Proving the correct execution of concurrent services in zero-knowledge
(extended version)*
Srinath Setty*, Sebastian Angel*®, Trinabh Gupta*T, and Jonathan Lee*

*Microsoft Research

Abstract. This paper introduces Spice, a system for
building verifiable state machines (VSMs). A VSM is
a request-processing service that produces proofs estab-
lishing that requests were executed correctly according
to a specification. Such proofs are succinct (a verifier
can check them efficiently without reexecution) and zero-
knowledge (a verifier learns nothing about the content
of the requests, responses, or the internal state of the
service). Recent systems for proving the correct execu-
tion of stateful computations—Pantry [25], Geppetto [35],
CTV [31], vSQL [88], etc.—implicitly implement VSMs,
but they incur prohibitive costs. Spice reduces these costs
significantly with a new storage primitive. More notably,
Spice’s storage primitive supports multiple writers, mak-
ing Spice the first system that can succinctly prove the cor-
rect execution of concurrent services. We find that Spice
running on a cluster of 16 servers achieves 488—1167
transactions/second for a variety of applications including
inter-bank transactions [28], cloud-hosted ledgers [29],
and dark pools [66]. This represents an 18,000-685,000 x
higher throughput than prior work.

1 Introduction

We are interested in a system for building verifiable state
machines (VSMs). A VSM is similar to a traditional state
machine except that it produces correctness proofs of
its state transitions. Such proofs can be checked effi-
ciently by a verifier without locally reexecuting state
transitions and without access to the (plaintext) content
of requests, responses, or the internal state of the ma-
chine. Consequently, VSMs enable a wide class of real-
world services to prove their correct operation—without
compromising privacy. For example, by appropriately
programming state transitions, VSMs can implement
verifiable versions of payment networks [28, 64], dark
pools [66], ad exchanges [4], blockchains and smart con-
tracts [12, 30, 50, 62], and any request-processing appli-
cation that interacts with a database.

There is an elegant solution to build VSMs by em-
ploying efficient arguments [41, 44, 48, 49, 58, 61],
a primitive that composes probabilistically checkable
proofs (PCPs) [6, 7] with cryptography. Specifically, an
untrusted service can maintain state (e.g., in a key-value
store), run appropriate computations that manipulate that
state in response to clients’ requests, and produce proofs

*This is the full version of [68]. This version includes additional
details and security proofs in the appendices.

¢University of Pennsylvania

tUCSB

that it faithfully executed each request on the correct state.
Such proofs are succinct, in the sense that the proofs are
small (e.g., constant-sized) and are efficient to verify. In
some constructions, the proofs are zero-knowledge [43],
meaning that they reveal nothing beyond their validity:
the state maintained by the service, along with the content
of requests and responses, is kept private from a verifier.

While the original theory is too expensive to imple-
ment, recent systems [8, 14, 18, 25, 34, 35, 39, 51, 67, 69—
71, 73,76, 77, 80—84, 87-89] make significant progress.
Beyond reducing the costs of the theory by over 10%°x,
some of them can prove the correct execution of stateful
computations like MapReduce jobs and database queries.

Despite this progress, the costs remain prohibitive: the
service incurs several CPU-seconds per storage operation
(e.g., put, get on a key-value store) when generating a
proof of correct execution (§2.1, §7). This is over 10%x
slower than an execution that does not produce proofs.
Besides costs, storage primitives in prior systems support
only a single writer, which limits them to a sequential
model of execution. Consequently, they cannot scale out
with additional resources by processing requests concur-
rently; this limits throughput that applications built atop
prior systems can achieve.

We address these issues with Spice, a new system for
building VSMs. Spice introduces a storage primitive with
a key-value store interface, called SerKV, that is consider-
ably more efficient than storage primitives used by prior
systems (§3). Furthermore, SetKV admits concurrent writ-
ers with sequential consistency [54] (and in some cases
linearizability [46]) semantics, and supports serializable
transactions [21, 65]. This makes Spice the first system
to build VSMs with support for a concurrent execution
model (§4). Finally, we compose SetKV with prior and
new techniques to ensure that a verifier can check the
correct execution of requests using only cryptographic
commitments that hide the content of requests, responses,
and the state of the service (§3-5).

In more detail, SetKV extends a decades-old mecha-
nism for verifying the correctness of memories [5, 23,
32, 36]. SetKV is based on set data structures whereas
prior systems employ (Merkle) trees [25, 31] or com-
mitments [35, 88]. This has two implications. First, the
cost of a storage operation is a constant under SetKV
(when amortized over a batch of operations) whereas
in prior storage primitives it is logarithmic [25, 31] or
linear [35, 88] in the size of the state. Second, SetKV
allows concurrent writers since operations on sets—such

as adding an element to a set—commute.

We implement Spice atop a prior framework [1, 83].
A programmer can express a VSM in a broad subset of
C (augmented with APIs for SetKV and transactions),
and compile it to executables of clients that generate
requests, servers that process those requests and gener-
ate proofs, and verifiers that check the correctness of
responses by verifying proofs. We build several realis-
tic applications with Spice: an inter-bank transaction ser-
vice [28], a cloud-hosted ledger [29], and a dark pool [66].
Our experimental evaluation shows that Spice’s VSMs
are 29-2,000 x more CPU-efficient than the same VSMs
built with prior work. Furthermore, they achieve 18,000—
685,000 higher throughput than prior work by employ-
ing multiple CPUs. Concretely, Spice’s VSMs support
488-1167 transactions/second on a cluster of 16 machines,
each with 32 CPU cores and 256 GB of RAM.

Despite these advances, Spice has limitations. To
achieve high throughput, Spice proves state transitions in
batches, so one must wait for a batch to be verified be-
fore determining the correctness of any individual request,
which introduces latency (§3, §7.2). The CPU cost to pro-
duce proofs remains large (§7.1, §7.3) when compared to
an execution that does not produce proofs. Nevertheless,
Spice opens the door to VSMs that support a concurrent
model of computation and to many exciting applications.

2 Problem statement and background

Spice’s goal is to produce verifiable state machines
(VSMs). We begin by reviewing state machines, which
we use as an abstraction to represent a request-processing
service. A state machine is specified by a tuple (¥, S),
where U is a deterministic program that encodes state
transitions, and Sy is the initial state of the machine (e.g.,
a set of key-value pairs). The state machine maintains
its state with S, which is initialized to Sp. When the
machine receives a request x, it executes ¥ with x and its
state S, as inputs; this mutates the state of the machine
and produces a response y. More formally, the machine
executes a request x to produce a response y as follows:

(Si,y) «+ U(Seur,x)
Scur < Si

A state machine may execute a batch of requests con-
currently to achieve a higher throughput. In such a case,
the behavior of the state machine (i.e., the state after exe-
cuting a batch of requests, and the responses produced by
the machine) depends on the desired correctness condi-
tion for concurrent operations. In this paper we focus on
sequential consistency [54] as the correctness condition
for concurrent operations on single objects, and serializ-
ability for multi-object transactions [21, 65].

A verifiable state machine permits the verification of
state transitions without reexecution and without access

2. Clients issue a set of requests, xi, . .

clients

I'equests

responses

—
program backing
store
/ ‘%OnCurrent
accept
reject <—tests prover
verifiers

FIGURE 1—Overview of verifiable state machines (see text).

to the (plaintext) contents of requests, responses, and
the state of the machine (S.,,). Specifically, a VSM is a
protocol involving a prover P, a set of clients that issue re-
quests, and one or more verifiers {V, ...,V } that check
the correctness of the execution (clients can be verifiers).
We depict this protocol in Figure 1; it proceeds as follows.

1. P runs a state machine (¥, Sp) that processes requests
concurrently and maintains its state on a persistent
storage service (e.g., a key-value store).

. s Xm, concurrently

to P and get back responses, yi, . .., Yn.

3. Each verifier V), receives an opaque trace from P and

runs a local check on the trace that outputs accept or
reject. Concretely, the trace contains a commitment' to
the initial state of the machine, a commitment to the
final state after executing the batch of requests, and a
commitment and proof for each request-response pair.

An efficient VSM must satisfy the following properties.

¢ Correctness. If P is honest (i.e., P’s behavior is equiv-
alent to a correct execution of requests in a sequential
order) then P can make a V; output true.

* Soundness. If P errs (e.g., it does not execute ¥ or vio-
lates semantics of storage), then Pr[Vj outputs true] <
¢, where € is small (e.g., 1/2!28).2

e Zero-knowledge. The trace does not reveal anything
to a verifier V; beyond the correctness of P, the number
of requests executed by P, and the size of P’s state.

Succinctness. The size of each entry in the trace should
be small, ideally a constant (e.g., a few hundred bytes).
The cost to a V), to verify an entry is linear in the size
of the entry (e.g., a few milliseconds of CPU-time).

Throughput. P should be able to execute (and gener-
ate proofs for) hundreds of requests/second.

VSMs are related to recent systems for proving the cor-
rect execution of stateful computations [8, 25, 31, 35, 39,

' A commitment ¢ to a value x is hiding and binding. Hiding means that
¢ does not reveal anything about x. Binding means that it is infeasible
to find a value x” # x which produces the same commitment.

2We discuss how to prevent P from equivocating (i.e., showing different
traces to different verifiers) or omitting requests in Section 9.

88]. However, in prior systems: (1) P lacks mechanisms
to prove that it correctly executed requests concurrently,
and (2) P incurs high CPU costs to produce proofs. Con-
sequently, prior systems do not satisfy our throughput
requirement. We provide an overview of a prior system
below, but note that Spice addresses both issues.

2.1 A prior instantiation of VSMs

We now describe a prior system that implements VSMs;
our goal is to introduce concepts necessary to describe
Spice and to highlight why prior systems are inefficient.
We focus on Pantry [25]; Section 8 discusses other work.

Programming model and API. Pantry [25] follows the
VSM protocol structure introduced above. In Pantry, a
state machine’s program (i.e., ¥) is expressed in a subset
of C, which includes functions, structs, typedefs, pre-
processor macros, if-else statements, loops (with static
bounds), explicit type conversions, and standard integer
and bitwise operations. For U to interact with a storage
service, Pantry augments the above C subset with sev-
eral storage APIs; an example is the get and put API
of a key-value store. Also, Pantry supports commit (and
decommit) APIs to convert blobs of data (e.g., a request)
into commitments (and back)—to hide data from verifiers.

Mechanics. Pantry meets the correctness, sound-
ness, zero-knowledge, and succinctness properties of
VSMs (§2). To explain how, we provide an overview
of Pantry’s machinery; we start with a toy computation.

int increment(int x) {
int y =x+ 1;
return y;

Pantry proceeds in three steps to execute a computation.

(1) Express and compile. A programmer expresses
the desired computation in the above subset of C, and
uses Pantry’s compiler to transform the program into a
low-level mathematical model of computation called alge-
braic constraints. This is essentially a system of equations
where variables can take values from a finite field I, over
a large prime p (i.e., the set {0, 1, ..., p — 1}). For the
above toy computation, Pantry’s compiler produces the
following system of equations (uppercase letters denote
variables and lowercase letters denote concrete values):

X—x =0
C= Y- (X+1) = 0
Y-y =0

A crucial property of this transformation is that the
set of equations is satisfiable—there exists a solution (a
setting of values to variables) to the system of equations—
if and only if the output is correct. For the above constraint
set, observe that if y = x + 1, {X + x,Y < y}isa

solution. If y # x + 1, then there does not exist any
solution and the constraint set is not satisfiable.

(2) Solve. The prover solves the equations using the
input x provided by the client. In other words, the prover
obtains an assignment for each of the variables in the
system of equations and sends the output y to the client.

(3) Argue. The prover argues (or proves) that the sys-
tem of equations has a solution (which by the above trans-
formation property establishes that y is the correct output
of the computation with x as the input). To prove that a
system of equations is satisfiable, the prover could send its
solution (i.e., values for each of the variables in the equa-
tion) to a verifier, and the verifier could check that each
equation is satisfiable. However, this approach meets nei-
ther the succinctness nor the zero-knowledge requirement
of VSMs: the size of the proof is linear in the running
time of the computation, and the solution reveals inputs,
outputs, and the internal state of the computation.

To guarantee both properties, Pantry employs an argu-
ment protocol referred to as a zZkSNARK [22] to encode
the prover’s solution to the system of equations as a short
proof. Furthermore, a zkSNARK is non-interactive and of-
ten supports public verifiability, meaning that anyone (act-
ing as a verifier) can check the correctness of proofs with-
out having to interact with the prover. Details of how these
protocols work are elsewhere [14, 18, 25, 45, 67, 83, 86];
we first focus on costs and then discuss a subset of mech-
anisms in Pantry that are relevant to our work.

Pantry’s costs. Since costs depend on the choice of
argument protocol and Pantry implements several [67, 70],
we assume a recent protocol due to Groth [45]. The costs
to a V; are small: the proof produced by P and sent over
the network to V; per W is short (128 bytes); V;’s cost to
validate a proof is only a few milliseconds of CPU-time.
‘P’s costs to produce a proof scale (roughly) linearly with
the number of constraints of the program; concretely, this
cost is ~2150us of CPU-time per constraint.’

2.1.1 Interacting with external resources

A key limitation of the above algebraic constraint formal-
ism is that it cannot handle interactions with the external
“world” such as accessing disk, or sending and receiving
packets over a network. To address this, Pantry relies on
the concept of exogenous computations.

An exogenous computation is a remote procedure
call (RPC) to an external service, which can be used to
read from a disk or interact with remote servers (using
OS services). Such an external service is executed outside
of the constraint formalism (hence the name). The RPC
simply returns a response that is then assigned to appro-

3The time complexity and the concrete per-constraint cost we provide
assume that the constraint set is produced in the quadratic form [41, 70]:
each constraint is of the form Py - P, = P3, where Py, P», and P53 are
degree-1 polynomials over the variables in the constraint set.

priate variables in the constraint set of a computation. We
illustrate this concept with an example below.

Suppose that the computation is y = +/x, where x
is a perfect square. Of course, one could represent the
square-root function using constraints and apply the above
machinery, but the resulting constraint set is highly ver-
bose (which increases the prover’s cost to solve and ar-
gue). Exogenous computations offer a way to express the
equivalent (and much cheaper) computation with:

int sqrt(int x) {
int y = RPC(SQRT, x); //exogenous computation
assert(y*y == x);
return y;

}

The above code compiles to the following constraint set:

X—x = 0
C= (Yexo . Yexo) -X =0
Yexu -y = 0

The prover computes /x outside of constraints (e.g., by
running a Python program) and assigns the result to Y,
when solving the equations (Step 2). The assert state-
ment becomes an additional constraint that essentially
forces the prover to prove that it has verified the correct-
ness of Y,,,. A similar approach can be used to interact
with services like databases. The challenge is defining an
appropriate assert statement, as we discuss next.

2.1.2 Handling state

As discussed above, exogenous computations enable a
program U to interact with a key-value store by issuing
an RPC. This alone is insufficient because the prover is
untrusted and can return any response to RPCs. For ex-
ample, if the prover maintains a key-value store with the
tuple (k,v), and ¥ issues an RPC(GET, k); the prover
could return v/ # v. Consequently, as in the above sqrt
example, U must verify the result of every RPC.

To enable this verification, Pantry borrows the idea of
self-verifying data blocks from untrusted storage systems:
it names data blocks using their collision-resistant hashes
(or digests). The following example takes as input a digest
and increments the value of the corresponding data.

Digest increment(Digest d) {
// prover supplies value of block named by d
int block = RPC(GETBLOCK, d);
assert(d == Hash(block));
int new_block = block + 1;
// supply to prover a new block and get digest
Digest new_d = RPC(PUTBLOCK, new_block);
assert(new_d == Hash(new_block));
return new_d;

3

Pantry abstracts these operations with two APIs: (1)
PutBlock which takes as input a block of data and re-

turns its digest, and (2) GetBlock which returns a pre-
viously stored block of data given its digest (these APIs
take care of the RPC call and the appropriate asserts and
invocations of the hash function). Atop this API, Pantry
builds more expressive storage abstractions using prior
ideas [23, 40, 56, 60]. To support RAM, Pantry encodes
the state in a Merkle tree [23, 60]. To support a key-value
store, Pantry uses a searchable Merkle tree: an AVL tree
where internal nodes store a hash of their children. To
read (or update) state in these tree-based storage prim-
itives, the program executes a series of GetBlock (and
PutBlock) calls starting with the root of the tree.

Hiding requests and responses. The above storage prim-
itive can be used to hide requests and responses from a
verifier. Specifically, the prover keeps the plaintext re-
quests and responses in its persistent storage and releases
cryptographic commitments to requests and responses to
a verifier. As in the increment example, a C program
must take as input a commitment to a request, obtain the
plaintext version of it using an RPC, and produce a com-
mitment to the response. This logic is abstracted with the
commit and decommit APIs.

Costs. We now assess the cost of a key-value store op-
eration under Pantry. A get(k) makes [log, n] calls to
GetBlock (where n is the number of key-value pairs), and
each GetBlock call requires encoding a hash function as
constraints (to represent the assert statement that veri-
fies the return value of the RPC); a put requires twice as
many operations. Thus, a single get on a key-value store
that supports as few as n = 1,000 entries requires 44,000
constraints (§7.1); this translates to 6.6 CPU-seconds for
producing a proof. Furthermore, in Pantry the root of a
Merkle tree is a point of contention so a batch of opera-
tions cannot execute concurrently.

2.2 Outlook and roadmap

Given the overwhelming expense to execute (and produce
a proof for) a simple storage operation when using a tree-
based data structure, we believe that making meaningful
progress requires revisiting mechanisms for verifying in-
teractions with storage. In Section 3.1, we describe an
entirely different way to verify storage operations that
relies on a set—rather than a tree—data structure. In Sec-
tion 3.2, we show how to employ this set-based storage
primitive to realize efficient VSMs, and in Section 4 we
show how, unlike Merkle trees, this set-based primitive
allows requests to be processed concurrently. Finally, Sec-
tion 5 describes how to instantiate the set-based storage
primitive efficiently such that each get and put operation
can be represented with about a thousand constraints.

3 Efficient storage operations in VSMs

This section presents a new mechanism to handle storage
operations in VSMs. We first discuss the design of a

verifiable key-value store based on set data structures; the
design itself is orthogonal to VSMs and can be used to
build a stand-alone untrusted storage service. We then
show to how to compose the new key-value store with
prior machinery to realize efficient VSMs.

3.1 SetKV: A verifiable key-value store

The goal of a verifiable key-value store is to enable an
entity Vx to outsource a key-value store X to an untrusted
server Px, while being able to verify that interactions
with KC are correct. Specifically, Px receives operations
from Vi and executes them on K such that Vi can check
that a get on a key returns the value written by the most
recent put to that key. This protocol proceeds as follows.

1. Vx calls init to obtain an object that encodes the
initial empty state of KC.

2. Vi issues inserts, gets, and puts sequentially to Py
and receives responses. Vi locally updates its object
for every request-response pair.

3. After a batch of operations, Vi runs audit that com-
putes over its local object (and auxiliary responses from
Pic), and outputs whether or not Py operated correctly.

We desire the following properties from this protocol.

* If P correctly executes operations on /C, then it can
make Vi’s audit output true.

o If Py errs, then Pr{audit outputs true} < 6, where
6 is very small (e.g., 1/22%).

* Vx maintains little state (e.g., tens of bytes).

Figure 2 depicts our construction. We call this con-
struction SetKV for ease of reference, but note that it
introduces small—albeit critical—changes to the offline
memory checking scheme of Blum et al. [23] (and its
follow-up refinement [32]) and the Concerto key-value
store [5]. We discuss our modifications at the end of this
subsection; these changes are necessary to build VSMs
using SetKV (§3.2). We prove that SetKV meets all de-
sired properties in Appendix C.1. Below, we describe how
SetKV works starting with a straw man design.

A straw man design. Suppose Vi maintains a totally-
ordered log where it records all key-value operations it
issues to Px along with the responses supplied by Px.
Vi can execute the following audit procedure: for each
get on a key k recorded in the log, identify the most
recent put to k (by traversing the log backwards starting
from the point at which the get is recorded) and check if
the value returned by the get matches the value written
by the put. If all the checks pass, Vi outputs true.
There are two issues with this straw man: (1) Vi’s
log size is proportional to the number of key-value store
operations and it grows indefinitely; (2) the cost to verify

1: function init()

2: returns < VKState{0,0,0}

3: function insert(s, k, v)

4t —sts+1

5: RPC(INSERT,k, (v,ts")) // Px executes INSERT on /C
6: ws <+ s.ws © H({(k,v,1ts")})

7: return VKState{s.rs,ws’, ts'}

8: function get(s, k)

9: (v1) + RPC(GET, k)

100 rs' < srs © H({(k,v,1)})
11: 5" < max (s.ts,1) + 1

12: RPC(PUT, k, (v,15))

13: ws' < sws @ H({(k,v,15")})
14: return VKState{rs',ws’,ts'},v

15: function audit(s)

16: 18’ < s.rs

17: keys < RPC(GETKEYS) // Py returns a list of keys in /C
18: for k in keys do

/] Py executes GET on /C

// Px executes PUT on /C

19: (v, 1) < RPC(GET, k) /I Px executes GET on K
20: rs' < rs' © H({(k,v,1)})
21: if keys has duplicates or rs” # s.ws then return false

22: else return true

FIGURE 2—SetKV: A verifiable key-value store based on set
data structures [5, 23, 32, 36]. The logic depicted here is run by
Vi; P responds to RPCs. Vi ’s state consists of two set-digests
and a timestamp s; H is an incremental set collision-resistant
hash function; see text for details. A put is similar to get except
that lines 11 and 13 use the value being written instead of v.

the correctness of each get is linear in the size of the log.

Mechanics of SetKV. SetKV addresses both issues as-
sociated with the straw man. It lowers verification cost by
relying on two sets instead of an append-only log, and it
reduces the size of the state maintained by Vi by leverag-
ing a particular type of cryptographic hash function that
operates on sets. We elaborate on these next.

(1) Using sets. Instead of a totally-ordered log, suppose
that Vi maintains a local timestamp counter ts along with
two sets, a “read set” (RS) and a “write set” (WS). SetKV’s
key idea is to design a mechanism that combines all the
checks in the straw man design (performed on the return
value of each get using a log) into a single check on these
two sets; if the server executes any operation incorrectly,
the check fails. Of course, unlike the above log-based
checks, if the set-based check fails, Vi will not know
which particular operation was executed incorrectly by
‘P, but this dramatically reduces verification costs.

Details of the set-based check. First, we structure the
key-value store K so that each entry is of the form (k, v, t)
where k is a key, v is the associated value, and ¢ is a
timestamp (more precisely a Lamport clock [53]) that
indicates the last time the key was read (or updated). Vi
initializes RS and WS to empty, and zs to 0. When Vi
wants to insert a new key-value pair (k,v) into C, it
increments the local timestamp s, adds the tuple (k, v, ts)

into WS, and sends this tuple to Px. Similarly, when
Vi wishes to execute a get (or a put) operation on an
existing key k, Vi performs the following five steps:

1. Get from Py via an RPC the current value v and time-
stamp ¢ associated with key k

2. Add the tuple (k, v,) into RS
3. Update the local timestamp #s <— max(zs,) + 1

4. Add the tuple (k,V',ts) into WS (where v/ = v for a
get, or the new value for a put)

5. Send the new tuple (k,V', s) to Px via an RPC

Observe that the sets maintained by Vi preserve two
important invariants: (1) every element added to RS and
WS is unique because #s is incremented after each opera-
tion; and (2) RS “trails” WS by exactly the last write to
each key (i.e., RS C WS). These lead to an efficient audit
procedure: Vi can request the current state of X (i.e., the
set of key, value, and timestamp tuples) from Py (denote
this returned set as M), and check if:

RSUM = WS

There is also a check in audit that verifies whether all the
keys in M are unique. This check prevents the following
double insertion attack: if Vi issues to Px an insert
operation with a key that already exists in /C, a correct P
should return an error message. However, a malicious Px
could return success for both inserts, and in the future,
return either value for a get on such a key.

Correctness intuition. We now use an example to pro-
vide intuition about the set-based check. Suppose that
after initialization, Vi inserts a new key-value pair (k, v)
into /C (via the above protocol). Vi’s state will be:

RS={}, WS={(k,v, 1)}, 15=1

If Vi runs the audit procedure, then a correct Py can re-
turn its state, which in this case is simply M = {(k,v, 1)}
This leads Vi’s audit to return true since RS UM=WS,
and the set of keys in M has no duplicates. Suppose that
Vx then calls get(k) and Px misbehaves by returning
(v, 1) where v/ # v. Vx’s state will be updated to:

RS={(k,v', 1)}, WS={(k,v, 1), (k,V',2)}, 1s=2

Observe that for any set M, RS U M # WS (this is be-
cause RS ¢ WS). By returning an incorrect response, Px
permanently damaged its ability to pass a future audit.
(2) Compressing Vi’s state. Vi cannot track the two
sets explicitly since they are larger than K. Instead, Vic
employs a particular type of hash function #(-) that acts
on sets and produces a succinct set-digest [9, 32]. H meets
two properties. First, it is set collision-resistant, meaning
that it is computationally infeasible to find two different

sets that hash to the same set-digest. Second, H is incre-
mental: given a set-digest ds for a set S, and a set W, one
can efficiently compute a set-digest for S U W. Specifi-
cally, there is an operation © (that takes time linear in the
number of elements in W) such that:

HSUW) =H(S) ©H(W)
=ds @ H(W)

Vi leverages H to create (and incrementally update)
set-digests that encode RS and WS, and it keeps these
digests and the local timestamp in a small data structure:

struct VKState {
SetDigest rs; // a set-digest of RS
SetDigest ws; // a set-digest of WS
int ts;

}

The same correctness argument (discussed above) ap-
plies except that we must account for the case where P
identifies a collision in H, which can allow it to misbe-
have and still pass the audit. Fortunately, the probability
that Pk can find any collision is very small (§ < 27128),

Note that while the audit procedure (Figure 2) appears
to require Vi to keep state linear in the size of X to store
the set of all keys (to check for duplicates), this is not
the case. If getkeys (Fig. 2, Line 17) returns a sorted
list of keys, the uniqueness check can be expressed as
a streaming computation. Consequently, Vi only needs
enough state for VKState, and the metadata required to
track the status of the streaming computation; all of this
is tens of bytes, which meets our requirement.

Differences with prior designs. SetKV supports insert-
ing any number of keys, whereas offline memory check-
ing protocols [23, 32, 36] have a fixed memory size.
To support insertion, we add the insert procedure,
the getkeys RPC, and the uniqueness check (Figure 2,
Line 21). To prevent P from denying that a particular key
has been inserted, and to disallow P from maintaining a
key-value store with duplicate keys, we have additional
checks (Appendix A.4). Concerto [5] also supports in-
serts but it is more expensive than SetKV since it requires
Vi to issue two additional RPCs per insert (and two
additional calls to H to update rs and ws) to maintain an
index of keys, so Concerto’s approach is up to 3x more
expensive than SetKV for Vi.

Several prior schemes [5, 23, 36] use instances of H
that require Vi to use cryptographic material that must
be kept secret from Pyx. While this is not an issue in
the standalone setting presented in this section (since Vi
updates set-digests locally), it is problematic in the VSM
context where the prover P executes these operations on
behalf of clients (§3.2). In contrast, our construction of
‘H does not require secret cryptographic material (§5.2).
Finally, the audit procedure of SetKV does not modify

Vic’s set-digests (as is the case in Concerto’s), which
lowers the costs of audit by 2x.

3.2 Building VSMs using SetKV

Spice follows an approach similar to Pantry to build
VSMs. As with the Pantry baseline discussed in the prior
section, Spice uses Groth’s argument protocol [45] as a
black box (Spice can also use many other argument proto-
cols, as we discuss in Section 9). The principal difference
between the two systems is in how they handle storage
operations, which we discuss next.

Recall from Section 2.1 that a VSM’s program WV in-
teracts with external services (e.g., a storage service) by
issuing RPCs. Since the prover is untrusted and can return
incorrect responses to RPCs, ¥ must verify each RPC
response via an assert; Section 2.1.2 discusses the veri-
fication mechanism in Pantry. We now discuss an alternate
mechanism based on SetKV.

At a high level, Spice’s idea is to employ SetKV’s veri-
fier (i.e., Vi) to check the interactions of ¥ with a storage
service. To accomplish this, we build a C library that
implements the init, insert, get, put, and audit pro-
cedures in Figure 2. A VSM programmer uses this library
to write W, and compiles ¥ into algebraic constraints
(and client, server, verifier executables). To illustrate this
idea, we start with an example in which ¥ increments an
integer value associated with a key requested by a client.

Value increment(VKState* s, Key k) {
Value v;
// prover supplies value v for key k
get(s, k, &v); //setkv library call (updates s)
v = (Value) ((int) v + 1);
put(s, k, v); // setkv library call (updates s)

// batch-verify all storage operations
assert(audit(*s) == true); // setkv library call
return v;

Observe that the high-level structure of the above pro-
gram is nearly identical to the example we discussed
in the context of Pantry. A key difference, however, is
that under Pantry, ¥ verifies each storage operation (e.g.,
GetBlock) with an assert; under Spice, ¥ verifies all
storage operations at the end with a single assert that
calls SetKV’s audit procedure.

Costs. Since init, insert, get, and put execute a con-
stant number of arithmetic operations (Figure 2), Spice
compiles them into a constant number of equations when
transforming W into the constraint formalism. audit,
however, computes over the entire state of the key-value
store, so it compiles to a constraint set with size linear
in the number of objects in the key-value store (say n).
Fortunately, audit is called only once, so its costs are
amortized over all storage operations in W.

In more detail, if U executes O(n) storage operations
before calling audit, the (amortized) cost of each stor-
age operation is a constant. However, for the services that
Spice targets (§1, §6), ¥ executes far fewer storage oper-
ations than n. This leads to an undesirable situation: the
amortized cost of a storage operation can be worse than in
Pantry (where each storage operation’s cost is logarithmic
in). Spice addresses this by decoupling the call to audit
from the rest of U. We discuss this below.

Spice’s VSMs. Let U be a program with the same struc-
ture as the previous increment example: W takes as input
arequest x and a VKState s, interacts with the storage via
RPCs, verifies those interactions at the end via assert,
updates s, and outputs a response y. Spice splits ¥ into
two independent programs: V., and ¥ ,,q;, where ¥,
is same as U except that it does not have the assert
statement at the end; ¥, 4; is the following program:

void audit_batch(VKState s) {
assert(audit(s) == true);

}

This decomposition achieves the following: proving
the correct execution of m instances of V¥ is equivalent
to proving the correct execution of the corresponding
m instances of U ,,, and a single instance of W,,q;. By
equivalent, we mean that a verifier) outputs true to m+1
proofs (one per instance of ¥, and ¥,,g;) if and only
if V would have output true to the m proofs produced
by instances of U. Thus, if m=0(n), the O(n) constraints
needed to express U4 are effectively amortized over the
m requests, making the (amortized) number of constraints
for each storage operation in ¥, a constant. Note that the
costs of W4 can actually be amortized across different
computations (they can be instances of different W,,,).

This approach has two drawbacks. First, it increases la-
tency since V confirms the correct execution of any given
instance ¥, only after it has verified all m + 1 proofs.
Second, if the proof of ¥ ,,4; fails, V does not learn which
of the storage operations (and therefore which instance of
W,.,) returned an incorrect result. However, as we show in
our evaluation (§7), this decomposition reduces the cost
of storage operations by orders of magnitude over Pantry,
even for modest values of m.

Trace. Recall from Section 2 that each verifier V), re-
ceives a trace from P to verify a batch of m instances of
W ,.q. This trace contains m tuples and a proof for ¥4

(i Si—1,yirsi»mi) Vi € [I,m] and Tauqir

where 7; is the proof of correct execution of the i in-
stance of U,,, with (s;,_1,x;) as input and (s;, y;) as out-
put. Each state s; is an object of type VKState (sg is a
VKState object for an empty key-value store), x; is a
request, and y; is the corresponding response. T,q;; €stab-
lishes the correct execution of ¥ ,,4; with s,, as input.

Observe that the above trace is sufficient to guarantee
correctness and soundness (since each V) has all the in-
formation needed to verify the actions of P), but it does
not satisfy zero-knowledge or succinctness. This trace
is not succinct since the sizes of requests and responses
could be large (they depend on the application). The trace
is not zero-knowledge since requests and responses ap-
pear in plaintext. Moreover, a VKState object leaks the
timestamp field and the set-digests (unlike commitments,
hashes bind the input but do not hide it; see Footnote 1).

Commitments. To make the trace succinct and zero-
knowledge, a programmer writes a VSM that takes as
input (and produce as output) commitments to requests,
responses, and VKState. For example, the programs ¥,
and ¥, discussed earlier are expressed as:

Commitment incr_comm(Commitment* cs, Commitment ck) {
// prover passes value via RPC (checked by assert)
VKState s = (VKState) decommit(*cs);

Key k = (Key) decommit(ck);

Value v = increment(&s, k); // prior program logic

*cs = commit(s);

return commit(v);

3

void audit_batch_comm(Commitment cs) {
VKState s = (VKState) decommit(cs);
audit_batch(s); // prior program logic
}

In more detail, a client sends to P the plaintext request
x; (k in the example). P computes the program (with-
out commitments) outside of the constraint formalism
and sends back to the client the output y; (v in the exam-
ple). P then generates a proof 7; for the version of the
program that uses commitments (incr_comm in the ex-
ample). Specifically, P first generates a commitment to x;
outside of the constraint formalism and uses it to solve the
constraint set of ¥, (Section 9 discusses what prevents
‘P from omitting requests or generating an incorrect com-
mitment). P then adds to its trace commitments to each
of (s;,x;,y;) and the corresponding proof ;. Each verifier
V; uses these commitments—instead of their plaintext
versions—when verifying proofs (including 7,,qi), Since
the above programs use commitments as inputs and out-
puts. Thus, a verifier V; does not learn anything about the
requests, responses, or states beyond their correctness, the
number of requests, and the size of the state. Also, since
the size of each commitment and each proof is a constant,
it satisfies the succinctness property of VSMs.

4 Supporting concurrent services

Prior instantiations of VSMs—including our design in
Section 3—do not support a prover P that executes re-
quests concurrently. A key challenge is producing proofs
that establish that P met a particular consistency seman-
tic. Note that this problem is hard even without the zero-
knowledge or succinctness requirements of VSMs [75].

4.1 Executing requests concurrently

To make P execute requests concurrently, we introduce a
concurrent version of SetKV, called C-SetKV, which we
later integrate with Spice’s design from the prior section.

C-SetKV’s prover Py interacts with multiple instances
of Vi (V(O), o V,(CZ)) that issue insert, put, and get
requests concurrently. C-SetKV guarantees sequential
consistency [54]: an audit returns true if and only if
the concurrent execution is equivalent to a sequential exe-
cution of operations and the sequential execution respects
the order of operations issued by individual instances
of V. In a few cases, C-SetKV guarantees linearizabil-
ity [46]. We formalize these guarantees and provide de-
tails in Appendix C.2, but the key differences between
C-SetKV and SetKV are:

1. Enforcement of isolation. In SetKV (Figure 2), Vi is-
sues two RPCs for each get and put; they are executed
in isolation by a correct P because there is only one
outstanding operation. In C-SetKV, Py must explicitly
ensure that both RPCs are executed in isolation since it
receives and executes many concurrent operations.

2. Support for independent VKStates. In SetKV, Vi

maintains a single VKState object that encodes its key-
value store operations since initialization. In C-SetKV,
each Vg) has its own independent VKState object that

contains only the effects of operations issued by V,(Cj).

‘We discuss the details of these differences below.

Enforcement of isolation. We now discuss how a cor-
rect Py can execute C-SetK'V’s four key-value store oper-
ations in isolation. It is straightforward to execute insert
in isolation since it issues a single RPC. audit does not
modify Pi’s state, so Px can executes it in isolation us-
ing a snapshot of its state. To ensure the two RPCs of put
and get execute in isolation (in the presence of multiple
instances of Vi), Px can keep track of when the first
RPC starts and block any other request that attempts to
operate on the same key until the second RPC (for the
same key) completes. A simple approach to achieve this is
for Px to lock a key during the first RPC and release the
lock on the second RPC. A malicious Px could of course
choose not to guarantee isolation, but as we show in Ap-
pendix C.2, a future audit will fail. Note that in Spice,
Pxc corresponds to the external storage, so the mechanism
that ensures isolation happens outside of the constraint
formalism (i.e., it is not encoded in V).

Support for independent VKStates. Since each Vg) is-
sues requests independently, it maintains a local VKState
object. This creates two issues. First, the set-digests and
timestamp in the VKState object of Vg) do not capture
the operations issued by other instances of Vic. As aresult,
we need a mechanism to combine the VKState objects of

all instances of Vi prior to invoking audit—since audit
accepts a single VKState object. Second, the timestamp
field s is no longer unique for each operation since each
Vg) initializes its VKState object with s = 0. We discuss
how we address these issues below.

Combining VKState objects. To obtain a single
VKState object, each Vg) collects VKState objects from
every other instance and locally combines all objects.*
Combining set-digests is possible because sets are un-
ordered and the union operation is commutative. More-
over, H(-) preserves this property since the operation ® is
commutative. As a result, each V,(C’) constructs set-digests
that capture the operations of all instances of Vi as if they
were issued by a single entity. For example, the combined
read set-digest is computed as s = 50 © ... ® rs¥)
(similarly for ws). Finally, the timestamp of the combined
VKState object is simply O since it is not used in audit.

Handling duplicate entries. Since different Vi in-
stances start with the same timestamp zs=0, it is possible
for two different instances to add the same element into
their local set-digests (in a VKState object); this creates
a problem when multiple VKState objects are combined.
We use an example to illustrate the problem. Suppose
there are three instances of Vi: V,(Cl), V,(Cz), V,(C3), Suppose

V,(Cl) calls insert(k, v), making its VKState:
ws = H({(k,v, 1)}),rs = H({}). s =1

Suppose V,(Cz) and V,(g) call get(k) concurrently and
Px returns an incorrect value v/ # v. Specifically, Px
returns (k, V', 1) to both, so their VKState object is:

ws = H({(k,v',2)}),rs = H{(k,V,1)}),ts =2

Now, if each Vi instance combines set-digests in the
three VKState objects, they get the following (we use
exponents to indicate the number of copies of an element):

ws = H({(k,v, 1), (k,v',2)2 1), rs = H({(k, V', 1)%})

Unfortunately, since H(-) is a set hash function the
above leads to undefined behavior: H’s input domain is
a set, but the above is a multiset.’ Worse, some construc-
tions [5] use XOR for ®, so H({(k,v', 1)} = H({})
(i.e., adding an element that already exists to a set-digest
removes the element!). Such a hash function would lead
to the following combined set-digests:

ws = H({(k,v,1)}),rs = H({})

For these set-digests, a Px. can make audit pass by re-
turning M = {(k, v, 1) }—even though it misbehaved by

returning an incorrect value to V,(Cz) and V,(S),

4Exchanging VKState objects is easy in the context of VSMs since
(commitments to) all VKState objects appear in the trace.
5 A multiset is a set that can contain duplicate elements.

There are two solutions. First, we can use a #(-) that is
multiset collision-resistant (our construction in Section 5
satisfies this). In that case, even if different instances
of Vi add the same elements to their set-digests, the
aggregated set-digest will track the multiplicity of set
members (i.e., the number of times an element is added
to a set-digest). If P misbehaves, the aggregated rs will
not be a submultiset of the aggregated ws, which prevents
a future audit from passing (Appendix C.2). The second
solution is to guarantee that there are no duplicate entries.
We discuss this second solution in detail in Appendix A.1.

Using C-SetKYV to execute requests concurrently. P
executes (and generates proofs for) multiple instances of
V., simultaneously using different threads of execution
(e.g., on a cluster of VMs). As before, each instance of
V,., interacts with a storage service through exogenous
computation. A key difference is that unlike the design
in Section 3.2, each instance of ¥, checks the response
from the storage service using a different instance of C-
SetKV’s verifier. This is essentially the desired solution,
but we now specify a few details.

A verifier V; receives commitments to a set of VKState
objects, one from each thread of execution, in P’s trace.
This means that V; cannot execute the © operator on the
commitments sent by P, since ©® works on set-digests
and not on commitments. To address this, P supports a
computation V¥, that takes as input commitments to
VKState objects and outputs a commitment to the com-
bined VKState object. That is, P helps V; combine com-
mitments to VKState objects—without revealing any-
thing about the objects and without requiring V; to trust P
(P produces a proof for W,,;;). V; then uses the resulting
commitment in W ;4.

4.2 Supporting transactional semantics

Many services compute over multiple key-value tuples
when processing a request, so they require transactional
semantics. To support such services, we first build low-
level mutual-exclusion primitives. We then use these prim-
itives to build a transactional interface to C-SetKV that
guarantees serializability [21, 65]. Finally, we show how
those low-level primitives can be used to build other con-
currency control protocols.

Mutual-exclusion primitives. Spice supports two APIs:
(1) lock takes as input a key and returns the current value
associated with the key; and (2) unlock takes as input a
key and an updated value, and associates the new value
with the key before unlocking the key. Figure 3 depicts our
implementation of these APIs by essentially decomposing
SetKV’s get and put (Figure 2).

In essence, these primitives provide mutual-exclusion
semantics by leveraging the requirement that Py in C-
SetKV must execute GET and PUT RPCs on the same key

: function lock(s, k)

(v,t) < RPC(GET, k) // Px executes GET and locks k
rs' < sors © H({(k,v,1)})

ts’ < max (s.ts, 1)

return VKState{rs’, s.ws,ts' },v

: function unlock(s, &, v)

ts' < sits+ 1

RPC(PUT, k, (v,ts")) // Px executes PUT and unlocks k
ws' « sws @ H({(k,v,15")})

10: return VKState{s.rs, ws’,ts'}

R A A

FIGURE 3—Mechanics of 1lock and unlock (see text).

1: function beg_txn(s, keys)

20 5« s,vals + []

3: for k in keys do

4 (s',v) < lock(s’, k)

5: vals < vals + (v) /I append the value
6: returns’,vals

7. function end_txn(s, tuples)
8 s’ s

9: for (k,v) in tuples do

10: s" < unlock(s’, k,v)
11: return s’

FIGURE 4—Mechanics of beg_txn and end_txn (see text).

in isolation. Specifically, if a request executes lock on a
key k, Px must block all operations on k until the lock-
owner calls unlock (otherwise a future audit fails).

Simple transactions. We now describe how the above
mutual-exclusion primitives can be used to build transac-
tions with known read/write sets: all the keys that will be
accessed are known before the transaction execution be-
gins. Spice abstracts this transactional primitive with two
APIs: (1) beg_txn takes as input a list of keys on which
a transaction wishes to operate and returns the values as-
sociated with those keys; (2) end_txn takes as input the
list of keys and the values that the transaction wishes to
commit. Between calls to these two APIs, a program ¥,
can execute arbitrary computation in Spice’s subset of C.

Figure 4 depicts our implementation of these APIs.
beg_txn calls 1ock on each key in its argument to get
back the current value associated with the key. end_txn
calls unlock on each key (which stores the updated value
before releasing the lock). This guarantees serializability
since lock and unlock ensure mutual-exclusion.®

General transactions. We note that a transaction exe-
cuted by ¥,,, does not need to acquire locks on all keys
involved in the transaction at once. A programmer can
write a U, that acquires locks on keys (using 1ock) over
its lifetime and then releases locks (using unlock). This
supports transactions with arbitrary read/write sets and
guarantees serializability if V., implements two-phase

%Deadlock can be avoided by acquiring locks in a deterministic order.

locking: all locks on keys involved in the transaction are
acquired before releasing any lock. Appendix A.3 dis-
cusses how to implement serializable transactions with
optimistic concurrency control instead.

5 Efficient instantiations

We now describe an efficient implementation of W,
and the cryptographic primitives necessary to build Spice.

5.1 Parallelizing audits

Recall from Section 3.2 that P periodically produces
Taudir tO prove the correct execution of ¥,,;;. We ob-
serve that ¥,,;;; can be expressed as a MapReduce job;
thus, P can use existing verifiable MapReduce frame-
works [25, 35, 39] to reduce the latency of producing
Taudi DY orders of magnitude. The details (of what each
mapper and reducer computes) are in Appendix A.2, but
we discuss the costs. This approach increases each ver-
ifier’s CPU costs and the size of 7,4, by a factor of
|mappers| + |reducers|. This is because each mapper and
reducer generates a separate proof.’ This is an excellent
trade-off since checking 7,4 is relatively cheap: 3 ms of
CPU-time to check a mapper’s (or a reducer’s) proof, and
each proof is 128 bytes.

5.2 Efficient cryptographic primitives

Set hash function. Recall from Section 3.2 that Spice
represents the logic of SetKV’s Vi (Figure 2) in con-
straints. An important component is encoding () as a
set of equations; all other operations in Vi (such as com-
parisons and integer arithmetic) are already supported by
the existing framework (§6). Spice instantiates H(-) using
MSet-Mu-Hash [32] defined over an elliptic curve EC:

14

H({el, . .6@}) = ZH({E,})

i=1

where H(-) is a random oracle that maps a multiset of
elements to a point in EC, and point addition is the group
operation. We use an elliptic curve group since prior
work [17, 35, 52] shows how to express elliptic curve
operations with only a handful of constraints.

However, one issue remains: we need a candidate for
H(-) with an efficient representation as a constraints set.
Our starting point for H(-) is H(-) = ¢(R(+)), where R(+)
is a random oracle (instantiated using a collision-resistant
hash function). R takes as input a multiset of elements
and outputs an element of a set S (e.g., SHA-256 maps
an arbitrary length binary string to a 256-bit string); ¢(+)
maps elements in S uniformly to a point in EC.

TCTV [31] avoids the cost increase for a verifier, but incurs >10x
higher expense for PP. The recent work of Wu et al. [87] offers an
alternative by distributing P’s work for any computation in a blackbox
manner; applying it to audit_batch is future work.

A challenge is that building ¢(-) using prior tech-
niques [37] is expensive; more critically, common hash
functions (e.g., SHA-256, Keccak) perform bitwise oper-
ations (XOR, shift, etc.), which are expensive to express
with algebraic constraints (it takes at least 1 constraint for
each bit of the inputs) [67, 72]. We discuss our solution in
detail in Appendix B, but we make the following contribu-
tion. We show that the requirement that H(-) be a random
oracle can be relaxed (we still require its constituent R(+)
to be a random oracle). We leverage this relaxation to con-
struct an efficient ¢(+) from Elligator-2 [20]; to build R(-),
we use a relatively new block cipher called MiMC [2],
which is more efficient than SHA-256 in the constraints
formalism. In summary, our construction of (-) requires
10,000x fewer constraints than using SHA-256 and a
prior construction for ¢(+) [37].

Commitments. Pantry [25] employs HMAC-SHA256 to
implement commit () but requires ~ 250,000 constraints
to generate a commitment to a 150-byte message. Spice
takes a different approach. For a message x € [, (recall
from §2.1 that constraint variables are elements in), a
commitment is (x + z, R(¢)) where ¢ € I, is a randomly-
chosen value and R(+) is the MiMC-based random oracle
introduced above. This is binding because R(#) binds ¢ due
to the collision-resistance of R(-). It is hiding because x+¢
is uniformly random; hence the tuple (x + t, R(¢)) is inde-
pendent of the message x. Finally, the scheme generalizes
to larger messages x € IE‘;‘, in two ways: commit to each
component of x independently (which increases the size
of the commitment by k times), or output (R(x) + #, R(¢)).
Compared to Pantry’s HMAC-SHA256, Spice’s commit-
ments require ~300x fewer constraints.

6 Implementation and applications

We build Spice atop pequin [1], which provides a com-
piler to convert a broad subset of C to constraints, and
links to 1ibsnark [57] for the argument protocol (step 3;
§2.1). We extend this compiler with Spice’s SetKV API
(including transactions and commitments) based on the de-
sign discussed in Sections 3-5. Spice uses leveldb [42]
as its backing store to provide persistent state. In total,
Spice adds about 2,000 LOC to Pequin. Our implementa-
tion of the applications discussed below consists of 1,300
lines of C and calls to Spice’s API.

6.1 Applications of Spice

We built three applications atop Spice. These applications
require strong integrity and privacy guarantees, and have
transactions on state that can be executed concurrently.
Furthermore, they tolerate batch verification (i.e., P can
produce 7,,4;; after many requests) since clients can levy
financial penalties if they detect misbehavior ex post facto.

11

// pk_c is the public key of the caller
issue(VKState* s, PK pk_c, PK pk, Asset
return insert(s, pkl|las, a); // || is

3

as, int a) {
concatenation

retire(VKState* s, PK pk, Asset as, int a) {
Value v[1];

beg_txn(s, [pkll|as], v); // updates s
if (v[®] >= a) v[0] -= a;

end_txn(s, [(pkl||as, v[0])]); // updates s

3

and v

// pkl, pk2 are the keys of caller and recipient
transfer (VKState* s, PK pkl, PK pk2, Asset as, int a) {
Value v[2];
beg_txn(s, [pkl||as, pk2||as], v); // updates s, v
if (v[®] >=a) { v[0] -= a; v[1] += a; }
end_txn(s, [(pkl]||as, v[0]1), (pk2|las, v[1]D1);
}

FIGURE 5—Pseudocode for a Sequence-like app using Spice’s
API (Figure 11). The requests, except the public key of the caller,
are wrapped in commitments; however, this part is not depicted.

Cloud-based ledger service. We consider a cloud-
hosted service that maintains a ledger with balances of
assets for different clients. Examples of assets include cur-
rency in a mobile wallet (e.g., Square, WeChat) and cred-
its in a ride-sharing application. Clients submit three types
of requests: transfer, issue, and retire. transfer
moves an assert from one client to another, whereas
issue and retire move external assets in and out of
the ledger. For example, in WeChat, clients move cur-
rency from their bank accounts to their mobile wallets.
This application is inspired by Sequence [29]. However, to
verify the correct operation of Sequence, a verifier needs
access to sensitive details of clients’ requests (e.g., the
amount of money) and the service’s state. We address this
limitation by implementing a Sequence-like service as a
VSM using Spice. The ledger maintained by the service
is the VSM’’s state and the request types discussed above
are state transitions. Figure 5 depicts our implementation
of this application in Spice’s programming model.

Payment networks. Our second application is a pay-
ment network inspired by Solidus [28]. Banks maintain
customer balances, and customers submit requests to
move money from their accounts to other accounts (in the
same bank or a different bank). This is similar to the pre-
vious application except that it also supports an inter-bank
transfer. For such a transfer, the sender and recipient’s
banks must coordinate out-of-band: the sender’s bank ex-
ecutes the debit part of a transfer and the recipient’s
bank executes the credit part. A verifier can check that
banks are processing requests correctly without learning
the content of requests: destination account, amount, etc.

A securities exchange (dark pool). A securities ex-
change is a service that allows buyers to bid for securities

(e.g., stock) sold by sellers. The service maintains an or-
der book—a list of buy and sell orders sorted by price.
Clients submit buy or sell orders to the service, who
either fulfills the order if there is a match, or adds the or-
der to the order book. Although traditional exchanges are
public (clients can see the order book), private exchanges
(or dark pools) have gained popularity in light of attacks
such as “front-running” [66]. Dark pools, however, are
opaque; indeed, there are prior incidents where dark pools
have failed to match orders correctly [38, 63].

We implement the exchange as a VSM: the order book
is the state, and submit and withdraw order are state tran-
sitions. At a high level, we represent the sorted order book
as a doubly-linked list using Spice’s storage API. Then,
submit removes or inserts nodes to the list depending on
whether there is a match or not, and withdraw removes
nodes from the list. With Spice, verifiers learn nothing
about the orders beyond the identity of the submitter, and
yet they can check the correct operation of the exchange.

7 Experimental evaluation

We answer the following questions in the context of our
prototype implementation and applications (§6).

1. How does Spice compare to prior work?
2. How well does Spice scale with more CPUs?
3. What is the performance of apps built with Spice?

Baselines. We compare Spice to two prior systems for
building VSMs: Pantry [25] and Geppetto [35]. Sec-
tions 2.1 and 8 provide details of their storage primitives,
but briefly, Pantry’s storage operations incur costs loga-
rithmic in the size of the state (due its use of Merkle trees),
and the costs are linear in the size of the state in Geppetto.
Besides these baselines, we consider a Pantry variant,
which we call Pantry+Jubjub, that uses a Merkle tree
instantiated with a recent hash function [33]. Finally, we
compare our payment network app (§7.3) to Solidus [28].

Setup and metrics. We use a cluster of Azure D64s_v3
instances (32 physical CPUs, 2.4 GHz Intel Xeon ES5-
2673 v3, 256 GB RAM) running Ubuntu 17.04. We mea-
sure CPU-time, storage costs, and network transfers at
the prover P and each verifier V;, and the throughput and
latency of ‘P. Finally, we measure Spice’s performance ex-
perimentally, but estimate baselines’ performance through
microbenchmarks and prior cost models; we use the same
argument protocol for Spice and the baselines, so P’s
CPU costs in all the systems scale (roughly) linearly with
the number of constraints of a W.

Microbenchmarks. To put our end-to-end results in con-
text, we measure the costs to each V; and P in Spice’s
underlying argument protocol (§6), and the number of
constraints needed to represent Spice’s cryptographic
primitives. Figure 6 depicts our results.

12

costs of argument protocol (§2.1, §6)

P’s CPU-time per constraint ~ 149 us
V’s CPU-time to check a proof ~ 3ms
size of a proof 128 bytes
#constraints for basic primitives (§5.2)

random oracle R(-) on a 32-byte message 167
map ¢(-) on a 32-byte element to EC 105

add two points in EC (i.e., ® in §3.1) 8
commit to a 32-byte message 168

FIGURE 6—Microbenchmarks.

7.1 Spice’s approach to state VS. prior solutions

We consider a computation W that invokes a batch of get
(or put) operations on a key-value store preloaded with
a varying number of key-value pairs; each key and each
value is 64 bits. Our metric here is the number of con-
straints required to represent a storage operation. Figure 7
depicts the cost of different key-value store operations
under Spice and our baselines. For Spice, the reported
costs include error-checking code that prevents P from
claiming that a key does not exist (Appendix A.4).

We find that the cost of a storage operation is lower
for Spice than prior works as long as P’s state contains
at least a few hundred key-value pairs. As an example,
for a get on 1M key-value pairs in P’s state, Spice re-
quires 57 fewer constraints than Pantry, 29 x fewer than
Pantry+Jubjub, and 2,000x fewer than Geppetto.

However, Spice must execute (and produce a proof for)
W 4u4i, Which requires constraints linear in the size of the
state (§3.2). Fortunately, this can be amortized over a
batch of m operations on state. Naturally, if m = 1 (i.e.,
we run ¥4, after every storage operation), then Spice’s
costs are higher than prior systems. But even for modest
values of m, Spice comes out on top. For example, when
the state is 1M key-value pairs, m > 6,920 is sufficient
to achieve per-operation costs that are lower than Pantry.
Furthermore, each request in our applications (e.g., fi-
nancial transactions) perform multiple storage operations;
the number of requests per batch that must be verified to
outperform the baselines is much smaller.

7.2 Benefits of Spice’s concurrent execution

We now assess how well Spice’s prover P can leverage
multiple CPUs and concurrent execution to achieve better
throughput. For these experiments, we assume P executes
W ,.qir periodically in the background (e.g., every minute).
We discuss Spice’s throughput, latency, and the amortized
costs of operations as a function of audit frequency.

Throughput. We setup P with a key-value store
preloaded with 1M key-value pairs. We then have P run
V,., instances on a varying number of CPU cores, where
each instance invokes a batch of get (or put) operations;
W, selects keys according to two different distributions:

get cost put cost
size of state (# key-value pairs) 1 10° 109 1 10° 10°
Pantry 4.1K 44.9K 85.7K 8.2K 89.8K 171.5K
Geppetto 3 3.0K 3.0M 4 4.0K 4.0M
Pantry+Jubjub 2.1K 23.1K 44.1K 42K 46.2K 88.2K
Spice 1.5K 1.5K 1.5K 1.5K 1.5K 1.5K
U it 1250/m 561K/m 582M/m 561/m 561K/m 582M/m

FIGURE 7—Per-operation cost of get and put—in terms of number of algebraic constraints—for Spice and its baselines with
varying number of key-value pairs in PP’s state. We also depict the costs for Spice’s W ,qir; m denotes the number of storage operations
after which P runs W ,4;; to produce 7.qi. Figure 6 depicts P’s and each V;’s CPU-time as a function of the number of constraints.

1366
1370

1500
1200
900
600
300

683

throughput (ops/sec)

put »
(uniform)

get
(uniform)

1 core 3 64 cores .

4 cores 256 cores R
16 cores 512 cores nm——m
—
00
—
<t
K~ N

,,,,,, . p =
(zipfian)

get
(zipfian)

FIGURE 8—Benefits of Spice’s concurrent request execution. The workload is a stream of gets or puts and P’s state contains 1M
key-value pairs. The keys are chosen uniformly at random or follow a Zipfian distribution (exponent of 1.0).

get put
Pantry 0.078 0.039
Pantry+Jubjub 0.153 0.076
Geppetto 0.002 0.002
Spice (1-thread) 3.6 3.6
Spice (512-threads) 1366 1370

FIGURE 9—Throughput (ops/sec) for get and put in Spice and
its baselines. The size of the state is 1M key-value pairs.

uniform and Zipfian (exponent of 1.0). We measure the
number of storage operations performed (and proofs pro-
duced) by P per second. Figure 8 depicts our results.

We find that Spice’s prover achieves a near-linear
speedup with increasing number of cores. When keys
are chosen uniformly, P (with 512 cores) achieves 379 x
higher throughput compared to a single-core execution
(for both get and put workloads). When the workload
is Zipfian, the speedup is 180 due to higher contention
(recall from Section 4.1 that P locks keys outside of the
constraint formalism to guarantee isolation). In absolute
terms, Spice’s prover executes 648—1,370 key-value store
operations/second on 512 CPU cores.

Compared to its baselines (Figure 9), Spice’s through-
put is 92 that of Pantry, 47 that of Pantry+Jubjub, and
1,800 that of Geppetto for puts. The gap widens when
Spice leverages 512 cores: Spice’ throughput is 35,100 %
higher than Pantry, 18,000 x higher than Pantry+Jubjub,
and 685,000x higher than Geppetto.

Latency. P needs additional resources to periodically
produce 7,,4;;- Meanwhile, the time that P needs to gener-

13

ate m,,q; dictates the latency of storage operations—since
a verifier V; must check 7,4 before establishing the cor-
rectness of prior storage operations (§3.2). We start by
measuring P’s time to run ¥ ,,4; and produce 7,q;;-

Recall from Section 5.1 that the cost of generating
Taudie SCales linearly with the size of P’s state and we
parallelize this using MapReduce (§5.1). We experiment
with P’s state containing 1M key-value pairs. We run a
MapReduce job on 1,024 CPU cores consisting of 1,024
mappers, where each mapper reads 1,024 key-value tu-
ples and produces a single set-digest (the details of the
MapReduce job are in Appendix A.2). We then run 33
reducers (split over two levels containing 32 and 1 reduc-
ers) and a final aggregator. We find that the job (including
proof generation) takes 3.63 minutes. As a result, if P
runs V¥4 every k minutes the latency of any key-value
store operation is at most k + 3.63 minutes.

Amortized costs of storage operations. Suppose we set
k=10 minutes, which covers a batch of 800,000 storage
operations (recall that P executes 1,360 ops/sec under a
uniform distribution). The amortized cost of W ,,4; would
be 582 - 10° /800,000 ~ 728 constraints, and the per-
operation storage cost (in terms of #constraints) would be
728 + 1500 ~ 2228 constraints. This is 76 x lower than
Pantry, 39 x lower than Pantry+Jubjub, and 1790x lower
than Geppetto for put operations (1M key-value pairs in
‘P’s state). With larger k (larger latency), this gap widens.

Verifier’s costs. A verifier’s costs to check a proof of
correct execution for a W,,, is 3 ms of CPU-time; the

3 1500 5
2 1200 —
[9)

£ 900

2 600

3 o
2300 | (=2
£

1118

1 core 3

4 cores
16 cores
64 cores
256 cores
512 cores

1134

\O
N
—
—

N
o~
—\O

1
5
h“

retire
FIGURE 10—Throughput (requests processed/second) for the various applications (§6). Requests of type issue, transfer, and retire
are for the cloud-based ledger service (Figure 5); issue, transfer, retire, debit, and credit are for the payment network application; and,
submit requests are for the dark pool application.

issue transfer

proof itself is only 128 bytes (Figure 6). As we discuss in
Section 5.1, the size of a proof and cost to verify W,
depends on the chosen MapReduce parameters. In partic-
ular, the size of g, is (M + R+ 1) - 128 bytes since each
mapper and each reducer produce a different proof, and
verifying the entire proof takes (M + R + 1)- 3 ms. For
the above MapReduce job (M=1024, R=33), checking
Taudic takes 3.2 CPU-seconds.

7.3 Performance of apps built with Spice

We now assess whether Spice’s prover P meets our
throughput requirement (§2). We experiment with the ap-
plications that we built using Spice (§6). Specifically, we
run a concurrent P with a varying number of CPUs and
measure its throughput for different transaction types (e.g,.
credit, debit). The keys for various requests are cho-
sen according to both uniform and Zipfian distributions,
and requests compute over a million key-value pairs.

Figure 10 depicts our results for the uniform distri-
bution case; for the Zipfian case, the throughput is 2—
3.3 lower due to higher contention. Across the board, P
achieves a near-linear speedup in transaction-processing
throughput with a varying number of CPUs. Furthermore,
when using 512 CPU cores, P achieves 488—1167 re-
quests/second, which exceeds our throughput requirement.
We now discuss the specifics of each application.

Cloud-based ledger service. Among the three trans-
action types supported by our first application, issue
and retire involve a single storage operation whereas
transfer requires two (to update the balances at the
sender and the recipient of a transaction). Note that these
storage operations are in addition to various checks on
balances (see Figure 5). However, in terms of the number
of constraints, storage operations dominate. As a result,
‘P’s throughput for issue and retire is about 2 x higher
than that of transfer. Furthermore, the throughput for
issue and retire is roughly the throughput that Spice’s
prover achieves for a get (or a put) workload (Figure 8).

Payment networks. We only experiment with inter-
bank transaction types: credit and debit (intra-bank

14

submit

transfers are the same as in our first application). These
transactions involve one storage operation, so P’s through-
put is similar to issue and retire in the first application.
We compare with Solidus [28], which achieves similar
guarantees as our app with specialized machinery. Solidus
with 32K accounts (i.e., key-value tuples) achieves 20 stor-
age ops/sec and up to 10 tx/sec, whereas Spice’s payment
network on 512 CPU cores supports >1,000 tx/sec (100x
higher throughput). Note that unlike our implementation,
Solidus hides the sender’s identity in a transaction from a
verifier; achieving this in our context is future work.

Dark pools. Our third app supports two transactions,
submit and withdraw. We depict only submit because
withdraw has similar costs. P achieves 488 tx/second.
This is lower than our other apps because the dark pool ap-
plication is more complex: the state is a linked list layered
on top of a key-value store (where each operation on the
linked list is multiple storage operations), and transactions
manipulate the linked list to process orders (§6.1).

8 Related work

Proving correct executions via efficient arguments.
The problem of proving the correct execution of a com-
putation is decades old [7]; many systems have reduced
the expense of this theory (see [86] for a survey of this
progress). While early works [34, 51, 67, 69, 71, 73, 76,
77, 80] support only stateless computations, recent sys-
tems [8, 14, 18, 25, 31, 35, 39, 83, 88, 89] support state.
Section 2.1 discusses the approach in Pantry [25]; below,
we discuss other approaches and how they relate to Spice.

Ben-Sasson et al. [14, 18], Buffet [83], and VRAM [89]
propose a RAM abstraction based on permutation net-
works [13, 19, 85]. This technique can be more efficient
than using Merkle trees. For example, Buffet [83] shows
that each RAM operation (load, store, etc.) can be rep-
resented with several hundred constraints (compared to
tens of thousands under Pantry’s RAM). However, the per-
mutation networks technique cannot be used to maintain
state that persists across different request executions—a
requirement of VSMs (§2).

Geppetto [35] can transfer values associated with pro-
gram variables (int, char, etc.) from one computation
to another. To support this, Geppetto introduces custom
machinery that requires a single constraint per value trans-
ferred, so this is more efficient than Pantry for certain
scenarios (e.g., sending output of a mapper as input to a
reducer in MapReduce). However, it is not a good substi-
tute to Merkle trees for key-value stores (or RAM): each
storage operation requires scanning all the state. Fiore et
al. [39] hybridize Geppetto-style and Pantry-style stor-
age primitives, but it incurs the same costs as Pantry to
support a key-value store.

ADSNARK [8] supports computations over state rep-
resented with an authenticated digest, but this approach
does not support transferring state to other computations.
vSQL [88] builds a storage primitive by representing state
(e.g., a database table) as a polynomial. However, this
storage primitive has the same issue as Geppetto: reading
or updating a single value of the state (e.g., a row) inside
a W ,,, requires scanning the entire state.

Compared to prior systems, Spice proposes a cheaper
and more expressive storage primitive (under a batch veri-
fication setting): Spice supports a transactional key-value
store (§3, §4), which makes it possible to build useful
services with plausible performance (§6—§7). Two excep-
tions: (1) for random access over state within a single
computation, permutation networks are more efficient (in-
deed, Spice relies on Buffet for RAM within threads); (2)
for intermediate state in a MapReduce job, Geppetto-style
state transfer can be more efficient.

Concurrent systems with verifiability. Spice’s use of
offline memory checking [23, 32] is inspired by Con-
certo [5], but there are three differences. First, Concerto
is limited to a key-value store whereas Spice supports
(arbitrary) concurrent services expressed in a large sub-
set of C. Second, Spice supports transactional semantics
whereas Concerto is limited to single-object key-value
operations. Finally, Concerto requires trusted hardware
(e.g., Intel SGX) to run V. It is possible to avoid trusted
hardware by letting clients act as verifiers, but the result-
ing system would expose the content of the key-value
store (along with requests and responses); it would not
guarantee zero-knowledge or succinctness (§2).

Orochi [75] enables verifiability for concurrent appli-
cations (and the underlying data store) running on an
untrusted server. Orochi’s key technique is a clever reex-
ecution of all requests at the verifie—one that accom-
modates concurrent execution of requests at the server.
Compared to Spice, Orochi imposes minimal overheads
to the server. However, Orochi’s verifier must keep a full
copy of the server’s state to verify requests along with
contents of all requests and the corresponding responses.
Consequently, Orochi does not satisfy the zero-knowledge
or succinctness properties of VSMs (§2).

15

9 Discussion and summary

Equivocation and omission. Spice’s P proves its cor-
rect operation by producing a trace that is checked by
verifiers. However, P can equivocate: it can expose dif-
ferent traces to different verifiers. If the set of verifiers
forms a permissioned group (i.e., admitting new verifiers
requires approval from a quorum of existing verifiers),
then verifiers can agree on a single trace by employing
traditional distributed consensus [27, 55], thus prevent-
ing equivocation. If the set of verifiers is unbounded, P
can embed metadata about its trace in a permissionless
blockchain [78]. Besides equivocation, PP can omit clients’
requests. To address this, clients must check if their re-
quests are included in the trace agreed upon by verifiers.

Fault-tolerance. We can make Spice’s services fault-
tolerant via standard techniques. This does not require
implementing a replication protocol as a VSM. This is
because Spice’s services maintains their internal state in
a database (Spice uses leveldb), and interacts with it via
RPCs (§2.1). Thus, the service could instead keep the
state in a fault-tolerant storage system (e.g., DynamoDB).

Trusted setup. Spice can use many different argument
protocols, but our implementation employs an argu-
ment [45] that requires a trusted setup: a trusted party
must create cryptographic material that depends on ¥
but not on inputs or outputs to ¥. In our context (§6),
such a trusted setup can be executed by a verifier (if
there is a single verifier), or in a distributed protocol [15]
(when there is more than one verifier). Recent argu-
ments [3, 10, 11, 16, 24, 84] do not require such a trusted
setup. We leave it to future work to integrate them with
Spice and explore trade-offs.

Summary. Spice is a substantial improvement over prior
systems that implement VSMs: it improves transaction-
processing throughput by over four orders of magnitude.
And, although Spice’s absolute costs (e.g., prover’s CPU-
time) are large, it enables a new set of realistic services by
opening up a concurrent model of computation and achiev-
ing throughputs of over a thousand transactions/second.

Acknowledgments

We thank Weidong Cui, Esha Ghosh, Jay Lorch, Ioanna
Tzialla, Riad Wahby, Michael Walfish, the OSDI review-
ers, and our shepherd, Raluca Ada Popa, for helpful com-
ments that significantly improved the content and presen-
tation of this work. We also thank Ben Braun for help with
enhancing pequin. We benefited from insightful conver-
sations with Arvind Arasu, Donald Kossmann, and Ravi
Ramamurthy about Concerto [5], and Melissa Chase and
Michael Naehrig about multiset hash functions. Sebastian
Angel was partially funded by AFOSR grant FA9550-15-
1-0302, and NSF CNS-1514422.

A Details of Spice

This appendix covers an alternate construction of Spice
that uses C-SetKV without a multiset collision-resistant
hash function (Appendix A.1), provides details of par-
allelizing audits with MapReduce (Appendix A.2), how
to build transactions with optimistic concurrency con-
trol (Appendix A.3), and how to prevent a prover from
denying that a key-value pair exists (Appendix A.4). The
full API of all operations supported by Spice in its pro-
gramming model is in Figure 11.

A.1 Construction of Spice with unique ids

In Section 4.1 we describe how C-SetKV can be imple-
mented using either a multiset collision-resistant hash
function, or a set collision-resistant hash function and
guaranteeing that there are no duplicate entries. Here, we
provide details of the latter approach.

Recall that the goal is to ensure that every element that
is inserted into a set-digest is unique. This is achieved
by assigning to each Vi a unique identifier. The com-
bination of the timestamp and the identifier acts as a
Lamport clock [53] that replaces the timestamp field in
SetKV (§3.1). In other words, the timestamp field is up-
dated as before, but the key-value store now consist of
tuples of the form (k, v, ts, tid), where k is a key, v is a
value, s is the timestamp, and ¢id is the identifier of the
last writer. A VKState object is:

struct VKState {
SetDigest rs; // a set-digest of RS
SetDigest ws; // a set-digest of WS
int ts; // timestamp
int tid; // a unique identifier

3

Assigning thread identifiers. In C-SetKV, we assumed
each instance of Vi is given a unique identifier; we now
specify who does this and how uniqueness is enforced,
in the context of Spice, where P proves that it ran each
instance of Vi correctly. Since P spawns different threads
of execution, we let P pick identifiers. To accomplish this,
we augment W, to call a library function init_vkstate
as the first program statement: it sets the tid field in the
input VKState object with an identifier (purported to be
unique) that it obtains via an exogenous computation.
Of course ¥, cannot verify the uniqueness of thread-
identifiers across different requests, but the uniqueness is
checked by W, (§4.1).

A.2 Parallelizing Spice’s audit with MapReduce

Recall from Section 3.2 that ¥,,4; takes as input a com-
mitment to VKState object cs, and outputs a Boolean;
note that it also takes as input, from P (via exogenous
computations), a set of tuples of the form (k, v, ts) (or of
the form (&, v, s, tid) if threads are assigned unique iden-
tifiers, as discussed above). In more detail, ¥4, checks

16

API description

init(VKState*) create a new key-value store
insert(VKState*, Key, Value)insert a key-value pair
put(VKState*, Key, Value) update a value
get(VKState*, Key, Value*) retrieve a value
audit(VKState) verify prior history

lock(VKState*, Key, Value*) lock akey
unlock(VKState*, Key, Value)unlock a key

beg_txn(VKState*, Key[], Value**) begin one-shot txn
end_txn(VKState*, Key[], Value[]) end one-shot txn

Commitment commit(Message) committo a message
Message decommit(Commitment)decommita commitment

FIGURE 11—Spice’s APIs. VSM programmers express W, in
a subset of C agumented with the above APL

the following conditions.

1. The keys given by P, [ki, ..., k,], have no duplicates.

2. srs © rs' = s.ws where rs' — H({e1,...,en}),
(e1,...,e,) are tuples supplied by P, and s is a
VKState object whose commitment is cs.

We now discuss a MapReduce job that checks the above
conditions. The job is organized as a tree (we discuss bi-
nary for simplicity) where mappers are leaves and reduc-
ers are internal nodes that read inputs from their children
(there is no shuffling). Suppose there are n tuples in P’s
state (without loss of generality, let n be a power of two).

» Each mapper takes as input two tuples (e;,¢;), as-
serts that e;.k < e;.k, and outputs commitments to
(H({ei e;}), ek, ej.k), say (cd, cky, cky).

* Each reducer reads its input from its two children (e.g.,
(cd, cky, cky) and (cd’, ¢k}, ck})), asserts that ky < kf,
and outputs commitments to (d © d’, ki, k}), where
(d, ki, ko, d', k|, k) are plaintext values of commitments
(cd, cky, cky, cd', cky, ckh) respectively.

Finally, a special program, called a final aggregator,
takes as input a commitment to a VKState object cs
and the output of the root reducer of the MapReduce
job (cdroor, cki, cky), and asserts: s.rs @ dioor = s.ws and
ki < ky where (s, dyoor, k1, k2) are plaintext values of com-
mitments (cs, cdyor, cki, cky) respectively.

A.3 Implementing optimistic concurrency control

We now discuss how to implement optimistic concurrency
control using the lock and unlock primitives discussed
in Section 4.2. This requires maintaining metadata along-
side the value of a corresponding key. Specifically, each
value contains a version counter that gets incremented
when the rest of the value changes. With such a facility,
a ¥, can issue get operations to obtain current values
and version numbers associated with keys. Then, it exe-

cutes the logic of the transaction locally (without writing
anything to the key-value store). To commit or abort this
locally-executed transaction, ¥, proceeds as follows.
W,., acquires locks on all keys involved in the transaction
(using lock), verifies that all keys it read did not change
(by checking the version numbers in the values returned
by lock operations); it then either commits (by updating
values and releasing locks using unlock) or aborts (by
simply releasing locks) the transaction. ¥, can retry ex-
ecuting the transaction, but the number of retries must be
statically bounded (since Spice’s compiler only supports
bounded loops in its programming model). Of course,
a client can retry a transaction any number of times by
simply submitting a new request for each retry.

Finally, we leave it to future work to leverage metadata
(similar to the version counter) inside a value to imple-
ment other mutual-exclusion primitives (e.g., read locks),
and other isolation levels (e.g., snapshot isolation).

A.4 Error handling

In Concerto [5], if Vi asks for a key that does not exist it
receives an error and a proof showing that the key has not
been inserted. But, Spice’s SetKV handles this differently
as we discuss next. In particular, we discuss how Spice
defends against a malicious P that can lie and report
that a key does not exist when in fact it exists in its state.

In SetKV, we introduce a function called
InsertIfNotExists: it calls a new operation
RPC(EXISTS) that returns an untrusted hint true (if the
key already exists) or false (if the key does not exist).
Depending on the untrusted hint, Vi executes insert
or get. We essentially force Px to choose between the
two via the untrusted hint. Suppose the key exists but
Px pretends that it does not: this causes the key to be
inserted twice, which is caught during audit (due to the
uniqueness check). On the other hand, if the key does not
exist but Px claims that it does, InsertIfNotExists
behaves like a get. This triggers an RPC(GET), which
leads to a bogus entry being added to the read set RS
(Px. cannot control the timestamp Vi uses when the
key-value-timestamp tuple is added to RS, which prevents
it from reordering requests). Since this entry does not
appear in WS, audit fails.

We take a similar error handling approach for put
and get operations. We define PutIfExists and
GetIfExists operations. If Px erroneously claims
that a key does not exist during a PutIfExists (or
GetIfExists), a default value for the key is inserted
(leading to a double insert), which prevents audit from
passing. If, on the other hand, Py correctly outputs an
error when a key does not exist, the operation simply
becomes a regular insert with a default value.

17

B Multiset collision-resistant hash #(-)

This appendix discusses the details of our incremental
multiset collision-resistant hash function, and how Spice
encodes it as set of algebraic constraints. Appendix B.1
gives the high level construction of our hash function
based on prior work. Appendix B.2 proves that we can
relax some of the requirements of the underlying hash
function; we leverage this new result to propose a more
efficient construction in Appendix B.3.

B.1 Multiset hash function construction

Clarke et al. [32] propose several (incremental) set and
multiset collision-resistant hash functions. We borrow
notation, definitions, and terminology from their paper.
Multiset (respectively, set) hash functions map multi-
sets (respectively, sets) of arbitrary finite size to digests
of fixed length with the property that it is computation-
ally infeasible to find two distinct multisets (respectively,
sets) of polynomial size that map to the same digest. Any
multiset collision-resistant hash function is a set collision-
resistant hash function, so we focus on the latter.
Suppose M is a multiset of elements from a count-
able set B. We denote the number of times an element
b € B appears in M as M}, and call it the multiplicity of
b in M. Suppose H(-) is a function that maps elements
of B to an additive group G, that is, H : B — G. Fur-
thermore, suppose H(+) is a random oracle. We consider
the incremental multiset collision resistant hash function
Mset-Mu-Hash from Clarke et al. [32, §5]:

Hu(M) = S H(b) - M,

beB

Clarke et al. [32] prove that the above is a multiset
collision-resistant hash function if the discrete logarithm
problem is hard in G and if H(-) is a random oracle. Thus,
to instantiate Mset-Mu-Hash, we must choose a candidate
group G where the discrete logarithm problem is hard and
also choose a suitable H(-).

In Spice’s context, it is more natural to work with
G = E(F,) an elliptic curve. Arithmetic over the curve is
naturally expressed as arithmetic in IF,,, which is “natively”
supported by Spice’s underlying arguments machinery,
as observed by prior work [17, 35, 52]. Thus, we need to
build a random oracle H : B — E(F,). This can be done
in two steps. First we map from elements in B to I, using
a hash function R(-) such as SHA-256, and then map the
resulting elements to points in the curve using another
function ¢(-). In other words, H(-) = ¢(R(-)).

While we could use many different candidates for R(-)
we want to keep the multiplicative complexity of the map-
ping B — I, low.® We therefore build a hash function

8The higher the multiplicative complexity, the more constraints that we
need to represent the function, and hence more costs to the prover to
solve and argue constraints (§2.1).

from an element in B to I, using the MiMC block ci-
pher [2], which has a low multiplicative complexity (we
discuss this in Appendix B.3).

We could then use a prior function to map from a ran-
dom element in IF,, to a point in the curve [20, 47, 74, 79].
However, these functions only map to a fraction of all
of the points in E(IF,,), making them easy to differentiate
from a random oracle; consequently, they are unsuitable
for our purposes. Fortunately, Farashahi et al. [37] show
that sums in E(FF,,) of multiple invocations of these map-
ping functions are indifferentiable from a uniform random
mapping to a point in E(FF,). The drawback of this ap-
proach is that it requires computing mapping functions
multiple times, which is expensive. We avoid this over-
head by relaxing requirements on H(-). We then build
a mapping function ¢(-) directly from the Elligator-2
map [20], as we discuss next.

B.2 Relaxing requirements on H(-)

We now show that the random oracle requirement on
H(-) can be relaxed, while still ensuring that Hy (based
on Mset-Mu-Hash) remains an incremental multiset
collision-resistant hash function. The relaxation that we
present below allows us to use a more efficient construc-
tion for H(-) (we give the details in Appendix B.3).
Throughout, we assume G is a group on which dis-
crete logarithms take ~ 2* steps, and all polynomial or
negligible factors are functions of A (i.e., A is the secu-
rity parameter). Recall from the prior section that H(-)
is a random oracle from a multiset to an element in G.
Furthermore, recall that we compute H : B — G with a
composition of two functions: R : B — Sand ¢ : S — G.
R hashes multisets to some arbitrary set S (e.g., binary
strings, IF,,), and ¢ maps elements in S to an element in G.

Claim. We prove that Hy remains multiset collision-
resistant even when ¢(+) is not indifferentiable from a
random oracle, assuming that R(-) is a random oracle.
Using the notation of [59], we have:

Theorem B.1. Let G = G| @ Gy be a cyclic group with
G prime. Let S be an arbitrary set, R : B — S be a ran-
dom oracle, and ¢ : S — G be an efficiently computable
partial function such that:

* Vx € G, the set ¢~ (x) is computable in polynomial
time and has size < o for o € N.

e E(l¢~'(x)|/a) > 1/B for 8 bounded.
* 2o I/ISI = 1 — e for € = negl(N).

Then if the discrete logarithm problem in G is hard, Hor
is a multiset collision resistant hash function

This is a generalization of the results in [59], which ap-
ply only to total functions. The intuition behind the proof

18

is that if R(-) is a random oracle, we can sample outputs
of ¢ o R in G with known logarithms, by first choosing the
logarithm, choosing a random preimage under ¢(-) with
some probability, and using these to fix the random oracle
on certain inputs. Then if multiset collisions for Hgor
are found, we recover a random linear relation between
logarithms, which allows us to find discrete logarithms
quickly in G, resulting in a contradiction.

Proof. Let G be a generator of G, and fix a point P € G to
be determined later. Consider the following randomized
function F:

1. Sample e,f & {0,...,|G| — 1}, set Y = eP + fG.
2. Return to step 1 with probability 1 — [¢~!(Y)|/a.
3. Choose h € ¢~!(Y) uniformly at random.

4. Return (h,e,f).

Lemma B.1. If (h,e.f) < F(P), then e is uniformly
random in {0, ...,|G| — 1} and independent of h, and
the distribution of h is within statistical distance 2¢ of
uniform over S.

Proof. As G generates G, Y is independent of ¢ and uni-
form in G. Since the probability of a sampled value for
e being returned as the output of S is determined by Y,
and e is sampled uniformly, the returned values of e are
uniform in {0, ...,|G| — 1}. For a fixed #, if a sample
at (1) causes £ to be returned, the following events must
occur:

* Y =¢(h)
¢ We do not return to (1) at (2)
* his chosen from ¢~!(Y)

These are independent, and Y is uniform in G as discussed.
So the probability that any given sample at (1) causes h
to be returned is:

Lole'ml 11

Gl o o7 a-[G]

Since the above is independent of £, the returned values
of h are uniform over ¢~ !(G). Recall from our third re-
quirement in Theorem B.1 that ¢! (G) is a subset of S of
size greater than (1 — €)|S|. Hence, the statistical distance
between the distribution of 4 and a uniform distribution
over Sis < 2e. O

We replace H(-) with a function F(-), which when
called on a new input, samples (4, e,f) < F(P), retains
(h,e,f), and returns h. On later calls with the same input
it returns the retained 4. Since the distribution of 4 is
within 2e of uniform over S and H is invoked at most
poly(A) times, this can be detected with advantage <
2 - € poly(A) = negl(A). Hence it suffices to show:

Lemma B.2. [If the discrete logarithm problem in G is
hard, then it is infeasible to find two distinct multisets
A, B with multiplicities < poly(\) such that H ;,(A) =
7-[¢oi7 (B)

Proof. We give a reduction from finding logarithms in G
of elements of G, to finding collisions. This suffices to
find logarithms in G;. We are given P € (G, and we wish
to find s such that s - G = P. Construct F as above, and
assume that a collision is found. Then we have:

Y G(FX) =Y (F(x) =0

XEA xXEB

Without loss of generality, we can assume A and B are
disjoint, as removing an element from both A, B yields
a smaller pair of colliding multisets. Let {x,...x;} be
the set of distinct elements of A, B, and let r; = A,, — By,
mod |G|. Then since A,,, By, € {0, ...,|G| — 1}, these r;
are not all 0. Note also that gb(F(x,-)) = ¢,P+f;G, for e, f;
known. Then:

> rid(F(x)) =

1

() (s

l

in the curve. The e; are independent, uniformly random in
{0,...,|G| — 1}. Recall |G| = p aprime,sop [rie;
with probability 1 — 1/p.

If)", rie; has an inverse ¢ modulo p, we obtain:

pP— (-chif,) G=s= —Czriﬁ‘~

Hence a multiset collision in H ;- recovers a logarithm
in polynomial time with probability 1 — 1/p > 1/2. By
repeating this process, we can amplify the success proba-
bility and recover a logarithm in polynomial time. O

O

B.3 Instantiating H (R and ¢)

Corollary B.1. Let E be an elliptic curve with a point of
order 2. Let ¢ be the Elligator-2 map [20]. IfR : B — F,
is a random oracle and the discrete logarithm problem in
E(IF,) is hard, then H 4or is multiset collision resistant.

Proof. We take S =F,, G = E(F,), and R as discussed
below. It suffices to check that ¢ meets the conditions of
Theorem B.1.

* ¢ produces, for all but at most 6 points in IF,,, an ele-
ment of E(F,).

* The preimage of any point (x,y) € Im(¢) is guaran-
teed to be of form {r, —r}. Hence |Im(®)| > (p—7)/2,
and 50 [6(5)|/IG| = 1/2+ O(p~).

19

* Im(¢) is the set of points (x,y) in E(F,) such that
x # —A,y = 0 implies x = 0, and —ux - (x + A) is
square in [F,,. On this set ¢ is invertible [20].

Take a = 2, and E,(|¢~'(r)|/a) > 1 —7/2p > B.If
discrete logarithms in E(F,) are hard, there must be a
prime subgroup of E(IF,,) of order g on which the discrete
logarithm problem is hard. Sampling G; is trivial, as this
is the set of multiples of ¢ in G. O

In our case, we have E(F,) = 4r where r is a prime
since we choose E to be a Twisted Edwards curve.

Instantiating R. The MiMC-n/n block cipher [2]. is de-
fined over [F,.; it iterates the following function:

x = (x®kd),

where c¢; are round constants and k is the key. The
number of rounds is chosen such that the degree of
MiMC-n/n(x, k) as a polynomial in x is ~ 2".

In Spice’s context, we instantiate the above block cipher
over F,,. Furthermore, in our choice of p, ged(3,p—1) > 1
so the above cubing function is not a permutation over [,,.
However, gcd(5,p — 1) = 1, so we define the following
keyed permutations:

Fiu(x) = (x+k+c)
Fk(x) = (Frfl,k oF,_sro0...0 F()!k)(x) + k

where ¢; a sequence of round constants. We choose r
such that deg(F;) ~ 2*. We then define a compression
function by using F} in the Miyaguchi-Preneel construc-
tion, and build R(+) from this compression function by the
Merkle-Damgérd construction. Specifically, it proceeds
as follows:

hO = iV
hi = hi—y + m; + Fp,_, (m;)
R({m;}iy) = hy

C Security of Spice

In Appendix C.1 we show that the SetK'V protocol of Sec-
tion 3.1 is correct and sound. Appendix C.2 then proves
that C-SetKV and Spice (§4) provide sequential consis-
tency (and in some cases, a notion of linearizability).

C.1 Proof of SetKV

We adapt the proof given in Concerto [5] to our design.
We assume throughout this section that all operations use
the error handling procedures described in Appendix A.4.
We denote RPC procedures (e.g., RPC(GET)) with capital
letters (“GET”).

Lemma C.1 (ideal audit). If Vi tracks sets (i.e., read-set
RS and write-set WS) instead of set-digests following the

logic in Figure 2, then audit returns true if and only if
SetKV returns, for every get operation on a key k, the
value written by the most recent put (or insert) to k.

Proof. The reverse direction (i.e., that the protocol is cor-
rect) is straightforward. The timestamp field in VKState
is updated after every operation so every element is
unique. After k successful insert operations, there are
k entries added to the write set WS. Each put and get
adds exactly one entry to RS (in particular the entry with
the highest timestamp for a given key in WS) and one
entry to WS (the entry read but with a larger timestamp
and a potentially new value). audit scans through all the
elements in the key-value store (K), and adds k entries to
RS (in particular the entries with the highest timestamp
for each key in WS). As a result, RS and WS have the same
number of entries, and these entries are the same when
‘Px behaves correctly.

We prove the forward direction (i.e., that the protocol
is sound) by contradiction. Suppose that Py misbehaves
and yet audit passes. Then there exists some GET(k) call
that returns a value inconsistent with the previous write
to key k. We show that this is not possible.

The audit passes only when RS UM = WS and when
keys has no duplicates. These two checks imply that there
could be no two inserts with the same key (otherwise
either RS UM # WS or keys has duplicates). Let H be the
history of invocation/response pairs of INSERT, PUT, and
GET RPCs. Consider the earliest inconsistent GET in H,
and call it g;. Let (k;, v;) be the key-value pair associated
with g;; consequently (k;,v;) € RS due to Line 10 in
Figure 2 (note that put also results in an GET, see the
caption of Figure 2 for more details). If (k;,v;) & WS,
then RS UM # WS for any M, so the audit could not
have passed, which leads to a contradiction.

If (k;,v;) does occur in WS, then the unique PUT or
INSERT that writes (k;, v;) should occur in H before g;.
Call this operation w. This is due to the fact that time-
stamps increase monotonically and that after Line 11 the
timestamp associated with the value of key k; is incre-
mented (so no further operation can add a value with a
lower timestamp to WS). Consider g to be the first GET
for key k after operation w. If g = g;, then g; would be
consistent which contradicts our setup. Hence, g is a GET
that occurs before g;. Furthermore, since g; is the earliest
inconsistent GET, then g must be consistent and as a result
it must add (k;, v;) to RS. This means that (k;, v;) occurs at
least twice in RS. Given that WS has no repeated entries,
this implies that RSUM # WS for any M and audit fails,
which yields a contradiction. O

Lemma C.2 (Digest audit completeness). If the ideal
audit returns true, the audit using set-digests instead of
sets returns true.

20

Proof. We assume that Vi uses a set (or a multiset) colli-
sion resistant hash function H(-) to produce set-digests
instead of keeping track of RS and WS explicitly. Cor-
rectness follows immediately from the correctness of

() [321. O

Lemma C.3 (Digest audit soundness). If the ideal audit
returns false, the audit using set-digests instead of sets
returns true with negligible probability.

Proof. We prove this by reduction to the set collision
resistant property of H(-). Assume that for sets RS and
WS, and a list of keys, audit returns false. Meanwhile, for
rs < H(RS), ws < H(WS), and keys, audit returns true.
Since keys is the same in both cases, and the uniqueness
check ensures there are no duplicates, this means that
the ideal audit returns false because RS # WS (and not
because keys had duplicates, as otherwise the digest audit
would fail too). Since the digest audit returns true, we
have that rs = ws despite RS # WS. This constitutes
a collision in #(-), but the probability of finding any
collision in H(-) is negligible. O

C.2 Proof of C-SetKV and Spice

We reason about C-SetKV in isolation and prove that
it ensures sequential consistency [54] when processing
concurrent requests (§4.1). We then show that C-SetKV
can also guarantee linearizability [46] under certain con-
ditions. Finally, prior results (e.g., [26, Appendix A])
establish that composing a verifiable storage primitive,
such as C-SetKV, with efficient arguments (e.g., as we do
in Spice) preserves the above consistency semantics.

To prove C-SetKV’s consistency semantics, we adapt
the proof given in Appendix C.1 and a proof in Con-
certo [5] to our particular design. Unlike the prior section,
there are multiple instances of Vi; we denote them as:
V,(Cl), A V,(Ce). Recall that each of these verifiers starts
with a timestamp s initialized to 0, and executes a se-
quence of key-value store operations and maintain a lo-
cal VKState object. To execute audit, they obtain the
VKState of all other verifiers and combine them. That
is, they compute 7s.omp = 151 © rsy © ...rsy, where
rsy, ..., rsy are the read set-digests of different verifiers.
The same is done for the write set-digest (ws). The time-
stamp of the combined VKState object is set to 0.

We prove the two versions of C-SetKV: the one given
in Appendix A.l that uses a unique id and a set collision-
resistant hash function, and the one described in the main
text (§4) that relies on a multiset collision-resistant hash
function. We denote RPC procedures (e.g., RPC(GET))
with capital letters (“GET”).

C.2.1 Proof of C-SetKV with unique ids

Lemma C.4 (Ideal audit using unique ids). If each yy
keeps track of sets (i.e., read-set RS") and write-set WS(’%)

instead of set-digests following the logic in Figure 2 (and
the unique ids modification in Appendix A.1), then audit
returns true if and only if C-SetKV respects sequential
consistency.

Proof. The reverse direction (i.e., that the protocol is
correct) is straightforward and is similar to Lemma C.1.
We prove the forward direction (i.e., that the protocol is
sound) by contradiction.

Suppose that P misbehaves, so C-SetKV does not
provide sequential consistency, and yet audit passes.
Then, there exists some GET RPC that returns a value
inconsistent with the previous write to the same key. We
show that this is not possible.

Let RS denote the union of read sets from all the
threads; and WS denote the unlon of write sets from all
the instances of V. Since each V}c has a Lamport clock

consisting of the unique identifier of Vg and a mono-
tonically increasing timestamp, there are no duplicates in
any of the local write sets and hence no duplicates in WS.
The audit passes only when RS U M = WS (for some set
M) and when keys has no duplicates. These two checks
imply that there could be no two inserts with the same key
(otherwise either RS U M # WS or keys has duplicate).
Let LY) be the history of invocation/response palrs of

INSERT, PUT, and GET requests associated with Vrc Con-
sider the sequence L, that contains all operations in
LY), for all j € [1, /] ordered first by their timestamp field
ts, then PUT and INSERT precede GET, and finally by the
tid field to break ties. Within each LY) timestamps in-
crease monotonically; thus, the ordering of operations in
Lcomp respects the ordering of operations issued by each
Vi instance.

By assumption, L., does not obey sequential con-
sistency. Consider the earliest inconsistent GET in Ly,
and call it g;. Let (k;, v;, £s;, tid;) be the key, value, time-
stamp and thread-id tuple associated with g;; consequently
(ki, vi, ts;, tid;) € RS due to Line 10 in Figure 2 (note that
put requests also result in an GET operation, see the cap-
tion of Figure 2 for more details). If (k;, v;, ts;, tid;) & WS,
then RS UM # WS for any M, so the audit could not have
passed, which leads to a contradiction.

If (ki, vi, sy, tid;) does occur in WS, the unique PUT or
INSERT that writes (k;, v;, ts;, tid;) should occur in Leomp
before g;. Call this operation w. This is due to the fact that
timestamps increase after every operation: after g;, the
timestamp of V) is incremented in Line 11 so no fur-
ther operation can add an element with thread id tid; and
a timestamp that is less than or equal to ts; to the set WS.
Consider g to be the first GET of key k after operation w. If
g = g;, then g; would be consistent which contradicts our
setup. Hence, g is an GET that occurs before g;. Further-
more, since g; is the earliest inconsistent GET, then g must
be consistent and as a result it must add (k;, v;, ts;, tid;) to

21

RS. This means that (k;, v;, #;, fid;) occurs at least twice in
RS. Given that WS has no repeated entries, this implies
that RS U M # WS for any M and audit fails, which
yields a contradiction.

O

C.2.2 Proof of C-SetKV with multisets

Definition C.1 (#-reachable submultiset). Let M, denote
the multiplicity of element b in a multiset M. Let X and Y
be multisets of elements from a set D. We say that X is a
t-reachable submultiset of Y if for all b € D:

Yo >2Xp ANY, —Xp <t

In other words, X C Y and it is possible to make X equal
to Y by adding to X at most 7 copies of each element in D.

Lemma C.5 (Audit requires 1-reachable submultiset). If
the read multiset RS is not a I-reachable submultiset
of the write multiset WS, an ideal audit (that acts on
multisets instead of digests) returns false.

Proof. Observe that if keys has duplicates then audit
returns false (Figure 2, Line 21). Therefore for audit to
return true, the state supplied by Px, call it M, cannot
contain duplicate entries since each key must be unique.
As a result, the multiplicity of all elements in M is 1,
which implies that RS UM = WS only if RS is a 1-
reachable submultiset of WS. Consequently, if RS is not a
I-reachable submultiset of WS audit returns false. [

Lemma C.6 (At most one insert). If there is more than
one insert to a given key, audit returns false.

Proof. 1If there are two or more insert operations to a
key k, then the number of elements in the write set WS
that have key £ is at least 2 greater than the number of
elements with key k in the read set RS (since insert does
not add entries to RS, and all other operations add entries
to both). Therefore, RS is not a 1-reachable submultiset
of WS, and as a result audit returns false.]

Lemma C.7 (Ideal audit using multisets). If each V,(C')
keeps track of multisets (i.e., read multiset RSY) and write
multiset WS®)) instead of set-digests following the logic in
Figure 2, then audit returns true if and only if C-SetKV
respects sequential consistency.

Proof. The reverse direction (i.e., that the protocol is
correct) is straightforward and is similar to Lemma C.1.
We now prove the forward direction (i.e., that the protocol
is sound).

We are given that audit returns true. Let RS denote the
union of read sets from all instances of Vi ; and WS denote
the union of write-sets from all the instances of Vi. Since
each Vg) has a monotonically increasing timestamp, there
are no duplicates in any of the local write sets, but there

may be duplicates across different instances of Vi, so WS
is a multiset. audit returns true only if there exists M
such that RSUM = WS, so RS C WS. Furthermore, since
audit returns true there is at most one insert operation
to the same key (Lemma C.6).

Let LY) be the history of invocation/response pairs of

INSERT, PUT, and GET requests associated with a V,(C’).
Consider the sequence L, that contains all operations
in LY, forall j € [1, 4], ordered first by their timestamp
field ts, then PUT and INSERT precede GET, and finally
by the identifier of the history they came from (i.e., j
is the identifier of the history for LU)). We now prove
that L., respects sequential consistency. This requires
proving two conditions on L.,,;. First, the ordering of
operations in L., respects the ordering of operations
issued by each Vi instance. Second, the history is read-
write consistent (i.e., a get on a key returns the value
written by the most recent put or insert on the same
key). The first condition holds because within each LY)
timestamps increase monotonically; thus, the ordering of
operations in L., respects the ordering of operations
issued by each V,(C’). We now prove the second condition.

Since RS C WS, there exists an injective function that
maps every element in RS to an element in WS. This is
because GET adds an element into RS and the other RPCs
add an element to WS. We now establish that this function
respects the ordering of operations in L,,,. What we
mean by this is that we pair up each GET with a prior PUT
(or INSERT) such that the GET appears later than the PUT
(or INSERT) and GET returns the value written by PUT (or
INSERT). We do this by induction.

Base case. For each key k, we find the earliest GET in
Lcomp, call it g; we then identify the unique INSERT that
wrote the key-value-timestamp tuple returned by g. If we
cannot find such an INSERT, it leads to a contradiction as
discussed next. If the tuple returned by g is not written
by a prior PUT or INSERT, then the tuple (which exists in
RS) does not belong to WS, so RS € WS (a contradiction).
If the tuple returned by g is written by a prior PUT, then
observe that in Figure 2 PUT RPCs are always preceded
by a GET to the same key. Therefore, g is not the earliest
GET to key k (a contradiction).

Inductive hypothesis. Assume that, for each key k,
there exists a sequence of i alternating GET and PUT op-
erations to key k following an INSERT to key k such that
the sequence is read-write consistent.

Inductive step. We now show that the (i + 1)th GET
(call it g) returns the value written by the ith PUT. Sup-
pose it does not. There are two cases. First, g returns a
value that is not in WS, then RS Z WS (a contradiction).
Second, g returns a prior key-value-timestamp tuple. Then
the corresponding PUT or INSERT must appear earlier in
Lecomp because L, 1s ordered by timestamp and PUT and
INSERT precede GETs. Since all earlier operations have

22

already been paired with a GET RPC (say ¢’ # ¢) it means
two GET RPCs (i.e., both g and ¢’) returned the same tuple.
This implies that there exists two copies of the tuple in RS
and a single copy of the tuple in WS (since there are no
duplicate INSERTS). As a result, RS WS, so audit could
not have passed. A contradiction. O

Lemma C.8 (Digest audit completeness). If the ideal
audit returns true, the audit using set-digests instead of
sets (and multisets) returns true.

Proof. The argument is similar to Lemma C.2. [

Lemma C.9 (Digest audit soundness). If the ideal audit
returns false, the audit using set-digests instead of sets
(and multisets) returns true with negligible probability.

Proof. The argument is similar to Lemma C.3 when ap-
plied to Lemma C.4 or C.7. O

C.2.3 C-SetKV’s linearizability semantics

We consider C-SetKV in the following setting: there is a
sequence of batches where each batch contains a set of
concurrent key-value store operations. Pk executes the
operations in each batch concurrently and runs audit at
the end of each batch.

We now discuss when C-SetKV guarantees lineariz-
ability [46], which, in addition to sequential consistency,
preserves a notion of real-time as discussed next. Suppose
x1 and x, are two key-value store operations executed by
‘Pxc where x, was issued (by a Vi instance) after Px has
returned a response for x;. Linearizability requires not
only that these operations execute atomically but also that
X observes the effects of x;. In other words, linearizabil-
ity requires that the behavior of the key-value store (i.e.,
responses) be equivalent to the case where x; and x, were
issued sequentially one after the other.

In C-SetKV, requests in the same batch are concurrent
(and hence have no real-time guarantees), but requests in
batch i 4+ 1 execute after requests in batch 7, and hence
must observe their effect. We prove this below.

Lemma C.10. C-SetKV satisfies linearizability across
batches if and only if audit returns true.

Proof. The proof is by induction. The base case is that the
key-value store is empty and no operations were issued.
It satisfies linearizability trivially. Assume linearizability
holds for the first i batches. We now show that under the
above definition of concurrent requests, audit returns
true for the (i + 1)th batch if and only if C-SetKV satis-
fies linearizability. The reverse direction (i.e., if lineariz-
ability holds audit returns true) is simple and similar
to Lemma C.1, so we omit it.

By the inductive hypothesis, linearizability holds for
the first i batches. This means that there exists a linear

ordering of all requests in the first i batches such that:
(1) if we executed operations in that linear order one by
one, each operation returns a response consistent with the
already observed output for that request, and (2) the linear
ordering respects real-time constrains (i.e., if an operation
X, was issued after x| and both belong to different batches,
x1 appears before x, in the linear order). We are also
given audit returns true for the previous i batches and
the (i + 1)th batch. audit returns true for the (i + 1)th
batch implies that there is a serial ordering of all requests
consistent with external responses (Lemma C.4 or C.7).

Given these two, we can construct a linear ordering
of all operations such that (i) it satisfies requirement (1)
above, and (ii) the operations in the (i + 1)th batch appear
as a suffix (i.e., they happen in real-time after all opera-
tions in the first i batches). Requirement (1) follows from
the existence of a serial ordering of all requests. We prove
requirement (2) by contradiction.

There are two cases. First, an operation x in batch (i+1)
reads from (or writes to) a tuple that was created in a prior
batch. If x must appear in the linear ordering before oper-
ations in prior batches, then it means x must exist in prior
batches for those batches to be sequentially consistent. A
contradiction. Second, an operation x in batch (i + 1) is
an insert to a new key that never existed and must be
placed in the linear ordering before an operation from a
prior batch. In the linear ordering of all operations, this
operation can occur anywhere in the past including the
case where it is included after all operations from the
first i batches. A contradiction. Thus, C-SetKV preserves
linearizability for operations in different batches. O

An example. The above lemma shows that C-SetKV
guarantees linearizability for operations across batches
since the linearization point occurs after audit. But why
must we consider operations within the same batch con-
current? In other words, why can we not have a finer slic-
ing of time? To answer this, we use an example. Consider
the case where a V,(Cl) issues a key-value store operation
x; = get(k) for a key k that does not exist in Px:’s key-
value store. A correct Px. would respond with an error
code. However, suppose a malicious Px responds with
(k,v, 1) for some v. Naturally, if we run audit now, it
will return false.

However, suppose we do not run audit immediately
and later a Vg) (j # i) issues x, = insert(k,v) and
suppose it assigns a timestamp of 1 (this is possible since,
recall from Section 4.1, each Vi instance starts with a
timestamp of 0). Now, if we run audit, it returns true—
even though x; is ordered before x; in the linear history
despite the fact that x, was executed after x; in the real
execution. In essence, Py violates the real-time constraint
of linearizability and yet audit passes.

23

References

(1]

[2]

(3]

(4]

(51

[6]

(71

(8]

(91

[10]

[11]

[12]

[13]

Pequin: An end-to-end toolchain for verifiable
computation, SNARKS, and probabilistic proofs.
https://github.com/pepper-project/pequin,
2016.

M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and

T. Tiessen. MiMC: Efficient encryption and cryptographic
hashing with minimal multiplicative complexity. In
Proceedings of the International Conference on the
Theory and Application of Cryptology and Information
Security (ASIACRYPT), 2016.

S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam.
Ligero: Lightweight sublinear arguments without a trusted
setup. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2017.

S. Angel and M. Walfish. Verifiable auctions for online ad
exchanges. In Proceedings of the ACM SIGCOMM
Conference, 2013.

A. Arasu, K. Eguro, R. Kaushik, D. Kossmann, P. Meng,
V. Pandey, and R. Ramamurthy. Concerto: A high
concurrency key-value store with integrity. In
Proceedings of the ACM International Conference on
Management of Data (SIGMOD), 2017.

S. Arora, C. Lund, R. Motwani, M. Sudan, and

M. Szegedy. Proof verification and the hardness of
approximation problems. Journal of the ACM (JACM),
45(3), May 1998.

L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy.
Checking computations in polylogarithmic time. In
Proceedings of the ACM Symposium on Theory of
Computing (STOC), 1991.

M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk.
ADSNARK: Nearly practical and privacy-preserving
proofs on authenticated data. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2015.

M. Bellare and D. Micciancio. A new paradigm for
collision-free hashing: Incrementality at reduced cost. In
Proceedings of the International Conference on the
Theory and Applications of Cryptographic Techniques
(EUROCRYPT), 1997.

E. Ben-Sasson, I. Ben-Tov, A. Chiesa, A. Gabizon,

D. Genkin, M. Hamilis, E. Pergament, M. Riabzev,

M. Silberstein, E. Tromer, and M. Virza. Computational
integrity with a public random string from quasi-linear
PCPs. In Proceedings of the International Conference on
the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), 2017.

E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev.
Scalable, transparent, and post-quantum secure
computational integrity. Cryptology ePrint Archive,
Report 2018/046, 2018.

E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers,
E. Tromer, and M. Virza. Zerocash: Decentralized
anonymous payments from Bitcoin. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2014.
E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer.
Fast reductions from RAMs to delegatable succinct
constraint satisfaction problems: Extended abstract. In

https://github.com/pepper-project/pequin

(14]

(15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

Proceedings of the Innovations in Theoretical Computer
Science (ITCS) Conference, 2013.

E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and

M. Virza. SNARKSs for C: Verifying program executions
succinctly and in zero knowledge. In Proceedings of the
International Cryptology Conference (CRYPTO), Aug.
2013.

E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, and

M. Virza. Secure sampling of public parameters for
succinct zero knowledge proofs. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2015.
E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner,

M. Virza, and N. P. Ward. Aurora: Transparent succinct
arguments for R1CS. Cryptology ePrint Archive, Report
2018/828, 2018.

E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza.
Scalable zero knowledge via cycles of elliptic curves. In
Proceedings of the International Cryptology Conference
(CRYPTO), 2014.

E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza.
Succinct non-interactive zero knowledge for a von
Neumann architecture. In Proceedings of the USENIX
Security Symposium, 2014.

V. Benes. Mathematical theory of connecting networks
and telephone traffic. Mathematics in Science and
Engineering. Elsevier Science, 1965.

D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange.
Elligator: Elliptic-curve points indistinguishable from
uniform random strings. In Proceedings of the ACM
Conference on Computer and Communications Security
(CCS), 2013.

P. A. Bernstein, D. W. Shipman, and W. S. Wong. Formal
aspects of serializability in database concurrency control.
IEEE Transactions on Software Engineering, SE-5(3),
May 1979.

N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From
extractable collision resistance to succinct non-interactive
arguments of knowledge, and back again. In Proceedings
of the Innovations in Theoretical Computer Science
(ITCS) Conference, 2012.

M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor.
Checking the correctness of memories. In Proceedings of
the IEEE Symposium on Foundations of Computer
Science (FOCS), 1991.

J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit.
Efficient zero-knowledge arguments for arithmetic
circuits in the discrete log setting. In Proceedings of the
International Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT), 2016.

B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg,
and M. Walfish. Verifying computations with state. In
Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), 2013.

B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg,
and M. Walfish. Verifying computations with state
(extended version). Cryptology ePrint Archive, Report
2013/356, 2013.

M. Castro and B. Liskov. Practical Byzantine fault
tolerance and proactive recovery. ACM Transactions on

24

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

Computer Systems (TOCS), 20(4):398—461, Nov. 2002.
E. Cecchetti, F. Zhang, Y. Ji, A. Kosba, A. Juels, and

E. Shi. Solidus: Confidential distributed ledger
transactions via PVORM. In Proceedings of the ACM
Conference on Computer and Communications Security
(CCS), 2017.

Chain. Introducing Sequence.
https://blog.chain.com/introducing-sequence-
el4£f£70b730, 2017.

J. P. M. Chase. ZSL Proof of Concept. https:
//github.com/jpmorganchase/quorum/wiki/ZSL,
2017.

A. Chiesa, E. Tromer, and M. Virza. Cluster computing in
zero knowledge. In Proceedings of the International
Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), 2015.

D. Clarke, S. Devadas, M. V. Dijk, B. Gassend,

G. Edward, and S. Mit. Incremental multiset hash
functions and their application to memory integrity
checking. In Proceedings of the International Conference
on the Theory and Application of Cryptology and
Information Security (ASIACRYPT), 2003.

Z.E. C. Company. What is Jubjub?
https://z.cash/technology/jubjub.html, 2017.

G. Cormode, M. Mitzenmacher, and J. Thaler. Practical
verified computation with streaming interactive proofs. In
Proceedings of the Innovations in Theoretical Computer
Science (ITCS) Conference, 2012.

C. Costello, C. Fournet, J. Howell, M. Kohlweiss,

B. Kreuter, M. Naehrig, B. Parno, and S. Zahur. Geppetto:
Versatile verifiable computation. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P), May
2015.

C. Dwork, M. Naor, G. N. Rothblum, and

V. Vaikuntanathan. How efficient can memory checking
be? In Theory of Cryptography Conference (TCC), 2009.
R. R. Farashahi, P. Fouque, 1. E. Shparlinski, M. Tibouchi,
and J. F. Voloch. Indifferentiable deterministic hashing to
elliptic and hyperelliptic curves. Mathematics of
Computation, 82(281), 2013.

Financial Industry Regulatory Authority. FINRA fines
Goldman Sachs Execution & Clearing, L.P. $800,000 for
failing to prevent trade-throughs in its alternative trading
system.
https://www.finra.org/newsroom/2014/finra-
fines-goldman-sachs-execution-clearing-1p-
800000- failing-prevent-trade-throughs, July
2014.

D. Fiore, C. Fournet, E. Ghosh, M. Kohlweiss,

O. Ohrimenko, and B. Parno. Hash first, argue later:
Adaptive verifiable computations on outsourced data. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2016.

K. Fu, M. E. Kaashoek, and D. Mazieres. Fast and secure
distributed read-only file system. In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2000.

R. Gennaro, C. Gentry, B. Parno, and M. Raykova.
Quadratic span programs and succinct NIZKs without

https://blog.chain.com/introducing-sequence-e14ff70b730
https://blog.chain.com/introducing-sequence-e14ff70b730
https://github.com/jpmorganchase/quorum/wiki/ZSL
https://github.com/jpmorganchase/quorum/wiki/ZSL
https://z.cash/technology/jubjub.html
https://www.finra.org/newsroom/2014/finra-fines-goldman-sachs-execution-clearing-lp-800000-failing-prevent-trade-throughs
https://www.finra.org/newsroom/2014/finra-fines-goldman-sachs-execution-clearing-lp-800000-failing-prevent-trade-throughs
https://www.finra.org/newsroom/2014/finra-fines-goldman-sachs-execution-clearing-lp-800000-failing-prevent-trade-throughs

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

(52]

(53]

[54]

[55]

[56]

(571

PCPs. In Proceedings of the International Conference on
the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), 2013.

S. Ghemawat and J. Dean. LevelDB: a fast and
lightweight key/value database library by Google.
https://github.com/google/leveldb, 2011.

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof-systems. In Proceedings
of the ACM Symposium on Theory of Computing (STOC),
1985.

J. Groth. Short pairing-based non-interactive
zero-knowledge arguments. In Proceedings of the
International Conference on the Theory and Application
of Cryptology and Information Security (ASIACRYPT),
2010.

J. Groth. On the size of pairing-based non-interactive
arguments. In Proceedings of the International
Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), 2016.

M. P. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 12(3), July 1990.

T. Icart. How to hash into elliptic curves. In Proceedings
of the International Cryptology Conference (CRYPTO),
2009.

Y. Ishai, E. Kushilevitz, and R. Ostrovsky. Efficient
arguments without short PCPs. In IEEE Conference on
Computational Complexity, 2007.

J. Kilian. A note on efficient zero-knowledge proofs and
arguments (extended abstract). In Proceedings of the
ACM Symposium on Theory of Computing (STOC), 1992.
A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou.
Hawk: The blockchain model of cryptography and
privacy-preserving smart contracts. In Proceedings of the
1EEE Symposium on Security and Privacy (S&P), 2016.
A. Kosba, D. Papadopoulos, C. Papamanthou, M. F.
Sayed, E. Shi, and N. Triandopoulos. TRUESET: Faster
verifiable set computations. In Proceedings of the
USENIX Security Symposium, 2014.

A. Kosba, Z. Zhao, A. Miller, Y. Qian, H. Chan,

C. Papamanthou, R. Pass, abhi shelat, and E. Shi. CHC0:
A framework for building composable zero-knowledge
proofs. Cryptology ePrint Archive, Report 2015/1093,
2015.

L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM, 21, July
1978.

L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. /EEE
Transactions on Computers, C-28(9), Sept. 1979.

L. Lamport. The part-time parliament. ACM Transactions

on Computer Systems (TOCS), 16(2):133-169, May 1998.

J. Li, M. Krohn, D. Maziéres, and D. Shasha. Secure
untrusted data repository (SUNDR). In Proceedings of
the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2004.

libsnark. A C++ library for zkSNARK proofs.
https://github.com/scipr-1lab/libsnark, 2012.

25

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

H. Lipmaa. Progression-free sets and sublinear
pairing-based non-interactive zeroknowledge arguments.
In Theory of Cryptography Conference (TCC), 2012.

J. Maitin-Shepard, M. Tibouchi, and D. F. Aranha.
Elliptic curve multiset hash. The Computer Journal,
60(4), 2017.

R. C. Merkle. A digital signature based on a conventional
encryption function. In Proceedings of the International
Cryptology Conference (CRYPTO), 1988.

S. Micali. CS proofs. In Proceedings of the IEEE
Symposium on Foundations of Computer Science (FOCS),
1994.

I. Miers, C. Garman, M. Green, and A. D. Rubin.
Zerocoin: Anonymous distributed e-cash from Bitcoin. In
Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2013.

L. Moyer. Regulators aren’t done with ‘dark pool’
investigations. https://www.nytimes.com/2016/02/
02/business/dealbook/regulators-arent-done-
with-dark-pool-investigations.html, Feb. 2016.
N. Narula, W. Vasquez, and M. Virza. zkLedger:
Privacy-preserving auditing for distributed ledgers. In
Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2018.

C. H. Papadimitriou. The serializability of concurrent
database updates. Journal of the ACM (JACM), 26(4), Oct.
1979.

D. C. Parkes, C. Thorpe, and W. Li. Achieving trust
without disclosure: Dark pools and a role for
secrecy-preserving verification. In Proceedings of the
Conference on Auctions, Market Mechanisms and Their
Applications, 2015.

B. Parno, C. Gentry, J. Howell, and M. Raykova.
Pinocchio: Nearly practical verifiable computation. In
Proceedings of the IEEE Symposium on Security and
Privacy (S&P), May 2013.

S. Setty, S. Angel, T. Gupta, and J. Lee. Proving the
correct execution of concurrent services in
zero-knowledge. In Proceedings of the USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), Oct. 2018.

S. Setty, A. J. Blumberg, and M. Walfish. Toward
practical and unconditional verification of remote
computations. In Proceedings of the USENIX Workshop
on Hot Topics in Operating Systems (HotOS), May 2011.
S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and
M. Walfish. Resolving the conflict between generality and
plausibility in verified computation. In Proceedings of the
ACM European Conference on Computer Systems
(EuroSys), Apr. 2013.

S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish.
Making argument systems for outsourced computation
practical (sometimes). In Proceedings of the Network and
Distributed System Security Symposium (NDSS), Feb.
2012.

S. Setty, V. Vu, N. Panpalia, B. Braun, M. Ali, A. J.
Blumberg, and M. Walfish. Taking proof-based verified
computation a few steps closer to practicality (extended
version). Cryptology ePrint Archive, Report 2012/598,

https://github.com/google/leveldb
https://github.com/scipr-lab/libsnark
https://www.nytimes.com/2016/02/02/business/dealbook/regulators-arent-done-with-dark-pool-investigations.html
https://www.nytimes.com/2016/02/02/business/dealbook/regulators-arent-done-with-dark-pool-investigations.html
https://www.nytimes.com/2016/02/02/business/dealbook/regulators-arent-done-with-dark-pool-investigations.html

(73]

[74]

[75]

[76]

(771

(78]

(791

(80]

(81]

[82]

[83]

[84]

[85]

[86]

[87]

(88]

[89]

2012.

S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg,
and M. Walfish. Taking proof-based verified computation
a few steps closer to practicality. In Proceedings of the
USENIX Security Symposium, Aug. 2012.

A. Shallue and C. E. van de Woestijne. Construction of
rational points on elliptic curves over finite fields. In
Proceedings of the International Conference on
Algorithmic Number Theory, 2006.

C. Tan, L. Yu, J. B. Leners, and M. Walfish. The efficient
server audit problem, deduplicated re-execution, and the
Web. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2017.

J. Thaler. Time-optimal interactive proofs for circuit
evaluation. In Proceedings of the International
Cryptology Conference (CRYPTO), 2013.

J. Thaler, M. Roberts, M. Mitzenmacher, and H. Pfister.
Verifiable computation with massively parallel interactive
proofs. In Proceedings of the USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud), 2012.

A. Tomescu and S. Devadas. Catena: Efficient
non-equivocation via Bitcoin, 2017.

M. Ulas. Rational points on certain hyperelliptic curves
over finite fields. Bulletin of the Polish Academy of
Sciences. Mathematics, 55(2), 2007.

V. Vu, S. Setty, A. J. Blumberg, and M. Walfish. A hybrid
architecture for verifiable computation. In Proceedings of
the IEEE Symposium on Security and Privacy (S&P),
2013.

R. S. Wahby, M. Howald, S. Garg, abhi shelat, and

M. Walfish. Verifiable ASICs. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2016.

R. S. Wahby, Y. Ji, A. J. Blumberg, abhi shelat, J. Thaler,
M. Walfish, and T. Wies. Full accounting for verifiable
outsourcing. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2017.
R. S. Wahby, S. Setty, Z. Ren, A. J. Blumberg, and

M. Walfish. Efficient RAM and control flow in verifiable
outsourced computation. In Proceedings of the Network
and Distributed System Security Symposium (NDSS),
2015.

R. S. Wahby, 1. Tzialla, abhi shelat, J. Thaler, and

M. Walfish. Doubly-efficient zZkSNARKSs without trusted
setup. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), 2018.

A. Waksman. A permutation network. Journal of the
ACM (JACM), 15(1):159-163, Jan. 1968.

M. Walfish and A. J. Blumberg. Verifying computations
without reexecuting them: From theoretical possibility to
near practicality. Communications of the ACM, 58(2), Jan.
2015.

H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Stoica.
DIZK: A distributed zero-knowledge proof system. In
Proceedings of the USENIX Security Symposium, 2018.
Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and

C. Papamanthou. vSQL: Verifying arbitrary SQL queries
over dynamic outsourced databases. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2017.
Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and

26

C. Papamanthou. VRAM: Faster verifiable RAM with
program-independent preprocessing. In Proceedings of
the IEEE Symposium on Security and Privacy (S&P),
2018.

	1 Introduction
	2 Problem statement and background
	2.1 A prior instantiation of VSMs
	2.1.1 Interacting with external resources
	2.1.2 Handling state

	2.2 Outlook and roadmap

	3 Efficient storage operations in VSMs
	3.1 SetKV: A verifiable key-value store
	3.2 Building VSMs using SetKV

	4 Supporting concurrent services
	4.1 Executing requests concurrently
	4.2 Supporting transactional semantics

	5 Efficient instantiations
	5.1 Parallelizing audits
	5.2 Efficient cryptographic primitives

	6 Implementation and applications
	6.1 Applications of Spice

	7 Experimental evaluation
	7.1 Spice's approach to state VS. prior solutions
	7.2 Benefits of Spice's concurrent execution
	7.3 Performance of apps built with Spice

	8 Related work
	9 Discussion and summary
	A Details of Spice
	A.1 Construction of Spice with unique ids
	A.2 Parallelizing Spice's audit with MapReduce
	A.3 Implementing optimistic concurrency control
	A.4 Error handling

	B Multiset collision-resistant hash H()
	B.1 Multiset hash function construction
	B.2 Relaxing requirements on H()
	B.3 Instantiating H (R and)

	C Security of Spice
	C.1 Proof of SetKV
	C.2 Proof of C-SetKV and Spice
	C.2.1 Proof of C-SetKV with unique ids
	C.2.2 Proof of C-SetKV with multisets
	C.2.3 C-SetKV's linearizability semantics

