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Abstract. In this paper we use MILP technique for automatic search for
differential characteristics of ARX ciphers LEA and HIGHT. We show
that the MILP model of the differential property of modular addition
with one constant input can be represented with a much less number of
linear inequalities compared to the general case. Benefiting from this new
developed model for HIGHT block cipher, we can achieve a reduction of
112r out of 480r in the total number of linear constraints for MILP model
of r-round of HIGHT. This saving accelerates the searching process of
HIGHT about twice as fast.
We enjoy the MILP model to investigate the differential effect of these
ciphers and provide a more accurate estimation for the differential proba-
bility, as well. Our observations show that despite HIGHT, LEA exhibits
a strong differential effect. The details of differential effects are reflected
in a more compact manner using the newly defined notion of probability
polynomial. The results gained by this method improve or extend the
previous results as follows. For LEA block cipher, we found more effi-
cient 12 and 13-round differentials whose probabilities are better than
the best previous 12 and 13-round differentials for a factor of about 26

and 27, respectively. In the case of HIGHT block cipher, we found two
new 12 and 13-round differentials, though with the same best reported
probabilities.
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1 Introduction

symmetric cryptography, ARX structure refers to designs in which only three
operations are used: modular addition, XOR and the rotation. This strategy
is regarded as an important alternative for SPN structure and contributes a
large portion of the existing symmetric schemes. For example, two SHA-3 fi-
nalists BLAKE [1] and Skein [2] hash functions, the eStream finalist Salsa20[3],
and the NIST released block cipher SPECK[4] are some well-known instances of
ARX structure. Some other schemes includes the hash function for short mes-
sages SipHash[5]; MAC algorithms Chaskey[6], stream ciphers ChaCha[7] and
HC-128[8] and the lightweight block ciphers LEA [9], FEAL[10], Threefish[11],
RC5[12] and HIGHT [13].
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Table 1. Comparison of our characteristics of LEA with previous ones

Rounds Characteristic prob. Differential prob. Reference

11 2−98 2−91.9 [9]

12 2−128 - [9]

12 2−112 2−101.71 [32]

12 2-107 2-95.86 This paper

13 2−134 2−123.02 [32]

13 2-127 2-115.86 This paper

An important step in designing any symmetric scheme is to evaluate its
resistance against differential attack. Despite SPN ciphers which enjoy some
provable upper bounds for the probability of differential characteristics, such a
feature for the ARX structures has not yet been found. Therefore the automatic
search algorithms for the optimal differential characteristics have been a focus
of cryptographers’ concerns. In this regards, a variety of methods have been
proposed and applied such as the methods adapted from branch and bound
Matsui’s algorithm [14, 15], the methods based on Boolean satisfiability problems
[16–18], and the method based on mixed integer linear programming problems
[26, 27].

In this paper we focus on the third technique which has been explicitly ap-
plied for automatic search algorithms for cryptanalysis of symmetric ciphers ei-
ther SPN or ARX structures [19–27]. Mixed Integer Linear Programming (MILP)
is a class of optimization problems derived from Linear Programming which aims
to optimize an objective function under certain constrains. Although this prob-
lem is NP-complete inherently, there are some open source and commercially
availble MILP solvers which can solve not too large MILP problems instances.
In order to employ this tool for the purpose of cryptanalysis, the problem of
cryptanalysis of a symmetric cipher should be translated to MILP problem and
then be solved by an appropriate solver.

The first attempts for employing MILP technique for cryptanalysis of sym-
metric ciphers belongs to the SPN ciphers where Mouha et al.[19] and Wu et al.
[20] translated the problem of finding the minimum number of active Sboxes into
a MILP problem. This method then used for finding the specific pattern charac-
teristics for ALE authenticated encryption algorithm and counting the minimal
number of active S-boxes of bit-oriented block ciphers by introducing bit-level
representations in [28]. Sun et al. [23] extended Mouha et al. method to analyze
block ciphers with bitwise permutation diffusion layers (S-bP structures) in the
single key and related key models, though without considering the differential
properties of Sbox modules. In [21], the differential properties of the Sbox layer
has been taken into account in the MILP model and more precise results for
differential characteristics derived, consequently.
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Table 2. Comparison of our characteristics of HIGHT with previous one.

Rounds Characteristic Differential Reference

prob. prob.∗

11 2−58 2−58 [13]

11 2-45 2-45 [34] and This paper

12 2-53 2-53 [34] and This paper

13 2-61 2-61 [34] and This paper
∗ [34] does not provide any analysis for differential probability.

Table 3. Comparison of the number of constraints for MILP models for HIGHT

Model Number of constraints

Original 1 776r

Original 2 480r

Yin et al. [34] 694r

This paper 368r

In case of the ARX ciphers the main challenge is to construct an efficient
MILP model to represent differential pattern of modular addition. Although the
algorithm proposed in [23] has shown to be effective in constructing MILP model
for (at most 4 × 4) Sbox modules, it can not be used for modular addition as
an 2n × n Sbox in Fn2 (for n typically at least 16). Since it demands too many
linear constraints which makes the MILP problem of a typical ARX cipher too
complex and hence intractable.

Fu et al. resolved this problem in [26], where the analysis of differential
property of modular addition provided in [29] is utilized to derive an efficient
MILP model for modular addition. They applied their model to the ARX cipher
SPECK which improved the existing results.

In this paper, we modify and use MILP model for ARX structures proposed
in [26] to find differential characteristics for ARX ciphers LEA and HIGHT.
The design of HIGHT involves some modular additions whose one input is con-
stant (i.e. with zero difference). Although such a scenario can be regarded as
a special case of the general form analyzed in [26], it would be modeled much
more efficiently with less number of constraints if it is revisited independently.
We do this revision and reduced the number of constraints from 13n + 1 into
5n + 1 where n is the word size for modular addition. This improvement re-
duced the number of constraints from 480r into 368r for r-round HIGHT, which
is a considerable improvement and makes the search process of HIGHT twice
as fast. Recently, HIGHT has received another differential characteristic search
using MILP method [34] with a number of 694r constraints for r-round HIGHT.
However using this model, new 12 and 13 round characteristics where proposed
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for HIGHT. Table 3 compares the number of MILP constraints for the proposed
model and the others. From the original model 1 and 2, we mean the MILP
model in which the number of XOR constraints is five and one, respectively.

Moreover, we compute the probability of the sub-optimal differential, rather
than the sub-optimal characteristic only. The notion of probability polynomial is
defined to reflect the differential effect for each cipher in a compact form. Our
results shows that despite HIGHT, LEA exhibits a strong differential effect which
makes the differential probability much bigger than its dominant characteristic
probability. A summary of our achievements along with the previous results
for LEA and HIGHT are shown in Tab. 1 and Tab. 2, respectively. For LEA,
we found new 12 and 13-round differentials with improved probabilities. For
HIGHT, using our new model we found new differentials for 11, 12 and 13
rounds, apart from those introduced in [34].

The rest of this paper is organized as follows. Section 2 describes MILP Model
for Differential Characteristics in ARX Ciphers, where Fu et al.’s model along
with our proposed model for special case of modular addition is presented. In
Section 3, we reviewed the concepts of characteristic and differential and the new
concept of probability polynomial is presented. Our results on LEA and HIGHT
ciphers are detailed in Sections 4 and 5 respectively. Finally, Section 6 concludes
our work.

2 MILP Model for Differential Characteristics in ARX
Ciphers

The MILP problem is the problem of optimizing the value of a linear objec-
tive function of some integer/real-valued variables which satisfy some linear
(in)equality constraints.

MILP solvers can be enjoyed to find the best differential characteristic of
a cipher if the problem of finding the optimal differential characteristic of a
cipher can be translated into a (not too large) MILP problem. To that end, the
objective function should be set to an adequate strictly monotonic function of
the characteristic probability, and the linear constraints are configured to express
the propagation of the difference values in the cipher. Therefore, with respect
to the modeled cryptosystem, the optimum differential characteristic probability
would be returned by solving the model by an adequate MILP solver.

Fu et al. [26] proposed the first MILP model for the differential characteristic
search problem of ARX structures by defining the objective function as well as
the linear constraints for ARX structures.

Among the set of modules involved in ARX structures, rotation operation
only changes the position of the input bits, so a simple change of variables de-
scribes the input difference-output difference relation completely. Since rotation
is a linear operation, it does not contribute to the characteristic probability and
consequently the objective function. In this section, we first review the MILP
model for differential properties of the XOR and modular addition operations
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[26], then we propose the new and more concise MILP model for the modular
addition when one of its inputs is constant.

2.1 MILP model for XOR

For the XOR operation with bit-level input and output differences, Sun et al. in
[21] proposed a model including five inequalities in three input/output binary
variables and an extra dummy binary variable that precisely describes the XOR
operation. However, considering that all variables in the model are binary, in
[27] it was shown that the following single linear equation completely describes
the XOR operation.

a+ b+ c = 2d (1)

where d is a dummy binary variable. Since XOR is a linear operation, it does
not have any effect on the characteristic probability and hence the objective
function.

In [34], Yin et al. tried to improve the MILP model for two consecutive XORs
which is equivalent to a 3-input XOR. Without noticing 1, they improved the
original 10-constraint model for the two consecutive XOR, into a 8-constraint
model.

2.2 MILP model for modular addition

Based on two following theorems derived by Lipmaa and Moriai in [29], the
feasible differential characteristics for modular addition and their corresponding
probabilities are characterized completely. In the following, the notation x[i] is
used to show the the ith bit of n-bit word x where the LSB and MSB of x are
x[0] and x[n− 1], respectively.

Theorem 1. The differential (α, β → γ) is possible if the following two condi-
tions are satisfied:

1. α [0]⊕ β [0]⊕ γ [0] = 0, and

2. if α [i− 1] = β [i− 1] = γ [i− 1], then

α [i− 1] = β [i− 1] = γ [i− 1] = α [i]⊕ β [i]⊕ γ [i], where i = 1, . . . , n− 1.

Theorem 2. Assume that (α, β → γ) is a possible differential characteristic,
then the xor differential probability of addition (xdp+) of this differential is

xdp+(α, β → γ) = 2−
∑n−2

i=0 ¬eq(α[i],β[i],γ[i]) (2)

where

eq(α [i] , β [i] , γ [i]) =

{
1 α [i] = β [i] = γ [i]

0 o.w
(3)
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The first feasibility condition α [0] ⊕ β [0] ⊕ γ [0] = 0 in Theorem 1, can be
described in MILP model by the following equation

α [0] + β [0] + γ [0] = 2d

where d is a dummy binary variable.
In [26], Fu et. al. observed that the second feasibility condition of Theorem 1 is
equivalent to the fact that there are 56 possible vectors of the form

(α [i] , β [i] , γ [i] , α [i+ 1] , β [i+ 1] , γ [i+ 1] ,

¬eq(α [i] , β [i] , γ [i]) (4)

in total. The SAGE Computer Algebra System [30] returns a set of 65 linear
inequalities satisfying all these 56 possible patterns. However, 65 inequalities are
too many which makes the MILP model too complicated. In [26], it has been
shown that based on the greedy algorithm given in [22], the number of linear
inequalities can be reduced from 56 to 13. All these 13 inequalities are shown in
Appendix A.

Therefore, for n-bit words, the total number of constraints describing the
addition module is 13(n− 1) + 1.

The only non-linear module in the ARX structure is modular addition. So, it
is the only contributor to the objective function. If there are r modular additions
in the cipher in total, with input-output differences (αj , βj → γj), j = 1, ..., r,
then according to Theorem 2, the overall characteristic probability is

PD = 2
−

r∑
j=1

n−2∑
i=0
¬eq(α[i],β[i],γ[i])

(5)

and the objective function is defined as

r∑
j=1

n−2∑
i=0

¬eq(α [i] , β [i] , γ [i]) (6)

which is a linear function and supposed to be minimized.

2.3 MILP model for modular addition with a constant input

Suppose that there is a modular addition in the cipher whose one input is con-
stant. In other words, its corresponding difference is zero. This is exactly the
case with HIGHT cipher, where some subkeys are added to the data in each
round. One way to handle such a situation, is to use the 13 general inequalities
given in Appendix A directly, in which the one input difference, say α have been
set to zero i.e. α [i] = 0, i = 0, ..., n− 1.

Here, we propose a more efficient model for this case with much less number
of inequalities. Again consider the 7-tuple vector given in (4). The first condition
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Table 4. Linear inequalities expressing the differential property of modular addition
with a constant input

−β[i] + (¬eq(α [i] , β [i] , γ [i])) ≥ 0,

−γ[i] + (¬eq(α [i] , β [i] , γ [i])) ≥ 0,

β[i] + γ [i]− (¬eq(α [i] , β [i] , γ [i])) ≥ 0,

β[i+ 1]− γ [i+ 1] + (¬eq(α [i] , β [i] , γ [i])) ≥ 0,

−β[i+ 1] + γ [i+ 1] + (¬eq(α [i] , β [i] , γ [i])) ≥ 0.

of Theorem 1 is simplified to β[0] = γ[0], considering α[0] = 0. This new form
does not need defining any new dummy variable, hence one bit saving in the
number of variables of the problem.

To the second condition of Theorem 1, we add the new condition α[i] =
α[i − 1] = 0. So, the number of valid remaining vectors reduces to 14 possible
patterns. Using the SAGE Computer Algebra System, we get a number of 10
linear inequalities satisfying all the 14 possible patterns and no impossible pat-
terns. Then, we use the greedy algorithm to make this set smaller and finally
the number of inequalities reaches from 10 to 5 inequalities (per bit), which is
a great improvement in the number of constraints comparing to 13 inequalities
per bit, in general case. In other words, for a n-bit modular addition, the number
of constraints decreases by 8(n− 1) where n is the word size.
This set of inequalities are listed in Table 4. Obviously, the objective function
does not change any.

Having defined the objective function and all the constraints for the target
ARX cipher, the MILP model is complete and ready to be solved by a MILP
solver. It worth mentioning that MILP solvers can return the number of distinct
solutions along with the optimum value of the objective function.

3 Characteristic Probability and Differential Probability
using MILP method

In order to precisely evaluate the security of block ciphers against differential
analysis Lai et. al. first introduced the theory of Markov ciphers and made a
distinction between a differential and a differential characteristic [31]. What is
essentially important in the differential cryptanalysis is the input-output differ-
ence, no matter what the intermediate differences may be. However, for a given
differential with fixed input-output differences, there could be potentially many
characteristics that share the same input-output differences and so they all con-
tribute to the differential probability. Such an effect is called strong differential
effect [31]. In order to calculate the differential probability as accurately as pos-
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sible, more characteristics sharing the same input and output difference should
be counted in.

Therefore in general, any differential will have a probability greater than that
of its most probable characteristic. So, by considering the differential probability
rather than the characteristic probability, we calculate the true success rate of
the differential cryptanalysis, not just a lower bound for that.

However, the MILP-based search tool finds only the most probable charac-
teristic rather than differential. In the following we explain how to employ the
MILP model to find not only the best characteristic, but also to compute the
probability of the differential that matches this characteristic.

3.1 Computing differential probability

Assume that the MILP tool has already found the optimum characteristic with
input-output difference (∆in, ∆out) and probability 2−d. It means that the ob-
jective function in the MILP model has optimum value equal to d. We can find
other characteristics with the same input-output differences (∆in, ∆out) with
probabilities equal to or less than 2−d.

We first introduce the notion of probability polynomial that we define for a
compact and concise representation of probability of a differential and its cor-
responding characteristics. The probability polynomial of a specific differential
with a given input-output difference is defined as follows

p(x) = p0x
d + p1x

d+1 + p2x
d+2 + . . . (7)

Where pi is the number of distinct characteristics with the probability of 2−(d+i),
i = 0, 1, .... It is clear that the probability of the corresponding characteristic
can be calculated by evaluating p(x) at x = 1

2 . In particular, we consider only
the first N monomials of p(x), i.e.

p(x) ' p0xd + p1x
d+1 + · · ·+ pNx

d+N (8)

where N is actually selected in such way that at x = 1
2 the last term is negligible

comparing to the sum of other terms i.e.,

pN+12−(d+N+1) <

N∑
i=0

pi2
−(d+i) (9)

In order to construct the probability polynomial for a cipher using the MILP
method, the following steps should be done:

1. build a MILP model for differential characteristic for the target cipher ac-
cording to Section 2, without any extra constraint. Solve this model to obtain
the input and output differences of the optimum differential characteristic
(∆in, ∆out), along with its probability which is 2−d.

2. For i = 0 to N − 1,
Add three new constraints to the original MILP model as follows, then solve
it to find pi.
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Fig. 1. Obtaining a longer characteristic from two shorter ones.

– Set the input-output difference equal to (∆in, ∆out) found in Step 1.

– Add a new constraint that puts the objective function equal to d+ i.

Despite the first step that we need that the MILP solver returns the optimum
solution along with the values of variables, in the second step it is sufficient to
configure the MILP solver to return the number of optimum solutions only.

3.2 Sub-optimal solutions

The MILP problem is inherently a NP-complete problem. So, for a differential
cryptanalysis with a complex MILP model containing a large number of variables
and constraints, it is not unexpected that the problem can not be resolved by
a MILP solver. This situation occurs when the number of rounds attacked is
increased.

In such problems if the solver fails to solve the problem as a whole, a sub-
optimal solution may suffice. To find a sub-optimal solution, it is very con-
ventonal to divide the r-round cipher into two r1 and r2-round subciphers
(r = r1 + r2), and solve each problem independently [26, 32]. Definitely, the
output difference of the first subcipher must be the same as the input difference
of the second subcipher. So, the MILP models of the first r1-round and second
r2-round subciphers must have an extra constraint which is respectively the out
put difference = ∆ and the input difference = ∆. Finally, If the optimum value
of the first and second problems are d1 and d2 respectively, the sub-optimum
value for the full r-round problem would be d = d1 + d2. This process has been
shown in Figure 1. This is exactly equal to the main r-round problem which is
subjected to the extra constraint ∆r1 = ∆.

The only thing that remains is to limit the candidate values of ∆ to a small
enough set with appropriate values. We should search this set of ∆ and choose
the one with the highest d value. The differential property of modular addition
shows that the more active bits in the input-output differences, potentially the
weaker probability of the differential. So, a common choice for ∆ is always a
low-weight one, e.g. those with only one active bit.
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Fig. 2. The round function of LEA.

After finding the best ∆ and the associated optimum values d1 and d2, we
run the above explained algorithm for the two subciphers independently, to
construct the two probability polynomials p1(x) and p2(x). To derive the proba-
bility polynomial of the main r-round cipher, it is needed to consider all possible
r-round characteristics by combining each r1-round characteristic and each r2-
round characteristic. This process is exactly equivalent to multiplying the prob-
ability polynomials of the two subciphers. So, the probability polynomial of the
main r-round differential would be

p(x) = p1(x)p2(x) (10)

In general, the main problem may be so complex that dividing the r-round
cipher into just two subciphers may not be sufficient. So, let the r-round cipher
be divided into k subciphers with probability polynomials pi(x), i = 1, . . . , k.
Clearly, the output difference of subcipher i is equal to the input difference of
subcipher i+ 1. Finally, the probability polynomail of the r-round cipher is

p(x) =
k∏
i=1

pi(x) (11)

and the differential probability is p(x)|x= 1
2
.

4 Differntial Analysis of LEA block cipher using MILP
method

LEA is an ARX block cipher proposed by Hong et al. in WISA 2009 [9]. It
provides a high-speed software encryption on general-purpose processors. It has
the block size of 128 bits and the key size of 128, 192, or 256 bits. There are
some cryptanalysis on LEA including [35, 36].
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In [9] the designers have proposed the first differential analysis of their
scheme. Their analysis is confined to finding characteristic probability and not
differential probability. The characteristic under consideration has been found by
linearizing LEA (replacing modular addition with XOR) and conditioned that
the Hamming weight of the difference at the middle of the cipher is small. So,
their best findings are 12-round and 11-round characteristics with probabilities
2−128 and 2−98, respectively. Song et al [32] used a search method based on SAT
solvers and found characteristics and differentials for 12 rounds and 13 rounds
of LEA with probability better than 2−128. There is also an informaly published
work on 12-round1 LEA with probability 2−121 [33] using a search method based
on the Nested Monte-Carlo algorithm. In this section we report our MILP-based
results which outperform the previous ones [9, 32]. All results on LEA have been
summarized in Tab. 1.

4.1 LEA specification

The encryption algorithm of LEA works as follows. It maps a plaintext of four
32-bit words (x00, x

0
1, x

0
2, x

0
3) into a ciphertext (xr0, x

r
1, x

r
2, x

r
3) using a sequence

of r rounds, where r = 24 for LEA-128, r = 28 for LEA-192 and r = 32 for
LEA-256. The round function for round i, i = 0, . . . , r − 1 is defined as follows:

xi+1
0 ← ((xi0 ⊕ rki0) + ((xi1 ⊕ rki1)) ≪ 9

xi+1
1 ← ((xi1 ⊕ rki2) + ((xi2 ⊕ rki3)) ≫ 5

xi+1
2 ← ((xi2 ⊕ rki4) + ((xi3 ⊕ rki5)) ≫ 3

xi+1
3 ← xi0. (12)

One round of LEA cipher has been shown in Fig. 2.

4.2 MILP-based search for characteristics and differentials of LEA

According the MILP model for differential attack on ARX structures described
in Section 2, we can construct an MILP model for one-round and hence any
arbitrary rounds of LEA cipher. All the XOR operations in LEA are used for
key addition which are bypassed in the differential attack. So, for each round
of LEA our model includes three modular additions and a bit permutation as
for the rotation and words swapping. Therefore, the total number of constrains
would be 3(13(n− 1) + 1) + 4n, where the word size in LEA is n = 32. So, the
total number of constraints for each rounds of LEA becomes 404.

However, in order to search a r-round LEA without any extra constraint,
the MILP model will become too complex to be solved for r ≥ 4. Therefore,
according to the discussion in Section 3.2, we choose the strategy of finding a
sub-optimal solution and construct a long characteristic from two short ones.

1 This work is incorrectly reported as a 13-round characteristic in [33].
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Table 5. Sub-optimal characteristic for 12-round LEA

Rounds 12-round

∆x0||∆x1||∆x2||∆x3 log2p

0 C0000000C04000804040001040400012

1 80010000800000044000001440000010 −13

2 02000800820000001000000010010800 −8

3 00100100001000000000200002000800 −4

4 000200000001FF000040030000100100 −15

5 00020000000200000006000000020000 −25

6 00000000000000000000000000020000 -5

7 00000000000000000000400000000000 −1

8 00000000000006000000080000000000 −3

9 00040000000000100000010000000000 −6

10 08042000800000080000002000040000 −5

11 00401110C40000000000800408002000 −8

12 80222188222004008100140000401110 −14∑
r log2pr −107

log2pdiff > −95.86

Analysis of 12-round LEA To this end, we first analyse r = 12 rounds of LEA
by dividing it into two subciphers of r1 = r2 = 6 rounds. The first subcipher has
exactly one active bit, say bit i, in its output difference and the second one has
the same difference in its input. The two problems are solved independently and
optimum values d1 and d2 are derived for i = 0, ..., 127. Among all 128 possible
cases, the sub-optimal characteristic for 12-round LEA is that with the minimum
d = d1 + d2. So, in this way we found a 12-round characteristic for LEA with
the additional constraint that its internal difference at round 6 has Hamming
weight equal to one.

A 6-round MILP problem for LEA, which is constrained to Hamming weight
one either in input or in output, is solvable by the solver fortunately. Among
all 128 possible cases, the best one occurs at i = 110 which is equal to a 12-round
characteristic with internal difference∆6 = (00000000, 00000000, 00000000, 00020000).
For this case d1 = 70 and d2 = 37. So, the corresponding sub-optimum 12-round
characteristic has d = 107. The details of this characteristic is reflected in Tab.
5.

In order to find the differential probability corresponding to the sub-optimum
characteristic, we first find probability polynomials p1(x) and p2(x) according
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to the algorithm explained in Section 3.1.

p1(x) = 3x70 + 9x71 + 32x72 + 101x73 + 245x74+

635x75 + 1462x76 + 3107x77 + 5264x78, (13)

p2(x) = 2x37 + 0x38 + 10x39 + 15x40 + 24x41 +

70x42 + 112x43 + 254x44 + 505x45 + 731x46. (14)

Now we obtain the probability polynomial for 12-round differential as follows.

p(x) =

2∏
i=1

pi(x) = p1(x)p2(x)

= 6x107 + 18x108 + 94x109 + 337x110 +

1017x111 + 3186x112 + 8623x113 +

22673x114 + 55008x115 + 111568x116 +

254616x117 + 463615x118 + 866416x119 +

1587582x120 + 2581241x121 + 3974813x122 +

4929537x123 + 3847984x124 (15)

Finally, by evaluating p(x) at x = 1
2 we end up with the differential probability

of 12-round LEA, which is

p(x)
∣∣∣x= 1

2
= 2−95.8629 (16)

Analysis of 13-round LEA In order to find a sub-optimum 13-round charac-
teristic, we first examined the scenario of dividing it into 6-round and 7-round
subciphers. However, the MILP problem for 7-round is not solvable, even con-
strained to weight one in the input or output. So, we have to divide the cipher
into three subciphers. A good choice, though not necessarily the best one, is to
continue the already found 12-round characteristic. So, in case of the 13-round,
the first two subciphers would be the two previously found 6-round subciphers
and the third one would be a 1-round which is constrained such that its in-
put difference is equal to the output difference of the second subcipher, i.e.
∆12 = 80222188222004008100140000401110. This 1-round characteristic along
with the two previous 6-rounds are reported in Tab. 6. Comparing Tables 5
and 6, one can realize that two distinct maximal probability characteristics are
reported in these tables, but with the same ∆1 and the same ∆12. The corre-
sponding probability polynomial p3(x) has only one monomial which is expected
due to the shortness of the subcipher.

p3(x) = x20 (17)
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Table 6. Sub-optimal differential characteristics for 13-round LEA

Rounds 13-round

∆x0||∆x1||∆x2||∆x3 log2p

0 C0000000C04000804040001040400012

1 800100008000000C40000004C0000000 −13

2 02001800820000008000000080010000 −8

3 00300100001000000000200002001800 −4

4 000200000001FF000040010000300100 −15

5 00020000000200000002000000020000 −25

6 00000000000000000000000000020000 -5

7 00000000000000000000400000000000 −1

8 00000000000002000000080000000000 −2

9 00040000000000300000010000000000 −5

10 08002000800000080000002000040000 −7

11 00401110C40000000000800408002000 −8

12 80222188222004008100140000401110 −14

13 0449114405190080102800A180222088 −20∑
r log2pr −127

log2pdiff > −115.86

Therefore, the probability polynomial of the proposed sub-optimal 13-round
characteristic is

p(x) =

3∏
i=1

pi(x) = p1(x)p2(x)p3(x)

= 6x127 + 18x128 + 94x129 + 337x130 +

1017x131 + 3186x132 + 8623x133 +

22673x134 + 55008x135 + 111568x136 +

254616x137 + 463615x138 + 866416x139 +

1587582x140 + 2581241x141 + 3974813x142 +

4929537x143 + 3847984x144 (18)

Finally, the 13-round differential probability is calculated as

p(x)
∣∣∣x= 1

2
= 2−115.8629 (19)
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Fig. 3. Round function of HIGHT cipher

5 Differntila Analysis of HIGHT block cipher using
MILP method

Hong et al. [13] proposed a new block cipher HIGHT with 64-bit block length
and 128-bit key length, which is suitable for low-cost, low-power, and ultra-light
implementation. HIGHT is approved by Korea Information Security Agency
(KISA) and is adopted as an International Standard by ISO/IEC 18033-3 [13].
This made this cipher an attractive target for cryptanalyses [37–41].

Although HIGHT has been received much attention from the cryptanaly-
sers, few work is focused on finding the best possible differential characteristic.
The first one is the designers’ analysis [13], where an evaluation of differential
attack is provided by linearizing it. According to this analysis, without any dis-
cussion about differential probability, the best differential characteristic found
for 11-round of HIGHT has been reported with the probability of 2−58. The
other one is a recent one [34] in which differential characteristics are found us-
ing a so-called refined MILP model for up to 13 rounds of HIGHT. In the rest
of this section we introduce new 11-round, 12-round and 13-round differential
characteristics/differentials found using our efficient MILP model.

5.1 HIGHT specifications

HIGHT has a 32-round iterative structure which is a variant of generalized Feistel
network. Whitening keys are applied before the first round and after the last
round. One round of HIGHT is shown in Fig. 3, where (Xi

7|Xi
6|, ..., |Xi

0) and
(SK4i+3|SK4i+2|SK4i+1|SK4i) indicate the 64 bits input and 32 bits subkey of
the i-th round respectively. Each word in HIGHT is a byte. Two subkeys SK4i+1

and SK4i+3 are added to the data in mod 28 while the two other ones are XORed
to data. F0 and F1 are two linear functions with 8 bits input and 8 bits output
which work as follows.

F0(x) = (x≪ 1)⊕ (x≪ 2)⊕ (x≪ 7)

F1(x) = (x≪ 3)⊕ (x≪ 4)⊕ (x≪ 6) (20)
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Table 7. Differential characteristics for 12-round HIGHT

Rounds First characteristic [34] Second characteristic (new)

∆x0||∆x1|| · · · ||∆x6||∆x7 log2p ∆x0||∆x1|| · · · ||∆x6||∆x7 log2p

0 00008227213AEE01 B000C003000081E2

1 000027A03A460100 −6 00E803000000E2B0 −3

2 0000A0B84E010000 −6 E80700000000D002 −8

3 0000B8C801000000 −4 0E00000000000279 −4

4 0000C80100000000 −4 0000000000007907 −1

5 0000010000000000 −3 0000000000000700 −5

6 0001000000000000 -1 0000000000010000 -3

7 0100000000000082 −2 0000008201000000 −2

8 00000000009C8201 −3 009C820100000000 −3

9 000000039C7A0100 −8 9C7A010000000003 −8

10 00E803BC7A010000 −5 7A01000000E803BC −5

11 E800BCF801000002 −6 01000002E800BCF8 −6

12 00B6F80100B002E8 −5 009002E800B6F801 −5∑
r log2pr −53 −53

5.2 MILP-based search for characteristics and differentials of
HIGHT

The set of operations used in one round of HIGHT is as follows: two modular
additions, two modular additions with one constant input (discussed in sec 2.3),
two XORs, two F0 functions, two F1 functions, and a final swapping. There are
also two XOR operations with subkeys which are effectless in differential attack
and would be omitted from our model. Summing up all the constraints related
to the above operations, our model has a number of 50n−32 constraints for one
round where n = 8. The reader should be noted that by enjoying the new more
efficient model giving in Section 2.3, the amount of reduction in the number of
constraints is 2(8(n− 1)) = 112, per round.

Similar to LEA, it is impossible to solve a 11-round MILP model as a whole.
So, again searching for the sub-optimal solutions explained in 3.2 would be a
reasonable strategy here. In the following our results on 11, 12 and 13 rounds of
HIGHT are reported.

Analysis of 11 and 12-round HIGHT According to the rule of sub-optimal
solution searching, we divide the 12-round cipher into two 6-round subciphers
and independently search each of them. The best 12-round differential character-
istics have probability 2−53 and there are two such characteristics for HIGHT,
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Table 8. Differential characteristics for 13-round HIGHT

Rounds First characteristic Second characteristic

∆x0||∆x1|| · · · ||∆x6||∆x7 log2p ∆x0||∆x1|| · · · ||∆x6||∆x7 log2p

0 01004483E20084F2 01004483E20084F2

1 000083E20080F201 −3 20005E030000AB3B −3

2 0000E2C1804A0100 −9 004A030000003B20 −7

3 0000C1184A010000 −6 4A010000000020B8 −10

4 000018C801000000 −6 010000000000B8C8 −4

5 0000C80100000000 −4 000000000000C801 −4

6 0000010000000000 −3 0000000000000100 −3

7 0001000000000000 -1 0000000000010000 -1

8 0100000000000082 −2 0000008201000000 −2

9 00000000009C8201 −3 009C820100000000 −3

10 000000039C7A0100 −8 9C7A010000000003 −8

11 00E803BC7A010000 −5 7A01000000E803BC −5

12 E800BCF801000002 −6 01000002E800BCF8 −6

13 00B6F80100B002E8 −5 009002E800B6F801 −5∑
r log2pr −61 −61

one of which was found in [34]. In the first one, reported in [34] too, the in-
ternal difference at round six is (0001, 0000, 0000, 0000) and in the other one,
reported for the first time in this paper, it is (0000, 0000, 0001, 0000). These two
characteristics have been shown in Tab. 8.

Having found the sub-optimum characteristics, we start searching for the
other characteristics with the same input/output difference to compute the dif-
ferential probability. For the second case, the probability polynomials of subci-
phers are derived as follows.

p1(x) = x24 + x33 + x35 + x38 + x39 + 3x41 + 2x42

p2(x) = x29 + 4x40 + 4x41 + 4x42 + 15x43 (21)

and the probability polynomial of the 12-round characteristic is

p(x) = p1(x)p2(x)

= x53 + x62 + 5x64 + 4x65 + 4x66 + 16x67 +

x68 + 3x70 + 2x71 + 4x73 + 4x74 + 8x75 +

4x76 + 19x77 + 19x78 + 8x79 + 8x80 +

31x81 + 35x82 + 20x83 + 53x84 + 30x85 (22)
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An interesting observation about HIGHT is that, despite LEA, it does not
show a strong differential effect. The probability polynomial is sparse and a
small number of characteristics with insignificant probabilities matches this dif-
ferential. Hence, the differential probability is approximately equal to its only
dominant characteristic probability which is equal to

p(x)|x= 1
2
' 2−53 (23)

To have a comparison with 11-round characteristic found in [13], we can omit the
last round of these 12-round characteristics to come up with a 11-round charac-
teristics with probability 2−47. However, we repeated the search for sub-optimal
solution for the 11-round problem and found a characteristic with probability
2−45 which is much more efficient than that found in [13] with probability 2−58.

Analysis of 13-round HIGHT The 13-round sub-optimal characteristic of
HIGHT would be found by dividing it into 7 and 6-round subciphers, respec-
tively. These characteristics are reflected in Tab. 7. The best two characteristics
constrained to have weight one at the middle (round 7). For the 13-round case,
the best found characteristics have the differences (0000, 0000, 0001, 0000) or
(0001, 0000, 0000, 0000) at round 7, again. Furthermore, their downward propa-
gation patterns, i.e. in the second subcipher, are exactly the same as the 12-round
characteristics. But, their 7-round upward patterns are completely different. It
means that sub-optimum 13-round characteristic does not necessarily derived by
extending the sub-optimum 12-round characteristic for one round.

Now, we compute the probability polynomials of the two subciphers as fol-
lows:

p1(x) = x32 + x38 + x43 + 2x44

p2(x) = x29 + 4x40 + 4x41 + 4x42 + 15x43 (24)

And the probability of differential as:

p(x)|x= 1
2

= p1(x)p2(x)|x= 1
2

=' 2−61 (25)

The above information are related to the 13-round characteristic with the 7-th
round difference (0000, 0000, 0001, 0000).

6 Conclusion

This work gave a more precise analysis for the differential property of ARX ci-
phers using MILP technique. We improved the general MILP model for modular
addition in a special case and come up with a simpler and faster solvable model.
Two block ciphers LEA and HIGHT were studied as instances of ARX ciphers
for both of which the results were improved significantly.

The MILP model constructed to find the (sub-)optimal characteristic intrin-
sically fits to compute differential probability, as well. We enjoyed this capability
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and investigated the differential effect in these two ciphers. Our findings show
that despite LEA which has a strong differential effect, HIGHT does not show
such an effect.
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Appendix A

Table 9. Linear inequalities expressing modular addition in general form

β[i]− γ[i] + (¬eq(α [i] , β [i] , γ [i])) ≥ 0,

α [i] − β[i] + (¬eq(α [i] , β [i] , γ [i])) ≥ 0,

−α [i] + γ[i] + (¬eq(α [i] , β [i] , γ [i])) ≥ 0,

−α [i]− β[i]− γ[i]− (¬eq(α [i] , β [i] , γ [i])) ≥ −3,

α [i] + β[i] + γ[i]− (¬eq(α [i] , β [i] , γ [i])) ≥ 0,

−β[i] + α [i+ 1] + β[i+ 1] + γ[i+ 1] + (¬eq(α [i] , β [i] , γ [i])) ≥ 0,

β[i] + α [i+ 1]− β[i+ 1] + γ[i+ 1] + (¬eq(α [i] , β [i] , γ [i])) ≥ 0,

β[i]− α [i+ 1] + β[i+ 1] + γ[i+ 1] + (¬eq(α [i] , β [i] , γ [i])) ≥ 0,

α [i] + α [i+ 1] + β[i+ 1]− γ[i+ 1] + (¬eq(α [i] , β [i] , γ [i])) ≥ 0,

γ[i]− α [i+ 1]− β[i+ 1]− γ[i+ 1] + (¬eq(α [i] , β [i] , γ [i])) ≥ −2,

−β[i] + α [i+ 1]− β[i+ 1]− γ[i+ 1] + (¬eq(α [i] , β [i] , γ [i])) ≥ −2,

−β[i]− α [i+ 1] + β[i+ 1]− γ[i+ 1] + (¬eq(α [i] , β [i] , γ [i])) ≥ −2,

−β[i]− α [i+ 1]− β[i+ 1] + γ[i+ 1] + (¬eq(α [i] , β [i] , γ [i])) ≥ −2.


