
Compact Sparse Merkle Trees

Faraz Haider

October 6, 2018

Abstract

A Sparse Merkle tree is based on the idea of a complete Merkle tree of an intractable size.
The assumption here is that as the size of the tree is intractable, there would only be a few
leaf nodes with valid data blocks relative to the tree size, rendering the tree as sparse. We
present a novel approach called Minimum distance path algorithm to simulate this Merkle tree
of intractable size which gives us efficient space-time trade-offs. We provide the algorithms
for insertion, deletion and (non -) membership proof for a leaf in this Compact Sparse Merkle
tree.

1 Introduction
Verifiable Log [ELC15] is a data structure which provides an append only list of values, the integrity
of which can be determined by a cryptographic proof for each value. These logs can be implemented
using Binary Merkle trees [Mer87], and they have been successfully used to solve the problem of
Certificate Transparency [LLK13]. These verifiable logs have to be public in order to be effective.
There is one caveat though, as these logs are append only, if a certificate gets somehow compromised
there is no way to remove it from the log.

Verifiable Maps [ELC15] is a data structure which helps in solving the above issue of remov-
ing/revoking this compromised certificate. It provides for insertion and removal of values and
provides a cryptographic proof of membership or non-membership of each value. Verifiable Maps
are based on an extension of Merkle Trees known as Sparse Merkle trees. A Sparse Merkle tree
(SMT) is based on the idea of a complete Merkle tree of an intractable size. The assumption here is
that as the size of the tree is intractable, there would only be a few leaf nodes with valid data blocks
relative to the tree size, rendering the tree as sparse. An SMT provides efficient non-membership
proofs which are central to certificate revocation.

We have devised a novel approach to construct a SMT and the resulting data structure
is referred to as Compact Sparse Merkle Trees(C-SMT). SMTs can be used to create efficient
Blockchains, Secure Key-Value stores, Secure IM etc.

Before delving into our approach we’ll first discuss some preliminaries and previous approaches
to SMTs.

2 Preliminaries

2.1 Merkle Trees
A hash tree or a Merkle tree is an authenticated data structure where every leaf node of the tree
contains the cryptographic hash of a data block and every non leaf node contains the concatenated
hashes of it’s child nodes.

2.2 Audit path
A Merkle audit path for a leaf in a Merkle tree is the shortest list of additional nodes in the tree
required to compute the root hash for that tree. In other words, the audit path consists of the list
of missing nodes required to compute the nodes leading from a leaf to the root of the tree.

1

2.3 Membership Proof
If the root computed from the audit path matches the true root, then the audit path is a proof of
membership for that leaf in the tree.

2.4 History Independence
A unique set of keys produce a deterministic root hash, regardless of the order in which keys have
been inserted or removed.

3 Compact Sparse Merkle Trees

3.1 Earlier Proposals
Different approaches ha e been proposed in the past to represent/simulate an SMT.

Bauer [Bau04] proposed an explicit tree structure where all the non-empty attributes are ele-
vated upwards through their ancestors.The elevation stops when the root of a subtree containing
a single non-empty leaf is reached, and all descendants to such roots are discarded. The original
SMT can be reconstructed by recording indices for the non-empty leaves in each subtree, but will
require excessive amounts of memory unless they are evenly spread out.

Laurie and Kasper in their work on Certificate revocation transparency [LK12], a Sparse Merkle
tree is simulated on a collection of keys.It also utilizes the concept of empty hashes, and a non-
membership proof a key is given by providing an audit path which leads to an empty hash value.
Non-membership proofs are inefficient to calculate in this approach as hash-values are re-calculated
on every request.

Their proposal is improved upon in Efficient Sparse Merkle Trees by Dahlberg [DPP16], the
crux of their idea is that they use caching mechanisms to speed up proof generation and insertion.
Due to this caching, the hash-values aren’t explicitly calculated again on every request, they can
be looked up through a cache.

In the following section we introduce a novel approach which creates an explicit tree structure
without utilizing empty hashes. The minimum distance path algorithm utilized for insertion of a
value forms the tree in such a way that it is inherently sorted.Due to this feature of the tree, we
get rid of empty hashes and utilize the window approach for non-membership proofs wherein the
closest pair of values which bound the given value form the non-membership proof. Insertion and
deletion and (non-) membership proofs all are done in logarithmic time.

3.2 Our Approach
The idea is to place every unique key in its correct subtree. This would ensure history independence.
In this approach we are not going to simulate a Sparse Merkle Tree, we are going to create it, albeit
a very compact one. This C-SMT contains only the keys inserted till now. There are no empty
hashes utilized, and we get the root hash in constant time.

To achieve this C-SMT, we need to augment the tree nodes to contain a parameter called
max-key. So for every non-leaf node, it’s two children will have max-key values representing the
maximum key in their respective subtree. An incoming key to be inserted in this SMT would get
put in the subtree for which it’s binary distance is closest. And it will recursively go down the
tree following this approach until it reaches a leaf node. The key gets inserted at this level and the
hashes and max-key values are adjusted as we recurse back. The path which the key follows down
the tree is called minimum distance path and we call this approach for inserting a key as Minimum
distance path algorithm

• Max-Key: Every non-leaf node contains the maximum key under its subtrees called max-
key.

• Distance: Distance is defined as the binary separation between two keys. It is calculated
by taking bitwise XOR and subsequently calculating the log. The distance parameter helps
in determining which subtree a key is closer too.

2

Listing 1: Binary distance between two keys
def distance(x, y) do

result = bxor(x, y)
:math.log2(result)

end

Figure 1: Compact sparse Merkle tree

4 Tree Operations
The algorithms below have been provided in a pseudo-code format. A few functional programming
constructs have also been used to make the pseudo-code look succinct.

4.1 Inserting a key
The insert algorithm recursively walks down the tree along the minimum distance path until it
reaches a leaf node. The key to be inserted is made the left or right sibling depending upon
whether the current leaf node key is greater or smaller than the key to be inserted. On recursing
back, on the way up all the hashes and max-key values along the minimum distance path are
readjusted.

Listing 2: Inserting a key
def insert(root , k, v) do

left = root.left
right = root.right

l_dist = distance(k, left.key)
r_dist = distance(k, right.key)

checks if the key to be inserted falls in the left subtree or the
right subtree

cond do
l_dist == r_dist ->

new_leaf = make_node(k, v)

min_key = min(left.key , right.key)

if k < min_key do
make new leaf as left child at the new level
make_node(new_leaf , root)

else
make new leaf as right child at the new level
make_node(root , new_leaf)

end

l_dist < r_dist ->

3

Going towards left subtree
left = insert(tree , left , k, v)
make_node(left , right)

l_dist > r_dist ->
Going towards right subtree
right = insert(tree , right , k, v)
make_node(left , right)

end
end

def insert(leaf , k, v) do
new_leaf = make_node(k, v)

cond do
k == key ->

raise "key exists"

k > key ->
new key will be right child
make_node(tree , leaf , new_leaf)

k < key ->
new key will be left child
make_node(tree , new_leaf , leaf)

end
end

4.2 (Non-) Membership proof for a key
The membership proof part of this algorithm is similar to the insert algorithm mentioned above.
The algorithm recursively walks down a minimum distance path for the key. If we successfully
reach the leaf node, the membership proof is given by recursing back and adding the sibling of the
current node to the proof.

If we are not able to reach the leaf node or at leaf node, the key does not match with the leaf
key, then the non-membership proof part of the algorithm takes over. The crux of this algorithm
is to supply proofs of the closest two keys which bound the key for which non-membership proof
is to be given.

Listing 3: Membership proof for a key
def membership_proof(root , k) do

root has no sibling or direction so nil is used
result = membership_proof(nil , nil , root , k)

case result do
membership proof case
when the key is present in the tree
[{_, _} | _] ->

[{value , hash} | proof] = List.reverse(result)
%{key: k, value: value , hash: hash , proof: proof}

edge case 1 for non -membership proof
When the key is greater than the largest element in the

tree
[key , :MINRS] -> [membership_proof(tree , key), nil]

edge case 2 for non -membership proof
when the key is smaller than the smallest element in the

tree
[:MAXLS , key] -> [nil , membership_proof(tree , key)]

4

when a key is bounded by two keys in case of non -
membership proof

[key1 , key2] ->
[membership_proof(tree , key1),
membership_proof(tree ,key2)]

end
end

def membership_proof(sibling , direction , leaf , k) do
key is present
if key == k do

[{sibling.hash , reverse(direction)},
{leaf.value , leaf.hash}]

else
Find the non membership proof otherwise
non_membership_proof(k, key , direction , sibling)

end
end

def membership_proof(sibling , direction , root , k) do
left = root.left
right = root.right

l_dist = distance(k, left.key)
r_dist = distance(k, right.key)

cond do
l_dist == r_dist ->

Find the non membership proof otherwise
non_membership_proof({k, root.key , direction , sibling})

l_dist < r_dist ->
Going towards left child
result = membership_proof(right , "L", left , k)

case { result , direction } do
membership proof case
{[{_, _} | _], _} ->

[{sibling.hash , reverse(direction)} | result]
{[key , :MINRS],"L"} ->

[key , min_in_subtree(sibling)]
{[:MAXLS , key], "R"} ->

[max_in_subtree(sibling), key]
_ -> result

end

l_dist > r_dist ->
Going towards right child
result = membership_proof(left , "R", right , k)

case { result , direction } do
membership proof case
{[{_, _} | _], _} ->

[{sibling.hash , reverse(direction)} | result]
{[key , :MINRS],"L"} ->

[key , min_in_subtree(tree , sibling)]
{[:MAXLS , key], "R"} ->

[max_in_subtree(sibling), key]
_ -> result

end
end

end

5

def non_membership_proof(k, key , direction , sibling) do
case [k > key , direction] do

[true , "L"] -> [key , min_in_subtree(sibling)]
[true , "R"] -> [key , :MINRS]
[false , "L"] -> [:MAXLS , key]
[false , "R"] -> [max_in_subtree(sibling), key]

end
end

def min_in_subtree(root) do
min_in_subtree(root.left)

end

def min_in_subtree(leaf) do
leaf.key

end

def max_in_subtree(root) do
root.key

end

def reverse(direction) do
case direction do

"R" -> "L"
"L" -> "R"

end
end

4.3 Deleting a key
The delete algorithm recursively walks down the tree until it reaches the leaf node with the key to
delete. On recursing back, it attaches the sibling of the deleted node with the parent’s sibling and
the tree hashes get updated.

Figure 2: Deleting a key from SMT

Listing 4: Deleting a key

def delete(root , k) do
left = root.left
right = root.right

if check_for_leaf(left , right , k) do
if left.key == k do

deletes the target key
delete_node(left)
right

else
deletes the target key
delete_node(right)

6

left
end

else
l_dist = distance(k, left.key)
r_dist = distance(k, right.key)

cond do
l_dist == r_dist ->

raise "key does not exist"

l_dist < r_dist ->
Going towards left subtree
left = delete(left , k)
make_node(left , right)

l_dist > r_dist ->
Going towards right subtree
right = delete(right , k)
make_node(tree , left , right)

end
end

end

def check_for_leaf(left , right , k) do
(left.size == 1 && left.key == k) ||
(right.size == 1 && right.key == k)

end

5 Properties
As in the case of Bauer [Bau04], we assume that our hash function behaves as an ideal hash
function, an assumption in cryptography called Random Oracle Model. Under this assumption the
following properties are implied.

5.1 Structure
The SMT is nearly balanced. If there are n entries in the tree, we can reach to any particular
entry in log2 (n) steps.

5.2 Space
Space for the SMT is bounded by twice the number of keys in the tree. n keys are stored at n
leaves and each pair of leaf nodes have a parent.

dlog2 (n)e∑
i=0

2i

= 2dlog2 (n)e+1 − 1

< 2 · n

5.3 Max Proof Size
As the SMT is nearly balanced the max proof size would be 2 · 256 · log2 (n) bits if SHA256 is used
as the hashing algorithm.

7

5.4 Differences from other approaches
We get an explicit tree structure which is inherently sorted due to the minimum distance path
algorithm utilized. The advantages of this approach are that we can have an explicit tree structure
without compromising on space as the the max space required is roughly 2 · n. We need not have
a cache as insertions are also possible in logarithmic time. The proof size does not contain the
empty hashes so it becomes compact and is only log2(n) hashes long.

References
[Bau04] Matthias Bauer. Proofs of zero knowledge. CoRR, cs.CR/0406058, 2004.

[DPP16] Rasmus Dahlberg, Tobias Pulls, and Roel Peeters. Efficient sparse merkle trees: Caching
strategies and secure (non-)membership proofs. 2016.

[ELC15] Adam Eijdenberg, Ben Laurie, and Al Cutter. Verifiable data structures. Google Research,
2015.

[LK12] Ben Laurie and Emilia Kasper. Revocation transparency. Google Research, 2012.

[LLK13] Ben Laurie, Adam Langley, and Emilia Käsper. Certificate transparency. ACM Queue,
12:10–19, 2013.

[Mer87] Ralph C Merkle. A digital signature based on a conventional encryption function. In
Conference on the theory and application of cryptographic techniques, pages 369–378.
Springer, 1987.

8

	Introduction
	Preliminaries
	Merkle Trees
	Audit path
	Membership Proof
	History Independence

	Compact Sparse Merkle Trees
	Earlier Proposals
	Our Approach

	Tree Operations
	Inserting a key
	(Non-) Membership proof for a key
	Deleting a key

	Properties
	Structure
	Space
	Max Proof Size
	Differences from other approaches

