fails;
Let Ā[i], C[i] be such that Ā =

∑
i≥0 Ā[i]q2i and C =

∑
i≥0C[i]q2i;

For each i > 0, sample yi ←$Zp and y′i ←$Zp;
if det(Ā(y)) = 0 ∨ det(Ā(y′)) = 0 then return ⊥;fi ; // Probability ≤ 2k/p

K ← C(y)Ā(y)−1;K′ ← C(y′)Ā(y′)−1;
if K 6=K′ then return K −K′; else return K;fi ;

Fig. 5. Extractors ExtA(p; r) and Ext2A(p; r) in the proof of Theorem 1

Theorem 1 (Security of KWKE and SKWKE). Assume that either Dk is
efficiently verifiable or Dk = U2. Assume k/p ≈λ 0. Then

(i) (Dp, k,Dk)-KWKEG1 holds under the Dk-HAK assumption.
(ii) assuming that Dk-HAK and Dp-WKerMDHG1

hold (thus, % = [M ]1 comes
from a WKerMDHG1

-hard distribution), (Dp, k,Dk)-SKWKEG1
holds.

Proof. Assume A is a KWKE or SKWKE adversary, s.t.: given public param-
eters p and randomness r←$RNDλ(A), A(p; r) outputs with probability εA a
language parameter % = [M ]1 and public key pk = ([Ā,C]2, [P ]1, pk

pkv), such
that PKV([M ]1, pk) = 1 (in particular, det Ā 6= 0 and M>C = PĀ).

(i: security of KWKE): Assume A is a KWKE adversary. Let ExthakA be the
extractor, existence of which is guaranteed by the Dk-HAK assumption. Fig. 5
depicts a candidate KWKE-extractor ExtA, where [qιi]ι for i > 0 are group
elements created by A (for which she does not know the discrete logarithm) in
Gι, and qι0 = 1. Due to the Dk-HAK assumption, ExthakA can extract N ι and
[qι]ι, such that

[
vect(M)
vect(P )

]
1

= N1

[
1,
q1

]
1
∈ Gmn+mk1 and

[
vect(Ā)
vect(C)

]
2

= N2[ 1
q2 ]2 ∈

Gk
2+nk

2 . Here, vect(B) denotes the vectorization of a matrix B. Thus, e.g.,
Āij =

∑
t≥0Nk(i−1)+j,tq2t and Cij =

∑
t≥0Nk(i−1)+j+k2,tq2t. Given N1 and

N2, one can efficiently compute matricesM [j], P [j], Ā[i] andC[i], such that the
polynomials M(Q1) :=

∑
j≥0M [j]Q1j , P (Q1) :=

∑
j≥0P [j]Q1j , Ā(Q2) :=∑

i≥0 Ā[i]Q2i, and C(Q2) :=
∑
i≥0C[i]Q2i satisfy [M ]1 = [M(q1)]1, [P ]1 =

[P (q1)]1, [Ā]2 = [Ā(q2)]2, and [C]2 = [C(q2)]2.
We will now show that ExtA satisfies the requirements of the extractor in the

definition of KWKE. Assume that A was successful with inputs (p; r). We ex-
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ecute ExtA(p; r) and obtain either K or ⊥. From (*) in PKV (i.e., M>C =
PĀ), V (Q1,Q2) := (

∑
j≥0M [j]Q1j)

> · (
∑
i≥0C[i]Q2i) − (

∑
j≥0P [j]Q1j) ·

(
∑
i≥0 Ā[i]Q2i) satisfies V (q1, q2) = 0. We now consider the following two cases,

V (Q1,Q2) = 0 as a polynomial and V (Q1,Q2) 6= 0 but V (q1, q2) = 0.
Case 1: V (Q1,Q2) = 0m×k as a polynomial. Since Q1j and Q2i are in-

determinates for all i, j > 0, the coefficients Vij of Q1jQ2i of V (Q1,Q2) =∑
i≥0,j≥0 VijQ1jQ2i must be equal to 0m×k for all i, j ≥ 0. In particular,

P [j] · Ā[i] = M [j]>C[i] , i ≥ 0, j ≥ 0 . (1)

Let Ā(Q2) =
∑
Ā[i]Q2i ∈ Zk×kp [Q2] be an affine multivariate matrix polyno-

mial and let the polynomial d(Q2) := det(Ā(Q2)) ∈ Zp[Q2] be its determinant.
Clearly, deg(d(Q2)) ≤ k, and Ā(Q2) is invertible iff d(Q2) 6= 0 as a polynomial.
Since PKV([M ]1, pk) = 1, d(Q2) 6= 0 and thus Ā(Q2) is invertible. This holds
by definition for efficiently verifiable Dk. If Dk = U2, then [a1s]1[1]2 = [1]1[a1s]2,
for s ∈ {1, 2}, and [a11]1[a22]2 6= [a12]1[a21]2 guarantee that d(Q2) 6= 0.

By the Schwartz-Zippel lemma, d(y) = 0 for uniformly sampled yi←$Zp
(and thus ExtA aborts in step (])) with probability at most k/p. Thus, Ā(y) is
invertible with probability at least εA − k/p.

Assume now that Ā(y) is invertible. Define K(Q2) := C(Q2)Ā−1(Q2) =
(
∑
i≥0C[i]Q2i)(

∑
i≥0 Ā[i]Q2i)

−1 ∈ Zn×kp (Q2). Let K := K(y). Since Ā(y)

is invertible then from Eq. (1), P [j] · Ā(y) = P [j] ·
(∑

i Ā[i]yi
)

=
M [j]> (

∑
iC[i]yi) = M [j]>C(y). Thus, P [j] = M [j]>K, and P (Q1) =

M(Q1)>K. Hence, with probability εExtA ≥ εA − k/p, P (Q1) =∑
j≥0P [j]Q1j = M(Q1)>K. Thus, |εExtA − εA| ≤ k/p and the claim follows.
Case 2: V (X,Q1,Q2) 6= 0 but V (x, q1, q2) = 0. Following [37], we consider

separately the “non-hashing” case (the adversary creates no random elements
[qι]ι) and the “hashing” case (the adversary creates at least one random element
that has high min-entropy).

In the non-hashing case, the verification polynomial is equal to the integer
matrix V := M [0]>C[0]−P [0]·Ā[0]. Recall that V (Q1,Q2) 6= 0 but V (q1, q2) =
0. Since we are in the non-hashing case, there are no created group elements.
Thus, the adversary cannot succeed in the non-hashing since the polynomial V
is constant, and we need V = 0 and V 6= 0 at the same time.

Consider now the “hashing” case when A has created at least one random
group element qk (say, in G1). Clearly, V (Q1,Q2) is a degree-1 polynomial in any
indeterminate Qk. Thus, by the Schwartz-Zippel lemma and since H∞([qιs]ι) =

ω(log λ), the probability 1/2
∑
ι,sH∞([qιs]ι) that V (q1, q2) = 0 is negligible. Hence,

the probability that an adversary, who created at least one (high min-entropy)
group element [qk]1, can make the verifier accept is negligible.

(ii: security of SKWKE): Let A be an SKWKE adversary that works in
time τ(λ) and outputs ([M ]1, pk) accepted by PKV with probability εA. To
prove that SKWKE is secure, we need to additionally show that C = KĀ. In
the process, we need to assume that Dp-WKerMDH is hard against τ(λ)-time
adversaries. The general proof works exactly as in the KWKE case, except one
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change that we discuss below. (In particular, the Case 2 is exactly the same.)
We omit other details of the proof.

More precisely, the main idea is that in the proof step (i) we already es-
tablished that C(Q2) = K(Q2)Ā(Q2) as polynomials. In the current step, we
need to show that C(Q2) = KĀ(Q2) holds, that is, K(Q2) is a constant func-
tion. To guarantee the latter, we check the value of the rational function K(Q2)
at two positions. If the two values are different, we can break Dp-WKerMDH.
Otherwise, w.h.p., K(Q2) is a constant function.

More precisely, consider the extractor Ext2A in Fig. 5. Here, K = K(y) and
K ′ = K(y′). Let εA be the success probability of A. Analogously to the security
proof of KWKE, with probability εA−2k/p, both Ā(y) and Ā(y′) are invertible
and thus Ext2A does not return ⊥.

Assume now that Ext2A does not return ⊥. By following similar analysis as in
the case (i), P (Q1) = M(Q1)>K and P (Q1) = M(Q1)>K ′ which means that
M(Q1)>(K −K ′) = 0m×k. If K 6= K ′ then ExtA has computed a non-zero
elementK−K ′ in the cokernel of [M ]1 and thus broken Dp-WKerMDHG1

. Since
breaking Dp-WKerMDH is hard within τ(λ) steps, the probability εWKerMDH

that ExtA returns K −K ′ is negligible unless A has computational complexity
ω(τ(λ)). Otherwise, K = K(y) = K(y′), which means f(y) = f(y′) = 0,
where f(Q2) := C(Q2)Ā−1(Q2) − K. Denote the (i, j)th coefficient of the
matrix f(Q2) by fij(Q2) =

∑
s Cis(Q2)Ā−1sj (Q2) − Kij . Note that fij(Q2) =

f ′ij(Q2)/det(Ā(Q2)), where f ′ij(Q2) is some polynomial of degree ≤ k.
At this point, we know that det(Ā(Q2)) 6= 0. Thus, f(Q2) 6= 0 iff

C(Q2) −KĀ(Q2) 6= 0. From this and the Schwartz-Zippel lemma it follows
that if fij(Q2) 6= 0 then Pry[fij(y) = 0] ≤ k/p. If f(Q2) 6= 0 then there exists
at least one (i0, j0), s.t. fi0,j0(Q2) 6= 0 and thus Pry[fi0,j0(y) = 0] ≤ k/p. Thus,
if f(Q2) 6= 0 then Pry[f(y) = 0] ≤ k/p.

Hence, with probability εExt2A ≥ εA − 3k/p− εWKerMDH, C(Q2) = KĀ(Q2)

and thus P (Q1) = M(Q1)>K and C = KĀ. Thus, |εExt2A − εA| ≤ 3k/p +
εWKerMDH and the security of SKWKE follows. ut

In the case of SKWKE, we extract the unique K used to compute the CRS.
Following a proof idea from [2], it is easy to show that under either the KWKE
(and thus, also the SKWKE) assumption Πbpk is Sub-ZK.

New Interactive Assumptions KerMDHdl and SKerMDHdl. Since in
the case of efficiently verifiable Dk, we essentially do not modify Πbpk (we only
define PKV), its Sub-PAR soundness almost follows from that of Πkw [31]. The
main difference is that, due to considering the subverted language parameter,
we need to change how one extracts M . Namely, in [31], the KerMDH adver-
sary B defined in the soundness reduction obtains ([M ]1,M) sampled from D′p
(this relies on the witness-sampleability). In our proof of Sub-PAR soundness
(Theorem 2 in Section 7), B obtains [M ]1 ← A(p) and then uses a non-adaptive
DL oracle to extract M . This means that we prove Sub-PAR soundness under
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a new interactive non-falsifiable KerMDHdl assumption; however, importantly,
we do not require witness-sampleability.

Since in some applications (e.g., in the setting of symmetric pairings), one
uses D2 = U2, we prove that if k = 2 and Dk = Uk, then Πbpk is sound under
another new interactive non-falsifiable SKerMDHdl assumption. Intuitively, in
this case, pkpkv contains additional elements, needed to efficiently check that
[Ā]2 has full rank. If Dk is efficiently verifiable then by definition, pkpkv = ε
(empty string) is sufficient. Since for efficiency reasons, one is interested in only
small values of k, we will not consider the case of non-verifiable Dk with k > 2.

In addition, we are interested in applying the QA-NIZK in the case M has
rank n (i.e., the image of M is the full space). Since then soundness holds triv-
ially, one must prove knowledge-soundness. We show that in this case, Πbpk is
Sub-PAR knowledge-sound under two non-falsifiable assumptions: a HAK knowl-
edge assumption and the new interactive SDLdl assumption. The KerMDHdl,
SKerMDHdl, and SDLdl assumptions are XY -type interactive assumptions as
used in [20, 34], where the assumption X is assumed to hold even if the adver-
sary is given non-adaptive access (i.e., before the X challenge is chosen) to an
oracle that solves the assumption Y .

The SDLdl assumption holds relative to PGen, if for any PPT A,

Pr
[
p← PGen(1λ); st← Adl(·)(p);x←$Zp : A(p, st, [x]1, [x]2) = x

]
≈λ 0 .

Here, the oracle dl([y]1) returns the discrete logarithm y of [y]1.
The D`k-KerMDHdl

G1
assumption holds relative to PGen, if for any PPT A,

Pr

[
p← PGen(1λ); st← Adl(·)(p);A←$D`k; [c]2 ← A(p, st, [A]1) :

A>c = 0k ∧ c 6= 0`

]
≈λ 0 .

The D`k-SKerMDHdl assumption holds relative to PGen, if for any PPT A,

Pr

[
p← PGen(1λ); st← Adl(·)(p);A←$D`k;

([c1]1, [c2]2)← A(p, st, [A]1, [A]2) : A>(c1 − c2) = 0k ∧ c1 − c2 6= 0`

]
≈λ 0 .

Generic-model security proofs of SDLdl and SKerMDHdl are very similar to
those of SDL and KerMDH: the field elements returned by the DL oracle are
independent of the challenge and thus do not influence the rest of proof.

One could use an AK assumption instead of the SDLdl assumption. However,
the AK assumption explicitly does not allow A to create new group elements by
using elliptic-curve hashing. The SDLdl assumption allows the adversary to cre-
ate such group elements, but allows access to non-adaptive DL oracle to extract
their discrete logarithms. It is also not an expanding assumption, differently
to many knowledge assumptions (e.g., the PKE assumption [26] that underlies
many pairing-based SNARKs) that allow one to extract long “plaintext” from a
short “ciphertext”. Hence, the SDLdl assumption, while still non-falsifiable, seems
to be somewhat more realistic than an AK assumption. On the other hand, we
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need to extract y and π from A’s output after the challenge is known, adaptively.
In this case, a knowledge assumption (HAK) is more realistic than an adaptive
DL oracle that one could also just use to break SDL directly.

7 Security of Πbpk

Theorem 2. Let Πbpk be the QA-NIZK argument system for linear subspaces
from Fig. 4. The following statements hold in the BPK model. Assume that Dp

is such that PARV is efficient.

(i) Πbpk is perfectly complete and perfectly zero-knowledge.
(ii) If (Dp, k,Dk)-KWKEG1 holds relative to PGen then Πbpk is statistically

persistent zero-knowledge.
(iii) Assume Dk is efficiently verifiable (resp., Dk = U2). If Dk-KerMDHdl

(resp., Dk-SKerMDHdl) holds relative to PGen then Πbpk is computation-
ally quasi-adaptively Sub-PAR sound.

(iv) Assume M has rank n (y = Mw always has a solution), and that Dk is
robust. If SDLdl and KGen([M ]1)-HAK, for arbitrary efficiently computable
[M ]1, hold relative to PGen then Πbpk is computationally quasi-adaptively
Sub-PAR knowledge-sound.

Proof. (i: perfect completeness / perfect zero-knowledge): obvious.
(ii: persistent zero-knowledge): Let C be a subverter that computes

([M ]1, pk) so as to break the Sub-ZK property. That is, C(p; rC) outputs
([M ]1, auxpk). Let B be the adversary from Fig. 6. Note that RNDλ(B) =
RNDλ(C). Under the (Dp, k,Dk)-KWKE assumption, there exists an extractor
Ext2B, such that if PARV([M ]1) = 1 and PKV([M ]1, pk) = 1 then Ext2B(p; rC)
outputs K, such that P = M>K. We construct a trivial extractor ExtC(p; rC)
for C, as depicted in Fig. 6. Clearly, ExtC returns sk = K, such that P = M>K.

B(p; rC)

([M ]1, pk, auxC)← C(p; rC); return pk;

ExtC(p; rC)

return Ext2B(p; rC);

Fig. 6. The extractor and the constructed adversary B from the persistent zero-
knowledge proof of Theorem 2.

Fix concrete values of λ, p ∈ im(PGen(1λ)) and rC ∈ RNDλ(C). Let
([M ]1, pk, auxpk) ← C(p; rC), and run ExtC(p; rC) to obtain K. Fix ([y]1,w) ∈
R[M ]1 . It clearly suffices to show that if PARV([M ]1) = 1, PKV([M ]1, pk) = 1

and ([y]1,w) ∈ R[M ]1 then O0([y]1,w) = P([M ]1, pk, [y]1,w) = [P ]>1 w and
O1([y]1,w) = Sim([M ]1, pk,K, [y]1) = K>[y]1 have the same distribution.
This holds since from PKV([M ]1, pk) = 1 it follows that P = M>K and from
([y]1;w) ∈ R[M ]1 it follows that y = Mw. Thus, O0([y]1,w) = [P ]>1 w =
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Bdl(·)(p)

[M ]1 ← A(p); // M ∈ Zn×mp

Use DL oracle nm times to obtain M ;
return st←M ;

B(p, st =M , ([A]1, [A]2)) // ([A]1, [A]2) ∈ G(k+1)×k
1 × G(k+1)×k

2 with A = (aij)

Let M⊥ ∈ Zn×(n−m)
p be a basis of the kernel of M>;

K′ ←$Zn×kp ;R←$Z(n−m−1)×(k+1)
p ;

[A′]2 ←
(

[A]2
R·[A]2

)
; // A′ ∈ Z(n−m+k)×k

p

[C]2 ← (K′||M⊥)[A′]2;

[P ]1 ← [M>K′]1;
pk′ ← ([Ā,C]2, [a11, a12,P ]1);
([y]1, [π]1)← A(pk′); // [y]1 ∈ Gn1 , [π]1 ∈ Gk1
[c]>1 ← [(π> − y>K′)|| − y>M⊥]1;

Represent [c]>1 as [c>1 ||c>2 ]1 with [c1]1 ∈ Gk+1
1 and [c2]1 ∈ Gn−m−1

1 ;

s2 ←$Zk+1
p ; [s1]1 ← [c1 +R

>c2 + s2]1;
return ([s1]1, [s2]2);

Fig. 7. Adversary B in the soundness proof of Theorem 2 (reduction to SKerMDHdl)

[K>Mw]1 = K>[y]1 = O1([y]1,w). Hence, O0 and O1 have the same distribu-
tion, and thus, Πbpk is persistent zero-knowledge under KWKE.

(iii: Dk is efficiently verifiable, Sub-PAR soundness under
KerMDHdl): follows directly from the soundness proof of Πkw in [31]. There
is only one difference: If [M ]1 is not subverted (like in [31]), then one can use
the witness-sampleability of Dp to extractM , and get a reduction to the falsifi-
able KerMDH assumption. In the case of Sub-PAR soundness, since the language
parameter can be subverted (and thus one cannot rely on witness-sampleability),
we let B use the DL oracle to obtainM from [M ]1 and then use it in the sound-
ness proof of [31] to get a reduction to the non-falsifiable KerMDHdl assumption.
Importantly, in this case, witness-sampleability is not needed.

(iii: Dk = U2, Sub-PAR soundness under SKerMDHdl): In the case
Dk = U2, the proof is similar to the soundness proof of Πkw in [31]. However,
since we added [a11, a12]1 to the public key, we reduce instead to the SKerMDHdl

assumption; this complicates the proof.
Assume that A breaks the soundness ofΠbpk with probability ε. We will build

an adversary B, see Fig. 7, that breaks SKerMDHdl with probability ≥ ε− 1/p.
First, B uses the DL oracle to obtain M from [M ]1; this is needed since [M ]1
could be subverted. Here, witness-sampleability is not needed. As above, when
the language parameter is generated honestly, the DL oracle is not needed, and
one instead relies on the witness-sampleability of Dp to obtain a reduction to
the falsifiable SKerMDH assumption.
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Note that in Fig. 7, [Ā′]2 = [Ā]2 ∈ Gk×k2 . Define implicitly (since we do not
know this value)K ←K ′+M⊥A′Ā−1 ∈ Zn×kp . Thus, [C]2 = (K ′||M⊥)[A′]2 =

[K ′Ā′ +M⊥A′]2 = [(K ′ +M⊥A′Ā−1)Ā]2 = [KĀ]2 and [P ]1 = [M>K ′]1 =
[M>(K −M⊥A′Ā−1)]1 = [M>K]1. Thus, pk′ has the same distribution as
the real public key.

With probability ε, A is successful, that is,

1. y>M⊥ 6= 01×(n−m) (that is, y 6∈ colspace(M)) and thus also c = ((π> −
y>K ′)|| − y>M⊥) 6= 0n−m+k;

2. y>C = π>Ā (V accepts). Thus, 01×k = π>Ā − y>C =
(
π>||0>n−m

)
A′ −

y>
(
K ′||M⊥)A′ =

(
(π> − y>K ′)|| − y>M⊥)A′ = c>A′.

By definition, s1 − s2 = c1 +R>c2 and thus (s>1 − s>2 )A = (c>1 + c>2 R)A =
c>A′ = 01×k. Since c 6= 0n−m+k and R leaks only through A′ (in the definition
of [C]2) as RA, Pr[c1 +R>c2 = 0 | RA] ≤ 1/p, where the probability is over
R←$Z(n−m−1)×(k+1)

p .

(Item iv: Sub-PAR knowledge-soundness): Our proof strategy is in-
spired by that of [8, App. F]. However, their proof is given for honestly generated
language parameter % = [M ]1 andM is obtained by using witness-sampleability;
we modify the proof by extractingM from % by using a DL oracle. Thus, we need
to use two different types of non-falsifiable assumptions: (1) the non-adaptive
SDLdl assumption to extractM from [M ]1, and (2) knowledge (HAK) assump-
tions to extract y and π from [y]1 and [π]1; we use the fact that the verification
equation holds to be able to apply HAK. Moreover, we modify the proof of [8]
to work for an arbitrary k.

We construct the following SDLdl adversary B, that is given access to a
non-adaptive DL oracle in the query phase and then, after that, a challenge
([x]1, [x]2), returns x. First, B samples r and calls A(p; r), obtaining [M ]1. B
uses the non-adaptive DL oracle nm times, extracting the matrix M ∈ Zn×mp .

In the challenge phase, B obtains ([x]1, [x]2) from the challenger. After that,
B samples randomK1,K2 ∈ Zn×kp and sets [K]ι ← [x]ιK1+[1]ιK2. B honestly
generates pk = ([P ]1, [Ā,C]2) by setting A←$Dk, [C]2 ← [K]2Ā = K1Ā[x]2 +
K2Ā[1]2 ∈ Gn×k2 , and [P ]1 ← M>[K]1 = M>K1[x]1 +M>K2[1]1 ∈ Gm×k1 .
Denote P ′ = vect(P ) ∈ Zmkp . B sends pk to A who returns [y,π]1.

According to the KGen([M ]1)-HAK assumption for arbitrary efficiently com-
putable [M ]1, given A who on input (p, pk), where pk ∼ KGen([M ]1), out-
puts [y]1 ∈ Gn1 and [π]1 ∈ Gk1 , we can extract [q]1 ∈ Gnq1 , (y1,y2,y3) and
(π1,π2,π3), such that

[y]1 =y1[1]1 + y2[P ′]1 + y3[q]1 ,

[π]1 =π1[1]1 + π2[P ′]1 + π3[q]1 ,
(2)

Note that y2 ∈ Zn×mkp , π2 ∈ Zk×mkp , y3 ∈ Zn×nqp , and π3 ∈ Zk×nqp .
We will now write K ′ = vect(K), K ′1 = vect(K1), K ′2 = vect(K2),

P 1 = M>K1, P 2 = M>K2, P ′1 = vect(P 1) and P ′2 = vect(P 2). Thus,
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P = M>K = M>(xK1 + K2) = xP 1 + P 2 and P ′ = xP ′1 + P ′2. Recall
M ∈ Zn×mp , K ∈ Zn×kp , and P ∈ Zm×kp .

From the verification equation [y]>1 [C]2 = [π]>1 [Ā]2. Assuming Ā is in-
vertible, [π]1 = [K>y]1. From this and Eq. (2), π1[1]1 + π2[P ′]1 + π3[q]1 =
[K]>1 y1 + [K>y2P

′]1 + [K>y3q]1, and thus

π1[1]1+π2[xP ′1 + P ′2]1 + π3[q]1

=[xK1 +K2]>1 y1 + [(xK1 +K2)>y2(xP ′1 + P ′2)]1 + [(xK1 +K2)>y3q]1 .

Collecting the powers of X, we get that the verification equation states that
V (x, q) = 0k, where V (X,Q) := aX2 + b(Q)X + c(Q) for

a =K>1 y2P
′
1 ,

b(Q) =K>1 (y1 + y2P
′
2) +

(
K>2 y2 − π2

)
P ′1 +K>1 y3Q ,

c(Q) =K>2 (y1 + y2P
′
2)− (π1 + π2P

′
2) + (K>2 y3 − π3)Q .

Since each qi has min-entropy Ω(log λ) from the adversary’s viewpoint and
V (X,Q) is a linear polynomial in each Qi, from V (x, q) = 0k it follows (by
the Schwartz-Zippel lemma) with an overwhelming probability 1 − εq that
V (x,Q) = 0 as a polynomial and thus also V (x,0) = aX2 + b(0)X + c(0) = 0,
where b := b(0) and b := b(0). In particular, in what follows, we can assume
y3 = 0 and π3 = 0.

Next, let w be any solution to y = Mw; a solution exists and can be effi-
ciently found since M has rank n. We already extracted M by using the DL
oracle, while y = y1 + xd + y2P

′
2, where d := y2P

′
1 ∈ Znp , can be extracted if

d = 0n. Thus, if d = 0n then we can extract and return w.
To show that, w.h.p., d = 0n, consider the opposite case d 6= 0n. If a 6= 0k

(this can only happen if d 6= 0n) then we have a quadratic equation a[x2]1 +
b[x]1 + c[1]1 = 0, with a 6= 0, that B can solve for x, and thus return x.

Assume a = 0k but d 6= 0n. This means d ∈ Znp is a non-zero element
in the kernel of K>1 ∈ Zk×np . Since for A, K1 looks uniformly random from
Zk×np , the question is now what is the maximum probability that for any d 6= 0k
picked by A, K>1 d = 0. Obviously, unless d = 0k, this probability is equal to
Pr[K1←$Zk×np : K>1 d = 0k] = p−k.

Hence, the probability of success εB of B is at least εw − εq − p−k, where εw
is the probability of extracting w. ut

If the language parameter has been honestly generated, then one does
not need the DL oracle to extract M . Instead, as in [31], one relies on the
witness-sampleability of Dp to extractM and then finish the proof of Sub-PAR
(knowledge-)soundness. Importantly, in the subverted case, we do not have to
assume witness-sampleability.

We note SKerMDH is not secure when k = 1, [23].

Acknowledgments. We would like to thank Dario Fiore and anonymous re-
viewers for useful comments. Abdolmaleki, Lipmaa, and Siim were partially sup-
ported by the Estonian Research Council grant PRG49.



On QA-NIZK in the BPK Model 29

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof sys-
tems: New constructions and applications. In: EUROCRYPT 2015, Part II. LNCS,
vol. 9057, pp. 69–100

2. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zajac, M.: A subversion-resistant
SNARK. In: ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 3–33

3. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: 45th FOCS, pp. 186–195

4. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: Security
in the face of parameter subversion. In: ASIACRYPT 2016, Part II. LNCS, vol.
10032, pp. 777–804

5. Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get shorty via
group signatures without encryption. In: SCN 10. LNCS, vol. 6280, pp. 381–398

6. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: 20th ACM STOC, pp. 103–112

7. Brown, D.R.L.: The exact security of ECDSA. Contributions to IEEE P1363a
(2001) http://grouper.ieee.org/groups/1363/.

8. Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: Modular design and compo-
sition of succinct zero-knowledge proofs. In: ACM CCS 2019, pp. 2075–2092

9. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: 32nd ACM STOC, pp. 235–244

10. Damgård, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: CRYPTO’91. LNCS, vol. 576, pp. 445–456

11. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct NIZK arguments. In: ASIACRYPT 2014, Part I. LNCS,
vol. 8873, pp. 532–550

12. Daza, V., González, A., Pindado, Z., Ràfols, C., Silva, J.: Shorter quadratic QA-
NIZK proofs. In: PKC 2019, Part I. LNCS, vol. 11442, pp. 314–343

13. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
129–147

14. Fauzi, P., Lipmaa, H., Siim, J., Zajac, M.: An efficient pairing-based shuffle argu-
ment. In: ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 97–127

15. Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: PKC 2018, Part I. LNCS,
vol. 10769, pp. 315–347

16. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 33–62

17. Fuchsbauer, G., Orrù, M.: Non-interactive zaps of knowledge. In: ACNS 18. LNCS,
vol. 10892, pp. 44–62

18. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: EUROCRYPT 2013. LNCS, vol. 7881, pp.
626–645

19. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all
falsifiable assumptions. In: 43rd ACM STOC, pp. 99–108

20. Gjøsteen, K.: A new security proof for damgård’s ElGamal. In: CT-RSA 2006.
LNCS, vol. 3860, pp. 150–158

21. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. Journal of Cryptology 7(1) (1994) pp. 1–32

http://grouper.ieee.org/groups/1363/


30 Behzad Abdolmaleki, Helger Lipmaa, Janno Siim, and Michał Zając

22. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–304

23. González, A., Hevia, A., Ràfols, C.: QA-NIZK arguments in asymmetric groups:
New tools and new constructions. In: ASIACRYPT 2015, Part I. LNCS, vol. 9452,
pp. 605–629

24. González, A., Ràfols, C.: New techniques for non-interactive shuffle and range
arguments. In: ACNS 16. LNCS, vol. 9696, pp. 427–444

25. González, A., Ràfols, C.: Sublinear Pairing-based Arguments with Updatable CRS
and Weaker Assumptions. Technical Report 2019/326, IACR (2019) https://
eprint.iacr.org/2019/326, last checked version Mar 29, 2019.

26. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In:
ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340

27. Groth, J.: On the size of pairing-based non-interactive arguments. In: EURO-
CRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326

28. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20

29. Jutla, C.S., Roy, A.: Shorter Quasi-Adaptive NIZK Proofs for Linear Subspaces.
Technical Report 2013/109, International Association for Cryptologic Research
(2013) http://eprint.iacr.org/2013/109, last retrieved version 14 Sep 2018.

30. Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK
proofs for linear subspaces. In: CRYPTO 2014, Part II. LNCS, vol. 8617, pp.
295–312

31. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: EU-
ROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 101–128

32. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability:
Simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from
homomorphic signatures. In: EUROCRYPT 2014. LNCS, vol. 8441, pp. 514–532

33. Libert, B., Peters, T., Joye, M., Yung, M.: Compactly hiding linear spans - tightly
secure constant-size simulation-sound QA-NIZK proofs and applications. In: ASI-
ACRYPT 2015, Part I. LNCS, vol. 9452, pp. 681–707

34. Lipmaa, H.: On the CCA1-Security of Elgamal and Damgård’s Elgamal. In:
Inscrypt 2010. LNCS, vol. 6584, pp. 18–35

35. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: TCC 2012. LNCS, vol. 7194, pp. 169–189

36. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span pro-
grams and linear error-correcting codes. In: ASIACRYPT 2013, Part I. LNCS, vol.
8269, pp. 41–60

37. Lipmaa, H.: Simulation-Extractable ZK-SNARKs Revisited. Technical Report
2019/612, IACR (2019) https://eprint.iacr.org/2019/612, updated on 8 Feb
2020.

38. Micali, S., Reyzin, L.: Soundness in the public-key model. In: CRYPTO 2001.
LNCS, vol. 2139, pp. 542–565

39. Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption.
In: ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 729–758

40. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252

41. Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in applying proof
methodologies to signature schemes. In: CRYPTO 2002. LNCS, vol. 2442, pp.
93–110

42. Wee, H.: Lower bounds for non-interactive zero-knowledge. In: TCC 2007. LNCS,
vol. 4392, pp. 103–117

https://eprint.iacr.org/2019/326
https://eprint.iacr.org/2019/326
http://eprint.iacr.org/2013/109
https://eprint.iacr.org/2019/612

	On QA-NIZK in the BPK Model

