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Abstract. The quantum secure supersingular isogeny Diffie-Hellman
(SIDH) key exchange is a promising candidate in NIST’s on-going post-
quantum standardization process. The evaluation of various implemen-
tation characteristics is part of this standardization process, and includes
the assessment of the applicability on constrained devices. When com-
pared to other post-quantum algorithms, SIDH appears to be well-suited
for the implementation on those constrained devices due to its small key
sizes. On the other hand, SIDH is computationally complex, which pre-
sumably results in long computation times. Since there are no published
results to test this assumption, we present speed-optimized implementa-
tions for two small microcontrollers and set a first benchmark that can
be of relevance for the standardization process. We use state-of-the art
field arithmetic algorithms and optimize them in assembly. However, an
ephemeral key exchange still requires more than 18 seconds on a 32-bit
Cortex-M4 and more than 11 minutes on a 16-bit MSP430. Those results
show that even with an improvement by a factor of 4, SIDH is in-fact
impractical for small embedded devices, regardless of further possible im-
provements in the implementation. On a positive note, we also analyzed
the implementation security of SIDH and found that appropriate DPA
countermeasures can be implemented with little overhead.

Keywords: Post-quantum cryptography, supersingular, isogeny, SIDH,
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1 Introduction

It is well known that future large-scale quantum computers can efficiently com-
pute Shor’s algorithm [29], and thus threaten public-key cryptosystems that
rely on the (elliptic curve) discrete logarithm problem or the integer factoriza-
tion problem. Even though full-fledged quantum computers are yet to arrive,
today’s recorded encrypted communication could be broken with a quantum
computer years later. In the past few years, this led to intensive research and
a large number of published papers dealing with post-quantum cryptography



(PQC) i.e. cryptographic algorithms that are considered to be secure against an
attack by a quantum computer. The National Institute of Standards and Tech-
nology (NIST) [3] published a report on PQC providing an overview of existing
algorithms including an announcement for standardization. In this report, NIST
distinguishes between five approaches: lattice-based cryptography, code-based
cryptography, multivariate polynomial cryptography, hash-based signatures, and
other which include isogeny-based cryptography. We are interested in how such
cryptosystems can be used in the Internet of Things (IoT). When analyzing
different PQC approaches, it becomes apparent that most of them require large
private and public keys. Large key sizes imply at least two problems for smaller
embedded devices: First, since the transmission of data requires the majority of
the energy budget, the size of the public parameters including the public key
must be kept small. Second, small embedded devices often possess less than ten
kilobytes of memory. Therefore, PQC schemes that feature large key pairs, as
for example the McEliece cryptosystem [23] that needs about 220 kB for a single
public key at a 128-bit quantum security level, are impractical on such devices.

With public keys as small as 330 bytes [7], the quantum-secure supersingular
isogeny Diffie-Hellman (SIDH) key exchange [16] is a promising candidate to se-
cure the communication on embedded devices. SIDH is based on elliptic curves
and shares similarities with traditional elliptic curve cryptography (ECC); how-
ever, the underlying number-theoretic problem is the isogeny-graph problem. An
isogeny φ is an algebraic map between two elliptic curves, which are defined over
a finite field of characteristic p. The point multiplication Q = [n]P of a point
P with some scalar n, which is well known in traditional ECC, can be seen as
a special case of an isogeny where Q = φ(P ) for identical curves. Finding the
isogeny between the known domain and co-domain (in case of distinct elliptic
curves) constitutes the isogeny-graph problem, which is an instance of the so-
called claw problem [16]. This isogeny-graph consists of vertices representing
isomorphism classes of elliptic curves that are connected by edges representing
isogenies. Alice and Bob start from the vertex that is the public curve and tra-
verse this graph via a seemingly random walk. Ultimately, they end up on two
curves sharing some value that is used as the shared secret. So far, the best
known available algorithm for a quantum computer can solve this problem with
a time complexity of O(p1/6). In this work, we investigate on SIDH, which was
introduced in 2011 by Jao and De Feo [16]. Costello et al. [8] published the
first constant-time implementation on Intel Sandy Bridge and Haswell proces-
sors using projective coordinates. In terms of speed, their results were recently
surpassed by Hernández et al. [10]. In 2016, Koziel et al. [20] presented a highly-
optimized implementation in affine coordinates on a comparably less powerful
32-bit Cortex-A8 and Cortex-A15 architecture using the NEON SIMD archi-
tecture extension. However, until now it remains unclear how SIDH performs
on microcontrollers which possess less computational power and lack dedicated
SIMD accelerators.
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Our contributions. We present speed-optimized SIDH implementations for
two popular microcontrollers, namely the 32-bit ARM Cortex-M4 and the 16-
bit TI MSP430X, targeting a 128-bit quantum and 192-bit classical security
level. For our implementation, we optimized the field arithmetic functions i.e.
modular addition, subtraction, multiplication, and reduction in assembly. Com-
pared to the generic C-implementation, this reduced thy cycle count for each
field operation by more than a factor of 15. However, our results show that an
ephemeral key exchange still requires more than 18 seconds on the ARM Cortex-
M4 and more than 11 minutes on the MSP430X, which is clearly too long for
most real-life applications. On a positive note, we show that randomized pro-
jective coordinates, as a countermeasure to thwart differential power analysis
(DPA), can be implemented for only 3% computational overhead and perform a
leakage detection test to demonstrate the effectiveness as part of a case study.

Outline. In Sect. 2 we describe the preliminaries followed by a brief description
of the SIDH protocol in Sect. 3. In Sect. 4 we present our implementation for the
Cortex-M4 and the MSP430X with special emphasis on the prime field opera-
tions. We summarize our performance results in Sect. 5 and discuss randomized
projective coordinates and public key validation in Sect. 6. Finally, we conclude
in Sect. 7.

2 Preliminaries

The quantum-secure SIDH key exchange protocol uses elliptic curve arithmetic,
i.e. elliptic curves as mathematical structures and its associated point arithmetic,
which is well understood in the ECC domain. However, in order to describe
SIDH, further preliminary definitions need to be introduced. Therefore, we pro-
vide the reader with a brief description of isogenies, supersingular curves, and
`-torsion subgroups. A more detailed description can be found in [13, 14, 32].

Isogenies. Suppose E1 and E2 are two elliptic curves with the same cardinality,
i.e. #E1 = #E2, and with identity elements O1 and O2, respectively. Then an
isogeny is a surjective mapping φ : E1 7→ E2 if and only if φ(O1) = O2. This map-
ping is also a group homomorphism, i.e. ∀P,Q ∈ E1 : φ(P +Q) = φ(P ) + φ(Q).
Two elliptic curves are called isogenous if there exists an isogeny between them.
The kernel of an isogeny is defined as the set of points on the domain curve that
map to the identity element: ker(φ) = {P ∈ E1 | φ(P ) 7→ O2}. There is a one
to one correspondence between isogenies and their kernels, and an isogeny can
be computed from its kernel. Using the kernel of an isogeny to store it as a data
structure is common in SIDH. If E1 is an elliptic curve, then for any subgroup
H ⊆ E1 there exists a unique (up to isomorphism) elliptic curve E2 with an
associated isogeny φ : E1 7→ E2 with ker(φ) = H. This isogeny is a natural
map: its image is isomorphic to the quotient of the kernel in the domain, i.e.
E2
∼= E1/ ker(φ). Parts of the protocol deal with the computation of an isogeny
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of a certain degree. For the purpose of this paper, the degree of an isogeny is the
cardinality of its kernel.

Supersingular curves. Elliptic curves can be either ordinary or supersingular.
An elliptic curve E(Fq) with q = pa, where p is a prime and a ∈ Z, is called super-
singular if #E(Fq) ≡ 1 mod p. Supersingular curves were proven to reduce the
computational complexity of the elliptic curve discrete logarithm problem [24],
which restricts their application in ECC. However, Childs et al. [4] showed that
solving the isogeny problem for ordinary elliptic curves, i.e. finding an isogeny
between two known ordinary curves, can be done in quantum-polynomial time.
This fact implies that cryptographic protocols based on the ordinary isogeny
problem are insecure in the post-quantum world. The opposite is considered to
be true regarding the supersingular case [13].

`-torsion subgroups. Let E/Fq be an elliptic curve defined over a finite
field of prime characteristic p. For any integer ` we can define the `-torsion
subgroup of E as E[`] := {P ∈ E | [`]P = O}. The `-torsion subgroup of an el-
liptic curve also has a special structure: E[`] ∼= Z/`Z⊕ Z/`Z. In other words,
E[`] can be generated by two independent points P,Q ∈ E of order `, i.e.
E[`] = 〈P,Q〉 := {[m]P + [n]Q | m,n ∈ Z}. SIDH takes advantage of this struc-
ture as will be described in Sect. 3.

3 The supersingular isogeny Diffie-Hellman key exchange

Jao and De Feo [16] proposed SIDH as a variant of the Diffie-Hellman key
exchange based on the isogeny-graph problem. Similarly to standard Diffie-
Hellman, SIDH has a number of public parameters, as described in Sect. 3.1,
and is separated into two phases: the key pair and shared secret key compu-
tation as presented in Sect. 3.2 and Sect. 3.3, respectively. We shortly describe
algorithms for the large degree isogeny computation. This operation is analogous
to the scalar multiplication in traditional ECC, and is computed iteratively as
detailed in Sect. 3.4.

3.1 Public parameters

Before keys can be exchanged, SIDH requires to fix the base field, the supersin-
gular elliptic curve and some points on this curve.

Base field. A finite field Fq := Fp2 is fixed where p is some large prime with
the form p = `eAA · `

eB
B · f ± 1. The values `A and `B are small primes, and

eA, eB , f ∈ N, with f being a cofactor chosen in such a way that p is prime.
Alice will compute isogenies of degree `eAA and Bob will compute isogenies of
degree `eBB . Note that it is recommended to chose `eAA ≈ `

eB
B to achieve a similar

security level and computational complexity for both parties.
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Elliptic curve and bases. Alice and Bob define a supersingular elliptic curve
E0/Fp2 . Next, four points are chosen PA, QA, PB , QB ∈ E0 fixing the bases
{PA, QA} and {PB , QB} generating the `eAA -, and `eBB -torsion subgroups, respec-
tively: E0[`eAA ] = 〈PA, QA〉 and E0[`eBB ] = 〈PB , QB〉.

3.2 Key generation

Alice chooses two secret random integers mA, nA ∈ Z/`eAA Z, not both divisible
by `A and computes RA := [mA]PA + [nA]QA. It holds that RA ∈ 〈PA, QA〉 =
E0[`eAA ] and thus #〈RA〉 = `eAA . Alice can then compute the isogeny φA with
ker(φA) = 〈RA〉 and thus deg(φA) = `eAA taking E0 to a new elliptic curve EA.
The isogeny φA is the quotient map, so the curve EA is isomorphic to E0/〈RA〉.
Finally, Alice evaluates the points PB and QB using the isogeny φA, and saves
the values φA(PB) and φA(QB). Bob proceeds mutatis mutandis. The triple
(EA, φA(PB), φA(QB)) is Alice’s public key and the pair (mA, nA) is her pri-
vate key. Furthermore, let (EB , φB(PA), φB(QA)) and (mB , nB) be the similarly
computed key pair belonging to Bob.

3.3 Shared secret computation

Alice now has access to Bob’s public key (EB , φB(PA), φB(QA)). The goal is to
reach some new elliptic curve EBA by computing a new isogeny φ′A : EB 7→
EBA. For this purpose, Alice uses her secret integers (mA, nA) and computes
the point SA := [mA]φB(PA) + [nA]φB(QA). As in the previous phase of the
protocol, an isogeny φ′A with ker(φ′A) = 〈SA〉 and thus deg(φ′A) = `eAA can be
efficiently computed taking EB to the final elliptic curve EBA. Bob proceeds
mutatis mutandis and computes the isogeny φ′B and the elliptic curve EAB . It
holds that EBA

∼= EAB , which implies that their j-invariants j(EBA) = j(EAB).
Alice and Bob can thus use this common value as a shared secret key. For further
details regarding the j-invariants of elliptic curves, we refer the reader to [14].

3.4 Large degree isogeny computation

Given an elliptic curve E/Fq and a subgroup H ⊆ E with H := 〈R〉, R ∈
E, ord(R) = `e, where ` is a small prime, one can compute an isogeny φ with
ker(φ) = H = 〈R〉 and deg(φ) = #H = `e. For example, Alice was required to
compute φA with ker(φA) = 〈RA〉 = 〈[mA]PA + [nA]QA〉. However, to compute
the isogeny φA, the problem needs to be divided into smaller operations compa-
rable to decomposing the ECC scalar multiplication into single point additions.
The isogeny φ can be written as a composition of e isogenies φi of degree `. Jao
and De Feo [16] accomplish that by making use of Vélu’s formulas [31]. In short,
they iteratively compute the isogeny φ taking the curve E to a curve isomor-
phic to the quotient of 〈R〉 in E, i.e. φ : E 7→ E/〈R〉. First set R0 := R and
E0 := E. Then for 0 ≤ i < e, the simplest algorithm for the large-degree isogeny
computation is the multiplication oriented approach and is given by:

Ei+1 = Ei/〈`e−i−1Ri〉, φi : Ei 7→ Ei+1, Ri+1 = φi(Ri),
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with Ee
∼= E/〈R〉 and φe−1 ◦ φe−2 ◦ · · · ◦ φ0 = φ.

Strategies. Aside from the multiplication oriented algorithm, Jao and De Feo
[11] also introduced and formally defined the isogeny oriented algorithm. In
short, instead of relying on point multiplications as the main operation, the
isogeny oriented approach computes mainly `-isogeny evaluations. As the au-
thors of [11] show, both of these approaches are non-optimal, i.e. they carry out
more operations than necessary. Instead, they define the concept of an optimal
strategy as the combination of the two approaches which results in the fewest
number of base operations required. Optimal strategies can be computed in ad-
vance and stored as constants, as described by [8]. This technique has been used
in a number of SIDH implementations, including ours.

4 Implementation

In this section, we provide the reader with a detailed description of our speed
optimized implementation. We begin by describing the platform independent
design decisions in Sect. 4.1. This is followed by a summary of the features of
the two microcontrollers in Sect. 4.2 and a detailed description on the imple-
mentation of the prime field arithmetic for the corresponding architectures in
Sect. 4.3.

4.1 Platform independent design decisions

In the following, we summarize a selection of design decisions that we made for
our implementation:

Projective coordinates. As with traditional ECC, projective coordinates
speed up each scalar point multiplication (performed twice for an ephemeral
key exchange) as it reduces costly field inversions. Costello et al. [8] showed that
a more compact representation is derived when operating on variable curve pa-
rameters represented in the projective space. Additionally, we represent curve
points in projective coordinates and randomize them during scalar multiplication
as a computationally efficient countermeasure to thwart DPA.

Structure of public keys. To limit the communication overhead and save
resources such as energy, the size of the public key should be small. Compared
to the initial proposal by Jao and De Feo [16], we follow Costello et. al [8]
where the size of the public key is reduced from 768 bytes to 564 bytes. More
precisely, the public key is a triple of the field elements in Fp2 , representing
the x-coordinates of φA(PB), φA(QB), φA(QB − PB) as an example for Alice.
The normalized Montgomery curve parameter A of the public curve is recovered
from those three points on the curve, and does not need to be included. Note that
in [7] it was shown that the public key can be further reduced to only 330 bytes.
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However, we discarded this technique because it reduces the speed by more than
a factor of 3, which collides with our optimization preference for speed.

Chosen parameters. The characteristic of the field Fp2 is p = 2372 · 3239 − 1
with dlog2(p)e = 751. This prime precisely provides a 124-bit quantum secu-
rity level, however, it is usually associated to a 128-bit quantum security level.
Other primes are proposed in [20] such as 2250 · 3159 − 1 and 2493 · 3307 − 1
that provide a 83-bit and 162-bit quantum security level, respectively. We de-
cided to target the 128-bit quantum security level, as it is considered to be
reasonable secure for the next few decades, while being small enough for suffi-
cient speed. The bases {PA, QA} and {PB , QB} are set by the following points:
PA = [3239](11,

√
113 + 11), QA = τ(PA), PB = [2372](6,

√
63 + 6), QB = τ(PB),

where τ : E0 7→ E0 and τ(x, y) = (−x, iy). The base supersingular elliptic curve
has the short Weierstrass form:

E0/Fp2 : y2 = x3 + x. (1)

One scalar as private key. Instead of choosing two randomly distributed
integers mA and nA and computing the secret isogeny whose kernel is 〈[mA]PA+
[nA]QA〉, Alice chooses one single integer mA ∈ [1, 2371−1] and the isogeny with
the kernel 〈PA +[2 ·mA]QA〉. Similarly, the kernel of Bob’s secret isogeny will by
〈PB + [3 ·mB ]PB〉, where mB ∈ [1, 3238 − 1]. This is done in order to facilitate
the use of pre-computed strategies for isogeny computations. As Costello et al.
[8] point out, this reduces the total number of possibilities for the public key by
a factor of 3, for Alice, and a factor of 4, for Bob. However, the authors claim
there is currently no reason to believe the security of the system is affected by
this implementation choice.

4.2 Microcontrollers

For development and testing purposes, we used the MSP430FR5994 launchapd
and FRDM-K64F development board, that feature two popular 16-bit and 32-bit
microcontroller architectures, respectively:

TI MSP430FR5994. Is based on the 16-bit MSP430X architecture running at
a maximum clock frequency of 16 MHz with 8 kB of RAM and 256 kB of non-
volatile FRAM (Ferromagnetic Random Access Memory). The FRAM can be
accessed at a frequency of 8 MHz and can be used for long-term storage, as well as
machine code and data storage. When the core is clocked with 16 MHz, additional
wait cycles are introduced if FRAM access is required due to the difference in
the two operating clock frequencies. This can effect the overall performance and
is described in the results section. We used Code Composer Studio for code
development and compilation with optimization level set to speed.
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Kinetis K64. Is based on the 32-bit ARM Cortex-M4 core running at 120 MHz
with 1 MB of flash memory and 512 kB of RAM. The compilation was done using
the GNU ARM Embedded toolchain with optimization set to −O3.

4.3 Finite field operations

Finite field arithmetic is the foundation for various public-key cryptosystems.
As discussed in Sect. 3.1, SIDH defines elliptic curves over the extension field
Fp2 . Yet, operations in the extension field Fp2 are composed of operations in the
finite field Fp. Since the performance of operations in Fp has strong impact on
the overall performance, it is crucial to optimize them for best speed results.
The relevant operations are addition, subtraction, multiplication, and modular
reduction. All operations run in constant-time, are written in assembly with fully
unrolled loops and no calls to subroutines.

Addition and subtraction. The modular addition and subtraction correspond
to standard 24-limb and 48-limb operations for the 32-bit Cortex-M4 and the 16-
bit MSP430X, respectively. Note that both the operands and the result will be
elements in [0, 2p−1], instead of [0, p−1]. As [30] points out, this circumvents the
necessity of a subtraction at the end of the modular operation. After an addition
or subtraction has taken place, the result has to be reduced to [0, 2p − 1]. For
the addition, since a, b < 2p, it holds that c := a + b < 4p, i.e. the bitlength of
a+b is higher by at most 1 when compared to the bitlength of a and b. If c > 2p,
then c− 2p ∈ [0, 2p− 1] will be the correct result. In order to avoid conditional
branching, instead of comparing c to 2p, the use of the following well-known
strategy is employed:

1. Set c← c− 2p, and remember the borrow bit b.
2. Compute the bitmask m := (b & 2p), and set c← c+m.

If b = 1, it holds that the subtraction c− 2p produces a borrow out, so initially
c < 2p, which means c was in the correct interval before the first assignment.
The second step corrects this issue by adding m = 2p to c. If, however, b = 0,
then c > 0 is in the correct interval after the first step. The second assignment,
i.e. the addition of the bitmask m = 0 does not alter the result.

The same process is similar for the subtraction. The difference a− b is either
negative, i.e. there is a borrow at the end of the subtraction, or it is already an
element in [0, 2p− 1]. In any case, the second step of this strategy is carried out,
so the bitmask m described above is computed and added onto a− b, achieving
the same result.

Multiplication. We decided to use Karatsuba multiplication [17] because it has
a time complexity of only O(nlog2 3); for comparison, the standard schoolbook
multiplication has a time complexity of O(n2). More precisely, we implemented
a 1-level additive Karatsuba multiplication with Comba optimizations [28]. The
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purpose of the latter is to decrease expensive memory accesses and storage re-
quirements for intermediate results. With these optimizations, the memory space
dedicated to the result is only accessed when the final value for a specific limb
has been computed.

In Karatsuba multiplication, two n-digit operands x, y represented in some
base R are split into two parts each: the top (most significant) halves xH , yH ,
and the bottom (least significant) halves xL, yL. Define:

H := xH · yH
L := xL · yL
M := (xH + xL) · (yH + yL)− L−H .

Then the following holds:

x · y = H ·Rn +M ·Rn/2 + L . (2)

In our case, the operands x, y are 768 bits (96 bytes) long, in either 48-limb
representation on the MSP430X, i.e. n = 48, R = 216, or 24-limb representation
on the Cortex-M4, i.e. n = 24, R = 232. The result is stored in z, which is a
768 · 2 = 1536 bits (192 bytes) memory location. The most significant words
are stored first. In order to store intermediate results, 96 bytes of stack space
are allocated at the beginning of the routine. We start by computing the three
partial multiplications as follows:

1. (xH + xL) · (yH + yL): To obtain both operands, two additions must be
computed where each could produce a carry-out. Store x̃ := xH + xL and
ỹ := yH +yL in z, and their carry-out bits in c1 and c2, respectively. If one of
the carry bits is set, then the corresponding sum is (n/2)+1 limbs long, since
xH , xL and yH , yL are half the size of x and y, respectively. Hence the extra
limb might have a bit set, however, a technique can be used to disregard it
and adjust the result afterwards instead. For this purpose, multiply the least
significant n/2 limbs of x̃ and ỹ (ignoring the aforementioned extra limb,
should it be present) via the Comba method, storing the n-limb long result
i.e. 96-byte in the stack. If c1 = 1, x̃ has an extra limb equalling 1 at the
most significant part, so when carrying out the multiplication x̃ · ỹ, the value
ỹ · 1 = ỹ would be added to the most significant limb of the result. To avoid
conditional branching, compute bitwise (c1 & ỹ) and add it to the most
significant limb of the result, which accomplishes the same purpose, either
adding ỹ or 0, depending on the value of c1. Analogously, add (c2 & x̃) to
the most significant limb of the result.

2. H := xH · yH : use Comba multiplication and store the 96-byte-long result in
the most significant part of z.

3. L := xL · yH : same as above, but store the result in the least significant 96
bytes of z.
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After determining all partial multiplications, M can now be computed by sub-
tracting H and L from the result of the first multiplication. The first product is
stored in the first 96 bytes of the allocated stack space, so when subtracting H
and L, save the results in the remaining 96 bytes. Afterwards, M can be added
to the middle part of z as per Eq. (2). This spans the bytes 49-144 of z. Lastly,
add the overflow resulting from the last digit addition, as well as any further
overflows this operation might produce to the remaining bytes of z, in sequence.

We note that optimizing the multiplication by exploring further algorithms
could potentially result in a performance improvement. For example, one could
implement multi-level Karatsuba as well as exotic, microcontroller-optimized
multiplication algorithms [22]. However, speeding up the multiplication by a
factor-2, which is rather optimistic, can at best result in an overall speed-up
of the key exchange by the same factor. Yet, making SIDH suitable for real-
life applications, a speed-up by more than an order of magnitude is required.
We emphasize that the performance limitations of SIDH reside on an protocol,
rather than on an implementation level.

Reduction. The modular reduction is an adaptation of the well-known Mont-
gomery reduction [25]: let Fp be the base field with p = 2372 ·3239−1, dlog2(p)e =
751, and define R := 2768 and p′ = −p−1 mod R. For any input a < pR, com-
pute the Montgomery residue c = aR−1 mod p:

c := (a+ (ap′ mod R) · p)/R . (3)

This operation is generally computed iteratively: first define r as the bitsize of
an integer, and set s such that R = 2r·s. In this case, R = 2768, so for the
Cortex-M4, r = 32, s = 24, and for the MSP430X, r = 16, s = 48. Set c ← a,
then repeat s times: c← (c+ (c · p′′ mod 2r) ·p)/2r, where p′′ = −p−1 mod 2r.

As Costello et al. [8] showed, Eq. (3) can be converted for the chosen prime
p = 2372 · 3239 − 1 to:

c = a/2768 + ((ap′ mod 2768) · 3239)/2396 ,

which decreases the number of required multiplications for a modular reduction.
Furthermore, they show that in the iterative process, it holds that p′′ = 1, which
allows the transformation: c ← (c + (c mod 2r) · (p + 1))/2r. More details re-
garding these transformations are available at [8]. This is advantageous, because
in this case, p+ 1 has a number of its least-significant limbs equal to 0 (11 limbs
in 32-bit representation and 23 limbs in 16-bit representation), and they can
thus be excluded from the multiplication. These individual multiplications were
carried out using Comba optimizations.

4.4 Results for the assembly optimized field operations

In Table 1, we present the number of clock cycles for each field operation for
future reference. We implemented the described algorithms in assembly and com-
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Table 1. Cycle count including improvement factor for the prime field operations of
the generic and assembly implementation on both architectures.

Operation
Cortex-M4 MSP430X

C ASM ↑ C ASM ↑

Addition 10,779 559 19.3 18,500 1,192 15.5
Subtraction 7,109 419 17.0 12,568 831 15.1
Multiplication 244,209 4,319 56.5 945,252 32,517 29.1
Reduction 167,619 3,254 51.5 586,596 20,094 29.2

pare the performance with the generic C implementation by Costello et al. [8],
which we ported to our microcontrollers without further modification. It can
be noted that our optimized operations require between 15 and 56 times fewer
cycles than their generic counterparts. The speed-up of the assembly implemen-
tations is comparable for both architectures, while the difference in performance
is linked to the architecture dependent word size. The improvement factor is
higher for the Cortex-M4, which is likely a result of its lower cycle requirement
when accessing consecutive memory locations. Both the generic and the opti-
mized operations run in constant-time.

5 Results and analysis of constant-time implementations

In this section, we first report and compare our results for an ephemeral key
exchange to other SIDH implementations. This comparison should aid the reader
to classify our results and verify their soundness. Subsequently, we compare our
implementation to other quantum-secure key exchange algorithms on embedded
devices in order to evaluate our work in a broader context.

Table 2 compares the clock cycle count for the key pair generation and the
shared secret key computation on the Cortex-M4 and the MSP430X to other
published SIDH implementations. Note that the clock cycle count differs for
Alice and Bob because the computational complexity depends on the selected
prime `eAA , `eBB . For the 32-bit Cortex-M4, the code is compiled to a size of 71.53
kB, and key pairs are generated in 1025 and 1149 million clock cycles for Alice
and Bob, respectively. Similar numbers are obtained for the shared secret key
computation. For the 16-bit MSP430X microcontroller, we obtained a code size
of 110.33 kB. The clock cycle count is reported for two different clock frequencies
to show the effect of the introduced wait cycles linked to the lower clock frequency
of the FRAM. In case of 8 MHz clock frequency, a key pair key is computed in
about 4559 million cycles and a shared secret in about 4339 million cycles. The
number of clock cycles increases to about 5480 and 5216 million clock cycles for
key pair generation and shared secret key computation, respectively, when being
clocked with 16 MHz.

Compared to the performance of the Cortex-M4, the MSP430X requires
about 4-times more clock cycles which is linked to the reduced word size of
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Table 2. Clock cycle count [×106] for SIDH on different processors supporting a 128-bit
quantum security level.

Work Platform Word size
Key gen. Secr. gen.

Alice Bob Alice Bob

[10] Intel Skylake 64-bit 27 31 25 29
[10] Intel Haswell 64-bit 38 43 34 40
[8] Intel Haswell 64-bit 51 59 47 57
[15] ARM Cortex-A57 64-bit 103 118 97 113

[20] Cortex-A15 32-bit 437 474 346 375
This work Cortex-M4 32-bit 1025 1148 967 1112

This work
MSP430X (8 MHz) 16-bit 4260 4855 4020 4658
MSP430X (16 MHz) 16-bit 5136 5824 4832 5600

16-bit. A similar relation is observed when we compare the 64-bit Cortex-A57
[15] and the 32-bit Cortex-A15 [20] implementation, indicating the plausibility
of our results. Comparing the 32-bit Cortex-A15 implementation to our imple-
mentation on the Cortex-M4, the key generation and shared secret computation
requires about 2.38-times and 2.79-times less cycles, respectively. Note that the
Cortex-A15 core is based on the ARMv7 architecture and is equipped with fea-
tures such as caches and the NEON SIMD architecture extension. The lack of
such accelerator features explains the increase in clock cycles for our Cortex-
M4 implementation. Most works optimized SIDH for 64-bit processors [8, 10, 15]
making a comparison with smaller devices, such as the 16-bit MSP430X, unfair.
On 64-bit processors, the current speed record for constant-time implementa-
tions is set by Jalali et al. [15], which represents an optimized version of the
work by Costello et al. [15].

Comparison with other quantum-secure algorithms. In Table 3 we com-
pare other quantum-secure on embedded devices with our implementation. Rel-
evant parameters are performance in terms of required time measured in seconds
and communication overhead measured in transmitted bytes. All listed imple-
mentations feature a similar security level of around 128-bit. NewHope [1] was
implemented on the ARM Cortex-M4 and Cortex-M0 and executed in only 0.01
and 0.035 seconds, respectively. Even when comparing our Cortex-M4 imple-
mentation to NewHope on the less powerful Cortex-M0 (clocked with only 48
MHz), NewHope is more than 500-times faster with only 4-times higher commu-
nication overhead. Frodo [2] is a LWE-based quantum-secure key encapsulation
with promising performance results as well. For smaller processors, there is only
one implementation available for the Cortex-A8, however, its communication
overhead implies that implementing it on constrained devices might be imprac-
tical. The SIDH implementation on the Cortex-A8 by Koziel et al. [20] shows
tolerable execution time and indicates the general applicability of SIDH on such
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processors. However, compared to NewHope [1] or Frodo [2] the tremendous dif-
ference in speed becomes apparent. We conclude that SIDH has small key sizes
but clearly suffers in speed, which leads to extensive computation time on small
microcontrollers.

6 Implementation security

Contrary to other PQC algorithms (e.g. NTRU [21]), SIDH supports perfect
forward-secrecy; however, this also requires the use of ephemeral keys. While
forward-secrecy is a desirable property, the secure use of static keys is important
for embedded devices due to limited computational power and energy budget. It
is well known that elliptic curve based cryptosystems can be attacked by invalid
point attacks [9], where a maliciously generated public key is used to gain access
to the secret private key. In case of SIDH, the attacker may choose his public key
in a way that forces the party using a static private key to reach a pre-computed
shared secret, or to enable the attacker to gain knowledge about their static
private key, as described in [8, 12]. To thwart this type of attack, the received
public keys must be validated, i.e. the correctness of their generation must be
verified. As it turns out, validation techniques in the context of SIDH are not
trivial: they are either computationally efficient and insecure [8, 12], or secure
and computationally inefficient [18]. For example, Kirkwood et al. [18] proposed
a working validation technique, which requires as much time as an ephemeral
key generation. Therefore, we decided to neglect the implementation of point
validation techniques. However, with on-going research we expect computational
efficient and secure point validation techniques to be found.

While a point validation technique is the first mandatory step towards the
secure use of static keys, a software designer should be aware that static keys can
facilitate some attacks. As attackers can typically get physical access to embed-
ded devices, we consider side-channel analysis as an additional attack vector.
When static keys are used, an attacker can acquire multiple traces using the

Table 3. Performance evaluation of different quantum-secure key ex-
change/encapsulation protocols on mid- and low-end processors.

Protocol Platform
Freq. Latency [sec.] Comm. [bytes]

[MHz] Alice Bob A→B B→A

NewHope [1] Cortex-M0 48 0.03 0.04 1824 2048
NewHope [1] Cortex-M4 164 0.01 0.01 1824 2048
Frodo [2] Cortex-A8 1000 0.08 0.08 11296 11288
SIDH [20] Cortex-A8 1000 1.41 1.53 564 564

SIDH (this work)
Cortex-M4 120 16.59 18.83 564 564
MSP430X 8 1035.00 1188.00 564 564
MSP430X 16 623.00 714.00 564 564
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same key. Therefore, we evaluate randomized projective coordinates in greater
detail in Sect. 6.1 as a countermeasure for preventing DPA [19].

6.1 Randomized projective coordinates to thwart DPA

The shared secret computation phase poses a natural target for an attacker be-
cause he can control data which is directly processed with the secret private key
i.e. the input point that is multiplied with the secret integer during elliptic curve
scalar multiplication. DPA on this standard elliptic curve scalar multiplication is
well understood. As explained in Sect. 4.1, we only use one integer as our secret
scalar for the point multiplication. Here, we target Alice’s secret integer na and
assume that Bob is the malicious entity and can modify φB(PA), φB(QA).

SA = φB(PA) + [nA]φB(QA) .

The scalar multiplication and the additional point addition is carried out using
the three-point ladder as described by Jao and De Feo [16] and shown in Al-
gorithm 1 (ladder 3pt). Note that the if-clause is only used here for readability

Algorithm 1 ladder 3pt: Three-point ladder [16] that computes P + [n]Q.

Input: n, P,Q
Output: P + [n]Q
1: A = 0, B = Q,C = P
2: for i decreasing from |n| to 1 do
3: if ni = 0 then
4: A← 2A, B ← A + B, C ← A + C
5: else
6: A← A + B, B ← 2B, C ← B + C
7: end if
8: end for

purposes; in our and most other implementations it is replaced by constant-time
point swap to prevent SPA and timing attacks.

Coron [5] described randomized projective coordinates as an appropriate coun-
termeasure to thwart DPA. This countermeasure is characterized by relatively
low computational overhead. Implementing randomized projective coordinates
implies a randomly generated λ being multiplied with the input points P,Q
in their projective representation during the ladder initialization. Using Mont-
gomery formulas [26], differential point addition for the x-coordinate is given
by:

(P +Q)x = (Pz −Qz)[(Px − Pz)(Qx +Qz) + (Px + Pz)(Qx −Qz)]2 ,

with the two input points P= {Px, Pz} and Q = {Qx, Qz}. The difference point
(Pz −Qz) can be neglected in the usual case, but equals λ for randomized projec-
tive coordinates, which translates to one additional multiplication for each point
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addition. As shown in Alg. 1, two point additions are performed in each ladder
step; thus, enabling randomized projective coordinates results in 744 = 2 · 372
and 758 = 2 · 379 additional multiplications in Fp2 for Alice and Bob, respec-
tively. Compared to an unprotected implementation, we require only about 3%
more cycles with randomized projective coordinates. This renders randomized
projective coordinates a computationally efficient countermeasure.

Case study: leakage assessment on the FRDM-K64F. The Montgomery
ladder combined with randomized projective coordinates is considered to be an
effective countermeasure to thwart DPA. Even though we expect similar protec-
tion for the three-point ladder, a case study is useful for supporting this claim.
We acquire EM traces with a Langer RF-B 3-2 near H-field probe (horizontal)
placed above the packaged chip. For each implementation, we collect 5000 syn-
chronized traces at at sampling rate of 5 GS/s using a LeCroy WavePro 725 Zi
oscilloscope. We evaluate randomized projective coordinates on the FRDM-K64F
(featuring the Cortex-M4) using the non-specific t-test as the leakage detection
test [6, 27]. Fig. 1 shows on the left two ladder steps of the Montgomery ladder,

time [samples] x10⁶ 
1.00 2.0 3.0 4.0 5.0 6.0

q
u

an
ti

ze
d

 E
M

 f
ie

ld

60

80

100

120

140

160

Fig. 1. Left: Exemplary EM trace for two ladder steps. Right: Langer probe placed
above FRDM-K64F.

and on the right the probe placed above the FRDM-K64F.
The t-test can be used to detect whether the device’s implementation has ex-

ploitable leakage. We first test and show that the device leaks secret information
with no DPA countermeasure enabled. With the same measurement setup, we
then evaluate the leakage with randomized projective coordinates. We apply a
fixed-vs-random methodology on the input point, i.e. we acquire 2500 traces with
a fixed input point and 2500 with a random input point; subsequently, the t-test
determines whether the two data sets are significantly different to each other.
The input point and the random number λ are sent to the development board
via UART while the secret remains fixed. In case of the unprotected implemen-
tation, we fix λ to a constant value. Fig. 2 shows on the left the t-test with no
DPA countermeasures and on the right with randomized projective coordinates.
With no countermeasures enabled, the device fails the t-test as it exceeds the
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Fig. 2. Fixed-vs-random leakage detection test on the input point using 5000 traces.
Left: no DPA countermeasure. Right: randomized projective coordinates enabled.

threshold ±C = 4.5, which clearly indicates leakage. On the contrary, the test
results after the introduction of randomized projective coordinates indicate the
effectiveness of the countermeasure as expected.

7 Conclusions

We presented two implementations of SIDH targeting a 128-bit quantum secu-
rity level for the 32-bit ARM Cortex-M4 and 16-bit TI MSP430X architectures
that perform the shared secret key computation including key pair generation
in about 18 seconds and 11 minutes, respectively. Although our results only set
a first benchmark, we conclude that even the inferior performance results of
the unprotected implementations indicate that SIDH is impractical for securing
resource-constrained devices. It is likely that our implementations can be opti-
mized by a small factor, but it seems to be unrealistic that the performance can
be improved by a factor-100. We use randomized projective coordinates to thwart
multi-trace DPA as it only reduces the speed by approximately 3%. However,
we note that current public key validation techniques imply tremendous perfor-
mance loss emphasizing the need for further research. Moreover, other quantum
secure key encapsulation protocols (such as NewHope [1]) seem more suitable
for embedded devices. Yet, we can imagine that SIDH is suitable for securing
the Internet communication where typically more powerful processors are used.
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