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Abstract. Ring oscillator-based true random number generators (RO-
based TRNGs) are widely used to provide unpredictable random num-
bers for cryptographic systems. The unpredictability of the output num-
bers, which can be measured by entropy, is extracted from the jitter
of the oscillatory signal. To quantitatively evaluate the entropy, several
stochastic models have been proposed, all of which take the jitter as a
key input parameter. So it is crucial to accurately estimate the jitter
in the process of entropy evaluation. However, several previous methods
have estimated the jitter with non-negligible error, which would cause
the overestimation of the entropy. In this paper, we propose a jitter es-
timation method with high accuracy. Our method aims at eliminating
the quantization error in previous counter-based jitter estimation meth-
ods and finally can estimate the jitter with the error smaller than 1%.
Furthermore, for the first time, we give a theoretical error bound for our
jitter estimation. The error bound confirms the 1% error level of our
method. As a consequence, our method will significantly help to evalu-
ate the entropy of RO-based TRNGs accurately. Finally, we present the
application of our jitter estimation method on a practical FPGA device
and provide a circuit module diagram for on-chip implementation.

Keywords: TRNG · ring oscillator · jitter · estimation · entropy.

1 Introduction

Ring oscillator-based true random number generator (RO-based TRNG) is a
widely used kind of TRNGs for its simple implementation on logic devices such
as FPGAs and smart cards. The elementary structure of RO-based TRNG is
shown by Fig. 1. A slow clock signal (Ss) samples a fast oscillatory clock signal
(So) generated by an oscillator composed of an odd number of inverters. Under
the effect of correlated random noise (mainly low-frequency flicker noise ) and
uncorrelated random noise (mainly thermal noise) on the logic devices [6], the
periods of the oscillatory signal will vary randomly. The deviation of the periods
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Fig. 1. Elementary structure of RO-based TRNG

is usually defined as the period jitter. So the jitter is mainly composed of thermal
jitter and flicker jitter which are respectively contributed by the thermal noise
and the flicker noise. Then the jitter is exploited by the TRNG to extract random
numbers.

The randomness of a TRNG is mainly about the unpredictability of the gen-
erated random numbers. The unpredictability can be quantitatively measured
by the entropy rate of the random numbers. Unfortunately, the traditional sta-
tistical test suites such as NIST SP800-22 [10], DIEHARD [9] merely evaluate
the statistical properties of the output numbers, but can not answer whether
the numbers to be tested hold enough entropy. In order to evaluate the en-
tropy of RO-based TRNGs, several stochastic models have recently been pro-
posed [1, 4, 7, 8], all of which show that jitter is the key parameter that directly
affects the entropy rate. Consequently, it is crucial to precisely estimate the
jitter.

Up to now, several jitter estimation methods have been proposed. It is quite
inaccurate to estimate the jitter outside the device with measuring equipments
such as oscilloscopes [13], since additional jitter would be introduced by the In-
put/Output circuits and pins [14]. To estimate the jitter internally, Valtchanov
et al. [14] designed an embedded circuit to count the rising edges of the oscil-
latory signal in equal-length time intervals and took the standard deviation of
the counting results as an approximate measure of the accumulated jitter in the
interval. Since the counting results can only be integers, this method will in-
troduce in quantization error when estimating the jitter. Ma et al. [7] improved
Valtchanov et al.’s counter-based method by counting both the rising and falling
edges of the oscillatory signal. Such improvement actually reduces the quantiza-
tion step size by half, thus can decrease the quantization error. Nevertheless, the
quantization error is still not eliminated. Fischer et al. [2] proposed a different
method based on Monte Carlo approach, which could estimate the jitter with
the error smaller than 5%. Note that all the above mentioned methods are actu-
ally to estimate the total jitter containing both thermal jitter and flicker jitter.
Nevertheless, most of the stochastic models for entropy evaluation are based on
the common assumption that the periods of the oscillatory are independently
and identically distributed (i.i.d.) under the effect of thermal noise. This requires
only the jitter contributed by the thermal noise to be used to calculate the en-
tropy. It is known that the thermal jitter is difficult to be estimated directly.
Recently, Haddad et al. [3] proposed an approach to separate the thermal jitter
from the total jitter and gain the ratio of the thermal jitter in the total jitter.
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Nevertheless, the estimation of the total jitter in their work is also based on a
counter-based method. So quantization error will inevitably be brought in, but
was not considered as well.

In this paper, we provide a highly accurate jitter estimation method for RO-
based TRNGs. Our method aims at eliminating the error that exists in the
previous counter-based methods. Compared to the previous ones, our method
can estimate the total jitter with much lower error level, which is also confirmed
by theoretical analysis.

In summary, our contributions include:

– We propose a jitter estimation method with high accuracy for
RO-based TRNGs. As we investigated, non-negligible quantization error
is introduced in the previous counter-based jitter estimation methods. After
eliminating the quantization error, in the meanwhile taking the waiting time
in the sampling process into account, we provide a new, more accurate esti-
mation for the jitter with the error level below 1%, which is much lower than
the previous methods. This will significantly help to evaluate the entropy of
a RO-based TRNG accurately.

– For the first time, we give a theoretical error bound for the jitter
estimation. We adopt quantization error analysis approaches and present
a formal upper error bound for our jitter estimation. This error bound has
confirmed the 1% error level of our method in theory.

– With our method, we provide a practical jitter estimation on
FPGA device. We demonstrate that combined with the jitter separation
approach in [3], our method can be used to estimate the thermal jitter on
practical hardware platforms. We also provide a circuit module diagram of
our method for on-chip implementation.

The organization of this paper is as follows: In Section 2, we introduce the
preliminaries about signal model, entropy evaluation and jitter estimation. In
Section 3, we analyze the error of the previous counter-based jitter estimation
method given by [7] and propose our jitter estimation method. In Section 4, we
give the theoretical error analysis of our method. In Section 5, we conduct a
practical jitter estimation on an FPGA device with our method, and we present
the circuit module diagram of our method for on-chip implementation. In Section
6, we compare our method with the previous ones and give the conclusion.

2 Preliminaries: Signal Model, Entropy Evaluation and
Jitter Estimation

In this section, we first present the signal model of an elementary RO-based
TRNG, where we define symbols to describe the signals. Then we introduce the
entropy evaluation methods of RO-based TRNGs. The methods take the jitter
as an important parameter to calculate the entropy. As a consequence, jitter
estimation is crucial and will determine the accuracy of the entropy evaluation.
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2.1 Signal Model

For the RO-based TRNGs, the sampling process can be approximately treated
as a stationary process, so we just consider two successive samplings. Here we
define symbols to describe the oscillatory signal (So) and the sampling signal
(Ss) by Definition 1 and Fig. 2(a).

Definition 1. The time interval between two successive samplings SPi and SPi+1

is denoted by Ts. Within Ts, the edge intervals of So are denoted by To1· · ·Toj · · ·Tok.
The standard deviation of Toj is defined as the half period jitter of So and de-
noted by σo. (σo)s will be accumulated in Ts. The mean value of Toj is the half
mean period of So and denoted by µo. The waiting time W is defined as the
time interval between SPi and the following closest edge of So. According to [4]
and [7], W approximately follows the uniform distribution within [0, µo] because
of σo � µo, and it is independent from the Ts in the current sampling interval.

The µo can be measured from the frequency of So. For brevity, we normalize
all the time variables with µo, that is Ts → ts = Ts

µo
, Toj → toj =

Toj
µo

, σo →
σ = σo

µo
, µo → 1 and W → w = W

µo
∼ U(0, 1). The normalized variables can be

transformed back to time variables by multiplying by µo.

Since the jitter is relative between the two signals, an equivalent model can
be presented by treating So as stable while Ss has period jitter. The equivalent
model is illustrated by Definition 2 and Fig. 2(b).

Definition 2. The edge intervals of So are to1 = · · · = toj = · · · = 1. The sam-
pling interval ts is a random variable with mean value µs and standard deviation
σs. σs is defined as the total jitter accumulated in the interval ts. The jitters
from thermal noise and flicker noise are respectively denoted by σths , σfls . Since
the two kinds of noise are mutually independent, there is σ2

s = (σths )2 + (σfls )2.
Besides, we still have w ∼ U(0, 1) and it is independent from the current ts.
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Fig. 2. Signal Model of RO-based TRNG
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2.2 Entropy Evaluation

Previous articles such as [1] and [7] have given the methods to evaluate the
entropy of RO-based TRNGs. In order to mathematically characterize the RO
signals, the articles only take the uncorrelated thermal noise into consideration.
Then under the affection of thermal noise, the edge intervals To1 · · ·Toj · · ·Tok
will be i.i.d. with Gaussian distribution N(µo, σ

2
o). Correspondingly in the equiv-

alent model, there is ts ∼N(µs, (σ
th
s )2). Under the above assumption, according

to [1], the min-entropy can be calculated by (1)4.

Hmin = 1− 4

π2 ln(2)
e−π

2(σths )2 . (1)

The calculated entropy is actually contributed by the thermal noise and it can
be a conservative estimation for the min-entropy of RO-based TRNGs.

We can see the min-entropy is determined by the σths in the sampling interval
ts. Hence, it is crucial to estimate σths precisely for entropy evaluation.

2.3 Jitter Estimation

For a practical RO-based TRNG, if the sampling frequency is high, the accu-
mulated jitter in ts may be too small to be estimated accurately. So we usually
estimate the accumulated jitter in a larger measuring interval. Here we denote
the measuring interval by tm (= Tm

µo
, Tm is time variable) with mean value µm

and standard deviation σm. σm represents the total jitter accumulated in tm.
The thermal jitter is “sqrt” accumulated with the time interval [1], [6], [3]. So
after estimating the total jitter σm and separating the thermal jitter σthm from
σm, we can calculate the needed thermal jitter σths accumulated in the sampling
interval ts by

σths =

√
ts
tm
σthm . (2)

When the measuring interval is short enough so that the thermal jitter domi-
nates over the flicker jitter, there is σthm ≈ σm, and the σths can also be estimated
by

σths ≈
√
ts
tm
σm. (3)

Anyway, it is necessary to estimate the total accumulated jitter σm first and
we focus on the estimation of σm as well.

3 Our Proposed Jitter Estimation Method

We present our jitter estimation method in this section. Firstly, we investigate
the error of the previous counter-based jitter estimation method introduced by
Ma et al. in [7]. Results show that non-negligible error exists in Ma’s method.
Our proposed method gives a new estimation for the total jitter and is able to
achieve a much lower error level than the previous one.

4 (σths )2/4 is equivalent to the quality factor Q defined in [1]
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3.1 Error Investigation of Previous Counter-Based Jitter
Estimation Method

We primarily investigate the previous, typical counter-based method proposed
by Ma et al. [7]. Under the equivalent signal model, this method actually counts
both the rising and falling edges of So in series of interval tms and approximates
the variance of the counting result X to the variance of tm:

Var(tm) ≈ Var(X). (4)

Then the jitter σm is estimated by

σm =
√

Var(tm) ≈
√

Var(X). (5)

The approximation between Var(tm) and Var(X) is critical in this counter-based
method, since X is measurable on the chip by edging counting.

According to Fig. 2(b) in Section 2, the edge-counting result X in the interval
tm is actually the flooring quantized value of (tm−w+ 1) with the quantization
size q = 1, that is

X = btm − w + 1cq=1. (6)

Therefore, the waiting time factor of (−w+ 1) and the flooring quantization will
definitely introduce error in Ma’s method.

We investigate the error of Ma’s method by Matlab simulation. The absolute
error (ea) and relative error (er) of the approximation (4) can be calculated with

ea = Var(X)−Var(tm), er =
|ea|

Var(tm)
. (7)

According to (5), the estimation error of σm (denoted by em) is equal to 1
2er.

em can be a measure of the error level of the jitter estimation method. With
Matlab, we generate the instances of tm ∼N(µm, σ

2
m) with different size of σm

and corresponding instances of X. Here the flicker noise is not considered, since
to our knowledge, it is infeasible to be generated with simulation by now. Then
we evaluate the ea and em of Ma’s method. The results are shown in Fig. 3.
It can be seen that a 1

6 absolute error always exists in the approximation (4)
when σm > 0.4. While σm < 0.4, the absolute error ea would be even larger and
related with the fractional part of µm (denoted by fµm)5. The error em of this
method is larger than 10% until σm > 0.92.

On one aspect, the error level of this method is certainly not low (10%),
and non-negligible absolute error inherently exists in their estimation. Conse-
quently, once adopted in entropy evaluation, this method will overestimate the
jitter, and the entropy of RO-based TRNGs will be overestimated as well. On
another aspect, this method requires σm > 0.92 to gain the 10% error level. For
a practical RO, since the jitter can only be more accumulated by increasing the
measuring interval, this method needs a large measuring interval to accumulate
enough jitter for its accuracy.

5 Different fµms are indicated by different colors as well as in following figures.
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Fig. 3. Errors evaluation of Ma’s method by Matlab

3.2 New Estimation for the Jitter

In order to correct the error in Ma’s method, we take a close look into the
relationship between Var(tm) and Var(X). Then we eliminate the quantization
error and the effect of the waiting time factor to give an improved approximation
for Var(tm). Based on this approximation, we present our new, more accurate
estimation for the jitter.

Firstly, we introduce the “Sheppard’s correction” in quantization theory.
Sheppard’s correction [11]: For a random variable v with continuous dis-
tribution, its rounding quantized value with quantization step q can be denoted
by vq = [v]q. When the variance of v is large enough, the quantization error
eq = v−vq will approximately follow uniform distribution in (−q/2, q/2) and be
independent from v. The first-order and second-order moments of v and vq have
the following relationships [11]:

E(v) = E(vq),E(v2) ≈ E(v2q )− q2/12. (8)

In the jitter estimation case, we know that the edge-counting result in the
interval tm is

X = btm − w + 1cq=1 = [tm − w + 0.5]q=1. (9)

So according to the “Sheppard correction”, when Var(tm − w + 0.5) is large
enough, the quantization error in the jitter estimation is

eq = (tm − w + 0.5−X) ∼ U(−0.5, 0.5) (10)

and eq will be independent from (tm − w + 0.5). Besides, the equivalent signal
model in Section 2 has indicated that w ∼ U(0, 1) and it is independent from
the current measuring interval tm, so we have

Var(X) = Var(tm − w + 0.5− eq) ≈ Var(tm) + Var(w) + Var(eq). (11)
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From (11) we can see the deviation between Var(tm) and Var(X) is indeed
caused by the quantization error eq and waiting time w. Consequently, we give
the new approximation for Var(tm):

Var(tm) ≈ Var(X)−Var(w)−Var(eq) ≈ Var(X)− 1/6. (12)

Based on the approximation (12), we present our new, more accurate esti-
mation of σm by

σm ≈
√

Var(X)− 1/6. (13)

In the same way, the absolute and relative errors of approximation (12) can
be calculated by

ea = Var(X)− 1/6−Var(tm), er =
|ea|

Var(tm)
, (14)

and the error level em of our method is also equal to 1
2er. By Matlab simulation,

we evaluate the errors (ea and em) and show them in Fig. 4. We can see our
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Fig. 4. Errors evaluation of our method by Matlab

estimation has successfully eliminate ea when σm > 0.4. Correspondingly, the
error level (em) of our method gets down to lower than 1% as long as σm > 0.4.

This is an obvious improvement over Ma’s method. Firstly, our estimation
can achieve much lower error level (1%) than Ma’s method (10%). Secondly,
our method can eliminate the absolute error which inherently exists in Ma’s
method. This will avoid overestimating the jitter. Moreover, our method needs
much shorter measuring time interval, which can speed up the jitter estimation
process.
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3.3 An Efficient Calculation of the Variance of X

Jitter estimation should be fast for some application scenarios such as on-
line health test. Considering that the calculation of Var(X) is the most time-
consuming in counter-based jitter estimation method, we present an efficient
approach to do this calculation.

As we know, if the samples of the counting result X are x1, · · · , xN , then the
ordinary variance calculating formula can be presented by

Var(X) =

∑N
j=1 x

2
j

N
−
(∑N

j=1 xj

N

)2
, (15)

which needs N + 1 multiplications. N is the sample size.
In view of modern logic devices, the jitter accumulated in the time interval

tm is usually very small, and the edge-counting results will vary slightly around

the mean value x =
∑N
j=1 xj

N . That is, the sample space of X is small too and
we denote it by SX = {pi|pi = bxc − I + i; 1 ≤ i ≤ 2I; 5 ≤ I � N}. Here
we recommend 5 ≤ I so that SX can cover most of the counting results. Our
approach is to count the number of X’s samples on each sample point pi, and
the results are denoted by c1, . . . , c2I . Then Var(X) can be calculated by

Var(X) =

∑2I
i=1 ci · (pi − x)2

N
. (16)

Only 4I (� N + 1) multiplications are needed in (16). Evidently, the efficiency
of the jitter estimation is improved.

We present the corresponding Algorithm 1 for this approach.

Algorithm 1 Algorithm for the calculation of Var(X).

Input: The counting result x1, · · · , xN . Parameters N and I.
Output: Var(X).

1: Calculating the mean value of x1, · · · , xN : x←
∑N
j=1 xj

N

2: Calculating the sample points of X:
for i = 1, · · · , 2I do
pi = bxc − I + i;
end for;

3: Counting x1, · · · , xN on p1, · · · , p2I :
Set c1, · · · , c2I = 0;
for j = 1, · · · , N do

for i = 1, · · · , 2I do
if (xj = pi) ci = ci + 1; end if;

end for;
end for;

4: Calculating Var(X): Var(X)←
∑2I
i=1 ci·(pi−x)

2

N

5: return Var(X);
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4 Theoretical Error Analysis

In this section, we theoretically analyze our method and give a formal error
bound, which confirms the 1% error level of our method in theory.

The error ea is affected by tm and w. So we expand ea in complex Fourier
series based on the characteristic functions of tm and w, then we formally express
ea and give the upper bound of the error em with the following steps.
Step 1. Definition of Equivalent Variable v. Firstly, we define v, its quan-
tized value vq (q = 1) and the quantization error eq respectively by

v = tm − w + 0.5− bµmc, vq = [v] = X − bµmc, eq = v − vq. (17)

Step 2. Expression of ea with v and vq. The absolute error ea in our esti-
mation can be presented by

ea = Var(X)− q2

12
−Var(w)−Var(tm) = Var(vq)−Var(v)− q2

12
. (18)

According to the “Sheppard’s correction” on the first-order moment (8), mean
value E(vq) equals to E(v), so we have

ea = E(v2q )− E(v2)− q2

12
= 2 E(veq) + E(e2q)−

q2

12
. (19)

Step 3. Expression of ea in Fourier series with Wv(α). The characteristic
function of v is

Wv(α) =

∫ ∞
−∞

f(v)ejαvdv. (20)

Here we define v0 = v−µv, where µv = E(v), then its characteristic function
is

Wv0(α) = e−jαµvWv(α). (21)

According to [12] [5], the E(veq) and E(e2q) in (19) can be expressed in the

form of complex Fourier series based on Wv0(α) and its derivation Ẇv0(α):

E(veq) =
q

π

∞∑
k=1

cos
(2πk

q
µv

)
Ẇv0

(2πk

q

) (−1)k+1

k

+
q

π

∞∑
k=1

sin
(2πk

q
µv

)
µvWv0

(2πk

q

) (−1)k

k
,

(22)

E(e2q) =
q2

12
+
q2

π2

∞∑
k 6=0

cos
(2πk

q
µv

)
Wv0

(2πk

q

) (−1)k

k2
. (23)

Step 4. Deduction of Wv(α). For jitter estimation, according to (17), we have

µv = E(v) = E(tm − w + 0.5− bµmc) = µm − bµmc = fµm . (24)
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Then when only considering the thermal noise, there is tm ∼N(µm, (σm)2) and
w ∼ U(0, 1). Their characteristic functions respectively are

Wtm(α) = ejαµme−((σm)2α2/2),Ww(α) = ejα/2 sin(α/2)/(α/2). (25)

According to (17) and (25), we have

Wv(α) =
2 sin(α/2)

α
e−((σm)2α2/2) · ejαfµm , (26)

Wv0(α) = e−jαµvWv(α) =
2 sin(α/2)

α
e−((σm)2α2/2) (27)

and

Ẇv0(α) =
(cos(α/2)

α
− 2 sin(α/2)

α2
− 2 sin(α/2)

α
(σm)2α

)
e−((σm)2α2/2). (28)

Step 5. Formal Expression of ea. Wv0(α) and Ẇv0(α) in Step 4 will go to
zero quickly when |α| > 2π

q because of their exponent parts [5]. For example,
when q = 1, considering the cases of α = 2π and α = 4π, we have

e−((σm)2(4π)2)/2 < 10−25 · e−((σm)2(2π)2)/2. (29)

So we just consider the terms with k = ±1 in the sums of (22), (23). By setting
q = 1 and combining with (18), (19), (22), (23), (27), (28), we can gain the
formal expression of ea :

ea ≈ −
1

π2
cos(2πfµm) · e−2π

2σ2
m . (30)

ea will reach to its maximum when fµm = 0.5:

(ea)max ≈
1

π2
e−2π

2σ2
m . (31)

Fig. 5(a) shows the comparison between (ea)max and the evaluation results of
ea got from the Matlab simulation in Fig. 4(a). Obviously, (ea)max is a reasonable
upper bound of ea.

Step 6. Upper bound of em. According to the above theoretical analysis,
upper bound of em in our jitter estimation method can be formally expressed
by:

(em)max =
1

2
(er)max =

1

2
· |(ea)max|

σ2
m

≈ 1

2π2σ2
m

e−2π
2σ2
m . (32)

As we present in Fig. 5(b), the theoretical error bound is lower than 1% as
long as σm > 0.4141. This is in accord with the Matlab simulation results shown
in Fig. 4(b). In theory, the low error level of our method has been confirmed.



12 S. Zhu et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 m
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

 e
a

 f
m

=0

 f
m

=0.1,0.9

 f
m

=0.2,0.8

 f
m

=0.3,0.7

 f
m

=0.4,0.6

 f
m

=0.5

 (ea)max

(a) Theoretical absolute error ea

0 0.2 0.4 0.6 0.8 1 m0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

 e
m

(%
)

X: 0.4141
Y: 1

(b) Theoretical error level em

Fig. 5. Theoretical error analysis of our method

5 Jitter Estimation on FPGA Device

In this section, we conduct a whole jitter estimation on a practical FPGA device.
We adopt our method to estimate the total jitter of a RO-based TRNG and
combine with the jitter separation approach in [3] to gain the part of the thermal
jitter in the total jitter.

The oscillator is implemented on an Altera Cyclone IV FPGA. It is composed
of 3 inverters and has about 305MHz frequency. Firstly, we use our method to
estimate the total accumulated jitter (σm) in different measuring intervals (Tms),
and then the results are quadratically fitted by σ2

m = aT 2
m + bTm. According

to [3], the first-order term (bTm) is the part contributed by the thermal jitter.
Specifically, we use a counter to count the edges of the oscillatory signal

in multiple measuring intervals (Tm =0.8µs, 1.0µs, 1.2µs, 1.4µs, 1.6µs, 1.8µs,
2.2µs, 2.6µs ,3.0µs, 4.2µs, 5.4µs ). For each measuring interval, we calculate
Var(X) from the edge-counting results Xs and estimate the corresponding σ2

m

by Equation (13). Then Tm and σ2
m is fitted by σ2

m = 0.0732T 2
m+0.087Tm, shown

in Fig. 6(a). For a chosen measuring interval Tm(µs), the ratio of the thermal
jitter in the total jitter will be

rth =

√
0.087Tm

0.0732T 2
m + 0.087Tm

=

√
0.087

0.087 + 0.0732Tm
, (33)

and the thermal jitter can be estimated by

σthm = rthσm. (34)

We show the estimated results of (σthm )2 in different measuring intervals by
Fig. 6(b). It can be seen that the thermal jitter (σthm )2 increases at a near-linear
trend with the growth of the measuring interval. This is consistent with the fact
that thermal noise is a kind of uncorrelated noise.
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Fig. 6. Experiment results of our jitter estimation on FPGA

For some other applications such as online health test of the entropy source,
jitter estimation method on the chip should always estimate the thermal jitter
in a fixed time interval. In this situation, the above multi-intervals estimation
and fitting work can be regarded as a pre-calculation before implementing the
online health test. Based on the pre-calculation, a ratio of the thermal jitter
will be obtained and set in the implementation of the online test. During the
execution phase, the online test just need to estimate the total jitter in the fixed
measuring interval with our method and then extract the thermal part from the
total jitter according to the ratio. For example, if the measuring interval is set
fixed as 1.2µs, then the ratio of the thermal jitter pre-calculated from (33) is
rth = 0.706. σm is the real-time total jitter estimated by our method on the
chip. Then the thermal jitter can be simply calculated by σthm = 0.706σm.

We provide the circuit module diagram of our method for on-chip imple-
mentation in Fig. 7. The sampling signal is processed by a frequency divider to
generate the signal Sm which contains a series of measuring interval Tms. Then
the circuit conducts edge counting and calculates the total accumulated jitter
σm. After multiplying σm by the ratio rth, the circuit finally outputs the thermal
jitter σthm .
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TRNG output
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( )Var *
( )Var X

1
( )

6
* -
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Fig. 7. Circuit module diagram for jitter estimation 6



14 S. Zhu et al.

6 Discussion and Conclusion

We compare different jitter estimation methods in Table 1. The error levels of
Ma’s [7] and our method are gained from our analysis. The error level of Fischer’s
method was evaluated from their simulation results [2]. Note that the error levels
presented in this table are given in the same condition that the flicker noise is not
taken into account, but can still reflect the accuracy of different methods. In all
of the methods, ours can achieve the lowest error level (1%), which is confirmed
by theoretical analysis. For the methods in [7] and [2], there was no theoretical
error analysis provided. Besides, compared to the method in [7], our method has
reduced the requirement for the jitter σm, which can shorten the measuring time
interval and speed up the estimation process. Taking this advantage, when our
method is applied for online health test, the test can quickly assess the state of
the entropy source.

Table 1. Comparisons of different methods

Methods Error level
theoretically

confirmed

Requirement

for σm

Ma’s [7] 10% no 0.92

Fischer’s [2] 5% no undefined

Our method 1% yes 0.4141

In conclusion, we propose a high-accurate method to estimate the jitter of
RO-based TRNGs. The error level of our method can reach to 1%, which is
much lower than previous jitter estimation methods. For the first time, we give
a theoretical error bound for our method, and the bound confirms the low error
level. Additional advantage of our method is that it requires shorter measuring
time interval, which can speed up the process of jitter estimation. Our method
is to estimate the total jitter in RO-based TRNGs. When combined with the
jitter separation approach in [3], our method is able to be used to estimate
the thermal jitter on practical logic devices, as we presented by an experiment
on FPGA. Consequently, our method will significantly help to precisely and
efficiently evaluate the entropy of RO-based TRNGs.
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6 The symbol ∗ represents the input of the module
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