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Abstract. In the era of mass surveillance and information breaches, privacy of Internet communication,
and messaging in particular, is a growing concern. As secure messaging protocols are executed on the
not-so-secure end-user devices, and because their sessions are long-lived, they aim to guarantee strong
security even if secret states and local randomness can be exposed.
The most basic security properties, including forward secrecy, can be achieved using standard techniques
such as authenticated encryption. Modern protocols, such as Signal, go one step further and additionally
provide the so-called backward secrecy, or healing from state exposures. These additional guarantees
come at the price of a moderate efficiency loss (they require public-key primitives).
On the opposite side of the security spectrum are the works by Jaeger and Stepanovs and by Poettering
and Rösler, which characterize the optimal security a secure-messaging scheme can achieve. However,
their proof-of-concept constructions suffer from an extreme efficiency loss compared to Signal. Moreover,
this caveat seems inherent.
This paper explores the area in between: our starting point are the basic, efficient constructions, and
then we ask how far we can go towards the optimal security without losing too much efficiency. We
present a construction with guarantees much stronger than those achieved by Signal, and slightly weaker
than optimal, yet its efficiency is closer to that of Signal (only standard public-key cryptography is
used).
On a technical level, achieving optimal guarantees inherently requires key-updating public-key primitives,
where the update information is allowed to be public. We consider secret update information instead.
Since a state exposure temporally breaks confidentiality, we carefully design such secretly-updatable
primitives whose security degrades gracefully if the supposedly secret update information leaks.

1 Introduction and Motivation

1.1 Motivation

The goal of a secure-messaging protocol is to allow two parties, which we from now on call Alice and Bob, to
securely exchange messages over asynchronous communication channels in any arbitrary interleaving, without
an adversary being able to read, alter, or inject new messages.

Since mobile devices have become a ubiquitous part of our lives, secure-messaging protocols are almost
always run on such end-user devices. It is generally known, however, that such devices are often not very
powerful and vulnerable to all kinds of attacks, including viruses which compromise memory contents,
corrupted randomness generators, and many more [15, 14]. What makes it even worse is the fact that the
sessions are usually long-lived, which requires storing the session-related secret information for long periods of
time. In this situation it becomes essential to design protocols that provide some security guarantees even in
the setting where the memory contents and intermediate values of computation (including the randomness)
can be exposed.

The security guarantee which is easiest to provide is forward secrecy, which, in case of an exposure,
protects confidentiality of previously exchanged messages. It can be achieved using symmetric primitives,
such as stateful authenticated encryption [2].

Further, one can consider healing (also known as post-compromise recovery or backward secrecy). Roughly,
this means that if after a compromise the parties manage to exchange a couple of messages, then the security
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is restored.1 Providing this property was the design goal for some modern protocols, such as OTR [6] and
Signal [16]. The price for additional security is a loss of efficiency: in both of the above protocols the parties
regularly perform a Diffie-Hellman key exchange (public-key cryptography is necessary for healing). Moreover,
the above technique does not achieve optimal post-compromise recovery (in particular, healing takes at least
one full round-trip). The actual security achieved by Signal was recently analyzed by Cohn-Gordon et al. [8].

This raises a more conceptual question: what security guarantees of secure messaging are even possible
to achieve? This question was first formulated by Bellare et al. [5], who abstract the concept of ratcheting
and formalize the notions of ratcheted key exchange and communication. However, they only consider a very
limited setting, where the exposures only affect the state of one of the parties. More recently, Jaeger and
Stepanovs [13], and Poettering and Rösler [17] both formulated the optimal security guarantees achievable by
secure messaging. To this end, they start with a utopian definition, which cannot be satisfied by any correct
scheme. Then, one by one, they disable all generic attacks, until they end with a formalization for which
they can provide a proof-of-concept construction. (One difference between the two formalizations is that [13]
considers exposing intermediate values used in the computation, while [17] does not.) The resulting optimal
security implies many additional properties, which were not considered before. For example, it requires
post-impersonation security, which concerns messages sent after an active attack, where the attacker uses an
exposed state to impersonate a party (we will say that the partner of the impersonated party is hijacked).

Unfortunately, these strong guarantees come at a high price. Both constructions [13, 17] use very inefficient
primitives, such as hierarchical identity-based encryption (HIBE) [11, 12]. Moreover, it seems that an
optimally-secure protocol would in fact imply HIBE.

This leads to a wide area of mostly unexplored trade-offs with respect to security and efficiency, raising
the question how much security can be obtained at what efficiency.

1.2 Contributions

In this work we contribute to a number of steps towards characterizing the area of sub-optimal security. We
present an efficient secure-messaging protocol with almost-optimal security in the setting where both the
memory and the intermediate values used in the computation can be exposed.

Unlike the work on optimal security [13, 17], we start from the basic techniques, and gradually build
towards the strongest possible security. Our final construction is based on standard digital signatures and
CCA-secure public-key encryption. The ciphertext size is constant, and the size of the secret state grows
linearly with the number of messages sent since the last received message (one can prove that the state size
cannot be constant). We formalize the precise security guarantees achieved in terms of game-based security
definitions.

Intuitively, the almost-optimal security comes short of optimal in that in two specific situations we do
not provide post-impersonation security. The first situation concerns exposing the randomness of one of two
specific messages,2 and in the second, the secret states of both parties must be exposed at almost the same
time. The latter scenario seems rather contrived: if the parties were exposed at exactly the same time, then
any security would anyway be impossible. However, one could imagine that the adversary suddenly loses
access to one of the states, making it possible to restore it. Almost-optimal guarantees mean that the security
need not be restored in this case.

It turns out that dealing with exposures of the computation randomness is particularly difficult. For
example, certain subtle issues made us rely on a circularly-secure encryption scheme. Hence, we present our
overall proof in the random oracle model. We stress, however, that the random oracle assumption is only
necessary to provide additional guarantees when the randomness can leak.

1.3 Further Related Work

Most work on secure messaging [5, 13, 17, 10], including this paper, considers the situation where messages
can only be decrypted in order (so out-of-order messages must be either buffered or dropped). In a recent work,

1 Of course, for the healing to take effect, the adversary must remain passive and not immediately use the compromised
state to impersonate a party.

2 Namely, the messages sent right before or right after an active impersonation attack.
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Alwen, Coretti and Dodis [1] consider a different setting in which it is required that any honestly-generated
message can be immediately decrypted. The authors motivate this property by practical aspects, as for
example immediate decryption is necessary to prevent certain denial-of-service attacks. Moreover, immediate
decryption is actually achieved by Signal. This setting requires different definitions of both authenticity and
correctness. Moreover, requiring the ability to immediately decrypt messages appears to incur a significant
hit on the post-impersonation security a protocol can guarantee.

We find it very interesting to analyze the optimal and sub-optimal security guarantees in the setting of [1],
and how providing them impacts the efficiency. However, this is not the focus of this work. Note that most
practical secure messengers buffer the messages on a central server, so that even if parties are intermittently
offline, they receive all their messages once they go online. Hence, not handling out-of-order messages should
not significantly affect practicality.

In a recent concurrent and independent work, Durak and Vaudenay [10] also present a very efficient
asynchronous communication protocol with sub-optimal security. However, their setting, in contrast to ours,
explicitly excludes exposing intermediate values used in computation, in particular, the randomness. Allowing
exposure of the randomness seems much closer to reality. Why would we assume that the memory of a device
can be insecure, but the sampled randomness is perfect? Our construction provides strong security if the
randomness fully leaks, while [10] gives no guarantees even if a very small amount of partial information is
revealed. In fact, it is not clear how to modify the construction of [10] to work in the setting with randomness
exposures. We note that the proof of [10], in contrast to ours, is in the standard model. On the other hand,
we only need the random oracle to provide the additional guarantees not considered in [10].

2 Towards Optimal Security Guarantees

In this section we present a high-level overview of the steps that take us from the basic security properties
(for example, those provided by Signal) towards the almost-optimal security, which we later implement in our
final construction. We stress that all constructions use only standard primitives, such as digital signatures
and public-key encryption. The security proofs are in the random oracle model.

2.1 Authentication

We start with the basic idea of using digital signatures and sequence numbers. These simple techniques break
down in the presence of state exposures: once a party’s signing key is exposed, the adversary can inject
messages at any time in the future. To prevent this and guarantee healing in the case where the adversary
remains passive, we can use the following idea. Each party samples a fresh signing and verification key with
each message, sends along the new (signed) verification key, and stores the fresh signing key to be used for
the next message. If either of the parties’ state gets exposed, say Alice’s, then Eve obtains her current signing
key that she can use to impersonate Alice towards Bob at this point in time. If, however, Alice’s next message
containing a fresh verification key has already been delivered, then the signing key captured by the adversary
becomes useless thereby achieving the healing property.

The above technique already allows to achieve quite meaningful guarantees: in fact, it only ignores
post-impersonation security. We implement this idea and formalize the security guarantees of the resulting
construction in Section 3.

2.2 Confidentiality

Assume now that all communication is authentic, and that none of the parties gets impersonated (that is,
assume that the adversary does not inject messages when he is allowed to do so). How can we get forward
secrecy and healing?

Forward secrecy itself can be achieved using standard forward-secure authenticated encryption in each
direction (this corresponds to Signal’s symmetric ratcheting layer). However, this technique provides no
healing.
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Perfectly Interlocked Communication. The first, basic idea to guarantee healing is to use public-key
encryption, with separate keys per direction, and constantly exchange fresh keys. The protocol is sketched
in Figure 1. Note that instead of using a PKE scheme, we could also use a KEM scheme and apply the
KEM-DEM principle, which is essentially what Signal does for its asymmetric ratcheting layer.

Let us consider the security guarantees offered by this solution. Assume for the moment that Alice and
Bob communicate in a completely interlocked manner, i.e., Alice sends one message, Bob replies to that
message, and so on. This situation is depicted in Figure 1. Exposing the state of a party, say Alice, right
after sending a message (dk1A, ek

0
B in the figure) clearly allows to decrypt the next message (m2), which is

unavoidable due to the correctness requirement. However, it no longer affects the confidentiality of any other
messages. Further, exposing the state right after receiving a message has absolutely no effect (note that
a party can delete its secret key immediately after decrypting, since it will no longer be used). Moreover,
exposing the sending or receiving randomness is clearly no worse than exposing both the state right before and
after this operation. Hence, our scheme obtains optimal confidentiality guarantees (including forward-secrecy
and healing) when the parties communicate in such a turn-by-turn manner.

Alice Bob

dk0A, ek
0
B dk0B, ek

0
A

[m1]ek0
B
, ek1

A

dk1A, ek
0
Breveals m2

−, ek1A reveals nothing

[m2]ek1A
, ek

1
B

−, ek1B

dk1B, ek
1
A

Fig. 1. Constantly exchanging fresh public-keys achieves optimal security when communication is authenticated and
in a strict turn-by-turn fashion.

The Unidirectional Case. The problems with the above approach arise when the communication is not
perfectly interlocked. Consider the situation when Alice sends many messages without receiving anything
from Bob. The straightforward solution to encrypt all these messages with the same key breaks forward
secrecy: Bob can no longer delete his secret key immediately after receiving a message, so exposing his state
would expose many messages received by him in the past. This immediately suggests using forward-secure
public-key encryption [7], or the closely-related HIBE [11, 12] (as in the works by Jaeger et al. and Poettering
et al.). However, we crucially want to avoid using such expensive techniques.

The partial solution offered by Signal is the symmetric ratcheting. In essence, Alice uses the public key
once to transmit a fresh shared secret, which can then be used with forward-secure authenticated encryption.
However, this solution offers very limited healing guarantees: when Alice’s state is exposed, all messages sent
by her in the future (or until she receives a new public key from Bob) are exposed. Can we do something
better?

The first alternative solution which comes to mind is the following. When encrypting a message, Alice
samples a fresh key pair for a public-key encryption scheme, transmits the secret key encrypted along with
the message, stores the public key and deletes the secret key. This public key is then used by Alice to send
the next message. This approach is depicted in Figure 2. However, this solution totally breaks if the sending
randomness does leak. In essence, exposing Alice’s randomness causes a large part of Bob’s next state to be
exposed, hence, we achieve roughly the same guarantees as Signal’s symmetric ratcheting.

Hence, our approach will make the new decryption key depend on the previous decryption key, and not
solely on the update information sent by Alice. We note that, for forward secrecy, we still rely on the update
information being transmitted confidentially. This technique achieves optimal security up to impersonation
(that is, we get the same guarantees as for simple authentication). The solution is depicted in Figure 3. At
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Alice Bob

ek0B dk0B
[m

1, dk 1
B ]ek0

Bek1B

dk1B
reveals m2,m3

(unavoidable)

(ek1B, dk
1
B)← Pke.Gen

dk1B reveals m2, m3, m4

(no healing)

[m
2, dk 2

B ]ek1
Bek2B

dk2B

Fig. 2. First attempt to handle asynchronous messages, where one party (here Alice) can send multiple messages in a
row. This solution breaks totally when the randomness can leak.

Alice Bob

gb0 b0

[m1, b1]
gb0gb0+b1

b0 + b1 reveals m2,m3

b1 � Z|G|

[m2, b2]
gb0+b1gb0+b1+b2

b0 + b1 + b2

Fig. 3. Second attempt to handle asynchronous messages, where one party (here Alice) can send multiple messages
in a row.

a high level, we use the ElGamal encryption, where a key pair of Bob is (b0, g
b0) for some generator g of a

cyclic group. While sending a message, Alice sends a new secret exponent b1 encrypted under gb0 , the new
encryption key is gb0gb1 , and the new decryption key is b0 + b1.3 This idea is formalized in Section 4.

2.3 A First Efficient Scheme

Combining the solutions for authentication and confidentiality from the previous subsections already yields a
very efficient scheme with meaningful guarantees. Namely, we only give up on the post-impersonation security.
That is, we achieve the optimal guarantees up to the event that an adversary uses the exposed state of a
party to inject a message to the other party.

One may argue that such a construction is in fact the one that should be used in practice. Indeed, the
only guarantees we can hope for after such an active impersonation concern the party that gets impersonated,
say Alice, towards the other one, say Bob: Alice should not accept any messages from Bob or the adversary
anymore, and the messages she sends should remain confidential. Observe that the former guarantee potentially
enables Alice to detect the attack by the lack of replies to her messages. However, providing those guarantees
to their full extent seems to inherently require very inefficient tools, such as HIBE, in contrast to the quite
efficient scheme outlined above.

In the next subsections we make further steps towards our final construction, which provides some, but
not all, after-impersonation guarantees, thereby compromising between efficiency and security.

3 Looking ahead, it turns out that in order to prove the security of this construction, we need circular-secure encryption.
We achieve this in the random oracle model.
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2.4 Post-Impersonation Authentication

Consider the situation where the adversary exposes the state of Alice and uses it to impersonate her towards
Bob (that is, he hijacks Bob). Clearly, due to the correctness requirement, the adversary can now send further
messages to Bob. For the optimal security, we would require that an adversary cannot make Alice accept any
messages from Bob anymore, even given Bob’s state exposed at any time after the impersonation.

Note that our simple authentication scheme from Section 2.1 does not achieve this property, as Bob’s
state contains the signing key at this point. It does not even guarantee that Alice does not accept messages
sent by the honest Bob anymore. The latter issue we can easily fix by sending a hash of the communication
transcript along with each message. That is, the parties keep a value h (initially 0), which Alice updates as
h← Hash(h ‖ m) with every message m she sends, and which Bob updates accordingly with every received
message. Moreover, Bob accepts a message only if it is sent together with a matching hash h.

To achieve the stronger guarantee against an adversary obtaining Bob’s state, we additionally use ephemeral
signing keys. With each message, Alice generates a new signing key, which she securely sends to Bob, and
expects Bob to sign his next message with. Intuitively, the adversary’s injection “overwrites” this ephemeral
key, rendering Bob’s state useless. Note that for this to work, we need the last message received by Bob before
hijacking to be confidential. This is not the case, for example, if the sending randomness leaks.4 For this reason,
we do not achieve optimal security. In the existing optimal constructions [17, 13] the update information can
be public, which, unfortunately, seems to require very strong primitives, such as forward-secure signatures.

2.5 Post-Impersonation Confidentiality

In this section we focus on the case where the adversary impersonates Alice towards Bob (since this is only
possible if Alice’s state exposed, we now consider her state to be a public value).

Consider once more the two approaches to provide confidentiality in the unidirectional case, presented in
Section 2.2 (Figures 2 and 3). Observe that if we assume that the randomness cannot be exposed, then the first
solution from Figure 2, where Alice sends (encrypted) a fresh decryption key for Bob, already achieves very
good guarantees. In essence, during impersonation the adversary has to choose a new decryption key (consider
the adversary sending [m3, d̄k

3
B]ek2B in the figure), which overwrites Bob’s state. Hence, the information needed

to decrypt the messages sent by Alice from this point on (namely, dk2B) is lost.5 In contrast, the second
solution from Figure 3 provides no guarantees for post-impersonation messages: after injecting a message and
exposing Bob’s state, the adversary can easily compute Bob’s state from right before the impersonation and
use it to decrypt Alice’s messages sent after the attack.

While the former idea has been used in [10] to construct an efficient scheme with almost-optimal security
for the setting where the randomness generator is perfectly protected, we aim at also providing guarantees
in the setting where the randomness can leak. To achieve this, we combine the two approaches, using both
updating keys from the latter scheme and ephemeral keys from the former one, in a manner analogous to how
we achieved post-impersonation authentication. More concretely, Alice now sends (encrypted), in addition
to the exponent, a fresh ephemeral decryption key, and stores the corresponding encryption key, which she
uses to additionally encrypt her next message. Now the adversary’s injected message causes the ephemeral
decryption key of Bob to be overwritten.

As was the case for authentication, this solution does not provide optimal security, since we rely on the
fact that the last message, say c, received before impersonation, is confidential. Moreover, in order to achieve
confidentiality we also need the message sent by Alice right after c to be confidential.

2.6 The Almost-Optimal Scheme

Using the ideas sketched above, we can construct a scheme with almost-optimal security guarantees. We note
that it is still highly non-trivial to properly combine these techniques, so that they work when the messages
4 Note that this also makes the choice of abstraction levels particularly difficult, as we need confidentiality, in order
to obtain authentication.

5 We can assume that Alice sends this value confidentially. It makes no sense to consider Bob’s state being exposed,
as this would mean that both parties are exposed at the same time, in which case, clearly, we cannot guarantee any
security.
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can be arbitrarily interleaved (so far we only considered certain idealized settings of perfectly interlocked and
unidirectional communication).

The difference between our almost-optimal guarantees and the optimal ones [17, 13] is in the imperfection
of our post-impersonation security. As explained in the previous subsections, for these additional guarantees
we need two messages sent by the impersonated party (Alice above) to remain confidential: the one right
before and the one right after the attack. Roughly, these messages are not confidential either if the encryption
randomness is exposed for one of them, or if the state of the impersonated party is exposed right before
receiving the last message before the attack. Note that the latter condition basically means that both parties
are exposed at almost the same time. If they were exposed at exactly the same time, any security would
anyway be impossible.

In summary, our almost-optimal security seems a very reasonable guarantee in practice.

3 Unidirectional Authentication

In this section we formalize the first solution for achieving authentication, sketched informally in Section 2.1.
That is, we consider the goal of providing authentication for the communication from a sender (which we call
the signer) to a receiver (which we call the verifier) in the presence of an adversary who has full control over
the communication channel. Additionally, the adversary has the ability to expose secrets of the communicating
parties. In particular, this means that for each party, its internal state and, independently, the randomness it
chose during operations may leak.

We first intuitively describe the properties we would like to guarantee:

– As long as the state and sampled randomness of the signer are secret, the communication is authenticated
(in particular, all sent messages, and only those, can only be received in the correct order). We require
that leaking the state or the randomness of the verifier has no influence on authentication.

– If the state right before signing the i-th message or the randomness used for this operation is exposed,
then the adversary can trivially replace this message by one of her choice. However, we want that if she
remains passive (that is, if she delivers sufficiently many messages in order), and if new secrets do not
leak, then the security is eventually restored. Concretely, if only the state is exposed, then only the i-th
message can be replaced, while if the signing randomness is exposed, then only two messages (i and i+ 1)
are compromised.

Observe that once the adversary decides to inject a message (while the signer is exposed), security cannot be
restored. This is because from this point on, she can send any messages to the verifier by simply executing
the protocol. We will say that in such case the adversary hijacks the channel, and is now communicating with
the verifier.

The above requirements cannot be satisfied by symmetric primitives, because compromising the receiver
should have no effect on security. Moreover, in order to protect against deleting and reordering messages,
the algorithms need to be stateful. Hence, in the next subsection, we define a new primitive, which we call
key-updating signatures. At a high level, a key-updating signature scheme is a stateful signature scheme, where
the signing key changes with each signing operation, and the verification key changes with each verification.
We require that the verification algorithm is deterministic, so that leaking the randomness of the verifier
trivially has no effect.

3.1 Key-Updating Signatures

Syntax. A key-updating signature scheme KuSig consists of three polynomial-time algorithms (KuSig.Gen,
KuSig.Sign,KuSig.Verify). The probabilistic algorithm KuSig.Gen generates an initial signing key sk and a
corresponding verification key vk. Given a message m and sk, the signing algorithm outputs an updated
signing key and a signature: (sk′, σ)← KuSig.Sign(sk,m). Similarly, the verification algorithm outputs an
updated verification key and the result v of verification: (vk′, v)← KuSig.Verify(vk,m, σ).

Correctness. Let (sk0, vk0) be any output of KuSig.Gen, and let m1, . . . ,mk be any sequence of messages.
Further, let (ski, σi)← KuSig.Sign(ski−1,mi) and (vki, vi)← KuSig.Verify(vki−1,mi, σi) for i = 1, . . . , k. For
correctness, we require that vi = 1 for all i = 1, . . . , k.
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Game KuSig-UF

Initialization
(sk, vk)← KuSig.Gen
s, r ← 0
B ← array initialized to ⊥
win← false
lost← false
Exposed← ∅
return vk

Oracle Sign
Input: (m, leak) ∈ M× {true, false}
s← s+ 1
z � R
(sk, σ)← KuSig.Sign(sk,m; z)
B[s]← (m,σ)
if leak then

Exposed← Exposed ∪ {s− 1, s}
return (σ, z)

else
return σ

Oracle Expose

Exposed← Exposed ∪ {s}
return sk

Oracle Verify
Input: (m,σ) ∈ M×Σ

(vk, v)← KuSig.Verify(vk,m, σ)
if v = 0 then

return (0, vk)
r ← r + 1
if B[r] 6= (m,σ) then

if r − 1 ∈ Exposed then
lost← lost ∨ ¬win

else
win← true

return (1, vk)

Finalization

return win ∧ ¬lost

Fig. 4. The strong unforgeability game for key-updating signatures.

Security. The security of KuSig is formalized using the game KuSig-UF, described in Figure 4. For simplicity,
we define the security in the single-user setting (security in the multi-user setting can be obtained using the
standard hybrid argument).

The game interface. The game without the parts of the code marked by boxes defines the interface exposed
to the adversary.

At a high level, the adversary wins if he manages to set the internal flag win to true by providing a
message with a forged signature. To this end, he interacts with three oracles: Sign, Verify and Expose.
Using the oracle Sign, he can obtain signatures and update the secret signing key, using the oracle Verify, he
can update the verification key (or submit a forgery), and the oracle Expose reveals the secret signing key.

A couple of details about the above oracles require further explanation. First, the verification key does
not have to be kept secret. Hence, the updated key is always returned by the verification oracle. Second, we
extend the signing oracle to additionally allow “insecure” queries. That is, the adversary learns not only the
signature, but also the randomness used to generate it.

Disabling trivial attacks. Since the game described above can be trivially won for any scheme, we introduce
additional checks (shown in boxes), which disable the trivial “wins”.

More precisely, the forgery of a message that will be verified using the key vk, for which the signing key
sk was revealed is trivial. The key sk can be exposed either explicitly by calling the oracle Expose, or by
leaking the signing randomness using the call Sign(m, true). To disable this attack, we keep the set Exposed,
which, intuitively, keeps track of which messages were signed using an exposed state. Then, in the oracle
Verify, we check whether the adversary decided to input a trivial forgery (this happens if the index r − 1 of
currently verified message is in Exposed). If so, the game can no longer be won (the variable lost is set to
true).6

Advantage. For an adversary A, let Advku-suf
KuSig (A) denote the probability that the game KuSig-UF returns

true after interacting with A. We say that a key-updating signature scheme KuSig is KuSig-UF secure if
Advku-suf

KuSig (A) is negligible for any PPT adversary A.

6 The adversary knows which states are exposed, and hence can check himself before submitting a forgery attempt,
whether this will make him lose the game.
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3.2 Construction

We present a very simple construction of a KuSig, given any one-time signature scheme Sig, existentially-
unforgable under chosen-message attack. The construction is depicted in Figure 5. The high-level idea is to
generate a new key pair for Sig with each signed message. The message, together with the new verification
key and a counter,7 is then signed using the old signing key, and the new verification key is appended to
the signature. The verification algorithm then replaces the old verification key by the one from the verified
signature.

Construction of KuSig

Algorithm KuSig.Gen

(sk, vk)← Sig.Gen
return ((sk, 0), (vk, 0))

Algorithm KuSig.Sign

Input: ((sk, s),m; (zG, zS)) ∈ SS ×M×R
s← s+ 1
(sk′, vk′)← Sig.Gen(zG)
σ ← Sig.Sign(sk, vk′ ‖ s ‖ m; zS)
return ((sk′, s), (σ, vk′))

Algorithm KuSig.Verify

Input: ((vk, r),m, (σ, vk′)) ∈ SV ×M×Σ
v ← Sig.Verify(vk, vk′ ‖ (r + 1) ‖ m,σ)
if ¬v then

return ((vk, r), false)
else

return ((vk′, r + 1), true)

Fig. 5. The construction of key-updating signatures.

Theorem 1. Let Sig be a signature scheme. The construction of Figure 5 is KuSig-UF secure, if Sig is
1-SUF-CMA secure.

A proof of Theorem 1 is presented in Appendix D.

3.3 Other Definitions of Key-Updating Signatures

Several notions of signatures with evolving keys are considered in the literature. For example, in forward-secure
signatures [3] the signing key is periodically updated. However, in such schemes the verification key is fixed.
Moreover, the goal of forward secrecy is to protect the past (for signatures, this means that there exists some
notion of time and exposing the secret key does not allow to forge signatures for the past time periods). On
the other hand, we are interested in protecting the future, that is, the scheme should “heal” after exposure.

The notion closest to our setting is that of key-updateble digital signatures [13]. Here the difference is
that their notion provides stronger guarantees (hence, the construction is also less efficient). In particular, in
key-updateble digital signatures the signing key can be updated with any (even adversarially chosen) public
information. In contrast, in our definition the secret key is updated secretly by the signer, and only part of
the information used to update it is published as part of the signature.8

Relaxing the requirements of key-updateble digital signatures allows us to achieve a very efficient
construction ([13] uses rather inefficient forward-secure signatures as a building block). On the other hand,
the stronger guarantee seems to be necessary for the optimal security of [13].

4 Unidirectional Confidentiality

In this section we formalize the second solution for achieving confidentiality in the unidirectional setting, where
the sender, which we now call the encryptor generates some secret update information and communicates it
7 In fact, the counter is not necessary to prove security of the construction, since every message is signed with a
different key. However, we find it cleaner to include it.

8 For example, in our construction the public part of the update is a fresh verification key, and the secret part is
the corresponding signing key. This would not satisfy the requirements of [13], since there is no way to update the
signing key using only the fresh verification key.

9



(encrypted) to the receiver, which we now call the decryptor. In the following, we assume that the secret
update information is delivered through an idealized secure channel.

The setting is similar to the one we considered for authentication: the secret states and the randomness
of the encryptor and of the decryptor can sometimes be exposed. However, now we also assume that the
communication is authenticated. We assume authentication in the sense of Section 3, however, we do not
consider hijacking the channel. In this section we give no guarantees if the channel is hijacked.

At a high level, the construction presented in this section should provide the following guarantees:

– Exposing the state of the encryptor should have no influence on confidentiality. Moreover, leaking the
encryption randomness reveals only the single message being encrypted.

– Possibility of healing: if at some point in time the encryptor delivers to the decryptor an additional
(update) message through some out-of-band secure channel, then any prior exposures of the decryption
state should have no influence on the confidentiality of future messages. (Looking ahead, in our overall
construction such updates will indeed be sometimes delivered securely.)

– Weak forward secrecy: exposing the decryptor’s state should not expose messages sent before the last
securely delivered update.

For more intuition about the last two properties, consider Figure 6. The states 1 to 7 correspond to the
number of updates applied to encryption or decryption keys. The first two updates are not delivered securely
(on the out-of-band channel), but the third one is. Exposing the decryption key at state 5 (after four updates)
causes all messages encrypted under the public keys at states 4, 5 and 6 to be exposed. However, the messages
encrypted under keys at states 1 to 3 are not affected.

1 2 3 4 5 6 7[ )[ )[
insecure insecure secure insecure insecure secure

. . .

exposed

Fig. 6. Intuition behind the confidentiality guarantees.

To formalize the above requirements, we define a new primitive, which we call secretly key-updatable
public-key encryption (SkuPke).

4.1 Secretly Key-Updatable Public-Key Encryption

At a high level, a secretly key-updatable public-key encryption scheme is a public-key encryption scheme,
where both the encryption and the decryption key can be (independently) updated. The information used to
update the encryption key can be public (it will be a part of the encryptor’s state, whose exposure comes
without consequences), while the corresponding update information for the decryption key should be kept
secret (this update will be sent through the out-of-band secure channel).

In fact, for our overall scheme we need something a bit stronger: the update information should be
generated independently of the encryption or decryption keys. Moreover, the properties of the scheme should
be (in a certain sense) preserved even when the same update is applied to many independent key pairs.
The reason for these requirements will become more clear in the next section, when we use the secretly
key-updatable encryption to construct a scheme for the sesqui-directional setting.

The security definition presented in this section is slightly simplified and it does not consider the above
additional guarantees. However, it is sufficient to understand our security goals. In the proof of the overall
construction we use the full definition presented in Appendix C, which is mostly a straightforward extension
to the multi-instance setting.

Syntax. A secretly key-updatable public-key encryption scheme SkuPke consists of six polynomial-time algo-
rithms (SkuPke.Gen,SkuPke.Enc,SkuPke.Dec, SkuPke.UpdateGen,SkuPke.UpdateEk,SkuPke.UpdateDk). The
probabilistic algorithm SkuPke.Gen generates an initial encryption key ek and a corresponding decryption key
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dk. Then, the probabilistic encryption algorithm can be used to encrypt a messagem as c← SkuPke.Enc(ek,m),
while the deterministic decryption algorithm decrypts the message: m← SkuPke.Dec(dk, c).

Furthermore, the probabilistic algorithm SkuPke.UpdateGen generates public update information ue and
the corresponding secret update information ud, as (ue, ud)← SkuPke.UpdateGen. The former can then be
used to update an encryption key ek′ ← SkuPke.UpdateEk(ue, ek), while the latter can be used to update the
corresponding decryption key dk′ ← SkuPke.UpdateDk(ud, dk).

Correctness. Let (ek0, dk0) be the output of SkuPke.Gen, and let (ue1, ud1), . . . , (uek, udk) be any se-
quence of outputs of SkuPke.UpdateGen. For i = 1 . . . k, let eki ← SkuPke.UpdateEk(uei, ei−1) and dki ←
SkuPke.UpdateDk(udi, di−1). A SkuPke is called correct, if SkuPke.Dec(dkk,SkuPke.Enc(ekk,m)) = m for any
message m with probability 1.

Security. Figure 7 presents the single-instance security game for a SkuPke scheme, which we describe in the
following paragraphs.

Game SkuPke-CPA

Initialization
b � {0, 1}
Ue,Ud ← array initialized to ⊥
ind, indd, inde ← 1

NLeak← {1}
Chal← ∅
exp← −1
ek, dk ← SkuPke.Gen
return ek

Oracle UpdateGen
Input: z ∈ R ∪ {⊥}

ind← ind + 1
if z = ⊥ then

(Ue[ind],Ud[ind])← SkuPke.UpdateGen

NLeak← NLeak ∪ {ind}
return Ue[ind]

else
(Ue[ind],Ud[ind])← SkuPke.UpdateGen(z)
return (Ue[ind],Ud[ind])

Oracle Challenge

Input: (m0,m1, i) ∈ M2 × (N \ {0, 1})
nc1 ← exp ≥ inde ∧ (inde, exp] ∩ NLeak = ∅)
nc2 ← exp < inde ∧ (exp, inde] ∩ NLeak = ∅)

if |m0| 6= |m1| ∨ i > ind ∨ nc1 ∨ nc2 then
return ⊥

Chal← Chal ∪ {inde}
c← SkuPke.Enc(ek,mb ‖ Ud[i])
return c

Oracle Expose
if exp ≥ 0 then

return ⊥
ne1 ← ∃c ∈ Chal (c ≥ indd] ∧ (indd, c] ∩ NLeak = ∅)
ne2 ← ∃c ∈ Chal (c < indd] ∧ (c, indd] ∩ NLeak = ∅)
if ne1 ∨ ne2 then

return ⊥
exp← indd

return dk

Oracle UpdateEk
if inde ≥ ind then

return ⊥
inde ← inde + 1
ek ← SkuPke.UpdateEk(Ue[inde], ek)
return ek

Oracle UpdateDk
if indd ≥ ind then

return ⊥
indd ← indd + 1
dk ← SkuPke.UpdateDk(Ud[indd], dk)

Finalization
Input: d ∈ {0, 1}

return (d = b)

Fig. 7. The single-instance confidentiality game for secretly key-updatable encryption.

The game interface. The interface exposed to the adversary is defined via the part of the code not marked by
boxes.

We extend the standard notion of IND-CPA for public-key encryption, where the adversary gets to see the
initial encryption key ek and has access to a left-or-right Challenge oracle. Furthermore, the adversary can
generate new update information by calling the oracle UpdateGen, and later apply the generated updates
to the encryption and decryption key, by calling, respectively, the oracles UpdateEk and UpdateDk. In
our setting the adversary is allowed to expose the randomness and the state of parties. The encryption state
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Construction of SkuPke

Algorithm SkuPke.Gen

x � Zq

return (gx, x)

Algorithm SkuPke.UpdateGen

x � Zq

return (gx, x)

Algorithm SkuPke.UpdateEk

Input: (ue, ek)
return ek · ue

Algorithm SkuPke.UpdateDk

Input: (ud, dk)
return (dk + ud) mod q

Algorithm SkuPke.Enc

Input: (ek,m)
r � Zq

return (gr,Hash|m|(ek
r)⊕m)

Algorithm SkuPke.Dec

Input: (dk, (c1, c2))

return Hash|c2|(c
dk
1 )⊕ c2

Fig. 8. The construction of secretly key-updatable encryption.

is considered public information, hence, the key ek and the public update Ue[ind] are always returned by
the corresponding oracles. The decryption key dk can be revealed by calling the Expose oracle9, and the
secret decryption updates — by setting the randomness for the oracle UpdateGen. Finally, the Challenge
oracle encrypts the message together with the previously generated secret update information, chosen by the
adversary (recall the idea sketched in Section 2.2).

Disabling trivial attacks. In essence, in the presence of exposures, it is not possible to protect the confidentiality
of all messages. As already explained, we allow an exposure of the secret key to compromise secrecy of all
messages sent between two consecutive secure updates. Hence, the game keeps track of the following events:
generating a secure update (the set NLeak), exposing the secret key (the variable exp), and asking for a
challenge ciphertext (the set Chal). Then, the adversary is not allowed to ask for a challenge generated using
the encryption key, corresponding to a decryption key, which is in the “exposed” interval (that is, if all updates
between the decryption key and the exposed state are insecure). An analogous condition is checked by the
Expose oracle.

Advantage. Recall that in this section we present the single-instance security game, but in the proofs
later we need the multi-instance version SkuPke-MI-CPA defined in Appendix C. Hence, we define security
using the multi-instance game. For an adversary A, let Advsku-cpa

SkuPke(A) := 2 Pr[ASkuPke-MI-CPA ⇒ true] − 1,
where Pr[ASkuPke-MI-CPA ⇒ true] denotes the probability that the game SkuPke-MI-CPA returns true after
interacting with an adversary A. We say that a secretly key-updatable encryption scheme scheme SkuPke is
SkuPke-MI-CPA secure if Advsku-cpa

SkuPke (A) is negligible for any PPT adversary A.

4.2 Construction

We present an efficient construction of SkuPke, based on the ElGamal cryptosystem. At a high level, the key
generation, encryption and decryption algorithms are the same as in the ElGamal encryption scheme. To
generate the update information, we generate a new ElGamal key pair, and set the public and private update
to, respectively, the new public and private ElGamal keys. To update the encryption key, we multiply the
two ElGamal public keys, while to update the decryption key, we add the ElGamal secret keys. Finally, in
order to deal with encrypting previously generated update information, we need the hash function Hashl(·),
where l is the output length.

The construction is defined in Figure 8. We let G be a group of prime order q, generated by g. These
parameters are implicitly passed to all algorithms.

In Appendix C we give a proof of the following theorem.

Theorem 2. The construction of Figure 8 is SkuPke-MI-CPA secure in the random oracle model, if CDH is
hard.
9 For technical reasons, we only allow one query to the Expose oracle.
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5 Sesquidirectional Confidentiality

The goal of this section is to define additional confidentiality guarantees in the setting where also an
authenticated back channel from the decryptor to the encryptor exists (but we still focus only the properties
of the unidirectional from the encryptor to the decryptor). That is, we assume a perfectly-authenticated back
channel and a forward channel, authenticated in the sense of Section 3 (in particular, we allow hijacking the
decryptor).

It turns out that in this setting we can formalize all confidentiality properties needed for our overall
construction of a secure channel. Intuitively, the properties we consider include forward secrecy, post-hijack
security, and healing through the back channel.

Forward secrecy. Exposing the decryptor’s state should not expose messages which he already received.

Post-hijack guarantees. Ideally, we would like to guarantee that if the communication to the decryptor is
hijacked, then all messages sent by the encryptor after hijacking are secret, even if the decryptor’s state is
exposed (note that these messages cannot be read by the decryptor, since the adversary caused his state
to be “out-of-sync”). However, this guarantee turns out to be extremely strong, and seems to inherently
require HIBE. Hence, we relax it by giving up on the secrecy of post-hijack messages in the following case:
a message is sent insecurely (for example, because the encryption randomness is exposed), the adversary
immediately hijacks the communication, and at some later time the decryptor’s state is exposed. We stress
that the situation seems rather contrived, as explained in the introduction.

Healing through the back channel. Intuitively, the decryptor will update his state and send the corresponding
update information on the back channel. Once the encryptor uses this information to update his state,
the parties heal from past exposures. At a high level, this means that we require the following additional
guarantees:

– Healing: messages sent after the update information is delivered are secret, irrespective of any exposures
of the decryptor’s state, which happened before the update was generated.

– Correctness: in the situation where the messages on the back channel are delayed, it should still be
possible to read the messages from the forward channel. That is, it should be possible to use a decryption
key after i updates to decrypt messages encrypted using an “old” encryption key after j < i updates.

Challenges. It turns out that the setting with both the back channel, and the possibility of hijacking, is
extremely subtle. For example, one may be tempted to use an encryption scheme which itself updates keys
and provides some form of forward secrecy, and then simply send on the back channel a fresh key pair for
that scheme. With this solution, in order to provide correctness, every generated secret key would have to be
stored until a ciphertext for a newer key arrives. Unfortunately, this simple solution does not work. Consider
the following situation: the encryptor sends two messages, one before and one after receiving an update on
the back channel, and these messages are delayed. Then, the adversary hijacks the decryptor by injecting
an encryption under the older of the two keys. However, if now the decryptor’s state is exposed, then the
adversary will learn the message encrypted with the new key (which breaks the post-hijack guarantees we
wish to provide). Hence, it is necessary that receiving a message updates all decryption keys, also those for
future messages. Intuitively, this is why we require that the same update for SkuPke can be applied to many
keys.

5.1 Healable And Key-Updating Public-Key Encryption

To formalize the requirements sketched above, we define healable and key-updating public-key encryption
(HkuPke). In a nutshell, a HkuPke scheme is a stateful public-key encryption scheme with additional algorithms
used to generate and apply updates, sent on the back channel.
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Syntax. A healable and key-updating public-key encryption scheme HkuPke consists of five polynomial-time
algorithms (HkuPke.Gen,HkuPke.Enc,HkuPke.Dec, HkuPke.BcUpEk,HkuPke.BcUpDk).

The probabilistic algorithm HkuPke.Gen generates an initial encryption key ek and a corresponding
decryption key dk. Encryption and decryption algorithms are stateful. Moreover, for reasons which will
become clear in the overall construction of a secure channel, they take as input additional data, which need not
be kept secret.10 Formally, we have (ek′, c)← HkuPke.Enc(ek,m, ad) and (dk′,m)← HkuPke.Dec(dk, c,m),
where ek′ and dk′ are the updated keys and ad is the additional data. The additional two algorithms are
used to handle healing through the back channel: the operation (dk′, upd)← HkuPke.BcUpDk(dk) outputs
the updated decryption key dk′ and the information upd, which will be sent on the back channel. Then, the
encryption key can be updated by executing ek′ ← HkuPke.BcUpEk(ek, upd).

Correctness. Intuitively, we require that if all ciphertexts are decrypted in the order of encryption, and if
the additional data used for decryption matches that used for encryption, then they decrypt to the correct
messages. Moreover, decryption must also work if the keys are updated in the meantime, that is, if an arbitrary
sequence of HkuPke.BcUpDk calls is performed and the ciphertext is generated at a point where only a prefix
of the resulting update information has been applied to the encryption key using HkuPke.BcUpEk. We give
the formal definition of correctness in Appendix A.

Security. The security of HkuPke is formalized using the game HkuPke-CPA, described in Figure 9. Similarly
to the unidirectional case, we extend the IND-CPA game.

The interface. Consider the (insecure) variant of our game without the parts of the code marked in boxes.
As in the IND-CPA game, the adversary gets to see the encryption key ek and has access to a left-or-right
Challenge oracle. Since HkuPke schemes are stateful, we additionally allow the adversary to update the
decryption key through the calls to the Decrypt oracle (which for now only returns ⊥). The encryption
key is updated using the calls to the Encrypt oracle (where the encrypted message is known) and to the
Challenge oracle.

Furthermore, in our setting the adversary is allowed to expose the randomness and the state. To expose
the state (that is, the decryption key), he can query the Expose oracle. To expose the randomness of any
randomized oracle, he can set the input flag leak to true.

Finally, the adversary can access two oracles corresponding to the back channel: the oracle BcUpdateDk
executes the algorithm HkuPke.BcUpDk and returns the update information to the adversary (this corresponds
to sending on the back channel), and the oracle BcUpdateEk executes HkuPke.BcUpEk with the next
generated update (since the channel is authenticated, the adversary has no influence on which update is
applied).

Disabling trivial attacks. Observe that certain attacks are disabled by the construction itself. For example,
the randomness used to encrypt a challenge ciphertext cannot be exposed.

Furthermore, the game can be trivially won if the adversary asks for a challenge ciphertext and, before
calling Decrypt with this ciphertext, exposes the decryption key (by correctness, the exposed key can be
used to decrypt the challenge). We disallow this by keeping track of when the adversary queried a challenge
in the set Challenges, and adding corresponding checks in the Expose oracle. Similarly, in the Challenge
oracle we return ⊥ whenever the decryption key corresponding to the current encryption key is known to the
adversary. Finally, the decryptor can be hijacked, which the game marks by setting hijacked to true. Once
this happens, the Decrypt oracle “opens up” and returns the decrypted message.

Moreover, ideally, exposing the secret key after hijacking would not reveal anything about the messages
(the adversary gets to call Expose “for free”, without setting exposed). However, as already mentioned, we
relax slightly the security. In particular, exposing is free only when hijacking did not occur immediately after
leaking encryption randomness. This is checked using the conditions vuln1 and vuln2.

10 Roughly, the additional data is needed to provide post-hijack security of the final construction: changing the
additional data means that the adversary decided to hijack the channel, hence, the decryption key should be
updated.
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Game HkuPke-CPA

Initialization
b � {0, 1}
(ek, dk)← HkuPke.Gen
s, r, i, j ← 0

exposed← −1
hijacked← false
Challenges← ∅
B,U ← array initialized to ⊥
return ek

Oracle Encrypt
Input: (m, ad) ∈ M×AD
s← s+ 1
z � R
(ek, c)← HkuPke.Enc(ek,m, ad; z)
B[s]← (c, ad)
return (ek, c, z)

Oracle BcUpdateEk
if j = i then

return ⊥
j ← j + 1
ek ← HkuPke.BcUpEk(ek,U [j])

Oracle Challenge

Input: (m0,m1, ad) ∈ M2 ×AD
if |m0| 6= |m1| then

return ⊥
if j ≤ exposed then

return ⊥
(ek, c, z)← Encrypt(mb, ad)

Challenges← Challenges ∪ {s}
return (ek, c)

Oracle Decrypt
Input: (c, ad) ∈ C × AD

(dk,m)← HkuPke.Dec(dk, c, ad)
if m = ⊥ then

return ⊥
if hijacked ∨ (c, ad) 6= B[r + 1] then

hijacked← true
return m

else
r ← r + 1
return ⊥

Oracle BcUpdateDk
Input: leak ∈ {true, false}

if ¬hijacked then
i← i+ 1
z � R
(dk,U [i])← HkuPke.BcUpDk(dk; z)
if leak then

exposed← i
return (U [i], z)

else
return U [i]

Oracle Expose

vuln1 ← r /∈ Challenges
vuln2 ← r + 1 ≤ s ∧ r + 1 /∈ Challenges
if hijacked ∧ ¬vuln1 ∧ ¬vuln2 then

return dk

else if ∀e ∈ (r, s] e /∈ Challenges then
exposed← i
return dk

else
return ⊥

Finalization
Input: d ∈ {0, 1}

return (d = b)

Fig. 9. The confidentiality game for healable and key-updating encryption.

Advantage. In the following, let Advhku-cpa
HkuPke(A) := 2 Pr[AHkuPke-CPA ⇒ true] − 1, where Pr[AHkuPke-CPA ⇒

true] denotes the probability that the game HkuPke-CPA returns true after interacting with an adversary
A. We say that a healable and key-updating encryption scheme scheme HkuPke is HkuPke-CPA secure if
Advhku-cpa

HkuPke(A) is negligible for any PPT adversary A.

5.2 Construction

To construct a HkuPke scheme, we require two primitives: a secretly key-updatable encryption scheme SkuPke
from Section 4, and an IND-CCA2 secure public-key encryption scheme with associated data PkeAd. Intuitively,
the latter primitive is a public-key encryption scheme, which additionally takes into account non-secret
associated data, such that the decryption succeeds if and only if the associated data has not been modified.
A bit more formally, in the corresponding security game the decryption oracle is only blinded if the adversary
requests to decrypt the challenge ciphertext together with the associated data provided with the challenge. It
will decrypt the challenge for any other associated data. We formalize this notion in Appendix B.

At the core of our construction, in order to encrypt a message m, we generate an update ue, dd for an
SkuPke scheme and encrypt the secret update information ud together with m. This update information is
then used during decryption to update the secret key.

Unfortunately, this simple solution has a few problems. First, we need the guarantee that after the
decryptor is hijacked, his state cannot be used to decrypt messages encrypted afterwards. We achieve this by
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Construction of HkuPke

Algorithm HkuPke.Gen

DKupd, DKeph, Ue ← array initialized to ⊥
(ekupd, DKupd[0])← SkuPke.Gen

(ekeph, DKeph[0])← PkeAd.Gen
s, r, i, j, trs, trr ← 0
iack ← −1
return ((ekupd, ekeph, s, j, Ue, trs),

(DKupd, DKeph, r, i, iack, trr))

Algorithm HkuPke.Enc

Input: ((ekupd, ekeph, s, j, Ue, trs),m, ad;
(z1, . . . , z4)) ∈ EK ×M×AD ×R

s← s+ 1
(Ue[s], ud)← SkuPke.UpdateGen(z1)

ĉ← SkuPke.Enc(ekupd, (m,ud, z2); z3)

c← PkeAd.Enc(ekeph, ĉ, ad; z4)
trs ← Hash(trs ‖ (c, j, ad))

ekupd ← SkuPke.UpdateEk(Ue[s], ek
upd)

(ekeph,_)← PkeAd.Gen(Hash(trs ‖ z2))
return ((ekupd, ekeph, s, j, Ue, trs), (c, j))

Algorithm HkuPke.BcUpDk

Input: ((DKupd, DKeph, r, i, iack, trr);
(z1, z2)) ∈ DK×R

i← i+ 1

(êk
upd
, d̂k

upd
)← SkuPke.Gen(z1)

(êk
eph
, d̂k

eph
)← PkeAd.Gen(z2)

DKupd[i]← d̂k
upd

DKeph[i]← d̂k
eph

return ((DKupd, DKeph, r, i, iack, trr),

(êk
upd
, êk

eph
, r))

Algorithm HkuPke.BcUpEk

Input: ((ekupd, ekeph, s, j, Ue, trs),

(êk
upd
, êk

eph
, rmsg)) ∈ EK × U

if rmsg ≥ s then
ekeph ← êk

eph

ekupd ← êk
upd

for `← (rmsg + 1), . . . , s do
ekupd ← SkuPke.UpdateEk(Ue[`], ek

upd)

return (ekupd, ekeph, s, j + 1, Ue, trs)

Algorithm HkuPke.Dec

Input: ((DKupd, DKeph, r, i, iack, trr), (c, imsg), ad) ∈ DK× C ×AD
if iack ≤ imsg ≤ i then

ĉ← PkeAd.Dec(DKeph[imsg], c, ad)
if ĉ 6= ⊥ then

m̂← SkuPke.Dec(DKupd[imsg], ĉ)
if m̂ ∈ M× SkuPke.U × PkeAd.DK then

(m,ud, z)← m̂
trr ← Hash(trr ‖ (c, imsg, ad))

(_, d̂keph
)← PkeAd.Gen(Hash(trr ‖ z))

for `← 0 . . . i do
if ` < imsg then

DKeph[`]← ⊥
DKupd[`]← ⊥

else
DKeph[`]← d̂k

eph

DKupd[`]← SkuPke.UpdateDk(ud, DK
upd[`])

return ((DKupd, DKeph, r + 1, i, imsg, trr),m)

return ((DKupd, DKeph, r, i, iack, trr),⊥)

Fig. 10. The construction of healable and key-updating encryption.

adding a second layer of encryption, using a PkeAd. We generate a new key pair during every encryption,
and send the new decryption key along with m and ud, and store the corresponding encryption key for the
next encryption operation. The decryptor will use his current such key to decrypt the message and then
completely overwrite it with the new one he just received. Therefore, we call those keys “ephemeral”. The
basic idea is of course that during the hijacking, the adversary has to provide a different ciphertext containing
a new ephemeral key, which will then be useless for him when exposing the receiver afterwards. In order
to make this idea sound, we have to ensure that this key is not only different from the previous one, but
unrelated. To achieve this, we actually do not send the new encryption key directly, but send a random value
z instead and then generate the key pairs using Hash(tr ‖ z) as randomness. Here tr stands for a hash chain
of ciphertexts and associated data sent/received so far, including the current one. Overall, an encryption of
m is PkeAd.Enc(ekeph,SkuPke.Enc(ekupd, (m,ud, z2)), ad), for some associated data ad.

Second, we need to provide healing guarantees through the back channel. This is achieved by generating
fresh key pairs for both, the updating and the ephemeral, encryption schemes. For correctness, the encryptor
however might have to ignore the new ephemeral key, if he detects that it will be overwritten by one of his
updates in the meantime. He can detect this by the decryptor explicitly acknowleding the number of messages
he received so far as part of the information transmitted on the backward-channel.
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Third, observe that for correctness, the decryptor needs to store all decryption keys generated during the
back-channel healing, until he receives a ciphertext for a newer key (consider the back-channel messages being
delayed). In order to still guarantee post-hijack security, we apply the SkuPke update ud to all secret keys he
still stores. This also implies that the encryptor has to store the corresponding public update information
and apply them the the new key he obtains from the backward-channel, if necessary.

Theorem 3. Let SkuPke be a secretly key-updatable encryption scheme, and let PkeAd be an encryption
scheme with associated data. The scheme of Figure 10 is HkuPke-CPA secure in the random oracle model, if
the SkuPke scheme is SkuPke-MI-CPA secure, and the PkeAd is IND-CCA2-AD secure.

A proof of Theorem 3 is presented in Appendix E.

6 Overall Security

So far, we have constructed two intermediate primitives that will help us build a secure messaging protocol.
First, we showed a unidrectional authentication scheme that provides healing after exposure of the signer’s
state. Second, we introduced a sesqui-directional confidentiality scheme that achieves forward secrecy, healing
after the exposure of the receiver’s state, and it also provides post-hijack confidentiality.

The missing piece, except showing that the schemes can be securely plugged together, is post-hijack
authentication: with the unidirectional authentication scheme we introduced, exposing a hijacked party’s
secret state allows an attacker to forge signatures that are still accepted by the other party. This is not
only undesirable in practice (the parties lose the chance of detecting the hijack), but it actually undermines
post-hijack confidentiality as well. More specifically, an attacker might trick the so far uncompromised party
into switching over to adversarially chosen “newer” encryption key, hence becoming a man-in-the-middle after
the fact.

In contrast to confidentiality, one obtains healing of authentication in the unidirectional setting, but
post-hijack security requires some form of bidirectional communication: receiving a message must irreversibly
destroy the signing key. Generally, we could now follow the approach we took when dealing with the
confidentiality and define a sesqui-directional authentication game. We refrain from doing so, as we believe
that this does not simplify the exposition. As the reader will see later, our solution for achieving post-hijack
authentication guarantees requires that the update information on the backward-channel is transmitted
confidentially. This breaks the separation between authentication and confidentiality. More concretely, in
order for a sesqui-directional authentication game to serve as a useful intermediate abstraction on which one
could then build upon, it would now have to model the partial confidential channel of HkuPke in sufficient
details. Therefore, we avoid such an intermediate step, and build our overall secure messaging scheme directly.
First, however, we formalize the precise level of security we actually want to achieve.

6.1 Almost-Optimal Security of Secure Messaging

Syntax. A secure messaging scheme SecMsg consists of the following triple of polynomial-time algorithms
(SecMsg.Init,SecMsg.Send,SecMsg.Receive). The probabilistic algorithm SecMsg.Init generates an initial pair
of states stA and stB for Alice and Bob, respectively. Given a message m and a state stu of a party, the
probabilistic sending algorithm outputs an updated state and a ciphertext c: (stu, c)← SecMsg.Send(stu,m; z).
Analogously, given a state and a ciphertext, the receiving algorithms outputs an updated state and a message
m: (stu,m)← SecMsg.Send(stu, c).

Correctness. Correctness of a secure messaging scheme SecMsg requires that if all sent ciphertext are
received in order (per direction), then they decrypt to the correct message. More formally, we say the scheme is
correct if no adversary can win the correctness game SecMsg-Corr, depicted in Figure 11, with non-negligible
probability. For simplicity, we usually consider perfect correctness, i.e., even an unbounded adversary must
have probability zero in winning the game.
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Game SecMsg-Corr

Initialization
(stA, stB)← SecMsg.Init
win← false
for u ∈ {A,B} do
Bu→ū,Mu→ū ← array initialized to ⊥
su, ru ← 0

Oracle Send
Input: (u,m) ∈ {A, B} ×M
su ← su + 1
z � R
(stu, c)← SecMsg.Send(stu,m; z)
Bu→ū[su]← c
Mu→ū[su]← m
return (c, z)

Oracle Receive
Input: u ∈ {A, B}

if ru ≥ sū then
return ⊥

ru ← ru + 1
(stu,m)← SecMsg.Receive(stu,Bū→u[ru])
if m 6=Mū→u[ru] then

win← true
return m

Finalization
return win

Fig. 11. The correctness game for a secure messaging scheme.

Security. The security of SecMsg is formalized using the game SecMsg-Sec, described in Figure 12. In
general, the game composes the aspects of the security game for key-updating signature scheme KuSig-UF,
depicted in Figure 4 on Page 8, with the sesqui-directional confidentiality game HkuPke-CPA, depicted in
Figure 9 on Page 15. Nevertheless, there are a few noteworthy points:

– The game can be won in two ways: either by guessing the bit b, i.e., breaking confidentiality, or by setting
the flag win to true, i.e., being able to inject messages when not permitted by an appropriate state
exposure. Note that in contrast to the unidirectional authentication game, the game still has to continue
after a permitted injection, hence no lost flag exists, as we want to guarantee post-hijack security.

– In contrast to the sesqui-directional confidentiality game, the Send oracle takes an additional flag as
input modeling whether the randomness used during this operations leaks or not. This allows us to
capture that a message might not remain confidential because the receivers decryption key has been
exposed, yet it contributes to the healing of the reverse direction (which is not the case if the freshly
sampled secret key already leaks again).

– Observe that ru stops increasing the moment the user u is hijacked. Hence, whenever hijackedu is true,
ru corresponds to the number of messages he received before.

– The two flags vuln1 and vuln2 correspond to the two situations in which we cannot guarantee proper
post-hijack security. First, vuln1 corresponds to the situation that the last message from ū to u before u
got hijacked was not transmitted confidentiality. This can have two reasons: either the randomness of the
encryption of ū leaked, or u has been exposed just before receiving that message. Observe that in order to
hijack u right after that message, the state of ū needs to be exposed right after sending that message. So
in a model where randomness does not leak, vuln1 implies that both parties’ state have been compromised
almost at the same time. Secondly, vuln2 implies that the next message by ū was not sent securely either.

6.2 Construction

Our basic scheme. As the first step, consider a simplified version of our scheme depicted in Figure 13.
This construction appropriately combines one instance of our unidirectional key-updating signature scheme
SkuSig, and one instance of our healable and key-updating encryption scheme HkuPke, per direction.

Adding post-hijack authenticity. The scheme depicted in Figure 13 does not provide any post-hijack
authenticity, which we now add. Observe that in order to achieve such a guarantee, we have to resort to
sesqui-directional techniques, i.e., we have to send some update information on the channel from u to ū that
affects the signing key for the other direction. Given that this update information must “destroy” the signing
key in case of a hijack, we will use the following simple trick: the update information is simply a fresh signing
key under which the other party has to sign, whenever he acknowledges the receipt of this message. Note that
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Game SecMsg-Sec

Initialization
(stA, stB)← SecMsg.Init
b � {0, 1}
win← false
for u ∈ {A,B} do
Bu→ū ← array initialized to ⊥
su, ru ← 0
hijackedu ← false
Exposedu ← {−1}
Challengesu→ū ← ∅

Oracle Send
Input: (u,m, leak)

∈ {A, B} ×M× {true, false}
su ← su + 1
z � R
(stu, c)← SecMsg.Send(stu,m; z)
if ¬hijackedu then

if leak then
Exposedu ← Exposedu ∪ {su}

Bu→ū[su]← c
if leak then

return (c, z)
else

return c

Oracle Challenge

Input: (u,m0,m1) ∈ {A, B} ×M2

if |m0| 6= |m1| ∨ hijackedu
∨ru ≤ max(Exposedū) then

return ⊥
c← Send(u,mb, false)
Challengesu→ū ← Challengesu→ū ∪ {su}
return c

Oracle Receive
Input: (u, c) ∈ {A, B} × C

(stu,m)← SecMsg.Receive(stu, c)
if m = ⊥ then

return ⊥
if hijackedu then

return m
else if c 6= Bū→u[ru + 1] then

if ru ∈ Exposedū then
hijackedu ← true

else
win← true

return m
else

ru ← ru + 1
return ⊥

Oracle Expose
Input: u ∈ {A, B}

vuln1 ← ru /∈ Challengesū→u
vuln2 ← (ru + 1 ≤ su) ∧ ru + 1 /∈ Challengesū→u

if hijackedu ∧¬vuln1 ∧ ¬vuln2 then
return stu

else if ∀i ∈ (ru, sū] i /∈ Challengesū→u then
if hijackedu then

Exposedu ← Exposedu ∪ {su, . . . ,∞}
else

Exposedu ← Exposedu ∪ {su}
return stu

else
return ⊥

Finalization
Input: d ∈ {0, 1}

return (d = b) ∨ win

Fig. 12. The game formalizing almost-optimal security of a secure messaging scheme. The solid boxes indicate the
differences in comparison to the game with optimal security.

the signer only has to keep the latest such signing key he received, and can securely delete all previous ones.
Hence, whenever he gets hijacked, the signing key that he previously stored, and that he needs to sign his
next message, gets irretrievably overwritten. This, of course, requires that those signing keys are transmitted
securely, and hence will be included in the encryption in our overall scheme. However, the technique as
described so far does not heal properly. In order to restore the healing property, we will simply ratchet this
key as well in the usual manner: whenever we use it, we sample a fresh signing key and send the verification
key along. In short, the additional signature will be produced with the following key:

– If we acknowledge a fresh message, i.e., we received a message since last sending one, we use the signing
key included in that message (only the last one in case we received multiple messages).

– Otherwise, we use the one we generated during sending the last message.

To further strengthen post-hijack security, the parties also include a hash of the communication transcript
in each signature. This ensures that even if the deciding message has not been transferred confidentially, at
least the receiver will not accept any messages sent by the honest but hijacked sender. A summary of the
additional signatures, the key handling, and the transcript involved in the communication form Alice to Bob
is shown in Figure 14. Of course, the actual scheme is symmetric and these additional signatures will be
applied by both parties. See Figure 15 for the full description of our overall scheme.

Theorem 4. Let HkuPke be a healable and key-updating encryption scheme, let KuSig be a key-updating
signature scheme, and let Sig be a signature scheme. The scheme SecChan of Figure 15 is SecMsg-Sec secure,
if HkuPke scheme is HkuPke-CPA secure, KuSig is KuSig-UF secure, and Sig is 1-SUF-CMA secure.

A proof sketch of Theorem 4 can be found in Appendix F.
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Alice Bob

dkA ekB

skA vkB

dkB ekA

skB vkA

c, upd, σ

(ekB, c)← HkuPke.Enc(ekB,m)

(dkA, upd)← HkuPke.BcUpDk(dkA)

(skeph
A , σ)← KuSig.Sign(skA, (c, upd)) (vkA, v)← KuSig.Verify(vkA, (c, upd), σ)

if v = true:

(dkB,m)← HkuPke.Dec(dkB, c)

ekA ← HkuPke.BcUpEk(ekA, upd)

Fig. 13. The scheme obtained by plugging our HkuPke and our SkuSig schemes together. Note how the keys are only
used for the corresponding direction, except the update information for the encryption key of our sesqui-directional
confidentiality scheme, which is sent along the message.

Alice Bob

r, skeph, tr s, sack, vk
eph,VK eph,TR

. . . , vk eph
2 , smsg , σeph

(skeph
2 , vkeph

2 )← Sig.Gen

smsg ← r

ĉ← (c, upd, vkeph
2 , smsg)

σeph ← Sig.Sign(skeph, (ĉ, tr))

skeph ← skeph
2

if smsg < sack ∨ smsg > s: reject

if sack < smsg: vk ← VK eph[smsg]

else: vk ← vkeph

veph ← Sig.Verify(vk, . . . , σeph)

if veph = true: vkeph ← vkeph
2

sack ← smsg

Enc
(m,

sk
eph

1
), . .

.

s← s+ 1

(skeph
1 , vkeph

1 )← Sig.Gen

VK [s]← vkeph
1

TR[s]← Hash(TR[s− 1] ‖ ĉ))r ← r + 1

skeph ← skeph
1

tr ← Hash(tr ‖ ĉ))

Fig. 14. Handling of the additional signature keys for the communication from Alice to Bob. Each message additionally
includes an index smsg, indicating the number of messages Alice received so far, which allows Bob to look up the
corresponding verification key. Moreover, they also maintain include a hash of the transcript in each signature.
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Construction SecChan of SecMsg

Algorithm SecMsg.Init

for u ∈ {A,B} do
(eku, dku)← HkuPke.Gen

(skupd
u , vkupd

u )← KuSig.Gen

(skeph
u , vkeph

u )← Sig.Gen
for u ∈ {A,B} do

stu ← (0, 0, 0, dku, ekū, sk
upd
u , vkupd

ū , skeph
u , vkeph

ū , [ ], 0, [ ])
return (stA, stB)

Algorithm SecMsg.Send

Input: (st,m; z) ∈ S ×M×R
(r, s, sack, dk, ek, sk

upd, vkupd, skeph, vkeph,VK eph, tr,TR)← st

(skeph
1 , vkeph

1 )← Sig.Gen(z1) . The key pair for the backwards channel.
(skeph

2 , vkeph
2 )← Sig.Gen(z2) . The key pair for the forwards channel.

. Encrypt.
(dk, upd)← HkuPke.BcUpDk(dk; z3)

(ek, c)← HkuPke.Enc(ek, (m, skeph
1 ), (upd, vkeph

2 , r); z4)

. Sign.
ĉ← (c, upd, vkeph

2 , r)

(skupd, σupd)← KuSig.Sign(skupd, (ĉ, tr); z5)

σeph ← Sig.Sign(skeph, (ĉ, tr); z6)

. Update the state.
s← s+ 1
VK [s]← vkeph

1
TR[s]← Hash(TR[s− 1] ‖ ĉ)
st← (r, s, sack, dk, ek, sk

upd, vkupd, skeph
2 , vkeph,VK eph, tr,TR)

return (st, (ĉ, σupd, σeph))

Algorithm SecMsg.Receive

Input: (st, (ĉ, σupd, σeph)) ∈ S × C
(r, s, sack, dk, ek, sk

upd, vkupd, skeph, vkeph,VK eph, tr,TR)← st

(c, upd, vkeph
msg, smsg)← ĉ

v ← false
if sack ≤ smsg ≤ s then

if smsg > sack then
vk ← V Keph[smsg]

else
vk ← vkeph

veph ← Sig.Verify(vk, (ĉ, TR[smsg]), σeph)

(vkupd, vupd)← KuSig.Verify(vkupd, ĉ, σupd)
v ← veph ∧ vupd

if v then
ek ← HkuPke.BcUpEk(ek, upd)

(dk, (m, skeph
msg))← HkuPke.Dec(dk, c, (upd, vkeph

msg, smsg))
r ← r + 1
tr ← Hash(tr ‖ ĉ)
st← (r, s, smsg, dk, ek, sk

upd, vkupd, skeph
msg, vk

eph
msg,VK eph, tr,TR)

return (st,m)
else

return (st,⊥)

Fig. 15. The construction of an almost-optimally secure messaging scheme.
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A Correctness of HkuPke

A healable and key-updating encryption scheme is correct if any (even unbounded) adversary has probability
zero of winning the game HkuPke-Corr, depicted in Figure 16.

Game HkuPke-Corr

Initialization
win← false
(ek, dk)← HkuPke.Gen
B,U ← array initialized to ⊥
r, s, i, j ← 0
return (ek, dk)

Oracle Encrypt
Input: (m, ad) ∈ M×AD
s← s+ 1
(ek, c)← HkuPke.Enc(ek,m, ad)
B[s]← (c,m, ad)
return (ek, c)

Oracle BcUpdateEk
if j < i then

j ← j + 1
ek ← HkuPke.BcUpEk(ek,U [j])
return ek

Oracle Decrypt
if r < s then

r ← r + 1
(c,m, ad)← B[r]
(dk,m′)← HkuPke.Dec(dk, c, ad)
if m 6= m′ then

win← true

Oracle BcUpdateDk
i← i+ 1
(dk,U [i])← HkuPke.BcUpDk(dk)
return dk

Finalization
return win

Fig. 16. The correctness game for healable and key-updating encryption.

B Public-Key Encryption with Associated Data

Public-key encryption with associated data is public-key encryption, where the encryption and decryption
algorithms take an additional input ad ∈ AD. Formally, it consists of three algorithms (PkeAd.Gen,PkeAd.Enc,
PkeAd.Dec), which can be used to generate a new key pair (dk, ek)← PkeAd.Gen, encrypt a message m with
associated data ad as c← PkeAd.Enc(m, ad), and decrypt a ciphertext, providing the matching associated
data m′ ← PkeAd.Dec(c, ad).

For correctness, we require that for any ad ∈ AD, for any (dk, ek)← PkeAd.Gen, and for any m, we have
PkeAd.Dec(PkeAd.Enc(m, ad), ad) = m with probability 1.

The security notion we require is IND-CCA2, formalized in Figure 17. Intuitively, while normal IND-CCA2
ensures that a related ciphertext decrypts to an unrelated message, we require the same property with respect
to the associated data as well: Decrypting with a modified version of the associated data, compared to the
one used for the encryption, must yield an unrelated plaintext (or make the decryption fail).

IND-CCA2 secure encryption with additional data can be easily constructed by extending standard
IND-CCA2 public-key encryption schemes. For example, in the random oracle model, the following scheme of
[4] is IND-CCA2 secure. Let H and G be two independent random oracles, and let f be a trapdoor one-way
permutation. To encrypt a message m, sample r at random and output (f(r),Hash|m|(r) ⊕ m,G(m, r)).
This construction can be extended to incorporate additional data ad by changing the encryption to
(f(r),Hash|m|(r)⊕m,G(m, ad, r)). The proof is straightforward. Alternatively, one can use the Cramer-Shoup
cryptosystem [9] and simply include the additional data in the hash.

C Multi-Instance SkuPke

The multi-instance security of secretly key-updatable encryption is formalized using the game SkuPke-MI-CPA,
depicted in Figure 18. To a large extent, the game is simply a multi-instance version of the game SkuPke-CPA
from Section 5, however, a few points are worth mentioning:
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Game IND-CCA2-AD

Initialization
b � {0, 1}
(dk, ek)← PkeAd.Gen
dec← false
chall← ⊥
return ek

Oracle Decrypt
Input: (c, ad) ∈ C × AD

if dec ∨ chall = (c, ad) then
return ⊥

dec← true
return PkeAd.Dec(c, ad)

Oracle Challenge
Input: (m0,m1, ad) ∈ M×AD

if chall 6= ⊥ ∨ |m0| 6= |m1|
return ⊥

z � R
c← PkeAd.Enc(mb, ad; z)
chall← (c, ad)
return c

Finalization
Input: d ∈ {0, 1}

return (d = b) then

Fig. 17. One time IND-CCA2 security of a PKE scheme with associated data.

– There is only one global list of updates. The oracle UpdateDk applies the secret update to all decryption
keys created up to this point. The oracle UpdateEk can be used to update public keys independently.

– All decryption keys must be exposed at once.

Intuitively, this means that the decryption keys are, in some sense, synchronized.

C.1 Proof of Theorem 2

After having formally introduced SkuPke-MI-CPA security, we can now prove the following theorem.

Theorem 2. The construction of Figure 8 is SkuPke-MI-CPA secure in the random oracle model, if CDH is
hard.

Recall that in our construction an encryption of a message m is a pair (gr,Hash|m|(g
xr)⊕m), where r is

random and Hash·(·) is a random oracle.
Assume that A1 is an adversary who makes at most qc queries to the Challenge oracle and qe queries to

the Expose oracle.
First, we employ the standard hybrid argument: we define a sequence of hybrids indc = 1, . . . , qe + 1,

where in the hybrid indc, the Challenge oracle replies to the indc − 1 first queries using m0, and to the queries
indc to qe using m1. Now using A1 we can construct A2 who distinguishes between the indc and indc + 1.

We now use A2 to construct A3, who, given a CDH instance, outputs a list, which contains a solution
with high probability. Then we can use the Diffie-Hellman self-corrector by Shoup [18] to transform A3 into
an algorithm outputting a single solution.

Let A = ga, B = gb be the CDH instance. A3 guesses the index inds of the last secure update before
the exposure (in particular, inds ∈ {−1, 0, 1, . . . }, where inds = −1 means that exposure happens before any
secure updates). The random oracle is simulated by lazy sampling, in particular, A3 keeps a list L of all A2’s
queries. Moreover, A3 simulates the game oracle queries for A2 as shown in Figure 19 (for simplicity, in the
figure we assume that the guess is correct).

It is clear that if A2 can distinguish between the two hybrids, then it must query the random oracle on
input g(a+x)b, where x is the currently stored secret key DK[n] and gx is the encryption key EK[n]. Hence,
A3 multiplies all elements of L by B−x and applies the self-corrector to find the solution to CDH.
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Game SkuPke-MI-CPA

Initialization
b � {0, 1}
N ← 0
Ue,Ud ← array initialized to ⊥
ind, indd ← 1
NotLeaked← {1}
Chal← ∅
exp← −1
EK,DK← array initialized to ⊥
Inde ← array initialized to 1

Oracle NewKeys
N ← N + 1
(EK[N ],DK[N ])← SkuPke.Gen
Inde[N ]← ind
return EK[N ]

Oracle UpdateGen
Input: z ∈ R ∪ {⊥}

ind← ind + 1
if z = ⊥ then

(Ue[ind],Ud[ind])← SkuPke.UpdateGen
NotLeaked← NotLeaked ∪ {ind}
return Ue[ind]

else
(Ue[ind],Ud[ind])← SkuPke.UpdateGen(z)
return (Ue[ind],Ud[ind])

Oracle UpdateEk
Input: n ∈ N \ {0}

if Inde[n] ≥ ind then
return ⊥

Inde[n]← Inde[n] + 1
EK[n]← SkuPke.UpdateEk(Ue[Inde[n]], EK[n])
return EK[n]

Oracle UpdateDk
if indd ≥ ind then

return ⊥
indd ← indd + 1
for n ∈ {1, . . . , N} do

DK[n]← SkuPke.UpdateDk(Ud[indd],DK[n])

Oracle Challenge

Input: (n,m0,m1, i) ∈ (N \ {0})×M2 × (N \ {0, 1})
if n > N then

return ⊥
nc1 ← exp ≥ Inde[n] ∧ (Inde[n], exp] ∩ NotLeaked = ∅)
nc2 ← exp < Inde[n] ∧ (exp, Inde[n]] ∩ NotLeaked = ∅)
if |m0| 6= |m1| ∨ nc1 ∨ nc2 ∨ i > ind then

return ⊥
Chal← Chal ∪ {Inde[n]}
c← SkuPke.Enc(EK[n],mb ‖ Ud[i])
return c

Oracle Expose
if exp ≥ 0 then

return ⊥
ne1 ← ∃c ∈ Chal (c ≥ indd ∧ (indd, c] ∩ NotLeaked = ∅)
ne2 ← ∃c ∈ Chal (c < indd ∧ (c, indd] ∩ NotLeaked = ∅)
if ne1 ∨ ne2 then

return ⊥
exp← indd

return DK

Finalization
Input: d ∈ {0, 1}

return (d = b)

Fig. 18. The multi-instance security game for secretly key-updatable encryption.
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Game SkuPke-MI-CPA

Initialization
b � {0, 1}
N ← 0
Ue,Ud ← array initialized to ⊥
ind, indd ← 1
NotLeaked← {1}
Chal← ∅
exp← −1
EK,DK← array initialized to ⊥
Inde ← array initialized to 1

expInterval← (inds = −1)

Oracle NewKeys
N ← N + 1

x � Zq

if expInterval then
(EK[N ],DK[N ])← (gx, x)

else
(EK[N ],DK[N ])← (Agx, x)

Inde[N ]← ind
return EK[N ]

Oracle UpdateEk
Input: n ∈ N \ {0}

if Inde[n] ≥ ind then
return ⊥

Inde[n]← Inde[n] + 1

EK[n]← Ue[Inde[n]] · EK[n]

return EK[n]

Oracle UpdateGen
Input: z ∈ R ∪ {⊥}

ind← ind + 1
if z = ⊥ then

z � Zq

if ind = inds then
(Ue[ind],Ud[ind])← (A−1gz, z)
expInterval← true

else if expInterval ∧ ind > inds then
(Ue[ind],Ud[ind])← (Agz, z)
expInterval← false

else
(Ue[ind],Ud[ind])← (gz, z)

NotLeaked← NotLeaked ∪ {ind}
return Ue[ind]

else
if ind = inds then

Abort.
(Ue[ind],Ud[ind])← (gz, z)

return (Ue[ind],Ud[ind])

Oracle UpdateDk
if indd ≥ ind then

return ⊥
indd ← indd + 1
for n ∈ {1, . . . , N} do

DK[n]← Ud[indd] + DK[n]

Oracle Challenge

Input: (n,m0,m1, i) ∈ (N \ {0})×M2 × (N \ {0, 1})
if n > N then

return ⊥
nc1 ← exp ≥ Inde[n] ∧ (Inde[n], exp] ∩ NotLeaked = ∅)
nc2 ← exp < Inde[n] ∧ (exp, Inde[n]] ∩ NotLeaked = ∅)
if |m0| 6= |m1| ∨ nc1 ∨ nc2 ∨ i > ind then

return ⊥
Chal← Chal ∪ {Inde[n]}
if |Chal| < indc then

m′ ← m0 ‖ Ud[i]
r � Zq

c← (gr,Hash|m′|(EK[n]r)⊕m′)
. Hash·(·) is computed by simulating the random oracle consistently with other queries

else if |Chal| > indc then
m′ ← m1 ‖ Ud[i]
r � Zq

c← (gr,Hash|m′|(EK[n]r)⊕m′)
else

R � {0, 1}|m0|+|Ud[i]|

c← (B,R)

return c

Finalization
Input: d ∈ {0, 1}

return (d = b)

Fig. 19. The proof of our construction of secretly key-updatable encryption.
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D Proof of Theorem 1

In the following section, we present a proof of Theorem 1.

Theorem 1. Let Sig be a signature scheme. The construction of Figure 5 is KuSig-UF secure, if Sig is
1-SUF-CMA secure.

First, consider the sequence of hybrids for idx = 0, 1, 2, . . ., as depicted in Figure 20. Observe that
KuSig-UF0 corresponds to the KuSig-UF game with our concrete scheme plugged in, while KuSig-UFqs
corresponds to a game that cannot be won by an adversary doing at most qs queries.

The proof is concluded by showing that the difference in the winning distance of two consecutive such
hybrids is bounded by twice the winning winning probability of an appropriately modified adversary against
the SUF-CMA game. To this end, consider the variant of SUF-CMA depicted in Figure 21 that allows
exposing the signing key. Clearly, any adversary winning this game can be transformed into one winning the
traditional SUF-CMA game at the cost of guessing whether the key will be exposed upfront. We conclude the
proof by outline the reduction in distinguishing KuSig-UFidx from KuSig-UFidx+1 in Figure 22.

E Proof of Theorem 3

Theorem 3. Let SkuPke be a secretly key-updatable encryption scheme, and let PkeAd be an encryption
scheme with associated data. The scheme of Figure 10 is HkuPke-CPA secure in the random oracle model, if
the SkuPke scheme is SkuPke-MI-CPA secure, and the PkeAd is IND-CCA2-AD secure.

In the following section, we provide a proof (sketch) of Theorem 3. In order to prove the security of our
scheme with respect to the HkuPke-CPA game, we first plug the concrete scheme into the security game, as
shown in Figure 23. Note that we avoided a number of redundant variables, kept track of in both the scheme
and the game, and applied a number of trivial simplifications already.

Next, we proceed by guessing if and at what point the adversary hijacks. If we guess wrong, the adversary
simply loses the game immediately. For an adversary that sends at most q messages, we guess correctly with

Game KuSig-UFidx

Initialization

(sk, vk)← Sig.Gen

s, r ← 0
B ← array initialized to ⊥
win← false
lost← false
Exposed← ∅
return (vk, r)

Oracle Sign
Input: (m, leak) ∈ M× {true, false}
s← s+ 1
(zG, zS) � R
(sk′, vk′)← Sig.Gen(zG)
σ̂ ← Sig.Sign(sk, vk′ ‖ s ‖ m; zS)
sk ← sk′

σ ← (σ̂, vk′)

B[s]← (m,σ)
if leak then

Exposed← Exposed ∪ {s− 1, s}
return (σ, (zG, zS))

else
return σ

Oracle Expose
Exposed← Exposed ∪ {s}
return sk

Oracle Verify
Input: (m,σ) ∈ M×Σ

(σ̂, vk′)← σ
v ← Sig.Verify(vk, vk′ ‖ (r + 1) ‖ m,σ)
(vk, v)← KuSig.Verify(vk,m, σ)
if ¬v then

return (0, vk)

vk ← vk′

r ← r + 1
if B[r] 6= (m,σ) then

if r ≤ idx ∨ r − 1 ∈ Exposed then
lost← lost ∨ ¬win

else
win← true

return (1, vk)

Finalization
return win ∧ ¬lost

Fig. 20. A sequence of hybrids for idx = 0, 1, 2, . . .. Observe that KuSig-UF0 corresponds to the KuSig-UF game with
our concrete scheme plugged in, while KuSig-UFqs

corresponds to a game that cannot be won by an adversary doing
at most qs queries.
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Game SUF-CMA-WE

Initialization
(sk, vk)← Sig.Gen
S ← ∅
exposed← false
return vk

Oracle Expose
exposed← true
return sk

Oracle Sign
Input: m ∈ M
σ ← Sig.Sign(sk,m)
S ← S ∪ {(m,σ)}
return σ

Finalization
Input: (m,σ) ∈ M×Σ

return ¬exposed ∧m 6∈ S ∧ Sig.Verify(vk,m, σ)

Fig. 21. Strong unforgability game for a signature scheme, with potential exposure of the signing key. An adversary
against this game can be easily reduced to one against the standard SUF-CMA game.

Game KuSig-UF

Initialization
(sk, vk)← Sig.Gen

. SUF-CMA-WE.Initialize
(ŝk, v̂k)← Sig.Gen
S ← ∅
exposed← false

s, r ← 0
B ← array initialized to ⊥
win← false
lost← false
Exposed← ∅
return (vk, r)

Oracle Sign
Input: (m, leak) ∈ M× {true, false}
s← s+ 1
(zG, zS) � R
if s = idx then

vk′ ← v̂k
else

(sk′, vk′)← Sig.Gen(zG)
if s = idx + 1 then

. SUF-CMA-WE.Sign(vk′ ‖ s ‖ m)
σ̂ ← Sig.Sign(ŝk, vk′ ‖ s ‖ m)
S ← S ∪ {((vk′ ‖ s ‖ m), σ̂)}

else
σ̂ ← Sig.Sign(sk, vk′ ‖ s ‖ m; zS)

sk ← sk′

σ ← (σ̂, vk′)
B[s]← (m,σ)
if leak then

Exposed← Exposed ∪ {s− 1, s}
return (σ, (zG, zS))

else
return σ

Oracle Expose
Exposed← Exposed ∪ {s}
if s = idx1 then

. SUF-CMA-WE.Expose
exposed← true

return ŝk
else

return sk

Oracle Verify
Input: (m,σ) ∈ M×Σ

(σ̂, vk′)← σ
v ← Sig.Verify(vk, vk′ ‖ (r + 1) ‖ m,σ)
(vk, v)← KuSig.Verify(vk,m, σ)
if ¬v then

return (0, vk)
vk ← vk′

r ← r + 1
if B[r] 6= (m,σ) then

if r ≤ idx ∨ r − 1 ∈ Exposed then
lost← lost ∨ ¬win

else if r = idx + 1 then
. SUF-CMA-WE.Fin((vk′ ‖ r ‖ m), σ̂)

. idx /∈ Exposed⇒ ¬exposed
. B[r] 6= (m,σ)⇒ ((vk′ ‖ r ‖ m), σ̂) /∈ S

win← true
else

win← true
return (1, vk)

Finalization
return win ∧ ¬lost

Fig. 22. Depiction of the reduction showing that distinguishing KuSig-UFidx from KuSig-UFidx+1 implies breaking
SUF-CMA-WE security of the Sig scheme.

28



Game HkuPke-CPA

Initialization
b � {0, 1}

DKupd, DKeph, Ue ← array init to ⊥
(ekupd, DKupd[0])← SkuPke.Gen

(ekeph, DKeph[0])← PkeAd.Gen
s, r, i, j, trs, trr ← 0
iack ← −1
rhon ← 0 . r from the game
exposed← −1
hijacked← false
Challenges← ∅
B,U ← array initialized to ⊥
return ek

Oracle Encrypt
Input: (m, ad) ∈ M×AD
s← s+ 1
(z1, . . . , z4) � R
(Ue[s], ud)← SkuPke.UpdateGen(z1)

ĉ← SkuPke.Enc(ekupd, (m,ud, z2); z3)

c← PkeAd.Enc(ekeph, ĉ, ad; z4)
trs ← Hash(trs ‖ (c, j, ad))

ekupd ← SkuPke.UpdateEk(Ue[s], ek
upd)

(ekeph,_)← PkeAd.Gen(Hash(trs ‖ z2))
B[s]← ((c, j), ad)
return (ek, (c, j), (z1, . . . , z4))

Oracle Expose & Challenge
as in the game

Oracle BcUpdateEk
if j = i then return ⊥
j ← j + 1

(êk
upd
, d̂k

eph
, rmsg)← U [j]

if rmsg ≥ s then
ekeph ← êk

eph

ekupd ← êk
upd

for `← (rmsg + 1), . . . , s do
ekupd ← SkuPke.UpdateEk(Ue[`], ek

upd)

Oracle BcUpdateDk
Input: leak ∈ {true, false}

if ¬hijacked then
i← i+ 1
(z1, z2) � R

(êk
upd
, d̂k

upd
)← SkuPke.Gen(z1)

(êk
eph
, d̂k

eph
)← PkeAd.Gen(z2)

DKupd[i]← d̂k
upd

DKeph[i]← d̂k
eph

U [i]← (êk
upd
, êk

eph
, r)

if leak then
return (U [i], (z1, z2))

else
return U [i]

Finalization
Input: d ∈ {0, 1}

return (d = b)

Oracle Decrypt
Input: ((c, imsg), ad) ∈ C × AD
m← ⊥
if imsg ≥ iack ∧ imsg > i then

ĉ← PkeAd.Dec(DKeph[imsg], c, ad)
if ĉ 6= ⊥ then

m̂← SkuPke.Dec(DKupd[imsg], ĉ)
if m̂ ∈ M× SkuPke.U × PkeAd.DK then

(m,ud, z)← m̂
trr ← Hash(trr ‖ (c, imsg, ad))

(_, d̂keph
)← PkeAd.Gen(Hash(trr ‖ z2))

for `← 1 . . . i do
if ` < imsg then

DKeph[`]← ⊥; DKupd[`]← ⊥
else

DKeph[`]← d̂k
eph; DKupd[`]← SkuPke.UpdateDk(ud, DK

upd[`])
r ← r + 1
iack ← imsg

if m = ⊥ then return ⊥
if hijacked ∨ ((c, imsg), ad) 6= B[rhon + 1] then

hijacked← true
return m

else
rhon ← rhon + 1
return ⊥

where:
ek := (ekupd, ekeph, s, j, Ue, trs), dk := (DKupd, DKeph, r, i, iack, trr)

Fig. 23. The HkuPke-CPA game with our concrete scheme plugged in.
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probability 1/2q and, additionally, the guess does not affect the game at all up to the guessed point. Hence,
we lose a factor of 2q. Moreover, we use the (perfect) correctness of our underlying schemes to make in the
Decrypt oracle the state update independent of the ciphertexts up to the point of hijacking (the message is
anyway never output before hijacking). The resulting game after both steps is shown in Figure 24.

We now proceed with the first big step: arguing that confidentiality is ensured for all messages sent before
hijacking. In the next hop, depicted in Figure 25, we replace in the respective challenges the encrypted
messages (mb, ud, z2) by encryptions of zeros of appropriate length. Any adversary that can distinguish
between the previous and this hop can break the security of the SkuPke scheme. We only sketch the reduction
here.

First of all, we will use multiple instances of the SkuPke-MI-CPA game. Namely, we create a new key pair
in each BcUpdateDk oracle call according to the following rule:

– If the decryptor is currently exposed, i.e., has been exposed between the last call to BcUpdateDk and
now, then we create a completely new instance of the game.

– Otherwise, we create a new key pair in the current instance by calling the NewKeys oracle.
– Moreover, if the randomness leaks, then we create the keys completely ourselves, as the decryption key is

not secure in the first place. Furthermore, we also create all keys ourselves after the hijacking,

Moreover, we simulate the remaining HkuPke-CPA oracles as follows:

Encrypt: We have to create new update information and an encryption including this update information.
We do so by choosing the randomness for the update information ourselves, i.e., calling UpdateGen(z1),
and then simply encrypting ourselves using the public key.

Challenge: In contrast to the previous oracle, here we create the update information secretly, i.e., calling
UpdateGen(⊥). To encrypt mb, we then use the Challenge oracle, specifying the index of the secret
update information we just created to be included. Note that if the conditions checked with respect to
exposure of the HkuPke-CPA game are satisfied, then the ones for the SkuPke-MI-CPA will be satisfied
as well.

Expose: We Expose all the SkuPke-MI-CPA instances that are still alive, and have not been exposed
before. Note that exposing is only allowed if there is no challenge in transmission, meaning that there is
no secret update information in transmission either. Furthermore, we will never challenge this instance
again, thereby trivially satisfying the ne1 and ne2 checks, respectively.

Decrypt: First of all, observe that before hijacking we do not actually decrypt any ciphertexts. Moreover,
recall that after hijacking we simulate everything ourselves. Now, we have to simulate the updating of the
SkuPke keys. First, observe that we can forget about all instances of the SkuPke-MI-CPA game that are
older than the one holding the decryption key we are concerned with. To each of the remaining instances,
we need to apply the update. For the instance corresponding to the key we use to decrypt, the update,
say ud, has been already created and can be directly applied. For all other instances, the update has to be
created first. If ud was generated during encryption using the fixed randomness (that is, if the encryption
randomness leaked), then we can simply re-create ud for all other instances. Otherwise, it is crucial to
observe that, given the way we create and use instances, only the instance corresponding to ud is alive.
For ud to be a secret update in the first place, it must have been transmitted using a challenge, and hence
that instance has not been exposed at this time. Having a challenge in transmission, however, implies
that the instance cannot be exposed in the meantime either. Hence, all new key pairs in this time period
will still be created in the same instance.

BcUpdateEk: The update information includes the index rmsg indicating the number of ciphertexts that
had been received at the point when it was generated. All updates that were transmitted on the main
channel in between, we now also have to apply to the fresh encryption key ekupd, to stay in sync with the
receiver. Again, if any of these updates is a secret one, we know that all relevant keys are in the same
instance. Otherwise, we “inject” them into the newer instances, carefully keeping track of whether this
has already been done for BcUpdateDk.

Using this sketched reduction, one can verify that indeed distinguishing the previous hop from this hop
implies breaking one of the instances.

As the next step, in Figure 26, we also replace the challenge at position hidx by an encryption of zeros,
if the previous message was a challenge. This is the first ciphertext, which is not delivered properly. As
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Game HkuPke-CPA

Initialization
b � {0, 1}
DKupd, DKeph, Ue ← array init to ⊥
(ekupd, DKupd[0])← SkuPke.Gen

(ekeph, DKeph[0])← PkeAd.Gen
s, r, i, j, trs, trr ← 0
iack ← −1
rhon ← 0 . r from the game
exposed← −1
hijacked← false
Challenges← ∅
B,U ← array initialized to ⊥
C ← array initialized to ⊥
lost← false
hidx � {0, . . . , q − 1}
hidx � {hidx,∞}
return ek

Oracle Encrypt
Input: (m, ad) ∈ M×AD
s← s+ 1
(z1, . . . , z4) � R
(Ue[s], ud)← SkuPke.UpdateGen(z1)

ĉ← SkuPke.Enc(ekupd, (m,ud, z2); z3)

c← PkeAd.Enc(ekeph, ĉ, ad; z4)
trs ← Hash(trs ‖ (c, j, ad))

ekupd ← SkuPke.UpdateEk(Ue[s], ek
upd)

(ekeph,_)← PkeAd.Gen(Hash(trs ‖ z2))
B[s]← ((c, j), ad)

C[s]← (ud, z2)

return (ek, (c, j), (z1, . . . , z4))

Finalization
Input: d ∈ {0, 1}

return (d = b) ∧¬lost

Oracle Decrypt
Input: ((c, imsg), ad) ∈ C × AD
m← ⊥
if imsg ≥ iack ∧ imsg > i then

ĉ← PkeAd.Dec(DKeph[imsg], c, ad)
if ĉ 6= ⊥ then

m̂← SkuPke.Dec(DKupd[imsg], ĉ)
if m̂ ∈ M× SkuPke.U × PkeAd.DK then

(m,ud, z)← m̂

if rhon < hidx then
(ud, z2)← C[rhon + 1] . same, by correctness

trr ← Hash(trr ‖ (c, imsg, ad))

(_, d̂keph
)← PkeAd.Gen(Hash(trr ‖ z2))

for `← 1 . . . i do
if ` < imsg then

DKeph[`]← ⊥; DKupd[`]← ⊥
else

DKeph[`]← d̂k
eph; DKupd[`]← SkuPke.UpdateDk(ud, DK

upd[`])
r ← r + 1
iack ← imsg

if m = ⊥ ∨ hijacked then
return m

else if rhon < hidx then
if ((c, imsg), ad) = B[rhon + 1] then

rhon ← rhon + 1
return ⊥

else
lost← true . guessed wrongly

else if rhon = hidx then
if ((c, imsg), ad) 6= B[rhon + 1] then

hijacked← true
return m

else
lost← true . guessed wrongly

else
lost← true . lost must be true here already

Fig. 24. First hop. We guess the point of hijacking and let the adversary lose the game if guessed wrongly, thereby
losing a linear factor in the number in the upper bound q on the adversary’s queries. Moreover, we use correctness of
the scheme.
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Game HkuPke-CPA

Oracle Encrypt
Input: (m, ad) ∈ M×AD
s← s+ 1
(z1, . . . , z4) � R
(Ue[s], ud)← SkuPke.UpdateGen(z1)

ĉ← SkuPke.Enc(ekupd, (m,ud, z2); z3)

c← PkeAd.Enc(ekeph, ĉ, ad; z4)
trs ← Hash(trs ‖ (c, j, ad))

ekupd ← SkuPke.UpdateEk(Ue[s], ek
upd)

(ekeph,_)← PkeAd.Gen(Hash(trs ‖ z2))
B[s]← ((c, j), ad)
C[s]← (ud, z2)
return (ek, (c, j), (z1, . . . , z4))

Finalization
Input: d ∈ {0, 1}

return (d = b) ∧ ¬lost

Oracle Challenge

Input: (m0,m1, ad) ∈ M2 ×AD
if |m0| 6= |m1| ∨ j ≤ exposed then return ⊥
s← s+ 1
(z1, . . . , z4) � R
(Ue[s], ud)← SkuPke.UpdateGen(z1)

if s ≤ hidx then
ĉ← SkuPke.Enc(ekupd, 0|(mb,ud,z2)|; z3)

else
ĉ← SkuPke.Enc(ekupd, (mb, ud, z2); z3)

c← PkeAd.Enc(ekeph, ĉ, ad; z4)
trs ← Hash(trs ‖ (c, j, ad))

ekupd ← SkuPke.UpdateEk(Ue[s], ek
upd)

(ekeph,_)← PkeAd.Gen(Hash(trs ‖ z2))
B[s]← ((c, j), ad)
C[s]← (ud, z2)
Challenges← Challenges ∪ {s}
return (ek, (c, j))

Fig. 25. Second hop. We replace all challenges before the hijacking by encryptions of zeros of the appropriate length.

the previous message was a challenge, it did not contain the randomness z2 to sample the next ephemeral
decryption key, corresponding to the encryption key under which we now encrypt. Moreover, if the adversary
gets this decryption key via the Expose oracle, then this prevents the current message from being a challenge.

Game HkuPke-CPA

Oracle Encrypt
Input: (m, ad) ∈ M×AD
s← s+ 1
(z1, . . . , z4) � R
(Ue[s], ud)← SkuPke.UpdateGen(z1)

ĉ← SkuPke.Enc(ekupd, (m,ud, z2); z3)

c← PkeAd.Enc(ekeph, ĉ, ad; z4)
trs ← Hash(trs ‖ (c, j, ad))

ekupd ← SkuPke.UpdateEk(Ue[s], ek
upd)

(ekeph,_)← PkeAd.Gen(Hash(trs ‖ z2))
B[s]← ((c, j), ad)
C[s]← (ud, z2)
return (ek, (c, j), (z1, . . . , z4))

Oracle Expose
vuln1 ← r /∈ Challenges
vuln2 ← r + 1 ≤ s ∧ r + 1 /∈ Challenges
if hijacked ∧ ¬vuln1 ∧ ¬vuln2 then

return dk
else if ∀e ∈ (r, s] e /∈ Challenges then

exposed← i
return dk

else
return ⊥

Finalization
Input: d ∈ {0, 1}

return (d = b) ∧ ¬lost

Oracle Challenge

Input: (m0,m1, ad) ∈ M2 ×AD
if |m0| 6= |m1| then

return ⊥
if j ≤ exposed then

return ⊥
s← s+ 1
(z1, . . . , z4) � R
(Ue[s], ud)← SkuPke.UpdateGen(z1)
if s ≤ hidx then

ĉ← SkuPke.Enc(ekupd, 0|(mb,ud,z2)|; z3)

c← PkeAd.Enc(ekeph, ĉ, ad; z4)

else if s = hidx + 1 ∧ hidx ∈ Challenges then
ĉ← SkuPke.Enc(ekupd, (mb, ud, z2); z3)

c← PkeAd.Enc(ekeph, 0|ĉ|, ad; z4)

else
ĉ← SkuPke.Enc(ekupd, (mb, ud, z2); z3)

ĉ← SkuPke.Enc(ekupd, 0|(mb,ud,z2)|; z3)

c← PkeAd.Enc(ekeph, ĉ, ad; z4)

c← PkeAd.Enc(ekeph, ĉ, ad; z4)
trs ← Hash(trs ‖ (c, j, ad))

ekupd ← SkuPke.UpdateEk(Ue[s], ek
upd)

(ekeph,_)← PkeAd.Gen(Hash(trs ‖ z2))
B[s]← ((c, j), ad)
C[s]← (ud, z2)
Challenges← Challenges ∪ {s}
return (ek, (c, j))

Fig. 26. The third and the fourth, the final, hops. The else-if branch in the dashed box is present in both hops,
whereas the solid box gets replaced by the dotted box in the fourth hop. Note that after the last hop, the game does
the bit b anymore.
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Hence, there must have been an BcUpdateDk operation in the meantime, which replaces the ephemeral
key by a fresh one again. Therefore, if the current message, i.e., the first one that is not delivered properly,
is a challenge, then nothing about the corresponding ephemeral key has been leaked up to the point of the
hijacking.

This leaves the adversary with two options to figure out which message is contained in that challenge:
first, she can hijack the receiver by inputting a modified version of the given challenge ciphertext to the
receiver, who provides her with the decryption. As she is required to either change the ciphertext itself
or the associated data, however, learning b this way breaks the IND-CCA2-AD security of the ephemeral
PKE scheme. Second, she can expose the receiver right after providing him the hijacked information. The
new ephemeral key that she learns this way was computed as PkeAd.Gen(Hash(trr ‖ z2)), where trr already
contains the hijacked message. Hence, assuming the ROM, the randomness Hash(trr ‖ z2) used to generate
the exposed ephemeral key is independent of the one used to generate the critical ephemeral key before.

As the final step, we have to deal with challenges with s > hidx + 1. For this phase, we again, as before
hijacking, rely on the security of our SkuPke scheme, and not the ephemeral one. The corresponding final
game hop is depicted in Figure 26. There are two cases to consider. The first, easier case, is where vuln1∨vuln2

is true, implying that we did not substitute the encryption with the ephemeral key by an encryption of
zeros in the previous hop. In this case, exposure is not “free”, and the security is simply implied by the
SkuPke-MI-CPA security, in the same way as before the hijacking. In the other case, where ¬vuln1 ∧ ¬vuln2,
we did replace the encryption of ĉ by an encryption of zeros. Hence, the updating information ud contained
in this message does not leak at all; also not through the buffer C as this is not used with index hidx + 1
anymore. With respect to the SkuPke-MI-CPA game, however, this means that it is a secret update that is
lost forever. So in terms of a reduction, we can expose the secret key before applying ud. Anything encrypted
with a key to which ud was applied is then secure. Finally, observe that ud is sent along with the (hidx + 1)-th
message, whereas all updates on the backward channel have indices smaller or equal hidx (the BcUpdateDk
oracle is disabled after hijacking). Hence, the sender will apply ud to all of them, implying that confidentiality
cannot be broken by tricking the sender to use a public-key that is “too new” either.

F Proof of Theorem 4

Theorem 4. Let HkuPke be a healable and key-updating encryption scheme, let KuSig be a key-updating
signature scheme, and let Sig be a signature scheme. The scheme SecChan of Figure 15 is SecMsg-Sec secure,
if HkuPke scheme is HkuPke-CPA secure, KuSig is KuSig-UF secure, and Sig is 1-SUF-CMA secure.

F.1 A Simplified Analysis

For simplicity, we only prove the guarantees with respect to Alice’s secret state. The other direction then
follows by symmetry of both the scheme, and the security game. Namely, we prove that messages sent from
Alice to Bob are authentic, and that messages sent from Bob to Alice are confidential. Moreover, we show
the appropriate post-hijack security properties with respect to hijacking Alice, namely that hijacking Alice
renders both her decryption and signing keys useless.

This allows us to consider a simplified security game as defined in Figure 27. Moreover, we can strip
down the scheme to only apply the parts that we use for those guarantees. Especially, for the authentic
direction we do not need to consider encryption, instead, we can simply consider the ciphertext as the
message. Analogously, for the communication from Bob to Alice, we do not need to include signatures, or
the update information for the encryption from Alice to Bob. Instead, we can simply see (upd, vkeph

2 , r) as
associated data, ensuring that Alice is considered hijacked whenever either the ciphertext or this associated
data changes. Moreover, because of our use of strongly unforgeable signatures, we do not need to take the
signatures themselves into account when the point at which Alice is hijacked is decided. In order to account
for this associated data, which is not an input to our actual scheme, we have already plugged in the stripped
down scheme for the communication from Bob to Alice in Figure 27, marked by solid boxes. The algorithms
marked with the dashed boxes will be replaced by the simplified algorithms, that only consider the guarantees
we need, in a further step.
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Game SecMsg-ASesqui

Initialization

(ek, dk)← HkuPke.Gen

(skupd, vkupd)← KuSig.Gen

(skeph, vkeph)← Sig.Gen
r, sack, tr ← 0
VK ,TR ← [ ]

b � {0, 1}, win← false
Exposed← {−1}, Challenges← ∅
for u ∈ {A,B} do
Bu→ū ← array initialized to ⊥
su, ru ← 0, hijackedu ← false

Oracle SendB
Input: (m, ad) ∈ M×AD
z � R
(skeph

1 , vkeph
1 )← Sig.Gen(z1)

(ek, c)← HkuPke.Enc(ek, (m, skeph
1 ), ad; z4)

sB ← sB + 1
VK [sB]← vkeph

1
TR[sB]← Hash(TR[sB − 1] ‖ (c, ad))

if ¬hijackedB then
BB→A[sB]← (c, ad)

return (c, z, stB)

Oracle ChallengeB

Input: (m0,m1, ad) ∈ M2 ×AD
if |m0| 6= |m1| ∨ hijackedB

∨rB ≤ max(Exposed) then
return ⊥

z � R
(skeph

1 , vkeph
1 )← Sig.Gen(z1)

(ek, c)← HkuPke.Enc(ek, (mb, sk
eph
1 ), ad; z4)

sB ← sB + 1
VK [sB]← vkeph

1
TR[sB]← Hash(TR[sB − 1] ‖ (c, ad))

BB→A[sB]← (c, ad)
Challenges← Challenges ∪ {sB}
return (c, stB)

Oracle ReceiveB
Input: c ∈ C

(stB,m)← SecMsg.Receive(stB, c)

if m = ⊥ ∨ hijackedB then
return (m, stB)

if c 6= BA→B[rB + 1] then
if rB ∈ Exposed then hijackedB ← true
else win← true

rB ← rB + 1
return (m, stB)

Oracle SendA
Input: (m, leak) ∈ M× {true, false}
sA ← sA + 1
z � R
(stA, c)← SecMsg.Send(stA,m; z)

if ¬hijackedA then
if leak then

Exposed← Exposed ∪ {sA}
BA→B[sA]← c

if leak then
return (c, z)

else
return c

Oracle ReceiveA
Input: (c, ad) ∈ C × AD
ek ← HkuPke.BcUpEk(ek, upd)
rA ← rA + 1
tr ← Hash(tr ‖ (c, ad))

skeph ← skeph
msg

if hijackedA ∨ (c, ad) 6= BB→A[r + 1] then
hijackedA ← true
return m

else
r ← r + 1
return ⊥

Oracle ExposeA
vuln1 ← r /∈ Challenges
vuln2 ← (r + 1 ≤ sB) ∧ r + 1 /∈ Challenges
if hijackedA ∧ ¬vuln1 ∧ ¬vuln2 then

return stA

else if ∀i ∈ (r, sB] i /∈ Challenges then
if hijackedA then

Exposed← Exposed ∪ {sA, . . . ,∞}
else

ExposedA ← ExposedA ∪ {sA}
return stA

else
return ⊥

Finalization
Input: d ∈ {0, 1}

return (d = b) ∨ win

where:
stA := (rA, sA, dk, sk

upd, skeph, tr)

stB := (rB, sB, sack, ek, vk
upd, vkeph,VK eph,TR)

Fig. 27. A simplification of SecMsg-Sec that only focuses on the security guarantees for Alice, namely that the channel
from Alice to Bob is authentic and the reverse one confidential. Part of our concrete scheme is already compiled,
indicated by the solid boxes, in a simplified version omitting everything not corresponding to the aforementioned
guarantees. Some other simplified parts of our scheme are not yet specified, as indicated by the dashed boxes.
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F.2 Confidentiality up to Hijacking

Observe that the confidentiality guarantees we require almost match the confidentiality guarantees our HkuPke
provides. However, there is one caveat: in the HkuPke-CPA game it is assumed that once the receiver (Alice)
is hijacked, she will not send any further update information on the backward-channel, which is a guarantee
we will get from post-hijack authenticity.

In the first step, therefore, we will show that confidentiality is guaranteed up to hijacking of Alice.
More concretely, we will replace all the challenges that will be received by Alice before being hijacked with
encryptions of zeros. Clearly, all those challenges have not been affected yet by the “illegal” update information,
and hence security of this step can be easily reduced to HkuPke-CPA security of the HkuPke scheme.

In more detail, in the first game hop, depicted in Figure 28, we performed the following three steps:

1. We guessed the point at which Alice will be hijacked (and whether she will be hijacked at all), thereby
losing a factor of 2qs, if qs is an upper bound on the number of queries of the adversary.

2. We used correctness of the scheme, to replace the new signing key skeph
msg obtained from decryption with

the one actually encrypted.
3. For all challenges that Alice receives before hijacking, we replace the encryption of (mb, sk

eph
1 ) by a string

of zeros of the appropriate length.
4. We modified the game such that hijackedA is no longer a boolean, but keeps track of the number of

messages Alice sent before getting hijacked.

F.3 Authentication

Next, we consider authenticity of the communication from Alice to Bob, including the post-hijack guarantees.
In order to do so, we plug in our concrete scheme, ignoring encryption for this direction, as depicted in
Figure 29.

Basically, our key-updating signature scheme already provides us with the necessary guarantees up to
hijacking, after which in the new security game exposing can become “free”, i.e., is not recorded anymore.
More specifically, it is not recorded if:

hijackedA ≤ sA ∧ ¬vuln1 ∧ ¬vuln2

Assume that up to the point of hijacking Alice, all messages were either rejected by Bob, or delivered in order
(as otherwise either Bob would be hijacked, or the game would be won already). Now observe that ¬vuln1

means that, for the ephemeral signature scheme, the last signing key skeph Bob sent to Alice before Alice was
hijacked did not leak in transmission. Hence,

– If Alice did not send any messages to Bob between receiving skeph and being hijacked, then Bob expects
the next message to be signed with skeph. Unless the adversary exposed Alice in between, in which case
she is allowed to inject something to Bob and thereby hijack him, she has absolutely no information about
skeph. This is because skeph got overwritten during the hijacking of Alice, and because we already replaced
the ciphertext transporting it with a ciphertext encrypting zeros. Hence, a reduction can appropriately
embed a 1-SUF-CMA instance that is won whenever Bob would accept a forged message with the
corresponding verification key.

– Alternatively, Alice could have sent some messages to Bob between receiving skeph and being hijacked.
Along with each such message, and especially the last one, Alice sends a fresh verification key under which
Bob then verifies the next message. Note that if Alice’s randomness during producing those fresh keys got
exposed, then Alice is considered to be exposed and the adversary is allowed to hijack Bob. Therefore,
winning the game by injecting a message to Bob at this point in time again requires the adversary to
break 1-SUF-CMA security of the ephemeral signature scheme.

In terms of game-hopping, we will use this to alter the behavior in Figure 30 in this situation (after the
bad flag is set) with respect to Figure 29. As a next hop, we can then argue that we can actually record such
an exposure without altering the behavior, as done in Figure 31.

Besides the remaining “free” exposures after Alice sent another message after being hijacked, the main
difference between Figure 31 and the KuSig-UF game is that we stop recording the messages in the buffer
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Game SecMsg-ASesqui

Initialization

hidx � {1, . . . , qs}
hidx � {hidx,∞}
lost← false

(ek, dk)← HkuPke.Gen

(skupd, vkupd)← KuSig.Gen

(skeph, vkeph)← Sig.Gen
r, sack, tr ← 0
VK ,TR ← [ ]
b � {0, 1}
win← false
Exposed← {−1}
Challenges← ∅
hijackedA ←∞
hijackedB ← false
for u ∈ {A,B} do
Bu→ū ← array initialized to ⊥
su, ru ← 0

Oracle ReceiveA
Input: (c, ad) ∈ C × AD

(dk, (m, skeph
msg))← HkuPke.Dec(dk, c, ad)

rA ← rA + 1
tr ← Hash(tr ‖ (c, ad))

if hijackedA ≤ sA then
skeph ← skeph

msg
return m

else if (c, ad) 6= BB→A[rA + 1] then
skeph ← skeph

msg
if r + 1 = hidx then

hijackedA ← sA

return m
else

lost← true
return m

else
r ← r + 1
skeph ← S[r] . by correctness
return ⊥

Oracle SendB
Input: (m, ad) ∈ M×AD
z � R
(skeph

1 , vkeph
1 )← Sig.Gen(z1)

(ek, c)← HkuPke.Enc(ek, (m, skeph
1 ), ad; z4)

sB ← sB + 1
VK [sB]← vkeph

1
TR[sB]← Hash(TR[sB − 1] ‖ (c, ad))
if ¬hijackedB then
BB→A[sB]← (c, ad)

S[sB]← skeph
1

return (c, z, stB)

Oracle ChallengeB

Input: (m0,m1, ad) ∈ M2 ×AD
if |m0| 6= |m1| ∨ hijackedB ∨ rB ≤ max(Exposed) then

return ⊥
sB ← sB + 1
z � R
(skeph

1 , vkeph
1 )← Sig.Gen(z1)

m′ ← (mb, sk
eph
1 )

if sB < hidx then
(ek, c)← HkuPke.Enc(ek, 0|m

′|, ad; z4)
else

(ek, c)← HkuPke.Enc(ek,m′, ad; z4)

VK [sB]← vkeph
1

TR[sB]← Hash(TR[sB − 1] ‖ (c, ad))
BB→A[sB]← (c, ad)

S[sB]← skeph
1

Challenges← Challenges ∪ {sB}
return (c, stB)

Finalization
Input: d ∈ {0, 1}

return ((d = b) ∨ win) ∧ ¬lost

Fig. 28. First hop concerning confidentiality before Alice is hijacked. Unchanged oracles with respect to Figure 27 are
omitted.
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Game SecMsg-ASesqui

Initialization
hidx � {1, . . . , qs}
hidx � {hidx,∞}
lost← false
(ek, dk)← HkuPke.Gen

(skupd, vkupd)← KuSig.Gen

(skeph, vkeph)← Sig.Gen
sack, tr ← 0
VK ,TR ← [ ]
b � {0, 1}
win← false
Exposed← {−1}
Challenges← ∅
for u ∈ {A,B} do
Bu→ū ← array initialized to ⊥
su, ru ← 0
hijackedu ← false

Oracle SendA
Input: (m, leak) ∈ M× {true, false}
sA ← sA + 1
(z1, . . . , z4) � R

(skeph
2 , vkeph

2 )← Sig.Gen(z1)
(dk, upd)← HkuPke.BcUpDk(dk; z2)

m̂← (m,upd, vkeph
2 , rA)

(skupd, σupd)←
KuSig.Sign(skupd, (m̂, tr); z3)

σeph ← Sig.Sign(skeph, (m̂, tr); z4)

if hijackedA 6=∞ then
if leak then

Exposed← Exposed ∪ {sA}
BA→B[sA]← (m̂, σupd, σeph)

if leak then
return ((m̂, σupd, σeph), z)

else
return (m̂, σupd, σeph)

Finalization
Input: d ∈ {0, 1}

return ((d = b) ∨ win) ∧ ¬lost

Oracle ReceiveB
Input: c ∈ C

(m̂, σupd, σeph)← c

(m,upd, vkeph
msg, smsg)← m̂

v ← false
if sack ≤ smsg ≤ sB then

if smsg > sack then
vk ← V Keph[smsg]

else
vk ← vkeph

veph ← Sig.Verify(vk, (m̂, TR[smsg]), σeph)

(vkupd, vupd)← KuSig.Verify(vkupd, m̂, σupd)
v ← veph ∧ vupd

if v then
ek ← HkuPke.BcUpEk(ek, upd)

else
m = ⊥

if m = ⊥ ∨ hijackedB then
return (m, stB)

if c 6= BA→B[rB + 1] then
if rB ∈ Exposed then

hijackedB ← true
else

win← true
rB ← rB + 1
return (m, stB)

Oracle ExposeA
vuln1 ← r /∈ Challenges
vuln2 ← (r + 1 ≤ sB) ∧ r + 1 /∈ Challenges
if hijackedA ≤ sA ∧ ¬vuln1 ∧ ¬vuln2 then

return stA

else if ∀i ∈ (r, sB] i /∈ Challenges then
if hijackedA ≤ sA then

Exposed← Exposed ∪ {sA, . . . ,∞}
else

ExposedA ← ExposedA ∪ {sA}
return stA

else
return ⊥

where:
stA := (rA, sA, dk, sk

upd, skeph, tr)

stB := (rB, sB, sack, ek, vk
upd, vkeph,VK eph,TR)

Fig. 29. The game from Figure 28 with the parts of the scheme relevant for authentication plugged in as well. The
oracles modeling the channel from Bob to Alice are unchanged and omitted.
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BA→B, as soon as Alice is hijacked. We deal with both differences in a sequence of three final hops, all depicted
in Figure 32. In particular, we now split the statement win ← true of the previous hop of Figure 31 into
three cases. The hop of Figure 31 sets win in all cases, the next hop differs in the first case, where it sets bad1

and hijackedB, and so on. Clearly, the last hop cannot be won. Consider now the three intermediate hops:

1. First, consider bad1. Observe that by construction the hash of the transcript stored in C[hijackedA + 1]
includes the injected update information leading to the hijack. On the other hand, TR[smsg] does not.
Hence, whenever bad1 = true, we have found a hash collision.

2. Next, consider the flag bad2. If r − 1 < hijackedA, then the messages stored in BA→B[rB] and C[rB] are
the same, and hence BA→B[rB] 6= m implies C[rA] 6= (m̂,TR[smsg]). Due to the previous else-if branch,
this also holds for r − 1 = hijackedA at this point. However, this implies that we have broken the KuSig
scheme. We omit a more detailed sketch of the reduction, as it would be very straightforward: the buffer
C corresponds to the buffer B from the KuSig-UF, and everything with respect to the additional signature
(keys indexed by two) would go into the reduction. Observe that for r − 1 ≤ hijackedA it does not make a
difference whether s ∈ AExp for any sA > hijack.

3. Finally, consider the flag bad3. At this point, rB > hijacked + 1, implying that we already must have
accepted the (hijackedA + 1)-th message. Since BA→B[hijackedA] = ⊥ 6= m′ for any message m′, this caused
the adversary to set hijackedB ← true back at this point already, implying that we never actually make it
to that flag in the first place. Hence, we can change the behavior after bad3 without altering the winning
probability.

This concludes the second part of our proof, showing that authenticity is guaranteed including the
post-hijack authenticity.

F.4 Post-Hijack Confidentiality

Finally, let us focus on confidentiality again, where so far we have only proven confidentiality of messages sent
from Bob to Alice before Alice is hijacked. Note that a HkuPke-CPA secure HkuPke scheme in principle already
provides the same post-hijack security we require here with the same conditions on when Alice allowed to be
exposed after hijacking an when not. The only caveat that prevented us from directly reducing to HkuPke-CPA
security, was that the HkuPke-CPA game does not consider Alice to send any update information after she
is hijacked. In our last game hop, however, we have shown that if Bob accepts any message after Alice is
hijacked, in particular any update information, then Bob is now considered to be hijacked as well and we
do not need to provide confidentiality guarantees for Bob anymore. Hence, confidentiality in the latest hop,
partially depicted in Figure 32, can be easily reduced to HkuPke-CPA security now, concluding our proof.
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Game SecMsg-Sec

Initialization
AExp← ∅

Oracle ExposeA
vuln1 ← r /∈ Challenges
vuln2 ← (r + 1 ≤ sB) ∧ r + 1 /∈ Challenges
if hijackedA < sA ∧ ¬vuln1 ∧ ¬vuln2 then

return stA

else if hijackedA = sA ∧ ¬vuln1 ∧ ¬vuln2 then
AExp← AExp ∪ {sA}
return stA

else if ∀i ∈ (r, sB] i /∈ Challenges then
if hijackedA ≤ sA then

Exposed← Exposed ∪ {sA, . . . ,∞}
else

ExposedA ← ExposedA ∪ {sA}
return stA

else
return ⊥

Oracle ReceiveB
Input: c ∈ C

...
if m = ⊥ ∨ hijackedB then

return (m, stB)
if c 6= BA→B[rB + 1] then

if rB = hijackedA ∧ ¬vuln1 ∧ rB /∈ Exposed then
bad← true
if rB ∈ AExp then

hijackedB ← true
else

win← true
else if rB ∈ Exposed then

hijackedB ← true
else

win← true
rB ← rB + 1
return (m, stB)

Fig. 30. The first hop for authentication. Triggering the bad flag requires the adversary to break the ephemeral Sig
scheme.

Game SecMsg-Sec

Oracle ExposeA
vuln1 ← r /∈ Challenges
vuln2 ← (r + 1 ≤ sB) ∧ r + 1 /∈ Challenges
if hijackedA < sA ∧ ¬vuln1 ∧ ¬vuln2 then

return stA

else if hijackedA = sA ∧ ¬vuln1 ∧ ¬vuln2 then
AExp← AExp ∪ {sA}
return stA

else if ∀i ∈ (r, sB] i /∈ Challenges then
if hijackedA ≤ sA then

Exposed← Exposed ∪ {sA, . . . ,∞}
AExp← Exposed ∪ {sA, . . . ,∞}

else
ExposedA ← ExposedA ∪ {sA}
AExpA ← ExposedA ∪ {sA}

return stA

else
return ⊥

Oracle ReceiveB
Input: c ∈ C

...
if m = ⊥ ∨ hijackedB then

return (m, stB)
if c 6= BA→B[rB + 1] then

if rB ∈ AExp then
hijackedB ← true

else
win← true

rB ← rB + 1
return (m, stB)

Fig. 31. Second hop for authenticity. This is a functionally equivalent simplification of the previous game. Observe
that whenever in the previous version rB = hijackedra ∧ ¬vuln1 ∧ rrb ∈ AExp was true, now rB ∈ AExp is still true,
and hence Bob is still considered to be hijacked. Moreover, if it was the case that rB /∈ Exposed∧ r = hijackedA ∧ vuln1,
then in the new version we still have rB /∈ AExp, and thus the adversary will still wins the game.
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Game SecMsg-Sec

Oracle ExposeA
vuln1 ← r /∈ Challenges
vuln2 ← (r + 1 ≤ sB) ∧ r + 1 /∈ Challenges
if hijackedA < sA ∧ ¬vuln1 ∧ ¬vuln2 then

return stA

else if hijackedA = sA ∧ ¬vuln1 ∧ ¬vuln2 then
AExp← AExp ∪ {sA}
return stA

else if ∀i ∈ (r, sB] i /∈ Challenges then
if hijackedA ≤ sA then

Exposed← Exposed ∪ {sA, . . . ,∞}
AExp← Exposed ∪ {sA, . . . ,∞}

else
ExposedA ← ExposedA ∪ {sA}
AExpA ← ExposedA ∪ {sA}

return stA

else
return ⊥

Oracle SendA
Input: (m, leak) ∈ M× {true, false}
sA ← sA + 1
(z1, . . . , z4) � R
(skeph

2 , vkeph
2 )← Sig.Gen(z1)

(dk, upd)← HkuPke.BcUpDk(dk; z2)

m̂← (m,upd, vkeph
2 , rA)

(skupd, σupd)← KuSig.Sign(skupd, (m̂, tr); z3)

C[sA]← (m̂, tr)

σeph ← Sig.Sign(skeph, (m̂, tr); z4)
if hijackedA 6=∞ then

if leak then
Exposed← Exposed ∪ {sA}

BA→B[sA]← (m̂, σupd, σeph)
if leak then

return ((m̂, σupd, σeph), z)
else

return (m̂, σupd, σeph)

Oracle ReceiveB
Input: c ∈ C

(m̂, σupd, σeph)← c

(m,upd, vkeph
msg, smsg)← m̂

...
if m = ⊥ ∨ hijackedB then

return (m, stB)
if c 6= BA→B[rB + 1] then

if rB ∈ AExp then
hijackedB ← true

else if rB − 1 = hijackedA ∧ C[rB] = (m,upd, vkeph
msg, smsg,TR[smsg])

then
bad1 ← true
hijackedB ← true

else if rB − 1 ≤ hijack then
bad2 ← true
hijackedB ← true

else
bad3 ← true
hijackedB ← true

rB ← rB + 1
return (m, stB)

Fig. 32. A sketch of the last three game hops for authenticity, in which we change from win← true to hijackedB ← true

after the respective bad flags in ascending order.
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