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Abstract. Attribute-Based Encryption (ABE) is a versatile one-to-many encryption primitive, which
enables fine-grained access control over encrypted data. Due to its promising applications in practice,
ABE schemes with high efficiency, security and expressivity have been continuously emerging. On the
other hand, due to the nature of ABE, a malicious user may abuse its decryption privilege. Therefore,
being able to identify such a malicious user is crucial towards the practicality of ABE. Although some
specific ABE schemes in the literature enjoys the tracing function, they are only proceeded case by
case. Most of the ABE schemes do not support traceability. It is thus meaningful and important to
have a generic way of equipping any ABE scheme with traceability. In this work we partially solve the
aforementioned problem. Namely, we propose a way of transforming (non-traceable) ABE schemes satis-
fying certain requirements to fully collusion-resistant black-box traceable ABE schemes, which adds only
O(VK) elements to the ciphertext where K is the number of users in the system. And to demonstrate
the practicability of our transformation, we show how to convert a couple of existing non-traceable
ABE schemes to support traceability.
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1 Introduction

Attribute-Based Encryption (ABE), introduced by Sahai and Waters [27], is a versatile one-to-many encryp-
tion primitive which enables fine-grained access control over encrypted data. Due to its promising applications
in practice, ABE has been attracting much attention in the community and undergoing a significant devel-
opment. Among the recently proposed ABE schemes [27/T3I5I9UT2129ITRI25ITABITIBOITH26/T6/T], progress
has been made on the schemes’ security, access policy expressivity, and efficiency. For example, Lewko et al.
[18] proposed the first fully secure ABE schemes, Lewko and Waters [19] proposed a new proof technique for
achieving full security for ABE, Attrapadung et al. [3] proposed the first expressive Key-Policy ABE (KP-
ABE) with constant-size ciphertexts, Rouselakis and Waters [26] proposed the first large universe ABE
schemes which impose no limitations on the attribute sets or the access policies, Waters [30] proposed the
first ABE scheme supporting regular languages to be the access policy while the previous works support at
most boolean formulas, and Attrapadung [I] proposed a series of fully secure ABE schemes which support
regular languages, constant size ciphertexts, or large universe.

As security, access policy expressivity, and efficiency are the three preliminary directions for ABE research,
traitor tracing is a compulsory requirement for practical ABE schemes. In particular, using Ciphertext-
Policy ABE (CP-ABE) [13l5] as an example, ciphertext access policies do not have to contain any receivers’
identities, and more commonly, a CP-ABE policy is role-based and attributes are shared between multiple

5 In a large universe ABE scheme, the attribute universe could be exponentially large, so that any string can be used
as an attribute, and attributes do not need to be pre-specified during setup.



users. For example, the user with attributes {Bob, Mathematics, PhD Student} and the user with attributes
{Carl, Mathematics, PhD Student} are sharing the attributes {Mathematics, PhD Student} and both of
them can decrypt the ciphertext with policy “(Mathematics AND (PhD Student OR Alumni))”. In practice,
a malicious user, with attributes shared with multiple other users, might leak a decryption blackbox/device,
which is made of the user’s decryption key, for the purpose of financial gain or some other forms of incentives,
as the malicious user has little risk of being identified out of all the users who can build a decryption blackbox
with identical decryption capability. Being able to identify this malicious user (refer to as ‘traitor’) is crucial
towards the practicality of an ABE system.

With a series of work [2112012324], Liu et al. formalized the problem of traitor tracing for ABE well
and proposed the counterparts supporting traitor tracing for some existing appealing ABE schemes. For
example, [20023] add fully collusion-resistant blackbox traceabilityﬂ to the fully secure CP-ABE scheme in
[18], and [24] adds fully collusion-resistant blackbox traceability to the large universe CP-ABE scheme in
[26]. Note that fully collusion-resistant blackbox traceability provides more solid confidence to security and
applicability than ¢-collusion-resistant traceabilityﬂ does, this paper focuses on the fully collusion-resistant
blackbox traceability in ABE.

While Liu et al. [2112012324] transformed several existing appealing ABE schemes to their traceable
counterparts, there are still many other appealing ABE schemes for which no traceable counterparts are
proposed, for example, the fully secure ABE schemes in [I] which support regular languages, large universe,
or constant size ciphertexts. Furthermore, we believe that in the future more and newer ABE schemes with
better security, expressivity, efficiency and other appealing features will appear, and to be practical, these
existing and future ABE schemes also need to be traceable against traitors. Investigating these schemes and
proposing the traceable counterparts one by one will be a heavy workload.

In this paper, we make an attempt to propose a framework to transform ABE schemes to their traceable
counterparts in a generic manner. In particular, by specifying some requirements on the structure of the
ABE constructions, we propose an ABE template, and show that any ABE scheme satisfying this template
can be transformed to a fully collusion-resistant blackbox traceable ABE scheme in a generic manner, at the
cost of sublinear overhead, while keeping the appealing properties of the underlying ABE schemes, such as
fine-grained access control on encrypted data, highly expressive access policy, short ciphertext, and so on.
The contributions of our framework are two folds as below.

— For the existing ABE schemes satisfying the template, the traceable counterparts can be obtained directly
by applying the transformation framework.

— For the existing ABE schemes not satisfying the template and ABE schemes to be proposed in the future,
this framework provides a ‘target’ which they can try to achieve and then could be transformed to a
traceable version.

1.1 Our Results

To enable ABE schemes to be fully collusion-resistant blackbox traceable, we follow the approach in [20l23],
namely, as shown in Fig. [I| converting a non-traceable ABE scheme to an Augmented ABE scheme, and
then applying a generic transformation from Augmented ABE to traceable ABE. As shown in the dash line
part of the Fig. I} Liu et al. [20023] introduced the concept of Augmented ABE and established a generic
transformation from Augmented ABE to traceable ABE. While Liu et al. [20022123124] proposed several ad
hoc Augmented ABE constructions from existing non-traceable ABE schemes, in this paper, we propose
an ABE template which covers a major branch of (non-traceable) ABE designs, and propose a generic
transformation from this ABE template to Augmented ABE, as shown in the bold line part of Fig. [T} Thus,

6 Fully collusion-resistant traceability means that the number of colluding users in constructing a decryption device
is not limited and can be arbitrary, and the system remains traceable no matter how many keys are at the disposal
of the device.

7 A t-collusion-resistant scheme has a limitation that the number of colluding users could not exceeds a predefined
system parameter ¢, i.e., once the number of colluding users exceeds t, the scheme will not be secure any more.
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Fig. 1. Outline

following our ABE template and generic transformation from the ABE template to Augmented ABE in
this paper, as well as the generic transformation from Augmented ABE to traceable ABE by Liu et al.
[20023], a generic transformation that enables ABE schemes to be fully collusion-resistant blackbox traceable
is established.

In Sec. |2} we review the definitions of conventional (non-traceable) ABE, Traceable ABE, and Augmented
ABE, as well we the generic transformation from Augmented ABE to Traceable ABE. Then we present our
work as below.

— In Sec. 3] we define an ABE template for conventional (non-traceable) ABE. The template represents a
type of ABE construction techniques, so that this template covers not only many existing important ABE
schemes with appealing properties, but also some possible ABE schemes in the future, which consider
this template and corresponding construction techniques when designed.

— Also in Sec. [3] we propose a generic framework that transforms the ABE template to Augmented ABE.
All the ABE schemes satisfying the template can be transformed to their traceable counterparts, enjoying
their original appealing properties and additional fully collusion-resistant blackbox traceability.

e The overhead for the transformation (i.e. the overhead for the fully collusion-resistant blackbox
traceability) is sublinear with the number of users in the system.

e We prove the security of the resulting Augmented ABE in the standard model. (The outline for the
security analysis is given later in Fig. [3])

— While the ABE template and generic transformation in Sec. [3] are described on composite order groups,
to be more general, in Sec. [4] we show that the template, the transformation, and the proof also work
well for the schemes on prime order groups.

— In Sec. 5] we show some existing appealing ABE schemes with different virtues, indeed satisfy our ABE
template. We obtain the traceable counterparts for these appealing ABE schemes, by applying our generic
transformation framework.

Notice that, our method/framework considers and works for a subset of pairing-based ABE schemes,
namely, those ABE schemes satisfying our non-traceable ABE template, rather than all the ABE schemes.
For example, our framework is not applicable to the lattice-based ABE schemes (e.g. [§]). Actually, as
far as we know, there is not known results on lattice-based ABE schemes with traitor tracing property.
We would like to view our asymptotic result mainly as a stepping stone towards building practical ABE
schemes. In particular, in retrospect, the ABE schemes by Waters [29], Lewko et al. [18], Lewko and Waters



[19], Rouselakis and Waters [26], Attrapadung [I], and so on, represent one of the main branches of ABE
development, as well as a branch of pairing-based ABE design/construction method, and it is reasonable
to believe that new ABE schemes in this branch will be proposed in future. While these ABE schemes
have been getting better security, policy expressivity, and/or efficiency, they did not consider or support
traitor tracing, and this seriously limits their applicability in practice. Our asymptotic result makes the ABE
schemes following this branch to have traitor tracing functionality, while leaving it as future work to further
reduce the overhead incurred by traitor tracing functionality and make other types of ABE schemes (e.g.
the lattice-based ones) to support traitor tracing.

1.2 Related Work

Boneh and Naor [7] showed that any collusion-resistant binary fingerprinting code [28] gives rise to a collusion-
resistant traitor tracing system [10] with constant size ciphertexts, but the cost is that the secret key size is
linear in the codeword length [, which is quite large, namely, even in the most efficient fingerprinting code
to date (e.g., [6]), I = O(t?) for t-collusion-resistance and I = O(K?) for fully collusion-resistance, where K is
the number of users in the system. Recently, Lai and Tang [I7] adapted the techniques of [7] to the setting of
CP-ABE, namely, given a collusion-resistant fingerprinting code, any CP-ABE scheme can be transferred to
a traceable CP-ABE scheme. The resulting traceable CP-ABE in [I7] takes small cost on the ciphertext size,
but has extremely large secret key and public key sizes, which are proportional to the codeword length [ of
the underlying fingerprinting code. Table [1| shows a comparison of the key and ciphertext sizes between the
resulting fully collusion-resistant traceable CP-ABE schemes generated by the transformation methods in
[1I7] and this paper. Note that even using the most efficient fingerprinting code to date, say [6], the resulting
fully collusion-resistant CP-ABE in [I7] has public key and secret key sizes proportional to O(ICQ)7 which
are extremely large. In addition, it is worth mentioning that the tracing algorithm in [I7] requires a secret
tracing key so that only a trusted party which knows the tracing key can run the tracing algorithm. In this
paper, our transformation method achieves public traceability, i.e., the tracing algorithm does not need any
secrets and anyone can perform the tracing.

T Public Key Size Ciphertext Size Secret Key Size|Public Traceability
7 2 |PK| + O(K?) 2|CT| ISK| - O(K?) X
this work ® | |PK| — 14+ 4vK | |CT| — 14 (15 + do)VK ISK| +1 N

L|PK|, |SK|, and |CT| are the public key size, secret key size, and ciphertext size of the
underlying (non-traceable) CP-ABE, respectively.

2 The public key size, ciphertext size, and secret key size of the traceable CP-ABE scheme in
[I7] are (approximately) |PK| 41, 2|CT|, and |SK]| - I, respectively, where [ is the codeword
length of the underlying fingerprinting code. For the most efficient fingerprinting code [6]
to date, I = O(K?) for fully collusion-resistance.

3 In this work, do is a constant that describes the (non-traceable) ABE template. For existing
ABE schemes satisfying the template, do = 1 or dp = 2.

Table 1. Comparison of the key and ciphertext sizes

2 Preliminaries

In this section, following the roadmap of [20123], we review the definitions of conventional (non-traceable)
ABE, (blackbox) Traceable ABE, and Augmented ABE which acts as a bridge that transfers non-traceable
ABE to traceable ABE.

In retrospect, as shown in Fig. [2 a functional’ ABE is defined by extending conventional (non-traceable)
ABE, namely by predefining the number of users in the system and indexing the users with uniques indexes.



Then Traceable ABE is defined by extending ‘functional’ ABE, namely by adding a Trace algorithm and
defining the traceability. Further, Augmented ABE is defined by extending ‘functional’ ABE, namely by
extending the Encrypt algorithm and defining message-hiding and index-hiding properties. Liu et al. [20/23]
proved that an Augmented ABE construction implies a Traceable ABE construction, by a generic trans-
formation. In this work, we investigate how to transfer conventional (non-traceable) ABE constructions to
Augmented ABE constructions in a generic manner.

Below we first review ‘functional’ ABE and its security, then review the definitions of non-traceable ABE,
traceable ABE, and Augmented ABE based on this functional ABE.

To be as general as possible, in these definitions we use the terms ‘ciphertext tag’ and ‘key tag’, rather
than ‘access policy’” and ‘attributes’. When the ciphertext tag is an attribute set and the key tag is a Boolean
formula, it is a KP-ABE supporting Boolean formula as policy; when ciphertext tag is a Deterministic Finite
Automata (DFA) and the key tag is a string, it is a CP-ABE supporting DFA as policy, an so on.
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Fig. 2. Outline of Definitions and Framework

2.1 ‘Functional’ Attribute-Based Encryption

Attribute-Based Encryption Syntax. Given integers a and b where a < b, let [a,b] be the set {a,a +
1,...,b}. Also, we use [b] to denote the set {1,2,...,b}. Let relation I' : X x Y — {0,1} be a predicate
function that maps a pair of key tag in a space X and ciphertext tag in a space Y to {0,1}. An Attribute-
Based Encryption (ABE) scheme for predicate I' consists of following algorithms:

Setup(\, I, K) — (PP, MSK). On input a security parameter A, a predicate I', and the number of users K
in the system, the algorithm runs in polynomial time in A, and outputs a public parameter PP and a
master secret key MSK.

KeyGen(PP,MSK, X) — SKj x. On input PP, MSK, and a key tag X € X, the algorithm outputs a secret
key SKj, x corresponding to X . The secret key is assigned and identified by a unique index k € [K].

Encrypt(PP, M,Y) — CTy. On input PP, a message M, and a ciphertext tag Y € Y, the algorithm outputs
a ciphertext C'Ty. Y is included in CTy .

Decrypt(PP, CTy,SKy,x) — M or L. On input PP, a ciphertext C'Ty, and a secret key SKy, x, the algorithm
outputs a message M or L indicating the failure of decryption.

Correctness. For all X € X, Y € VY, and messages M, suppose (PP, MSK) < Setup(X,I',K), SKg x <
KeyGen(PP, MSK, X), CTy <« Encrypt(PP,M,Y). If I'(X,Y) = 1 then Decrypt(PP, CTy,SKj x) = M.



Security. The security of an ABE scheme for predicate I" is defined using the following message-hiding game,
which is a typical semantic security game.
Gamepyy. The message-hiding game is defined between a challenger and an adversary A as follows:

Setup. The challenger runs Setup()\, I, K) and gives the public parameter PP to A.

Phase 1. For i = 1 to Q1: A adaptively submits (index, key tag) pair (k;, X,) to ask for secret key for
key tag Xj,, and the challenger responds with a secret key SKj, Xy, » which corresponds to key tag X,
and has index k;.

Challenge. A submits two equal-length messages My, M7 and a ciphertext tag Y*. The challenger flips a
random coin b € {0, 1}, and sends CTy - < Encrypt(PP, M, Y™) to A.

Phase 2. For i = Q1 + 1 to @: A adaptively submits (index, key tag) pair (k;, Xx,) to ask for secret key
for key tag Xj,. and the challenger responds with a secret key SKy;, Xy, » which corresponds to key tag
X}, and has index k;.

Guess. A outputs a guess b’ € {0,1} for b.

A wins the game if ¥ = b under the restriction that none of the queried {(k;, Xj,)}%, can satisfy
I'(Xy,,Y*) = 1. The advantage of A is defined as MHAdv 4 = | Pr[b’ = b] — 1|. Note that to capture that
each secret key has a unique index in [K], it is required that Q < K, k; € [K], and k; # k; V1 <1 # j < Q.
But we do not require Xy, # X, i.e., different users/keys may have the same key tag.

Definition 1. A K-user ABE scheme for predicate I' is secure if for all probabilistic polynomial time (PPT)
adversaries A, MHAdv 4 is negligible in X.

We say that a K-user ABE scheme for predicate I" is selectively secure if we add an Init stage before Setup
where the adversary commits to the challenge ciphertext tag Y*.

2.2 Conventional (non-traceable) ABE

The definitions of conventional (non-traceable) ABE (e.g. in [30J26/T]) are identical to that of the above
functional ABE, except that (1) the number of users in the system is not predefined in the Setup; and (2)
the secret keys are not assigned unique indexes.

Actually, the definitions of the above functional ABE are obtained by modifying the definitions of con-
ventional (non-traceable) ABE, and the modifications (i.e. predefining the number of users in the system and
assigning each secret key a unique index) are necessary settings for an ABE scheme to be blockbox traceable,
and as discussed in [20J23], these settings do not weaken the virtues of ABE or limit its applications.

2.3 Traceable ABE

For an ABE scheme, a ciphertext-tag-specific decryption blackbox D is described by a ciphertext tag Yp and
a noticable probability value e (i.e. € = 1/f()\) for some polynomial f), and this blackbox D can decrypt
ciphertexts generated under Yp with probability at least e. As discussed in [20/23], such a blackbox can reflect
most practical scenarios, which include the key-like decryption blackbox for sale and decryption blackbox
“found in the wild”.

Syntax. A (blackbox) Traceable ABE scheme for predicate I" consists of the four algorithm (Setup, KeyGen,
Encrypt, Decrypt) of the ‘functional’ ABE in Sec. and the following Trace algorithm:

Trace? (PP, Yp,¢) — Ky C [K]. Trace is an oracle algorithm that interacts with a ciphertext-tag-specific
decryption blackbox D. By given the public parameter PP, a ciphertext tag Yp, and a probability value €, the
algorithm runs in time polynomial in X and 1/e, and outputs an index set Ky C [KC] which identifies the set
of malicious users. Note that € has to be polynomially related to A, i.e. e = 1/f(\) for some polynomial f.

Correctness. The correctness of traceable ABE is exactly identical to that of the ‘functional’ ABE in

Sec. 211



Security. The security definition of traceable ABE is exactly identical to that of the ‘functional’ ABE in
Sec. i.e. as in Def.

Traceability. The following tracing game captures the notion of fully collusion-resistant traceability against
ciphertext-tag-specific decryption blackbox.

Gametg. The tracing game is defined between a challenger and an adversary A as follows:

Setup. The challenger runs Setup(\, I, K) and gives the public parameter PP to A.

Key Query. For i =1 to Q: A adaptively submits (index, key tag) pair (k;, Xk,) to ask for secret key for
key tag Xy,, and the challenger responds with a secret key SKj, Xy, » which corresponds to key tag X,
and has index k;.

Decryption Blackbox Generation. A outputs a decryption blackbox D associated with a ciphertext
tag Yp and a non-negligible probability value e.

Tracing. The challenger runs Trace” (PP, Yp, €) to obtain an index set Ky C [K].

Let Kp = {k;|1 < i < @} be the index set of secret keys corrupted by the adversary. We say that A wins
the game if the following two conditions hold:

1. Pr[D(Encrypt(PP, M,Yp)) = M| > ¢, where the probability is taken over the random choices of message
M and the random coins of D. A decryption blackbox satisfying this condition is said to be a wuseful
ciphertext-tag-specific decryption blackboz.

2. KT = @, or KT Z KD, or (F(Xk“YD) 7é 1 \V/kt S KT)

Let TRAdv 4 denote the probability that A wins.

Definition 2. A K-user ABE scheme for predicate I' is traceable against ciphertext-tag-specific decryption
blackbox if for all PPT adversaries A, TRAdv 4 is negligible in .

We say that a K-user ABE scheme for predicate I is selectively traceable against ciphertext-tag-specific
decryption blackbox if we add an Init stage before Setup where the adversary commits to the ciphertext
tag Yp.

Note that the Trace algorithm does not need any secrets and anyone can perform the tracing, i.e. the
above definition models the public traceability.

2.4 Augmented ABE

Syntax. An Augmented ABE (or AugABE for short) scheme has four algorithms (Setup,, KeyGen,, Encrypt,,
Decrypt, ). The setup algorithm Setup,, the key generation algorithm KeyGen,, and the decryption algorithm
Decrypt, are the same as that of ‘functional’ ABE in Sec. @, respectively. For the encryption algorithm, it
takes one more parameter k € [IC + 1] as input, and is defined as follows.

Encrypta (PP, M,Y, k) — CTy. On input PP, a message M, a ciphertext tag Y, and an index kelk+1],
the algorithm outputs a ciphertext CTy. Y is included in CTy, but the value of & is not.

Correctness. For all X € X, Y € Y, k € [K + 1], and messages M, suppose (PP, MSK) < Setup,(\, I, K),
SK, x + KeyGen, (PP, MSK, X), CTy < Encrypt, (PP, M,Y, k). If (I'(X,Y) = 1)A(k > k) then Decrypt, (PP,
CTy,SKk x) = M.

Note that during decryption, as long as I'(X,Y) = 1, the decryption algorithm outputs a message, but
only when k > k, the output message is equal to the correct message, that is, k > k is an additional condition

and if (I'(X,Y) = 1) A (k > k), can SKj, x correctly decrypt a ciphertext under (Y, k).

Security. The security of AugABE is defined by the following three games. The first game is a message-
hiding game and says that a ciphertext created using index 1 is unreadable to the users whose key tags
do not satisfy the ciphertext tag. The second game is a message-hiding game and says that a ciphertext
created using index L 4 1 is unreadable by anyone. The third game is an index-hiding game and captures
the intuition that a ciphertext created using index k reveals no non-trivial information about k.

GameﬁAHl. The message-hiding game Gamefé,,H1 is similar to Gameyy except that the Challenge phase is



Challenge. A submits two equal-length messages My, M7 and a ciphertext tag Y*. The challenger flips a
random coin b € {0,1}, and sends CTy - < Encrypts (PP, My, Y*, 1) to A.

A wins the game if ¥ = b under the restriction that none of the queried {(k;, Xj,)}, can satisfy
I(Xy,,Y*) = 1. The advantage of A is defined as MH}Adv 4 = | Pr[b/ = 0] — 3|.

Definition 3. A K-user Augmented ABE scheme for predicate I' is Type-I message-hiding if for all PPT
adversaries A the advantage MH’?AdvA 18 negligible in \.

We say that an Augmented ABE scheme for predicate I" is selectively Type-I1 message-hiding if we add an
Init stage before Setup where the adversary commits to the challenge ciphertext tag Y *.

Gamef‘,,HQ. The message-hiding game Game@,Hz is similar to Gamemp except that the Challenge phase is

Challenge. A submits two equal-length messages My, M7 and a ciphertext tag Y*. The challenger flips a
random coin b € {0,1}, and sends CTy~ < Encrypta (PP, My, Y*, K + 1) to A.

A wins the game if & = b. The advantage of A is defined as MHyAdv4 = | Pr[b/ = b] — 1.

Definition 4. A K-user Augmented ABE scheme for predicate I" is Type-II message-hiding if for all PPT
adversaries A the advantage MH’QAAdvA 1s megligible in \.

Gameﬁ‘_,. The index-hiding game defines that, for any ciphertext tag Y, without a secret key SKj x. such

that I'(Xj,Y*) = 1, an adversary cannot distinguish between a ciphertext under (Y*, k) and (Y*, k + 1).
The game proceeds as follows:

Setup. The challenger runs Setup, (A, I, C) and gives the public parameter PP to A.

Key Query. For i =1 to Q: A adaptively submits (index, key tag) pair (k;, Xj,) to ask for secret key for
key tag Xj,, and the challenger responds with a secret key SKy, x, , which corresponds to key tag X,
and has index k;. '

Challenge. A submits a message M and a ciphertext tag pair Y*. The challenger flips a random b € {0, 1},
and sends CTy~ < Encrypt, (PP, M, Y* k +b) to A.

Guess. A outputs a guess b’ € {0,1} for b.

A wins the game if &’ = b under the restriction that none of the queried pairs {(k;, X k)}zQ:1 can satisfy
(ki = k) A (I'(X,,Y*) = 1). The advantage of A is defined as IH*Adv 4[k] = | Pr[t = b] — 3.

Definition 5. A K-user Augmented ABE scheme for predicate I is indez-hiding if for all PPT adversaries
A the advantages IHAAdvA[k] fork=1,... K are negligible in \.

We say that an Augmented ABE scheme for predicate I' is selectively index-hiding if we add an Init stage
before Setup where the adversary commits to the challenge ciphertext tag Y.

2.5 The Reduction of Traceable ABE to Augmented ABE
Let Xa = (Setupy, KeyGen,, Encrypt,, Decrypt,) be an AugABE, define

e Encrypt(PP, M,Y) = Encrypt, (PP, M, Y, 1).
e Trace” (PP, Yp,¢) — Kz C [K]. Given a ciphertext-tag-specific decryption blackbox D associated with a
ciphertext tag Yp and probability € > 0, the tracing algorithm works as follows:
1. For k=1 to K+ 1, do the following:
(a) Repeat the following 8A(N/¢)? times:
i. Sample M from the message space at random.
ii. Let CTy,, < Encrypta(PP, M,Yp, k).
iii. Query oracle D on input CTy,,, and compare the output of D with M.



(b) Let pi be the fraction of times that D decrypted the ciphertexts correctly.
2. Let Kp be the set of all k& € [K] for which py, — pry1 > €/(4K). Output Kp as the index set of the
decryption keys of malicious users.

Let X = (Setupa, KeyGen,, Encrypt, Decrypt,, Trace), we have the following two theorems:

Theorem 1. If Yo is Type-I message-hiding (resp. selectively Type-I message-hiding), then X is secure
(resp. selectively secure).

Proof. Note that X is a special case of X where the encryption algorithm always set k& = 1. Hence, Gamewy
for X, including the restrictions, is exactly identical to Game’,é,,,_,1 for Xa, which implies MHAdv 4 for X in
Gamepyy is equal to MH?AdvA for Xa in Gamef\*AH17 i.e. if X is Type-I message-hiding, then Y is secure
(w.r.t. Def. [I)). The selective case is similar.

Theorem 2. If X is Type-II message-hiding and index-hiding (resp. selectively index-hiding), then X is
traceable (resp. selectively traceable) w.r.t. Def. .

Proof. The proof is similar to that in [20/23]. For completeness, we give the the proof sketch below.

We show that if the blackbox output by the adversary is a useful one then Kp will satisfy (K #
D) A Ky C Kp) A (Fky € Ky st I'(Xg,,Yp) = 1) with overwhelming probability, which implies that the
adversary cannot win Gamerg, i.e., TRAdv 4 is negligible. The selective case will be similar.

Let D be the ciphertext-tag-specific decryption blackbox output by the adversary, and Yp be the cipher-
text tag describing D. Define

pj, = Pr[D(Encrypta (PP, M, Yp, k)) = M],

where the probability is taken over the random choice of message M and the random coins of D.

We have that p; > € and piy; is negligible (for simplicity let pxi1 = 0). The former follows from the
fact that D is useful, and the latter is because X is message-hiding in Gameﬁ‘,“_,. Then there must exist
some k € [1,K] such that pp — pr+1 > €/(2K). By the Chernoff bound it follows that with overwhelming
probability, pr — Prr1 > €/(4K). Hence, we have Kz # 0.

For any k € Kr (i.e., pr — Pry1 > 1%), we know, by Chernoff, that with overwhelming probability
Pk — Pr+1 > €/(8K). Clearly (k € Kp) A (I'(Xy, Yp) = 1) since otherwise, D can directly be used to win the
index-hiding game for Xa. Hence, we have (K C Kp) A (I'(Xk, Yp) = 1 Vk € Kr).

3 Transform a Non-Traceable ABE to an Augmented ABE

In this section, we first formailze the notation of Pair Encoding Scheme in Sec. [3.1] which is the core
components of the conventional (non-traceable) ABE template we propose in Sec. Then in Sec. we
propose the generic transformation from the ABE template to the Augmented ABE and in Sec. 3.4 we prove
the security of the resulting Augmented ABE.

Note that the ABE template, the transformation, and the proof in this section are described in composite
order bilinear groups, but as shown later in Sec. [4] all these also work well in prime order bilinear groups.

3.1 Pair Encoding Scheme

The notion of pair encoding scheme here is inspired by the work of Attrapdung [1]. Attrapdung [I] proposed
the notion of pair encoding scheme, including syntax and security definitions, and proved the full security of
some Functional Encryption schemes based on the security of corresponding pair encoding scheme instantia-
tions. Here we borrow the term of pair encoding scheme, and actually we only use the syntax to abstract the
structures of the non-traceable ABE schemes which we aim to transform to AugABE, while not considering
or using the security properties of pair encoding scheme.

A Pair Encoding Scheme for predicate I" consists of four deterministic algorithms given by (SysParam, KeyParam,
CiperParam, DecPair):



— SysParam(I") — (d,dp). It takes as input a predicate I' : X x Y — {0,1} and outputs two integers d
and dy. d is used to specify the number of common variables in KeyParam and CiperParam, and dy(< d)
will be used to specify the requirements of the ABE template. For the default notation, let o and
B = (B1,...,B4) denote the list of common variables.

— KeyParam(X,N) — (¢ = (¢o,¢1,-..,Pd,),ds). It takes as inputs N € N and a key tag X € X, and
outputs a sequence of polynomials ¢ = (do, P1, - - -, ¢a,) With coefficients in Zy and an integer ds that
specifies the number of its own variables. Let = (d1,...,04,) be the variables, we require that each
polynomial ¢, (0 < z < dy) is a linear combination of monomials o, 6;,0;3;, where o, B = (B, ..., Bq) are
the common variables. For simplicity, we write ¢(«, 3,8) = (¢o(c, 3,0), d1(a, 8,6), ..., ¢a, (a, 3,0)).

— CiperParam(Y,N) — (¢p = (¢1,...,%4,),dr). It takes as inputs N € N and a ciphertext tag ¥ € Y,

and outputs a sequence of polynomials ¥ = (11, ...,%q, ) with coefficients in Zy and an integer d, that
specifies the number of its own variables. Let w = (7, 71, ..., 74 ) be the variables, we require that each
polynomial ¢,(1 < z < d.) is a linear combination of monomials w,m;, 73,7 5;, where B8 = (51, .., Ba)

are the common variables. For simplicity, we write ¥(3, ) = (¢1(8,®), ..., ¢4, (B, 7)).
— DecPair(X,Y, N) — E. It takes as inputs N € N, a key tag X € X, and a ciphertext tag Y € Y, and

outputs E € ZS\C,Z’“H)XCI“.
Correctness. The correctness requirement is defined as follows.

— First, for any N € N, X € X, YV € VY, let (¢ = (¢o,¢1,-..,P4,),ds) + KeyParam(X,N), (¢p =
(¥1,...,%a.),dr) « CiperParam(Y,N), and E < DecPair(X,Y,N), if I'(X,Y) = 1, then for any
a,B=B1,...,B4), 6 = (01,.-.,0a;), ® = (m,71,...,7a_), we have ¢p(ca, 3,8)Ep(8,m)T = am, where
the equality holds symbolically. Note that since ¢(a, 3,8)Evp(3,m)T = Zie[o,dk],je[l,dc] E, j¢iv;, this
correctness amounts to check if there is a linear combination of ¢;1; terms summed up to a.

— Second, for p that divides N, if we let KeyParam(X, N) — (¢ = (¢o, ¢1,- .., P4, ), ds) and KeyParam(X, p) —
(@' = (0, P15 - - -+ P, )> ds), then it holds that ¢ mod p = ¢’. The requirement for CiperParam is similar.

Remark. We mandate that the variables used in KeyParam and those in CiperParam are different except only
the common variables o and 8. We remark that in the syntax, all variables are only symbolic: no probability
distributions have been assigned to them yet. (We will assign these in the later ABE template constcution).
Note that ds,dg, can depend on X and d,,d. can depend on Y. We also remark that each polynomial in
@, 1 has no constant terms.

3.2 A Template for Non-traceable ABE

Below, we first review the composite order bilinear groups and some notations. Then, from a pair encoding
scheme, by adding some additional requirements, we define a template for conventional (non-traceable) ABE
constructions, which works on composite order bilinear groups. We would like to point out, as shown later
in Sec. [4 the template can be easily changed to one on prime order bilinear groups, and the transformation
from the non-traceable ABE template to Augmented ABE, as well as the proof, work well on prime order
bilinear groups.

Composite Order Bilinear Groups. Let G be a group generator, which takes a security parameter A
and outputs (p1,pe,ps, G, Gr,e) where pi1,ps, ps are distinct primes, G and G are cyclic groups of order
N = p1paps, and e : G x G — G is a map such that: (1) (Bilinear) Yg,h € G,a,b € Zy, e(g*, h®) = e(g, h)™,
(2) (Non-Degenerate) 3g € G such that e(g, g) has order N in Gr. Assume that group operations in G and
Gr as well as the bilinear map e are computable in polynomial time with respect to A. Let G, G,, and
Gp, be the subgroups of order p;, p2 and p3 in G, respectively. These subgroups are “orthogonal” to each
other under the bilinear map e: if h; € G, and h; € Gy, for i # j, then e(h;, h;) = 1 (the identity element
in GT)

Notations. For a given vector v = (v1,...,v4) € Z%, and g € G, by g we mean the vector (g*1,...,g") €
G?. For two vectors V. = (Vi,...,Vy),W = (Wy,...,Wy) € G% by V- W we mean the vector (V; -
Wi, ...,Va-Wy) € G4, i.e. it performs component-wise multiplication. Furthermore, by eq(V,W) we mean
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szl e(Vi, Wi). Particularly, for v = (vy,...,vq),w = (w1,...,wq) € Z%, we have g - g% = g¥*+t%, and
ea(g?,g%) = HZZI e(g¥, g¥*) = e(g,9)"™), where (v - w) is the inner product of v and w. Sometimes we
omit the subscript d of eq(V,W). For a vector V' = (V1,...,Vy) € G4 and a matrix A = (A; j)axt € Z‘IiVXt,
by VA we mean (H(iizl ViAM’ ngl V;Amv T ngl V;AM) €G".

Non-traceable ABE template. The template consists of four algorithms as follows:

Setupyt (A, I') = (PP, MSK). Run (N, p1,p2,p3, G, Gr, €) < G(A). Pick generators g € G, X3 € G,,. Run
(d,do) < SysParam(I"), where 1 < dy < d. Pick random B = (B1,...,84) € Z%. Pick random « € Zy.
The public parameter is

PP = ((N,G,GT7€)7 gﬂgﬁ>X3ae(g7g)a)-

The master secret key is MSK = (a).
KeyGeny (PP, MSK, X) — SKx. On input a key tag X, run (¢ = (¢o, é1,- -, P4, ), ds) < KeyParam(X, N).
Pick random & = (d1,...,d4;) € Z’f\‘,‘, R=(Ry,...,Rg,) € Gg’;“. Output a secret key SKx as

SKx = (X, K = g**P9 . R).

To satisfy the template, it is required that for any key tag X and variables § = (41,...,04,),

1. dk > do.

2. for z € [2,dg], ¢.(a, B,8) does not contain « or B101. For simplicity, we write them as ¢.(3,0), as
they do not contain o. .y

3. d)l(av 67 5) = 51; ¢0(0[, /Ba 6) =a+ 5151 + ZJOZQ ﬁ&¢d(ﬁv 5)

That is, |§|

do
SKy = (X, (KO — 909,3151 H gﬁg¢g(ﬁ,5)R0’ K, = 951 - Ry,
d=2
Ky = g¢2(5,5) “Ry, ..., Kg, = g%k(ﬁﬁ) . de))_

Encryptyt (PP, M,Y) — CTy. On input a ciphertext tag Y, run (¢ = (¢1,...,%4, ), dr) < CiperParam(Y, N).
Pick random 7 = (7,7, ...,7a.) € Z% . Set P = g¥(#™)_ Output a ciphertext CTy as

CTly = (Y, P, C=M- e(g7g)‘”).

Note that P can be computed from g® and 7 since 4(3, 7) contains only linear combinations of mono-
mials 7, 7, 85, 7 B;.
To satisfy the template, it is required that for any ciphertext tag Y and variables w = (7w, m1,..., 74, ),
1. ¢1(B,W> =T.
2. 1/}2(16’ Tl') = 6271-’ cee 71/)d0(ﬁ777) = 5(107‘-'
That is, the first dy components of P are P; = g™, Py = g%, ... , Pa, = gPao™
Decryptyt(PP,CTy,SKx) — M or L. Obtain X, Y from SKx, CTy. Suppose I'(X,Y) =1 (if '(X,Y) # 1,
output L). Run E < DecPair(X,Y,N) € ng,l’“H)Xdc. Compute e(g,9)*™ = e(KF®, P), and output
M + CJ/e(g,9)*".
To satisfy the template, it is required that there is an algorithm DecPairy such that:
—Forany N e N, X e XY €V, let (¢ = (¢o,01,-..,P4,),ds) < KeyParam(X,N), (¢p =

(¥1,...,%4.),dr) < CiperParam(Y, N), for any variables o, B = (81, B2, - -, Bd), 0 = (01,02, ...,04;),
w = (m,71,...,7a,), let By < DecPairi(X,Y,N) € ZS\?’“H)XdC, if I'(X,Y) = 1 we have that
PE T = B1617, i.e., there is a linear combination of i terms summed up to Sy,

Later we will show that a series of ABE schemes with appealing features satisfy this template.

8 Note that to cover as many ABE schemes as possible, we only specify the necessary requirements which we may
use in the constructions and proofs of our generic transformation framework. Here we do not require ¢5(83, d) (for

d =2 to do) to contain only linear combination of monomials d;. Actually, if ¢;(3,d) contained f;, Ko could still
be computed, by putting 3 in MSK.
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3.3 Augmented ABE Transformed from Non-traceable ABE

Notations. Suppose that the number of users K in the system equals to m? for some m. In practice,
if K is not a square, we can add some “dummy” users until it pads to the next square. We arrange the
users in an m X m matrix and uniquely assign a tuple (i,5), where ¢,5 € [1,m], to each user. A user at
position (¢,7) of the matrix has index k = (i — 1) * m + j. For simplicity, we directly use (i,j) as the
index where (i,7) > (4,7) means that ((i > i) V (i = i Aj > j)). The use of pairwise notation (i,7j) is
purely a notational convenience, as k = (i — 1) * m + j defines a bijection between {(i,5)]i,j € [1,m]} and
[1,K]. Given a bilinear group order N, one can randomly choose r, 7y, 7. € Zy, and set x1 = (r5,0,7.),
x2 = (0,7y,72), X3 = X1 X X2 = (=1yTz, =722, 727y). Let span{x1,x2} = {vix1 + vexe|vi,v2 € Zn} be
the subspace spanned by x; and x2. We can see that 3 is orthogonal to the subspace span{xi,x2} and
73, = span{x1, X2, X3} = {v1x1 + vaXx2 + vsxs|v1,v2,v3 € Zy}. For any v € span{x1,xz2}, (x3-v) = 0,
and for random v € Z%;, (X3 - v) # 0 happens with overwhelming probability.

Below we propose our AugABE construction, which is transformed from the conventional (non-traceable)
ABE template in above Sec. Note that the parts written in the box are the same as the conventional
(non-traceable) ABE template, and we add/modify some additional parts to form our generic AugABE
construction.

Setupp (A, I, K = m?) — (PP, MSK).

Run (N, p1, p2,p3,G,Gr, e) < G(N). Pick generators g € Gp,, X3 € G,,.
Run (d,dy) < SysParam(I"), where 1 < dy < d. Pick random B = (fB1,...,4) € Z%.

Pick random {a,7i, 2; € Zn }icm]s 1¢j € ZN}jeim]- The public parameter is

PP = ( (N,G,GT,@),g,h = g'aaX?n {EZ = e(g7g)ai7 Gl :gria ZZ = gZi}iG[m]a {Hj = ng}jE[m] )

The master secret key is MSK = (al, ey Qs Ty e ooy Timy Clyene ey cm).

A counter ctr = 0 is implicitly included in MSK.
KeyGen, (PP, MSK, X) — SK(ij),x-
Upon input a key tag X, run (¢ = (¢, ¢1,- -, ¢d, ), ds) < KeyParam(X, N).
Pick random & = (91, ...,dq,) € Z%, R=(Ry,...,Ra,) € Gédstt,

Pick random R € G,,. Set ctr = ctr +1 and then compute the corresponding index in the form of (¢, 5)
where 1 <4,7 <m and (i — 1) * m 4 j = ctr. Output a secret key SK(; ;) x as

SK(igyx = ((1.), X, K =g?nieten B0 R Kj = 7] R),
Note the requirements stated in KeyGenyyt, we have

do

SKiijyx = ((1,4), X, (Ko = grierteigho T ¢%1%a PO Ry, Ky = ¢" Ry,
d=2

K2 — g¢2(,3»5) .RQ,

K(I) = Z§1 6)

2

Ky, = gd)dk(ﬁﬁ) -Ra,),

ey

Encrypt, (PP, M,Y, (i,5)) — CTy.
1. | Upon input a ciphertext tag Y, run (¢ = (¢1,...,%q,),dr) + CiperParam(Y, N).
Pick random 7 = (m,71,...,7m4,) € Z% . Set P = g¥B:m).
Note that P can be computed from ¢g# and  since (3, ) contains only linear combinations of
monomials 7, m;, w35, m; 3;.

2. Pick random



3
Ve, W1,...,Wn € Ly.

Pick random rg, 7y, 7, € Zn, and set x1 = (72, 0,72), X2 = (0,74, 72), X3 = X1 XX2 = (—TyTs, —TaTs, FxTy)-
Pick random

v €23 Vie{l,...,i},
v; € span{x1,x2} Vi € {i+1,...,m}.

For each row ¢ € [m]:
— if 4 < 7: randomly choose §; € Z,,, and set

R;=g¢", R, =g""", Qi=g", Qi1=(¢")"ZI ("),
Qi,? = (gﬁ2)311? DR aQLdo = (gﬂdo)Sia
Qi=g", T,=E].

— if § > i set
Ri = G?iviv R;, = G?Sivia Q’i = gTSi(vi.vC)v Qi,l = (gﬁl)TSi(vi-vC)Zfi (gﬁl)ﬂ—a

Qi,Q = (9/82)7—51(1”.1)6), ey Qi,dg = (gBdo )Ts'i(vi‘vc)’
Qi=g" Ti=M B

For each column j € [m]:
— if j < j: randomly choose p; € Zy, and set C; = H;(v“+“-7X3) g, O = g™
—ifj>jiset C; = H}”“ g™, Cl = g™
3. Output the ciphertext CTy as CTy = (Y, P,(R;, R}, Qi {Q; g}g‘; Qi Ty, (Cy, CTy).
Decryptp (PP, CTy,SK(; jy,x) — M or L. Parse CTy to CTy = (Y, P, (Ri,Rg,Qi,{Qid}d" L Ty

(i:l’ 79 =1

(C;,C%)y) and SK; ) x to SK(; ) x = ((4,4), X, K = (Ko,...,Kq,), K{). ObtainY, X from CTy,
SK(ij),x- Suppose I'(X,Y) =1 (if I'(X,Y) # 1, output L).
1. Run E; <« Pairy(X,Y, N). Compute Dp < e(K®: P).

2. Compute

e(KOaQi) ) €(K67Q2) 63(R;7C_I])

Dy + . .
e(K1,Qin) - TI5, e(K7.Q, 4) €3(Ri, C;)

3. Computes M <+ T;/(Dp - Dy) as the output message. Suppose that the ciphertext is generated from
message M’ and encryption index (7,7), it can be verified that only when (i > i) or (i = i A j > j),
M = M'’. This is because for i > i, we have (v; - x3) = 0 (since v; € span{x1,Xx2}), and for i = i, we
have that (v; - x3) # 0 happens with overwhelming probability (since v; is randomly chosen from Z%;).
The correctness is referred to Appendix [A]

3.4 Security of Augmented ABE

Let Xt = (Setupyt, KeyGenyr, EncryptyT, Decrypty) be a non-traceable ABE scheme satisfying the tem-
plate in Sec. and Xa = (Setupy, KeyGen,, Encryptp, Decrypt,) be an Augmented ABE scheme derived
from Xyt as shown in Sec. As shown in Fig. [3] Theorem [3] Theorem 4 and Theorem [j] state that the
AugABE proposed above is Type-I message-hiding, Type-IT message-hiding, and selectively index-hiding,
respectively. Below we prove Theorem [3] and Theorem [] in a framework manner. For the Theorem [5] we
prove it in a framework manner partially, namely, we prove Claim [2|in a framework manner, while proving
Lemma case by case for the concrete underlying conventional (non-traceable) ABE schemes, and the proof
of Claim [0l will be identical to that of Lemma [l
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Fig. 3. Outline for Security Analysis

Theorem 3. If X\t is secure (resp. selectively secure), then Xa is Type-I message-hiding (resp. selectively
Type-1 message-hiding).

Proof. Suppose there is a PPT adversary A that can break X in Game’,/é,”_,1 with non-negligible advantage

MH" Adv A, we construct a PPT algorithm B to break Xyt with advantage AdvgXnT, which equals to
MH7 Adv 4.

Setup. B receives the public parameter PPNT = ((N, G,Gr,e) g,9°, X3, E = e(yg, g)"‘) from the challenger,
where g € G, and X3 € G,, are the generators of subgroups G,, and G,, respectively, 8 = (51,...,084) € Zﬁl\,
(for (d,do) < SysParam(I")) and a € Zy are randomly chosen. B picks random {aj, 74, 2; € ZN }icim], 1¢5 €
ZN }je[m)> then gives A the public parameter PP:

PP = ((N,G,Gr,e),9,9° X3, {Ei=E-e(9,9)%, Gi=9", Zi= 9" }icim» {H;=9%}icim) )-

Note that B implicitly chooses {a; € Zy }ie[m) such that {a + o} = a; mod p1 Figm)-
Phase 1. To respond to A’s query for ((4, ), X(; ;)), B submits X; ;) to the challenger, and receives a secret
key

SKX(»J) (X (Ko = g“g™™ H gPi%iBO R, Ky = g% - Ry,

K2 _ g¢2(ﬂ,5) ~R2, o, de — g¢dk(ﬁ‘375) . de))7
where (¢ = (¢o,¢1,- .-, ¢a,),ds) + KeyParam(X(; j), N), § = (81,...,0a;) € Z%, R = (Ro,...,Rq,) €
Gdk+1

B picks random RO € Gp,, then responses A with a secret key SK; as

(4:9),X (1,5

SK(ig)xip = ((4,0), X gy, (Ko = Ko-gh o™ K, = K,
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Ky=K,, ..., Ky =Kgy,),
K{=K{'Ry).

Note that such a secret key has the same distribution as the secret key in the real Augmented ABE scheme,
ie. SK(i,j),X(i,j) = ((i’j)’X(iJ)’ K = g¢(ricj+ai,,3’5) ‘R, K| = sz"i,j RE))? where R}, = R;' R}).

Challenge. A submits to B a ciphertext tag Y* and two equal length messages My, My. B submits
(Y*, My, M) to the challenger, and receives the challenge ciphertext in the form of

CTNT = (Y™, P= g‘/’(ﬂ”?), C=M- e(g,g)o‘ir ),

where (1 = (Y1, ...,%a,),dy) + CiperParam(Y*, N), & = (7,71, ...,7a,) € L3 1.

Note that (3, 7) contains only linear combinations of monomials 7, 7;, 75;, 7;5;, and the first dy com-
ponents of P are P| = g7, P, = g#7 ... P; = gP%7. B creates a challenge ciphertext for (7,j) = (1,1) as
follows:

1. B picks random #’ = (7', 7},..., 7, ) € Z&*, then sets P = g¥@7) . (P)~L.

Here (15)*1 means (Pl_l, . .,Z5d:1). Note that 1(3,7) contains only linear combinations of monomials
7T, 7, By, T B, we have (13)*1 = g%(B:=7) Note that 1(3, 7’) contains only linear combinations of mono-
mials 7/, 7}, ' B;, 7} B;, we have that P = g¥Bm —7),

2. B picks random

/ /
Ky, T, S1,...,8 ti,...,tm € Zn,

r°mo

3
Ve, W1,..., W € Ly.

B picks random r5, 7y, 7, € Zy, and sets X1 = (72,0,7.), X2 = (0,7y,72), X3 = X1 XX2 = (—Tyrs, —T2Vz, TaTy).
B picks random vy € Z3;, v; € span{xi,x2} Vi € {2,...,m}.
For each row i € [m]: note that ¢ > i (since i = 1), B sets

TiK

Ro= G PO R = g
Qi =g I Py, Qi = (g 2l (g7
Qi = (952)”2(”“”0) Py, oy Qi = (gﬁdo)fsfi(vi-vc) - Py,
Q=g T,=Ce(g™, Py)- B0,
For each column j € [m]: note that j > j (since j = 1), B sets
Cy = HI" g1, Cf= g,

3. B outputs the ciphertext CTy- as CTy« = (Y*, P,(R;, R, Q:,{Q, 512 Q. T))7,, (C;,C%)7y). Note

d=1’ "%t -7
that this CTy~ is a well-formed ciphertext for ciphertext tag Y* and encryption index (i,7) = (1,1), with
implicitly setting s1,...,8, € Zy and w = (7, 71,...,7q, ) € Z?V“‘H by
52+L =s;modp; Vie{l,...,m}, =« —7& =mmodp;.
7(v; - v,)

Phase 2. Same with Phase 1.
Guess. A gives B a b'. B gives V' to the challenger.

Note that the distributions of the public parameter, secret keys and challenge ciphertext that B gives A
are same as the real scheme, we have Advg XNt = MHf‘AdvA.

Theorem 4. X5 is Type-II message-hiding.
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Proof. The argument for message-hiding in Gameﬁ\AHz is straightforward since an encryption to index IC + 1
(i.e. (m+1,1)) contains no information about the message. The simulator simply runs Setup, and KeyGeny
and encrypts M, under the challenge ciphertext tag Y* and index (m + 1,1). Since for all ¢ = 1 to m,
T, = Ef’ contains no information about the message, the bit b is perfectly hidden and MHS‘Adv 4 =0.

Now we investigate the Theorem [5] where we prove the index-hiding property. As shown in Fig. [3
Theorem [f] follows Lemma [I] and Lemma [2] and we need to prove Lemma [I] case by case. Here we use
‘Assumption X’ to represent the assumption(s) that Lemma [1|is based on, and we will present the concrete
assumptions when we prove Lemma [1| concretely.

Theorem 5. Suppose that the Assumption X, the DSDH, and the DLIN Assumption hold. ﬂ Then no PPT
adversary can (selectively) win Gamem with non-negligible advantage.

Proof. It follows Lemma [T] and Lemma [2] below.

Lemma 1. If the Assumption X hold, then for i < m, no PPT adversary can (selectively) distinguish
between an encryption to (i,7) and (i,j + 1) in Gamely, with non-negligible advantage.

Proof. In Game,’L with index (7,7), let Y* be the challenge ciphertext tag, the restriction is that the ad-
versary A does not query a secret key for (index, key tag) pair ((4,7), X(; j)) such that ((i,j) = (z’,j)) A
(I'(X(ijy,Y*) =1). Under this restriction, there are two ways for A to take:

Case I: In Key Query phase, A does not query a secret key with index (7, j).
Case II: In Key Query phase, A queries a secret key with index (i, ). Let X (i.j) be the corresponding key
tag. The restriction requires that I'(X; 7, Y™) # 1.

Case I is easy to handle as the adversary does not query a secret key with the challenge index (i, j).
Case II captures the index-hiding requirement in that even if a user has a key with index (4,5) he cannot
distinguish between an encryption to (Y*,(4,7)) and (Y*, (3,7 + 1)), if the corresponding key tag does not
satisfies I'(X| (i) Y*) = 1. This is the most challenging part of achieving strong traceability. Actually, this is
the only part where we cannot handle in a framework manner, and we have to prove this lemma for different
schemes case by case.

Lemma 2. If the Assumption X, the D3DH, and the DLIN Assumption hold, then for 1 < i < m, no
PPT adversary can (selectively) distinguish between an encryption to (i,m) and (i +1,1) in Gamely, with
non-negligible advantage.

Proof. Similar to the proof of Lemma 6.3 in [111, to prove this lemma we define the following hybrid exper-

iment: Hy: encrypt to (i, = m); Ha: encrypt to (i,7 = m + 1); and Hz: encrypt to (i + 1,1). This lemma
follows Claim [[] and Claim [2] below.

Claim 1. If the Assumption X holds, then no PPT adversary can (selectively) distinguish between experiment
Hy and Hy with non-negligible advantage.

Proof. The proof is identical to that for Lemma

Claim 2. If the D3DH and the DLIN hold, then no PPT adversary can distinguish between experiment Hs
and Hs with non-negligible advantage.

Proof. The indistinguishability of Hy and Hj3 can be proved using a proof similar to that of Lemma 6.3 in
[11], which was used to prove the indistinguishability of similar hybrid experiments for their Augmented
Broadcast Encryption (AugBE) scheme. For simplicity, we prove Claim [2| by a reduction from our AugABE
scheme to the AugBE scheme in [11].

In particular, Garg et al. [T} Sec. 5.1] proposed an AugBE scheme Xa.gge = (Setupa,gge, ENCrypta,gse,
DecryptAugBE) and proved Yaugge is index-hiding. In the proof of index-hiding for X'augge in [1I, Lemma 6.3],
two hybrid experiments were defined and proven indistinguishable via a sequence of hybrid sub-experiments.

9 Here D3DH and DLIN are the abbreviation of the widely accepted Decision 3-Party Diffie Hellman Assumption
and Decisional Linear Assumption, respectively. we refer to [II] for the details of these two assumptions.
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— H}"$BE: Encrypt to (i,m + 1), (i.e. Hy in [I1])
HA”gBE. Encrypt to (i +1,1), (i.e. Hs in [I1])

By following [11l Lemma 6.3], if the D3DH and the DLIN hold, no PPT adversary can distinguish between
H2A“gBE and H?)AugBE Jor XaugBe with non-negligible advantage. Suppose there is a PPT adversary A that can
distinguish between Hs and Hj for our AugABE scheme with non-negligible advantage. We can construct a
PPT algorithm B to distinguish between H"85F and H5"85F for Xauepe with non-negligible advantage.

The game of B distinguishing between H, and H? ueBE jg played in the subgroup G,, of order p; in
a composite order group Gy of order N = pipops. B is given the values of py, p» and p3, and can chooses
for itself everything in the subgroup G,,.

AugBE

Setup. The challenger gives B the public key PKA“€%E and due to (i,m + 1) ¢ {(i,§)|1 < i,j < m}, the
challenger gives B all private keys in the set {SK@”?;3 Bl1<i,j<m}

PKAugBE ( g, {E - €(g g) Gz = g”}ie[m]v {H = Cj7 fj}je )7
AugBE [ riCi £0i,5
SKGEE =(Kij, Kijy {Kigydiemngy ) = (@ 97, g7, {7 Yiemngy )

where g, f1,..., fm € Gy, {0, 1i € Zyp, Yicpm)s {65 € Zp, }jem)s 0i,5(1 < 4,5 < m) € Zy,, are randomly chosen.
B picks random X3 € G,,, runs (d,dy) < SysParam(I"), and picks random fSs,...,84 € Zy. B picks
random 21, ..., zy, € Zy. Setting ¢? = (]_[T:1 fi,9%,...,g%), B gives A the following public parameter PP:

PP = ( (N7G7GT76)5 g, gﬁa X3a {EH Gia ZZ :gZi}iE[m]7 {Hj}]e[m] )

Note that B implicitly picks 81 € Zy such that g% = H;nzl fi

Key Query. To respond to A’s query for ((4,7), X(; ), Bruns (¢ = (¢o, ¢1,- - -, ¢q, ), ds) < KeyParam(X; jy,
N), and picks random da,...,04; € Zn, R = (Ro,...,Ra,) € Gg’;“, and R € G,,. B outputs a secret key
SK(i,jLX(i,j) as

SK(i,j),X(Lj) _ ((i,j)aX(i,j)v (KO — Ki,j . ( H ,J] H gﬂd¢d ﬁ‘s)Ro Kl 7,(,j . Rlv
jelm\{s} d=2
Ko = g#B8) Ry . Ky, = g% (B9) . Ra4,),

K| = (K’ )7 Rp).

Note that B implicitly picks d; € Zy such that 6; = 0, ; mod p;. Note that for any variables o € Zy, 3 =
(Biy---,Bd) € 24,8 = (01,...,064;) € Z?i?, each ¢.(3,08)(2 < z < di) contains only linear combinations of
monomials J;,0;5; and does not contain 316;. Note that B knows the values of g%t = g% = K| j,52, ey 0dy
and ¢ = H;nzl fi» B2, ..., Baq, B can calculate the values of g?2(B:9) ¢4 (B9 and then the values of

gPa®i(B:9) for de {2,...,dp}. Thus, we know B can produce the above secret key SK(z‘,j),X(i,jy

Challenge. A submits a message M and a ciphertext tag Y*. Note that (i,m + 1) & {(i,5)]1 < 4,5 < m},
B sets the receiver set to be J = {(4,j)|1 < 14,7 < m} and . submlts (M, J) to the challenger. The challenger
gives B the challenge ciphertext CTAUBE = (R, R}, Q;, Q5. T))1y, (C;,C)™, J), which is encrypted to
(i*,7%) € {(i,m +1),(i+1,1)} and in the form of

Jj=D

1. For each i € [m]: _ _ . . .

—ifq < i R — g’vi R/ — gn’vq',7 Qz — gSi’ Q; — (HjG]I fj)gf, T — Esi

it it R GO R = G Q= g ) Q) = ([T, £, T, = M)
2. For each j € [ }

10 Note that we slightly changed the variable names in the underlying AugBE scheme to better suit our proof.
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_ lfj <]* C~'7 _ H;(vc+qu3) .gK,’wj7 é; :gwj~

- if]Z]*: Cj:H;—vc.g’iwj7 é;:gwj

where k,7,5;(1 < ),vi(l < i < i*) e

<m),8i(1 < i < i), pi(1 < j < J¥) € Ly, ve,w, m
< X2 (OaTyarz)7X3 =

i (1
Z3 . and (i > i*) € span{xi, X2} are randomly chosen (where x1 = (r, 7O 2,
(—ryry, —ryrs, ry1y) are for randomly chosen ry, 1y, 7, € Zy, ), and J; = {j|(i, ) € J}. )
Note that J = {(4,j)]1 < 4,5 < m}, we have J; = {1,...,m} for all 1 < 4 S m, and then Q) =

(s, £3)" = (o) for i < 3* and @) = (TTjeg, f5)70%) = ()70 for i >
B runs (¢ = (¢1,...,%4,),dr) < CiperParam(Y™*, N) and picks random « = (, ,Td,) € Zj{}‘“,
then sets

P= gd’(ﬁaﬂ')'

Note that P can be computed from g? and 7 since 1(3, 7) contains only linear combinations of monomials

Ty Ty ﬂ—ﬁ,ﬁ ﬂ-zﬁj

B picks random t1,...,tm € Zy. B outputs a challenge ciphertext as CTy- = (Y*, P, (R;, R.,Q;,
{Q’Ld}d 1’ a )z 1> (C])C/) > where
1. For each i € [m]: R; = R;, R, = R, Q; = Qi, Qin = Q) ZF'(g°)", Qiz = Q... Qigp =

Q. Qi =gt T, =T,
2. For each j € m]: C; = C,C;:C;.

Guess. A outputs a guess b’ € {0, 1} to B, then B outputs this &’ to the challenger as its answer to distinguish
between HALIgBE and H?”gBE for scheme Xa,qgE.

As the exponents are applied only to the elements in the subgroup G,,, from the view of A, the distri-
butions of the public parameter, secret keys and challenge ciphertext that B gives A are same as the real
scheme. Thus B’s advantage in distinguishing between H2A ueBE and H. 3A ueBE £5r scheme D augse will be exactly
equal to A’s advantage in distinguishing between Hy and Hj for scheme Xa.

4 Extension to Prime Order Groups

In Sec. the Non-traceable ABE Template, the transformation from Non-traceable ABE Template to
Augmented ABE, and the proofs are all presented on composite order bilinear groups. Note that our generic
transformation from Non-traceable ABE Template to Augmented ABE and the security proofs for the
transformation do not rely on the composite order bilinear groups, and are only related to the G, subgroup.
Actually, the only reason we use composite order bilinear groups in Sec. [3] is that some appealing ABE
schemes, e.g. those in [I], are built on the composite order bilinear groups, and we want our Non-Traceable
ABE template to cover these appealing ABE schemes. On the other side, as shown below, it is easy to adjust
the Sec. [3] contents to prime order bilinear groups, and the resulting generic framework still works well.
Roughly speaking, this can be done by replacing the N with the prime order p; and removing all the parts
related to po, p3. Below we list the details.

— In Sec. [3:2] define ‘Prime Order Bilinear Groups’. Let G be a group generator, which takes a security
parameter A and outputs (p,G,Gr,e) where p is prime, G and G are cyclic groups of order p, and
e: G x G — Gr is a map such that: (1) (Bilinear) Vg, h € G,a,b € Z,, e(g%, h®) = e(g,h)?, (2) (Non-
Degenerate) 3g € G such that e(g, g) has order p in Gp. Assume that group operations in G and Gy as
well as the bilinear map e are computable in polynomial time with respect to A.

— In Sec. redefine the Non-traceable ABE Template by replacing (N, p1, p2, ps, G, Gr, e) < G(\) with
(p, G,Gr,e) < G(X), replacing N with p, replacing p; with p, and removing all the parts related to G,,:

e Removing X3 in Setupyt and PP,
e Removing R = (Ry, ..., Rq,) € G+ in KeyGenyr and SKx.
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— For Sec. similar to Sec. modify the transformation from Non-traceable ABE Template to Aug-
mented ABE by replacing (N, p1,p2,p3,G,Gr,e) < G(A) with (p,G,Gr,e) + G(\), replacing N with
p, replacing p; with p, and removing all the parts related to G,,:

e Removing X3 in Setup, and PP,
. Removmg R=(Ry,...,Ry,) € Gd’“H and R{, € G,,in KeyGen, and SK(; ;) x

— For Sec.[3.4] modify the proofs accordmg to the above modifications for Sec.[3 and Sec [3:3] In particular,
replace N with p, replace p; with p, and remove all the parts related to Gm

It is easy to see that with the above modifications, the generic transformation framework on prime order
bilinear groups also works well. And Later we also give some instantiations on prime order bilinear groups.

5 Instantiations Satisfying the Non-traceable ABE Template

In this section we show that some existing non-traceable ABE schemes with appealing features satisfy the
template in Sec. and prove the Lemma [1] (the indistinguishability between an encryption to (7,j) and
(i,j + 1)) for the AugABE constructions from these non-traceable ABE instantiations.

These instantiations include three ABE instantiations on composite order bilinear groups, which were
proposed by Attrapadung [1I2], and one ABE instantiation on prime order bilinear groups, which was pro-
posed by Rouselakis and Waters [20]. In addition, we also give some other existing ABE schemes that satisfy
the template, but omit the construction details.

5.1 Fully Secure Unbounded KP-ABE with Large Universe

Attrapadung [T, Sec. 5.3] proposed a fully secure unbounded KP-ABE scheme with large universe (i.e. the
public key size is constant and independent from the size of the attribute universe), here we denote it by
EKIPTLU In EkaU the predicate I" is described by linear secret sharing scheme (LSSS) [4], which is used
in many ABE schemes (e.g. [I329/T8T9I26]) to express the access policy. Actually, any monotonic boolean
formula (resp. monotonic access structure) can be realized by an LSSS [4]. We refer to [I9] for more details of
LSSS in ABE. Below we review EKIPTLU in terms of Pair Encoding Scheme. Note that we change the variable
names in ZKIPTLU to better suit our template definitions.

- 1 The Pair Encoding Scheme
ppeice Y satisfies our non-traceable ABE template in Sec H with the following Pair Encoding Scheme.

SysParam. Take as input I' : X x Y — {0, 1}, where the ciphertext tag (here is the attribute set) space is
Y ={Y | Y CZy} and the key tag space is X = {L.SSS (4, p) | A is a matrix over Zx and p maps each
row of A to an attribute in Zx (p does not need to be injective) }, output d = 6 and dy = 2. Denote
B=(B1,---B)

KeyParam. Take in N and a key policy (A, p) € X, where A is an [ x n matrix, and p : [1,]] = Zy maps
each row of A to an attribute in Zy, output ds = [ +n + 1 and ¢ = (do, ¢1, P2, {P3,ks Paks 5.k }rep))
with d = 2 + 3l:

o = a+ B101 + f2d2, ¢1 =01, P2 =y,
b3 = Ak -u+EBa,  Gar =&k sk = Ek(Bs + Bep(k)),

where § = ((51,(52,51, N ,Ehu% e ,’U,n) S Z%rnJrl and u := (Ul = B351,U27 . ,Un).
CiperParam. Take in N and an attribute set S C Zy, output d = 1+|S| and ¥ = (¢¥1, 2, V3, Y1, {P5.2, V6 .z }ues)
with d. = 4+ 2|S|:

P =7, Py = Bam, g = i+ B3,
Yo =T, Y55 =701+ 785+ Bex), Y6z =Tz,

- 5
where 7 = (7, T, {7y }ees) € Z?\TH .
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We can see that the outputs of above (SysParam, KeyParam, CiperParam) satisfies our template requirements:

— KeyParam:
1. di > dy, where di, = 2 + 3] and dy = 2.
2. Each of {¢o, ¢1, P2, {P3,ks Pa,k> D5,k }rep } is a linear combination of monomials a; 6;, 8; ;.

3. o = a+ Bi1¢1 + Pagz, ¢p1 = 61. None of {2, {$3k, Pak, P51 }kep)} contains a or B16;.
— CiperParam:

1. Each of {1, 2,103,941, {¢5.2,%6}zes} is a linear combination of monomials 7, 7;, 73;, ™ 5;.
2. Y1 =7, hy = Por.
— DecPair: When S satisfies (A, p), let I = {k € [I]|p(k) € S}, we have reconstruction coefficients {wy }rers
such that Zkg wi(Ag - u) = u1 = f361. Therefore, we have the following linear combination of the ¢;1;
terms:

P13 — Zwk(¢3,k¢4 — Pu kY5 p(k) + B5.kV6,p(k)) = O1(B1 4 B3T) — Zwk((Ak “u)T) = Bioim.

kel kel

[6.112 Security Analysis of the Resulting Augmented ABE

As shown in Sec. and Fig. [3] here we only need to (1) state the security of the underlying conventional
non-traceable ABE scheme (since the Type-I message hiding property of the AugABE is reduced to it) and
(2) prove the Lemma

(1) The Section 5.8 of [1] shows that their KP-ABE scheme corresponding to the above Pair Encoding
Scheme is a fully secure unbounded KP-ABE scheme with large universe.

(2) The Lemma instantiation here is: if the Modified (1,q)-EDHES Assumption holds, then for j < m,
no PPT adversary can selectively distinguish between an encryption to (i,7) and (i, + 1) in Gamely, with
non-negligible advantage, provided that the size of the challenge attribute set is < q.

The Modified (1,¢)-EDHE3 Assumption is a special case of the Modified (n,t)-EDHE3 Assumption,
which we introduce by modifying the (n, ¢)-EDHE3 Assumption in [2] Definition 6], i.e., giving the adversary
one more element g% ¢/, In Appendix we prove that Modified (n,t)-EDHE3 Assumption holds in the
generic group.

Definition 6. The Modified (n,¢)-EDHE3 Assumption Given a group generator G, let (N = p1paps,
G,Gr,e) £ G\, g £ Gy, 92 &£ Gy, 93 L Gps, a,¢,2,d1, ..., dy &£ Zn . Suppose that an adversary
s given
D= ((N7 G7 GT7 6)7 9:9% gu," 9 gc/z7 ga"c/z7 92, 93,
Ve gdi,
Vel st grg 9% B/,
. ., L, aldj/d?/
i€[l,n], j,j'€[1,t] s.t. j#j gaicd )

View2n), jelg 9%,
a'c/d;
9
a‘ed;/d?
Viel,2n], jg el st j£i° 9 _ i/ i,
a*/d3
)

aiczdj/dj/ )

vi€[1,2n],i7€n+1, jet] 9

Vielln+1], jelty 9

Vicm+1,2n], jjre[l,g 9

and a target element T' € Gy, . The assumption states that it is hard for any polynomial time adversary to
distinguish whether T = g“"HZ or T <& Gy, -

The proof of the above Lemma [I] instantiation is given in Appendix [C|

5.2 Fully Secure KP-ABE with Short Ciphertexts

Attrapadung [II, Sec. 5.3] proposed a fully secure KP-ABE scheme with short ciphertexts (i.e. ciphertext size
is constant and independent from the size of the attribute set associated with the ciphertext), here we denote

it by EKIPTSC. In EKIPTSC the predicate I" is also described by LSSS. Below we review EKIPTSC in terms of Pair

Encoding Scheme. Note that we change the variable names in thTSC to better suit our template definitions.
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1 The Pair Encoding Scheme
IS g a bounded ABE where the maximum size for attribute set associated with the ciphertext is bounded

by T, while no further restriction is required. EKIPTSC satisfies our non-traceable ABE template in Sec.
with the following Pair Encoding Scheme.

SysParam. Take as input I' : X x Y — {0, 1}, where the ciphertext tag (here is the attribute set) space is
Y=A{Y |Y CZnA|Y| <T} and the key tag space is X = {LSSS (4, p) | A is a matrix over Zy and
p maps each row of A to an attribute in Zy (p does not need to be injective) }, output d =T + 6 and

do = 2. Denote ﬁ = (51, ey 547 90, 01, . 79T+1)~
KeyParam. Take in N and a key policy (A, p) € X, where A is an [ X n matrix, and p : [1,{] — Zy maps each

row of A to an attribute in Zy, output ds = l+n+1and ¢ = (do, ¢1, P2, {P3,k; Paks P5,%,05 195, k,t frer) b ren)
with d, =2+ (T + 3):

G0 = a+ B161 + Ba2da, ¢1 =01, @2 = 0o,
O3k = Ap -u+ &Py, Par = ks
G500 = Ekbo,  {B5,00 = & (Or1 — O1p(k)") beer,

where & = (01, 02,&1,...,&, U, ..., uy) € Zé\'}’”“ and u := (u; = f301,Ug, ..., Uy).
CiperParam. Take in N and an attribute set S C Zy such that |S| < T, let ¢; be the coefficient of 2t in
p(Z) = H:L’ES(Z - .T), OutPUt dﬂ' =2 and "/’ = (¢17¢2a¢3a¢4’¢57¢6) with dc = 6:

Y =m, o= for, g = i + B3,
Yo =7, Y5 =701+ 7(00 + X 1ocilii1), Yo =T,

where m = (7, 7, 7) € Z%.
We can see that the outputs of above (SysParam, KeyParam, CiperParam) satisfies our template requirements:

— KeyParam:
1. dg > do, where d, =2+ (T + 3) and dy = 2.
2. Each of {¢o, ¢1, P2, {D3,ks a,ks D5,k,0, {®5,k.t te[r) foep } is a linear combination of monomials «, d;, d;3;.

3. ¢o = a+ Bi1¢1+ Pag2, ¢1 = 61. None of {p2, {#3k, Pk, P5.k,0, {P5,k.t }re[T] Frep)} contains o or 5.
— CiperParam:

1. Each of {1, 12, 93, 1¥4,15,%6} is a linear combination of monomials 7, m;, 753;, 7, 3;.
2. Y1 =, hy = P
— DecPair: When S satisfies (A, p), let I = {k € [l]|p(k) € S}, we have reconstruction coefficients {wy }rer
such that Zkej wi(Ag - u) = u1 = B361. Therefore, we have the following linear combination of the ¢;1;

terms:
T
D193 — Zwk (¢3,k04 — Papths + (d5,0,0 + Z L5, k.t)V6)
kel =1
T T
= p1th3 — Zwk((Ak “u+ EpBa)T — Ei(TPs + (00 + Z cibii1)) + & (6o + Z ctfi41)7)
kel pry Py
= 51(ﬂ1ﬂ’ + ﬂgﬁ') — Zwk(Ak . u)ﬁ'
kel
=61 5m.
Note that

T T T
(¢5,5,0 + Z ct@s.k.0)06 = &k (0o + Z ctbipr — 01 Z cip(k)')
=1 =1

t=1
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T

= & (00 + 3" clipr — 01 (p(p(k)) — co)) 7

t=1

T
=& (00 + Y cbrr + O1co) 7 since p(p(k)) = 0
t=1

T
= gk (00 + Z Ct9t+1)ﬁ.

t=0

[6.2]2 Security Analysis of the Resulting Augmented ABE

As shown in Sec. and Fig. [3] here we only need to (1) state the security of the underlying conventional
non-traceable ABE scheme and (2) prove the Lemma

(1) The Section 5.3 of [1] shows that their KP-ABE scheme corresponding to the above Pair Encoding
Scheme is a fully secure KP-ABE scheme with short ciphertexts.

(2) The Lemma [I| instantiation here is: if the Modified (T + 1,1)-EDHE3 Assumption holds, then for
Jj <m, no PPT adversary can selectively distinguish between an encryption to (i,7) and (i,j+1) in Gamem
with non-negligible advantage, provided that the size of the challenge attribute set is < T.

Note that the Modified (T" 4+ 1,1)-EDHE3 Assumption is a special case of the Modified (n,t)-EDHE3
Assumption in Def. [6]

The proof of the above Lemma (1| instantiation is given in Appendix

5.3 Fully Secure ABE with Ciphertexts Associated with DFAs

Attrapadung [2, Sec. 8.2] proposed a fully secure ABE scheme for regular languages EgL with ciphertexts
associated with Deterministic Finite Automata (DFA). Here we denote it by 0™ Tn XPP™ the
predicate I' is described by DFA. In particular, for a DFA M and a string w, I'(M, u) = 1 if the automata
M accepts the string u. We refer to [B0[I] for more details about DFA-based ABE, here we only give
the below brief introduction. A DFA M is a 5-tuple (Q, A, T,qo, F) in which @ is the set of states Q =
{90,491, --,qn-1}, A is the alphabet set, T is the set of transitions, in which each transition is of the form
(gz,qy,0) € Q X Q x A, qo is the start state, and F' C @ is the set of accepted states. We say that M accepts
a string w = (uy,us,...,u;) € A* if there exists a sequence of states po, p1,...,pn € @ such that pg = qo,
for i = 1 to I we have (p;—1,pi,u;) € T, and p; € F. Note that, as shown in [1I2], it is wlog if we consider
machines such that |F'| = 1. Below we review Z&F’TDFA in terms of Pair Encoding Scheme. Note that we change
the variable names in E,flpTDFA to better suit our template definitions.

[6.3l1 The Pair Encoding Scheme
ZEIPTDFA satisfies our non-traceable ABE template in Sec. with the following Pair Encoding Scheme.

SysParam. Take as input I" : X x Y — {0, 1}, where the ciphertext tag space is Y = {M | M is a DFA} and
the key tag space is X = {u | u € (Zn)*}, output d =9 and dy = 2. Denote 3 = (81, ..., F9).

KeyParam. Take in N and a string v € (Zy)*, let | = |u|, and parse w = (uq,...,u;). Output ds = 3 +1
and @ = (¢o, P1, P2, $3, P4, $5,0, {P5.k5 D6,k frefr,y) With dp =5+ 21

¢o = a+ 101 + P2d2, ¢1 =201, P2 =0, ¢3 = —P301 + P&y,
¢4 = o5, ¢s50 =0, {Ds5k =&k Gk = Ek—1(Bs + Brur) + Ek(Bs + Bour) brepis

where § = (01,02, 60,61, ..., &) € Z3

11 Attrapadung [Z] refers to the scheme as a ‘Functional Encryption’ scheme. Note that the scheme in [2] is still in
“All-Or-Nothing” style and is covered by our ABE definitions, in this paper we refer to it as an ABE scheme.
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CiperParam. Take in N and a DFA M = (Q,Zn, J, qo, ¢n—1) where n = |Q|, let J = |J|, and parse J =

{(thaqyt7at)|t S [1aJ]} OUtPUt dTr =1 + J+TL and 1/) = (¢1a¢2a¢3,¢4ﬂ/}57¢67{1/)7,75’ w&hwﬁ),t}te[l,]])
with d. =6 + 3J:

P =, o = Ba, g = P+ B3,
Yy =, Y5 = mo, e = —1vg + 135,
Yrp =1, Ust = Vg, + (B + Br0t), o= —vy, +m(Bs+ Boot),

where m = (7,7, 70, T1, -+, 775 {Va } g e\ {qn_1}) € Z?V+J+n and vy, _ 1= [47.
We can see that the outputs of above (SysParam, KeyParam, CiperParam) satisfies our template requirements:

— KeyParam:
1. di > dy, where di, =5+ 2] and dy = 2.
2. Each of {¢o, ¢1, P2, P3, P4, ¢5.0, {P5.k, ¢6,k}ke[1,l]} is a linear combination of monomials «, d;, 6;0;.
3. ¢o = a+ Bid1 + Paz, ¢1 = 01. None of {¢a, ¢3, P4, $5.0,{P5.k, P6.k Fre[1,} contains o or B1d;.

— CiperParam:
1. Each of {31, 2,93, %4, V5, V6, {7, ¥s,t, Yot frep, s} is a linear combination of monomials 7, ;, 735,
Wiﬂj.
2. ¢1 =T, ’L/JQ = Bgﬂ'.
— DecPair: When M accepts u = (uq,...,u;), we have that there is a sequence of states pg, p1,...,p1 € Q

such that pg = qo, for k& = 1 to | we have (pg_1,pr,ux) € J, and p; € F. Let (qwtk,qytk,atk) =
(Pk—1, Pk, ur). Therefore, we have the following linear combination of the ¢;¢; terms:

G113 + Patha — Paths + Psots + D (—Pertrr, + D5 k- 1Us 1, + D5 ko 1)
ke(1,]]
=01(B1m + B37) + (=361 + Ba&i)T — EoPsmo + Eo(—vo + mofs) + (Sovo — Eivn—1)
=01517 + Ba&iT — & BaT
2,615171'.

Note that for any k € [1,1] we have

— P,k V7t + P5 k—1Us 1), + 5,600 1),
= — (&-1(B6 + Bruk) + &(Bs + Bour))me,, + Ek—1(Va,, + 7, (B6 + Brow,)) + &e(—vy,, + 7, (Bs + Boor, )

:gk—ll/wtk - gkyytk

and for any k € [1,l — 1] we have y,, = x,,. Note that ¢,,, = po = qo implies z;, = 0 and
Qo = Pl = qn—1 implies x;, = n — 1. Thus, we have

D (~P6rthra, + G5 h-1Us + b5.kUor,) = Ve, — Gy, = oMo — EiVn1.

ke[1,1]

[6.312 Security Analysis of the Resulting Augmented ABE
As shown in Sec. and Fig. [3| here we only need to (1) state the security of the underlying conventional
non-traceable ABE scheme and (2) prove the Lemma

(1) The Section 8.2 of [2] shows that their ABE scheme corresponding to the above Pair Encoding Scheme
is a fully secure ABE scheme with Ciphertexts Associated with DFAs.

(2) The Lemma (1] instantiation here is: if the Modified (n,J)-EDHE2-Dual assumption holds, then for
j <'m, no PPT adversary can selectively distinguish between an encryption to (i,7) and (i, +1) in Gamely,
with non-negligible advantage, provided that the size of the challenge transition set is < J.

The Modified (n,J)-EDHE2-Dual Assumption is a special case of the Modified (n,m)-EDHE2-Dual
Assumption, which we introduce by modifying the (n, m)-EDHE2-Dual Assumption in [2, Definition 9], i.e.,
giving the adversary one more element gan_lbc/ #.In Appendix we prove that Modified (n, m)-EDHE2-Dual
Assumption holds in the generic group.
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Definition 7. The Modified (n,m)-EDHE2-Dual Assumption Given a group generator G, let (N =
P1pP2p3, Ga GT,@) & g()‘)) g i Gp17 92 & GPQ? g3 & Gp3; a7b7 C?'Zvdla .. 'adm i ZN SUppOS@ that
an adversary is given

n—1
D= ((NaGaGTae)7gaga7gb7gb/zvga bc/z’ 92, 93,

id2 a'bjd; d; qa'di/d5 atbdj/dy  at/dS  atd;/dS
vie[l,n]7 7,7 €[1,m],j#5" gav/ 7,9° / 797,49 i/ J/7ga i ]/7ga/ 79 i/ i,

‘ “bed;
viE[O,n—lL JE[1,m] ga.c’ga €%,
a’bed?
Vie[o,n], je,m] 9 7
i g2 i 5 /46
Viell,2n—1], j,j'€[1,m].j#5’ gavde’/dj/vga bed;/dj
“be/d;
Vielt,2n—1],i#n, je[l,m] 9° e/di , _
ate/d?  a'b2ed;/d,, a‘bed;/dS,  aic/d® _atbed®/d?,  aibed®/d,
ViG[l,Qn—l],j,j’G[l,m] g /]7ga cdj/ i g i/ i.g /]79 5/ i g 5/ djr )

and a target element T' € Gy, . The assumption states that it is hard for any polynomial time adversary to

distinguish whether T = g ¢* or T £ Gy, -

The proof of the above Lemma [I] instantiation is given in Appendix [E]

5.4 Large Universe CP-ABE on Prime Order Groups

Rouselakis and Waters [26] proposed a large universe CP-ABE scheme which is on prime order groups and
consequently more efficient than those on composite order groups. Here we denote it by Z,ilpTLUp. In Eﬂ#‘Up
the predicate I" is described by LSSS. Below we review ZKIPTLUP in terms of Pair Encoding Scheme. Note that

we change the variable names in EKIPTLUP to better suit our template definitions.

[6.411 The Pair Encoding Scheme
E,i,pTLUp satisfies our non-traceable ABE template in Sec. with the following Pair Encoding Scheme.

SysParam. Take as input I' : X x Y — {0,1}, where the key tag (here is the attribute set) space is
X ={X | X CZ,} and the ciphertext tag space is Y = {LSSS (4, p) | 4 is a matrix over Z, and p maps
each row of A to an attribute in Z, (p does not need to be injective) }, output d = 4 and dy = 1. Denote

ﬁ = (Bla"'a/B4)-
KeyParam. Take in p and an attribute set S C Z,. Output ds = 1 + |S| and ¢ = (¢, $1,{¢Pz.2, Pz.3}zes)

with dj, = 1+ 2|5|:
¢o=a+ P10, ¢1 =201, {bw2="0z, ¢u3= (Box+ B3)0; — sd1}ees,

where § = (61, {0z }zes) € Z,l,'HS‘.

CiperParam. Take in p and a ciphertext policy (A4, p) € Y, where A is an [ x n matrix over Z,, and p : [1,{] —
Z, maps each row of A to an attribute in Z,,. Output dr =l+n —1 and ¥ = (1, {¥x,1, Vr,2, &3} ken)
with d. =1+ 3l:

Y1 =m, {r1=P1(Ar-w) + Balr, VYr2=—(Bep(k) + B3)k, Vr3 = Ekrep
where 7 = (7, ug, ..., up, &1, -2, &) € ZEM and w = (uy = T, up, - Ug).
We can see that the outputs of above (SysParam, KeyParam, CiperParam) satisfies our template requirements:

— KeyParam:

1. dy > do, where dj, = 1+ 2|S| and dy = 1.

2. Each of {40, ¢1,{¢2,2, $2,3}zecs} is a linear combination of monomials «, d;, 0;3;.

3. ¢o =a+ f1o1, o1 = 01. None of {¢; 2, s 3}secs contains a or 161. Note that dy = 1.
— CiperParam:
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1. Each of {11, {¢x,1,¥r,2,¥r3}kep } is a linear combination of monomials 7, m;, 73;, 7 3;.
2. 91 = 7. Note that dy = 1, thus there is no requirement on 1 ; for d > 2.
— DecPair: When S satisfies (A, p), let I = {k € [l]|p(k) € S}, we have reconstruction coefficients {wy }rers
such that Zkej wi(Ag - u) = u1 = m. Therefore, we have the following linear combination of the ¢;1;
terms:

Zwk(%ﬂ)k@ + Po(k),2Vk,2 + Ppk) 3Vk,3) = 0151 Zwk((Ak u)) = By

kel kel

[6.412 Security Analysis of the Resulting Augmented ABE

As shown in Sec. and Fig. |3| here we only need to (1) state the security of the underlying conventional
non-traceable ABE scheme and (2) prove the Lemma

(1) The Section 4 of [26] shows that their CP-ABE scheme corresponding to the above Pair Encoding
Scheme is a selectively secure CP-ABE scheme with large universe.

(2) The Lemma [1| instantiation here is: if the Extended Source Group q-parallel BDHE Assumption [2]]]
holds, then for j < m, no PPT adversary can selectively distinguish between an encryption to (i,7) and
(i, + 1) in Gamem with non-negligible advantage, provided that the challenge LSSS matriz’s size | X n
satisfies I,n < q.

The proof of the above Lemma [I] instantiation is given in Appendix [F}

5.5 More Instantiations

Besides the instantiations above, some other existing ABE schemes also satisfy our ABE template, such as
the ones below, which we omit the details here.

The Fully Secure ABE with Keys associated with Regular Languages in [I Sec. 5.2], with dy = 2.
The Fully Secure CP-ABE in [2, Scheme 11], with dy = 1.

The Fully Secure CP-ABE with large universe in [2, Scheme 13|, with dy = 1.

The Fully Secure CP-ABE Scheme in [I8, Sec. 2], with dy = 1.

The Fully Secure CP-ABE Scheme in [19], with dy = 2.

Ol WD

6 Conclusion

In this work, we proposed a generic framework that can transform conventional (non-traceable) ABE schemes
to their traceable counterparts, which remain the appealing properties of the original conventional (non-
traceable) ABE and achieve additional fully collusion-resistant blackbox traceability at the cost of sublinear
overhead. In particular, we proposed a conventional (non-traceable) ABE template, and proposed a generic
transformation from the ABE template to Augmented ABE which implies Traceable ABE. This generic
framework implies that any ABE schemes satisfying our ABE template can be transformed to a Traceable
ABE in a generic manner. And we showed that some existing appealing ABE schemes do satisfy our ABE
template. We proved the security of our transformation framework in the standard model.
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Correctness

Correctness. Suppose that the message is M’ and the encryption index is (4, j). For i > i we have

rocs o d b 78 (Vv )
(Ko, Q) -e(Kp Q) elgmtmgh I3, gPaaB0), greiied)e( 20 ")

e(K1,Qin) 17, (K5, Q) e(g% (7)1 v Z3i (gh)m) - T[5, e(g?aP2), (gha)rsitviee))
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7€(gricj+ai , g‘rsi (vi-vc))
6(9617 (951)7\')

If i >4 Aj > j: we have

63(R;a C;) eB(GfSivivng) _ 1 1

e3(Ri,Cy)  e3(Gi™ HI - grwi)  eg(grsivi, go™e) (g, g)risicam(vive)”

If i > i A j < j: note that for i > i, we have (v; - x3) = 0 (since v; € span{x1,X2}), then we have

es(R;, C}) es(G, g0) L !

63(Ri7 Cj) 63(Gfivi,H;(Uc+qu3) . gﬁwj) eg(gy-,is,iv,i7ngT(chr,ujxg)) B 6(97 g)”‘iSiCjT('Ui"UC) .
If i =i Aj < j: note that for i =4, we have that (v; - x3) # 0 happens with overwhelming probability (since
v; is randomly chosen from Z3;), then we have

ed(Révcg) 63(G?Sivi7gwj) 1 1

es(Ris Cj)  eq(Gove, HIPetHXs) L grwyy  eg(grsevi, geam(vetimaxal)  e(g, g)risiesm(@ive g (vexa))

Note that Dp = ¢(K®, P) = e(g,g)¢E1wT = e(g,9)?*™. Thus from the values of T;, Dp and Dy, for
M = T;/(Dp - Dy) we have that: (1) if (i > i)V (i =i Aj > j), then M = M’; (2) if i =i Aj < j, then
M = M’ -e(g,g)msimicti(Vix3); (3) if i < 4, then M has no relation with M’.

B Generic Security of the Assumptions

As the underlying assumptions in this paper are modified versions of the assumptions in [2], in this section
we prove the generic security of these assumptions using the proof framework of [2].

Theorem 6. The Modified (n,m)-EDHE2-Dual assumption is secure in the generic group model.

Proof. The Modified (n, m)-EDHE2-Dual assumption could be considered as (M,Y)-EDHE assumption [2]
Definition 11] where the matrix M and the vector Y are depicted in Table [2, and where we use variables
a,b,c,dy, ..., dp, z. The first requirement holds since n,m = O(poly(X)). We now prove the second require-
ment. We denote by v, ; ; the row of type x with specified i, j in the range if there is any for that type. We
also denote by S, the set of all row indexes of type x ranged in its specified condition.

We first observe that 2v, contains 2 in the column z, but for any v, w, v, + v,, contains at most 0 in the
z column, hence 2v, # v, + v,, for any v, w. It remains to prove that v, + v, # v, + v, for any u, v, w. We
observer that v, +v,, for v ¢ {4,4%} contains 1 in the column 2. Hence by the same reason, v, + v, # v, + vy,
for all w ¢ {4,47},v,w. It remains to prove that v, + vy = (n,1,1,0,...,0) # v, + v,, for all v,w and
Vi + v+t = (2n—1,1,2,0,...,0) # v, + vy, for all v, w. By the proof of the (n, m)-EDHE2-Dual assumption
[2l Lemma 46], v + v4 # v, + vy, for all v, w such that v,w ¢ {47 }. We observe that v, + v,, for v € {47}
or w € {47} contains at most —1 in the z column. Hence v, + v4 # v, + v, for all v,w. Now it remains to
prove that v, + vy = (2n—1,1,2,0,...,0) # v, + v, for all v, w. For a vector X and column ¢, we denote
[X]q the entry in X at g. We first consider the following five cases.

—ve{4,4Torwe {4,47}: [vy + V), < —1 but [vi + vg+], = 0.

— v € S9g U So1 or w € Syg U Sa1: [Vv +Vw]b > 2 but [V* + V4+]b =1.

— v € SgUSi USigU Sy or w € SgUS11 USieUSigr [V + Vg, < —1 for some j but [v, +vy+]a, =0
for all j. This is since [v,]q, = —6 for some j and [vy]q, <5 for all j.

— v € Saz or w € Szt [Vy +Vula, 7# 0 for some j but [v, +vs+]q; = 0 for all j. This is due to the following.
WLOG, we assume v € Saz (and w can be any) and write v = (23,14, j,j). We further categorize as:
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Type Terms Range a b ¢ di do dn 2
. J 0 0 0 0 0 0 0
9 4 1 0 0 0 0 0 0
3 o 0 1 0 0 0 0 o0
4 pOE 0 1 0 0 0 0 -1
4t ga”*lbc/z n—1 1 1 0 0 0 -1
5 gaic i€0,n—1] 7 0 1 0 0 0 0
6 g% jel,m] 0 0 O laj 0
T ¢ ielLmljeLm) i 00 =t ’
8 ge /s ie1,n],j € [1,m] i 0 0 —6a; 0
0 ¢Mh o icLnljeLm] i 10 Lo 0
10 gafdf/d?f i€(l,n],j,5 €l,m],j#J i 0 0 laj, —2a; 0
1 g e[l g e Lmlj# S i 00 1a;, —Go; 0
12 " e (lnl, 4,5 € [1,m],j # 5 i 10 laj, ~1ay 0
13 gaibcdj ie0,n—1],j€[1,m] i 1 1 la; 0
14 g ielon) g€ flm] ¢ 11 Sas )
15 ga'lbcdj/dﬁ, i€, 2n—1],5,5 €[L,m],j#5 i 1 1 laj, —2a; 0
16 g ie o154 € Lml A @ 11 5a;, ~6aj 0
17 g ieL2n—1]i#£n,j€[l,m] i1 ~la; 0
18 ¢vh e [,2n—1],5€[1,m] i 0 1 —2a; 0
19 gl e, 20— 1],5 € [1,m] i 01 —6o; 0
20 g/ e (1,20 - 1],4,5 € [1,m] i o2 1 laj, ~1ay 0
21 "l e 1,20~ 1],4,5 € [L,m] io2 1 5e;, —laj 0
99 gaibcd]‘/d?/ i€ [1,2n — 1]7]‘7]4 € [1,m] i 1 1 laj, —6a; 0
23 e/ e 1,20 — 1],4,5 € [L,m] i 11 5a;, ~2ay 0
Target
N a"cz n 0 1 0 0 0 1

Table 2. The matrix representation of the Modified (n, m)-EDHE2-Dual assumption
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o If j =j', [Vola, = 3. But for all j, [vy]a; # —3.
o Ifj#5', ([Volays [Vola, ) = (5, —2). But for all j, j’, (Vwla, [Vwla, ) # (=5,2).
— v e Sy orw e S1y: WLOG, we assume v € S14. We further categorize as:
o w € Sog: [Vy +Vyp =2 but [ve +vyr]p = 1.
o w ¢ Sy [Vy 4 Vula; # 0 for some j but [v, + vu+]q, = 0 for all j. This is since [v,]q, = 5 for some j
and [vy]q; # —5 for all j.

From now, we can assume v, w ¢ {4,47} U Sg U S11 U S14US16US19 U So0 U Sa1 U Sa3. We then consider the
following case:

— v € S7US10U S15 USig U So or w € S7 U S1g U S5 U S1g U Soa: [VU + Vw]dj < —1 for some J but
[V« + Vat]a, = 0 for all j. This is since [v,]q; < —2 for some j and [v,,]q; <1 for all j.

From now, we can assume also v, w ¢ S7 U S19 U S15 U S1g U Sao. We further categorize as:

v ¢ S5 U S13 U S17 and w ¢ S5 U S13 U Si7: [Vv -i—Vw}C =0 but [V»< +V4+]c = 2.

— v € S5US13US17 and w € S5 U S13 U S17: we further categorize as:
e vESsand w € S5: [vy + Vil = 0 but [vi + vyt]p = 1.
o v &S5 and w € S13 U S17: [Vo + Vyla; # 0 for some j but [v, + vyt ]q; = 0 for all j.
e v E Si3US 7 and w € S5: vy, —l—vw]d'j # 0 for some j but [v, —l—v4+]d'j =0 for all j.
e v e Si3USi7 and w € Si3U Si7: [VU + Vw]b = 2 but [V* +V4+}b =1.

- v € S5US13US17 and w ¢ S5 U S13 U Sp7: [VU + Vw}c =1 but [V* + V4+]C = 2.

v ¢ S5 U S13US17 and w € S5 U S13 U Si7: [VU + Vw}C =1 but [V,,< + V4+]C = 2.

This concludes all cases.
Theorem 7. The Modified (n,t)-EDHES3 assumption is secure in the generic group model.

Proof. The Modified (n,t)-EDHE3 assumption could be considered as (M,Y)-EDHE assumption [2], Def-
inition 11] where the matrix M and the vector Y are depicted in Table [3] and where we use variables
a,b,c,dy,...,ds, z. The first requirement holds since n,t = O(poly()\)). We now prove the second require-
ment. We denote by v, ; ; the row of type x with specified 7, j in the range if there is any for that type. We
also denote by S, the set of all row indexes of type x ranged in its specified condition.

We first observe that 2v, contains 2 in the column z, but for any v,w, v, + v, contains at most 0
in the z column, hence 2v, # v, + v,, for any v, w. It remains to prove that v, + v, # v, + vy, for any
u, v, w. We observer that v, + v, for u ¢ {4,4%} contains 1 in the column z. Hence by the same reason,
Vi + Vo # Vy + vy, for all u ¢ {4,47}, v, w. It remains to prove that v. + vy = (n,1,0,...,0) # v, + vy, for all
v,wand v, + vy = (2n+1,1,0,...,0) # v, + vy, for all v, w. By the proof of the (n,t)-EDHE3 assumption
[2l Lemma 47], vi 4 v4 # v, + vy, for all v, w such that v,w ¢ {4T}. We observe that v, + v, for v € {47}
or w € {47} contains at most —1 in the z column. Hence v, + v4 # v, + vy, for all v, w. Now it remains to
prove that v, +vg+ = (2n +1,1,0,...,0) # v, + v, for all v,w. For a vector X and column ¢, we denote
[X], the entry in X at gq. We first consider the following five cases.

RS {474+} or w &€ {4a 4+}: [VU +Vw}z < —1 but [V* +V4+]z =0.

— v €8US7US11 or w € SgUS7U St [V + Vila, < —1 for some j but [vi +vy+]a; = 0 for all j. This is
since [vy]q; = —2 for some j and [v,]q; <1 for all j.

— v € Sy 0r w € St [Vy + Ve > 2 but [vi + vyt = 1.

From now, we can assume v, w ¢ {4,47} U Sg U S7 U S11 U S12. We further categorize as:

— v ¢ {3}USgUSgUSipand w ¢ {3} U Sg U Sy U S1p: [V + Vaw]e = 0 but [vi + vyt = 1.
- Ve {3} USsUSgU Sig and w € {3} U Ss U Sg U Sip: [Vv +Vw]c = 2 but [V* +V4+]C =1.
— v € {3}USsUSyUS1p and w ¢ {3} USg U Sy U Sig: we further categorize as:
e v e {3} and w € {2,5,13}: [vy + Vyla < n but [vi +vyt]e =2n + 1.
e v SgUSyUSipand w € {2,13}: [vy + vy la; # 0 for some j but [v. +vy+]q, = 0 for all j.
e v € SgUSygUS g and w = 5: [vy + Vila < 2n but [vy + vyt]e = 20+ 1.
—v ¢ {3} USsUSyUSigand w € {3} U Ss U Sy U Syp: this is the same as the previous case for “v €
{3} USg U Sg U S1g and w ¢ {3} U Sg U Sy U S19” by exchanging v, w.

This concludes all cases.
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Type Terms Range a c d1 ds d z
1 g 0 0 0 0 0 0
2 q° 1 0 0 0 0 0
3 g° 0 1 0 0 0 0
4 g°/* 0 1 0 0 0 -1
gt g“ te/ n 1 0 0 0 -1
5 g% je1,] 0 0 laj 0
6 ¢/ ielln+1],j€l,1 i 0 T 0
7 ¢ e Lnl g e i #£] i 0 loj, —2aj" 0
8 g“ "ed;/dy ‘j’ e1,t],j#4 n 1 laj, —lay 0
9 g* o € [1,2n],j € [1,1] i1 le; 0
10 g?e/di el,2n),i#n+1,5€[1,] + 1 —laj 0
1 g e g e LA 1 loj, —2a;" 0
12 g“ <*d; /dﬂ i€n+1,2n],7,5 €[1,1] i 2 laj, —laj 0
13 g* n 0 0 0 - 0 0
Target
n+1z
* g® n+l O 0 0 0 1

Table 3. The matrix representation of the Modified (n,¢)-EDHE3 assumption

C Proof of the Lemma (1| for the Fully Secure Unbounded KP-ABE with Large
Universe

To make the proof easy to follow, we present the details of the resulting AugABE scheme first.

C.1 The Resulting Augmented KP-ABE

Setupa(A, I, K = m?) — (PP,MSK). Run (N,p1,p2,p3,G,Gr,e) + G()\). Pick generators g € G,,, X5 €
Gyp,- Set d = 6,dy = 2. Pick random B = (Bi,...,Bs) € Z5 . Pick random {a;, 7;, 2 € 7N Yiemm)s 165 €
Z.N }jefm)- The public parameter is

PP = ( (N,G,GT,G),g,h = (hl = gﬂla"th :ngG)vXSa
{Ez = e(gag)aiv Gi=g", Zi= gZi}iE[m]a {H] =g }je[m] )
The master secret key is MSK = (al, iy QU Ty e s Ty Clye ey cm).
A counter ctr = 0 is implicitly included in MSK.
KeyGen, (PP, MSK, (4, p)) — SK(;, 0):(A.0) . Set ctr = ctr + 1 and then compute the corresponding index
in the form of (i,5) where 1 < 4,5 < m and (i — 1) *m + j = ctr. Let I x n be the size of A. Pick

random 6 - (61a 627 617 e 7517 Uy .. ,’U,n) S Z{];]i_n+17 R = (ROa R17 RQa {R3,k7 R47k, R&k}ke[l]) € Gg;—3l7
and Rj € Gp,. Implicitly setting w = (u1 = (301, uz, ..., u,), output a secret key SK; ;) (a,,) as

SKi.g). (a0 = ( (3,9): (4, p),
Ky = gTiCri-az'gﬂﬂslng(Ssz K, = 95131, Ky = 952 Ry,
{Ksp = g™ 9" * Ry p, Kup = g% Rap, Ksp = (979" ") Rs s }rer,
K} = Z)'Ry).

Note that K3 = g** %P1 Rz}, can be computed as Kz, = (g%)Ar101g2izs Araue gBale Ry ) wwhere
A = (Ak1,Ak2, ..., Agy) is the k-th row of A.
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Encrypta (PP, M, S, (i,)) — CTs.
1. Upon input the attribute set S C Zy, pick random 7 = (7, 7, {7z }zes) € Z?VHSI. Set

Pl :gﬂ—7 P2 :gﬂzﬂ" P3 :gﬁlﬂ-gﬁ?ﬁ—a
P4 = gﬁv {PE),I = gﬁ4ﬁ(965gﬁ6w)ﬂ-wu PG,:E = gﬂw }x€S~

2. Pick random &, T, S1,...,8m, t1,---stm € ZN, Ve, Wi,..., Wy € Z3.
Pick random Tay Ty, Tz € ZN7 and set X1 = (rm707r2)7 X2 = (0>ry7rz)7 X3 = X1XX2 = (_Tyrzy _ra:Tzara:Ty)'
Pick random v; € Z3; Vi € {1,...,i}, wv; € span{x1,x2} Vi € {i +1,...,m}.
For each row i € [m]:
— if § < i: randomly choose 3; € Zy, and set

Ri=g", R=¢"", Qi=g¢", Qi1=(g")"ZI(¢")", Qi2a=(4")", Qi=g", T.=E".
— if § >4 set

R, = Gfﬂh" R; — G?Sivi, Q, = gTSzi(’th"Uc)’ Qi,l — (gﬁl)‘rsi(vi'vc)ziti (gﬂl)ﬂ', C)L2 _ <gﬁ2>73i(vi'vc)7

Q=g", Ti=M-B[*®),

For each column j € [m]:

— if j < j: randomly choose y; € Z,, and set C; = ij(vc+uj)<3) g™, Cl = g¥i.

—ifj > jiset C; = HI% . g™vi, C% = g¥i.
3. Output the ciphertext CTs as CTs = (S, (P, P2, P3, Py, {Ps5 2, Po 2 }zes), (Ri, R}, Qi, Qi 1, Qi2, QF, Ti) %y,
(C;,C)JLy).

DecryptA(PP,CTS,SK(i’j)’(A’p)) — M or L. Parse CTg to CTg = <S, (Pl,P27P3,P4,{P57z,P6,m}mes),
(Ria R;a Qia Qi,17 Qi,Qa Q;a jji);lla (Cj7 C_Ij);n:1> and SK(i,j),(A,p) to SK(i,j),(A,p) = ((27.7>7 (A7 P)> (K()a K17 K2a
{K37k,K4,k,K57k}ke[l],K6). Suppose S satisfies (4, p) (if S does not satisfies (4, p), output L).

1. Compute constants {wy},(x)es such that 3 ;) gwrdr = (1,0,...,0). Compute

e(Ksk, Py) - e(Ks 1, Po p(k)) \wr
Dp <—€(K17P3)/ ( . : . )
p<£[es (K, Ps p(i))

2. Compute

Do E0 Qi) e(K§,Q))  ea(R,CY)
! G(Kl,Qi,l)'e(KQ,Qi,z) 63(Ri»Cj)-

3. Computes M «+ T;/(Dp - D) as the output message.

C.2 Proof of Lemma [

Proof. Suppose there exists a polynomial time adversary A that selectively breaks the index-hiding game
with advantage e. We build a PPT algorithm B to solve a Modified (1,¢)-EDHE3 problem instance in a
subgroup as follows. B is given

D = ((N,G,GT,G), g’ga’gcvgc/z’gac/z (fOT' gca"/z ’LUZth n = 1); 92, 93,

Vje[q] gdj’ gaCdj’gasz_y‘7 gow/dj7 ga/djz-ygaz/d?’
d_»/d?, d;/d;r d'/d?, 2 d_-/d?,
vj,jle[q] s.t. j#j5’ ng;2dJ‘/zi..g/aC i/d; ) gaC i/ d; 7ga ed; /d; ,
Vijelg 9% )
R R R R "
and T, where (N = p1pap3, G,Gr,e) «— G, g «— Gy, g2 «— Gy, g3 +— Gy, a,¢,2,d1,...,dg < Zn,

and T is either equal to g“2z or is a random element from G,,. B’s goal is to determine 7' = g“zz or T is a
random element from G,, .
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Init. A gives B the challenge attribute set S* = {af,...,a}.} C Zn, where |S*| =1* <q.

Setup. B randomly chooses {ai € Zn}icim)s {70, 21 € ZN}icpmp\G}s 5% € ZN, {¢; € ZN}jepm), and
B1, B2, 8%, By, B, B6 € Zn. B gives A the public parameter PP:

(9, hy = (g“)ﬁi, hy = 9’32 hs = (g)%, ha = (g")",
H a/d ( H gac/dt)’ he :gﬁg_ H ga/d2 ,
e[l*] te(l] te(l]
{E; = 6(979) Yiemls
(Gi=3", Zi = (4" Vicompgiys {Hi = (97 Y semngys Gi= (9°)5, Zi = g7, Hj = (9) )

Note that B implicitly chooses 75, 2:(i € [m]\ {i}), ¢;(j € [m]), Bi1, B3, B4, B5,B6 € Zn such that

ar; = r; mod py, az, = z; mod p1 Vi € [m] \ {i},
ac% = ¢; mod py, (¢/z)¢; = ¢; mod py Vj € [m]\ {7},

afy = 1 mod p1, afy = Bz mod p1, afy = 4 mod py,

B+ Y (—aja/d?)+ ) (ac)/dy = f5 mod py,

te(l*] te(l*]

By + > a/d; = B mod p;.

te(l*]

Query Phase. To respond to A’s query for ((4,7), (4, p)), let I x n be the size of A,

o if (i,5) # (i,7): B picks random § = (81,00,&1,...,&, Uz, ..., u,) € ZYN" R = (Ry, Ry, Ra,
{R3.k, Rak, Rs k }rep) € Gf’,j?’l, and R} € G,p,. Implicitly setting u = (u1 = B301,us,...,uy), B creates
a secret key SK(; ;) (4,0)

9o (g°/%)" i - R g Ro, i A0 j # ]
Ko = { g% (g*/*) " - hy'hy* Ro, i =1,j# ]
9% (g")" - hhy Ro, i# =]
Ki=¢"Ri, Ky=g" Re, Kj=2Z]'Ry,
Ag161 S k
(Kap = hy 10 g2ime Aveve g Ry o Ky = g% Ry, Ksg = (hshf™) Ry . }rer.
e if (i,5) = (i, 4): it implies that A is querying a secret key with the challenge index (4, j), and (A, p) is not
satisfied by S*. B first computes a vector @ = (i1, ..., U,) € Z%; that has first entry equal to 1 (i.e. 43 = 1)

and is orthogonal to all of the rows Ay, of A such that p(k) € S* (i.e. Ap-u =0VEk € [I] s.t. p(k) € S*). Note
that such a vector must exist since S* fails to satisfy (A, p), and it is efficiently computable. B picks random
01,02, {8k Fheq] s.t. p(kyes=s &L kel st. pk)gs= Us, - Uy, € Zn, R = (Ro, Ry, Ry, {R3, Rak, Rs i }rep)) €
Gf;j?’l, and Rj € Gp,. Let v/ = (0,u,...,ul,) € Z};, B sets the values of 61 € Zn, u € Z}¥, {& €
ZN Yreq) st p(k)gs= by implicitly setting

8) — arich /51 =01 mod p1, u=u'+ (afs)01a,

aCdt ] — A *
&+ (a— Z W)ﬂ?) 15 (Ay - w)/(B18y) = & mod p Vk € [I] s.t. p(k) ¢ S™.
te(l*]

Note that for a; € S* and p(k) ¢ S* we have p(k) — a; # 0. B creates a secret key SK(; 5) (a,,) as follows:

a; 1,01 roa\—rick /B 2
Ko = ¢h{*h? Ry, K1 = g*(¢%) "/"1 Ry, Ky = ¢” Ry, K = (K1)* R},
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o for k € [I] s.t. p(k) € S*,
Ksj, = g RS Ry = g w)+alshi(Ae@ple po = g(Aew)pli gy
Kig = g% Ry, Kop = (hshg)% R,

o for k € [I] s.t. p(k) ¢ S*,

Kz = g™ hi* Ry

_ g(Ak~u’) aﬁé(é;—ar%a%/ﬁi)(Ak-ﬁ)

g

. hi;c . (gaﬂ4)aﬁ§r:c;(Ak -@)/(B1By) . (ga[ﬁi)*(zteu*] ﬁ)ﬁérécé(Ak'ﬁ)/(Biﬁé)Rg A
’ Y — ’ Z @ N — ’
_ g(Ak,'u) ,gaﬁgél(Ak~u) . hik - (g> e p=ag )4337“263(Al«'u)/ﬁle’]C
_ g(Ak'ul) ) (ga)ﬁééll(Akﬁ) ) hi;c ) ( H (g“%dt)m)_'Bérécé(Ak'ﬁ)/ﬁiR&k,
tell*]

K4,k — ggkR47k — g€L+(a—Ete[l*] 49(27;1122‘ )6ér%C§(Akﬁ)/(ﬁiﬁ£)R47k

— gﬁ;c . (ga)ﬁérécg(Akﬂ)/(ﬂiﬁé) . ( H (gaCdt)gp(k)l—a; )75ér§c§(Ak<ﬁ)/(ﬁiﬁi)R47k,

te(l*]

Ksp = (h5h§(k))§’“ Rs

u.cd
a— , oy ——t /T/C/ A ’ ’
(h5hp ) (h5hg(k))( > €] b —a7, )ﬁB i J( k* u)/(6164)R5yk
= (hsh§ ™))%
"“d/ /i 4 ! al
,<gﬁé+5ép(7€) ( H( a/d2 p(k)— “t ) H gac/dt ) Zfez* ] p(k)— a )ﬁsrlc]( k@) /(B18%) -RS’k

te(l*] te(l*]
= (hshf™)8k . (gﬁgwgp(k))aﬁérécﬂAk-ﬁ)/(ﬁmg) - (gP+Bre®) ~(Crep) oo i ) B4 Ak @)/ (B16)

acdy

. ( H (ga/d?)p(k)—a:)llBéT%C%(Ak"a)/(ﬁiﬁzll) ) ( H (ga/df)p(k)_at) Cven=) 702 a* )B3rici (Ar-a)/(816%)

te(l*] te(l*]
ac/dy aB4Tick (Ar-) /(81 85) ac/dy\~ (Seren) ez )B5rics (Aw-a)/(86))
.(Hg/)g k 4.(Hg/) [t (k) 373C5 14'R5,k
te(l*] te(l*]
= (hshf®)ek . (go) FsHAsr DB Aem/EL) (T ( gacdtl)m)*(5é+ﬂép(k))/3érécﬁ(Ak'ﬁ)/(ﬁiﬁfl)
t’e(l*]
o
()~
a?/d> —a;\Psric(Ax-@)/(B1BY) acd//d W Baric (Ar-@)/(B184)
(H(g /dt)P(k) t) 3 H H t /) J
te(l*] =)t el
2}
( H gazc/dt)ﬁérgcg(Akﬂ)/(BQm . H H a2c2dt//dt W) Byrics(Ak-@)/(B15%) Rs.p
te(l*] te[l*] v/ ell*]

Vs

H H g° 2cd, /d? W) Byrich (Ay-@)/(8164)

te[l*] te[l*1\{t}

Wy, for t'#t
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(11 (gazcdt/df)iégizg)*BéT%CE(Ak'ﬁ)/(ﬁiﬂQ).( 11 ga’zc/dt)ﬁérécg<Ak-a>/(ﬁiﬁg> Uy R

te(l*] te(l*]

for t'=t
=W Wy Wy Wy Rs
Note that B can calculate the values of Ko, K1, K2, Kj, { K3 %, K4k, K5 1 } ke[ using the suitable terms of the
assumption.

Challenge. A submits a message M. B randomly chooses

’ . /. ’ / / /
Ty S1yeees 85185 Siqls s Smy b1yee s G 13t, Gy by € Zn,
_ / / 3
Wiy, WG, W, Wy € Ly
A —/ / !
T, Ty Mazyeeo s Mar €ZN.

B randomly chooses r,, 7y, 7, € Zn, and sets x1 = (r5,0,72), x2 = (0,7y,72), X3 = X1 XX2 = (=Tyrs, =gz, TaTy).
B randomly chooses

v, €ZEVie{l,... i1},
v? € span{x1,x2}, v € span{xs},
v; € span{x1,x2} Vi € {i+1,...,m},
vP € span{x1,x2}, vl =rv3xs3 € span{xs}.
B sets the value of ,7,s7,t:(i € [m] \ {i}) € Zn, ve,v; € Ly, {w; € ZJ}1 5, 7 € Zn, T € Ly, {m,; €
ZN }iep+) by implicitly setting
a=rmodp;, azr’ =7 modpi, s;/a=s;modpr,
ti 4+ cfi7'si(v? - vl) /2 = t; mod py Vi€ {1,...,i— 1},
t; —aBir'si(vi - vR) /2 + 7 si(vd - wl) /2 =t mod py Vi€ {i+1,...,m},
1 c
v, = ;vp +vl, v;=vY + ;vg,

!/ ) —
w: — ac:7' v? = w: mod pq,

J 3T Ve j
w; — ccjr'vl = wimodpy Vj € {j+1,...,m},

7' —ecr'si(v! - vl) = mmod py, T+ cf7'si(vd - vl)/B3 = T mod py,

Tos — dy 31847 s5(v? - v?) /By = mar mod py VE € [I7].

It is worth noticing that v; and v, are random vectors in Z3; as required, and (v;-v.) = *(v?-v2)+<(v?-v1),
since x3 is orthogonal to span{x1, x2} and Z3%; = span{x1, X2, X3}
B creates a ciphertext <S*7 (P17 P27 P3a P47 {P5,$7 P6,I}$ES*)7 (Rla R'u Q’L? Q’L 15 QZ 25 Q'Lv T )z 13 (0_77 C;)T:l)

as follows:
1. P = gﬁ’(QC)*T’Sé(v%vD, Py = (PP, Py= h?'h?, Py =g~ (gc)ﬁi""sﬁ(vgmg)/ﬁé’
for t € [I*],
P57a;‘ = hﬁ—(h5ha:)ﬂ”:
_ hﬂ' BT s (v vl)/BY (h haf) —d, B} B4 st (v v2) /B4
= hle (g aﬁ4)cﬁi‘r'5'(v;'vg)/53

: (h5hg:)ﬂ':‘; . (gﬁégﬂé‘ﬁ ( H ( a/d H ga('/dt/ )

t'efl*] t'el*]

—di 1By 55 (v]-v?) /By

34



= B - (g°) BT S8 (gt (ge) TR AT )5,
( H (gadt/df,)affa:,)*515217/5%(”%1""3)/[35. ( H gacdt/dt/)*ﬁiﬁi"'/sé(vg""g)/ﬁé

t'e[l*] t'e[l*]
= B (go) BT CIVD/8L (g YT . (gie) T B BT (0 s
~—
wy A L2

. ( H (gadt/df/)a,:—a:,)_BiﬁéTlsé(vg'vZ)/Bé . ((gadt/d?)af—a:)_BQBQTlsé(Ug'vZ)/Bé

telr\{t} 1, for t'=t
W3, for t/#t
) ( H gacdt/dt/)*ﬁiﬁiTlsi"(”g'UZ)/ﬁé ) (gacdt/dt)*5154/17/5%(”?'”3)/55
te[l*\{t} A-1, for t'=t
Wy, for t/t
=0 -V, - U3 - Yy,

T s —di BBy 7 85 (v 0 /B Tlx o do\—B Bl s (v.v) /Bl
Psgr = g™ = g 1Pa i 3 = gMai (g) B1BaT s (vi-vd)/ By

Note that the values of ¥y,..., ¥, can be calculated using the suitable terms of the assumption.
2. For each i € [m]:
— if i < 4: it randomly chooses 8; € Z,, then sets

Ri = gviv R;, = (ga)via Ql = gSia Qi,l = h‘ilzflh;rla
Qiz = (Qi), Qi =g" (g7 IO, Ty = B

— if § = i: it sets

P Lol ayd q

R, = grés,’;vz (gc/z)rgs;v;’ R; _ (ga)rés%v%’ (gac/z)rés%v;’ Q; = g.,—’sfz(v§’~vfc’)(gC)T’s%(v%vg)’
’ %( 2. f) i P g
Qin=hy " UVZERT D Qia = (Qi), Qi =g, Ti=M-e(g™, Q).
—if i >4 it sets
Ri _ gT’i,Si,Ui,’ R; — (g(z)ms,,vi,7 Qi — (ga)-,—’si(vi.vg)7 Qi71 _ Zf;h_ir/’
Qi,Q — (Qi)ﬁ27 Q; _ gt;(ga)fﬁi‘,-’si(viﬂyf)/z; (gc)ﬁi‘r’s%(v%vg)/z;’ 7’11 - M - 6(gai7Qi)~

3. For each j € [m]:
— if j < j: it randomly chooses u; € Zy and implicitly sets the value of u; such that (ac)’l,u;% —v3 =
pj mod p1, then sets C; = (g(ac)/z)c;T/vg 'QC;T/“M (g")r, Cj =g
— if j = j: it sets C;j = o7 Ve (g“)“’;, C) = gw.% . (ga)_c./f,”g.
—if > it sets C = (g(#/2)ITVE L (g0 s, O = g - (g°) T VR

ItT= g“QZ, then the ciphertext is a well-formed encryption to the index (4, 7). If T is randomly chosen, say
T = g" for some random r € Z,,, the ciphertext is a well-formed encryption to the index (¢,j + 1) with
implicitly setting p; such that (-7 — 1)v3 = p; mod p;.

a2z

Guess. A outputs a guess b’ € {0,1} to B, then B outputs this b’ to the challenger.

The distributions of the public parameters, private keys and challenge ciphertext are the same as that in
the real scheme. B’s advantage in the Modified (1, ¢)-EDHE3 game will be exactly equal to A’s advantage
in the selective index-hiding game.

35



D Proof of the Lemma [1f for the Fully Secure KP-ABE with Short Ciphertexts

To make the proof easy to follow, we present the details of the resulting AugABE scheme first.

D.1 The Resulting Augmented KP-ABE

Setupp(\, U, N = m?,T) — (PP,MSK). Run G()) to get (N, p1,p2,p3, G, Gr,e). Pick generators g € G,,,
X3 € Gyp,. Set d = T + 6,dy = 2. Pick random B = (84, ...,B4,00,01,...,074+1) € ZL'°. Pick random
{ai, 1iy 2i € Zn}ieim), {¢j € ZN}jeim)- The public parameter is

PP = ( (N,G,GT,ﬁ),Q,hl :gﬁla"'ah4 = gﬁ47f0 = geov.fl = gelv" '7fT+1 :geT+17 X37
{El = e(gag)ai7 G;= gri’ Z; = gZi}'ie[m]a {H] = ng }je[m] )
The master secret key is MSK = (al, ey Oy T1ye ooy Ty Clye ey cm).
A counter ctr = 0 is implicitly included in MSK.
KeyGen, (PP, MSK, (4, p)) = SK(; j),(a,p)- Set ctr = ctr + 1 and then compute the corresponding index in

the form of (i,5) where 1 <i,7 <m and (i — 1) xm + j = ctr. Let | X n be the size of A. Pick random

6 = (61,62,&, ..., & un, ... un) € ZN™T R = (Ro, Ri, R, {Rs 5, Rue, Rs,6.0, { Rkt epr) fren)) €

Gf,;r(SJrT)l, and R € G,,. Implicitly setting u = (u1 = (301, uz, ..., uy,), output a secret key SK; ;) (a,p)

as
SK(i ), (a0 = ((4,9), (4, p),
Ky = g’r’iCj+Oéih1151 hngO, K| = g51R1, Koy = 962 'Ry, K(/) _ Z;SIR,O,
(K3 = g™ “h§ Ry o, Kug = g Ray,
K5,k,0 = f§k> {K5,k,t = (ft-&-lffp(k) )gkR5,k,t}te[T]}kel)-

Note that K3 = gAk'“gﬁ‘*g’“Rg,k can be computed as

K3 = (g%)Ar101 g2tcn Akttt gfalh Ry | = h?k’lalgx;z A’“'t“thikRa,m where Ay = (A1, Ak2, .-, Akn)

is the k-th row of A.
Encrypt, (PP, M, S, (i,7)) — CTs.
1. Upon input the attribute set S C Zy, pick random 7 = (7,7, 71) € Z3. Let ¢; be the coefficient of 2t

in p(2) := [[,es(z — ). Set
b =yg", Py=h3, - Py=hihj,
7 7 T ct \T 7
Pi=g™, Ps=hi(foll,_ofit1), Ps=g".
2. Pick random
Ky Ty S1y--+38ms t1y...,tm € Zn,

3
Ve, Wi,..., Wy € Ly.

Pick random rg, 7y, 7, € Zn, and set x1 = (74, 0,72), X2 = (0,74, 72), X3 = X1 XX2 = (—TyTs, —TaT2, FaTy).
Pick random

v, €Z5 Vi€ {l,...,1i},
v; € Span{XhXZ} Vi e {{+ 13"'7m}'

For each row i € [m]:
— if 4 < 4: randomly choose §; € Z,,, and set

Ri - gvia R{L = gﬁvi7 Ql = gSia Qi71 = (gﬁ1)97Zth (951)71" Qi,Q = (gﬁz)Sia
Qi=g", T,=E.
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— if § > i: set
R, = G?ivi7 R; _ G?Sivi, Q: = g’FSz'(Ui~Uc)7 QiJ _ (gﬁl)TSi(vi'vc)Zfi (951)7",
Q2= (gﬁz)Tsi(vi"Uc),
Qj=g", Ti=M-E[*®),

For each column j € [m]:

— if j < j: randomly choose u; € Zy, and set C; = H;(vc+u,~><3) g™, C = gvi.

—if j > j:set Cj = Hj - g"s, C = g™s.
3. OutPUt the CipherteXt CTS = <Sa (Pla P27 P37 P47 P5a P6)7 (R’La R;a Qi7 Qi,la Qi,?a Q{u Ti)zy'lla (0_77 C;)_;n:1>

Decryptp (PP, CTs, SK(i j),(a,p)) — M or L. Parse CTs to CTs = (S, (P1, Ps, Ps, Py, P5, Ps), (R, R}, Q;, Qi 1,

Qi2, Q5 Ty, (Cj, Ch)y) and SK; 5y, (a,p) 10 SK (i jy.(a,p) = ((0,9), (A, p), (Ko, K1, Ko, {K3 1, K 1, K5 1.0,
{ K511 breir) Hreps K(§)- Suppose S satisfies (A, p) (if S does not satisfies (4, p), output L).
1. Compute constants {wk}pk)es such that 3_ ) ,\cqwrAr = (1,0,...,0). Let ¢; be the coefficient of 2t
in p(2) == [[,c4(z — 7). Compute

(K3 Pa) - e(Ks 0 TTi—1 K& 00 Po)

D K, P “r
p <e(Ki,P3)/ H ( e(Kan P5) )
p(k)es
B (g n, g™) - e((fo Tlio i1, 07) yun
_e(K1,P3)/ H ( - T o 7 )
p(k)ES e(g+, hj (fO Ht:oft—i—l) )
=e(K1,Ps)/ [[ (elg™ ™, 97)" =elg.9) " e(g, )" Je(g, g)**""
p(k)es
a1617r.

=e(9,9)

Note that Dp can be computed using 4 pairing computations, since Hp(k)es (e(Kg,k,P4))wk can be
compute by e(Hp(k)es K%, Py), and the same applies to two parts for Ps and Ps.
2. Compute

€(K0,Qi) e(K(/MQ;) . 63(R;,C;)
e(K1,Qi1) - e(K2,Qi2) e3(R;,Cj)’

3. Computes M <+ T;/(Dp - Dy) as the output message.

Dy +

D.2 Proof of Lemma [l

Proof. Suppose there exists a polynomial time adversary A that selectively breaks the index-hiding game
with advantage e. We build a PPT algorithm B to solve a Modified (7' + 1, 1)-EDHE3 problem instance in
a subgroup as follows. B is given

T+1

D= ((N7G7GT7€), g’ga7gc)gc/z7 gcaT+1/z (fO’f' gca"/z withn =T+ 1), gd,ga s

a’cd

Viepr+n] 9

Vie[2(T+1)],i#T+2 gafc/‘ja
Vier+sy 9°7/%,

aiC2
Vie[r+2.2(T+1)] )

and T, where (N = p1paps, G,Gr,e) £ G, g £ Gy, 92 £ Gy, 93 £ Gy, a,c,2,d & Zy, and T

+2,

is either equal to gaT+2z or is a random element from G,,. B’s goal is to determine T' = g“T or T is a

random element from G,, .
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Init. A gives B the challenge attribute set S* = {af,...,a}.} C Zy, where |S*| =1* <T.

Setup. B randomly chooses {a; € Zn}icpm), {76, 2 € ZN}ie[m)\{Zp 75,2 € Zn, {cj € ZN}jem), and
B1, B2, B3, By, 05,01, .., 00 1 € Zn. Let ¢ be the coefficients of 2* in p(z) = [[,cg-(2 — ), B gives A the
public parameter PP:

T+1 T41

(9 7= (") ha = g%, by = ()%, by = ("),
T
fo = g%gaTJrlc/d H(ga“rl/dz)fcf, {(fi=g /g at/d? tT:+11’
t=0
{E’L = e(gag)ai}ie[m]a
(Gi=g", Zi=(g""

T+1

)Z/ }le[m]\{z}7 {H ( )cj }je[m]\{j}7 Gi = (ga )7';’ Z; = g7, H} = (ga)ci' )

Note that B implicitly chooses r;, z;(i € [m]\ {i}), ¢;(j € [m]), B, Bs, B4, 85,86 € Zn such that

a1l =72 mod py, a’ T2l = 2 mod py Vi € [m] \ {i},
ac; = ¢; mod p1, (¢/z)¢; = ¢; mod p1 Vj € [m]\ {7},
a1 3] = B mod py, o’ By = B3 mod py, o’ By = B4 mod py,
T
0 +a’te/d - Zc;‘(at+1/d2) = 6y mod p1,
=0
Vte{l,..., T +1}: 0, +a'/d*> =6, mod py,

Query Phase. To respond to A’s query for ((7,7), (A, p)), let I x n be the size of A,
o if (i,5) # (i,7): B picks random & = (81,00,&1,...,&, U, ... u,) € ZN"T R = (Rg, Ry, Ry,

{Ra 1oy Rag, Ry 0y (R gt e bhep) € Gpa @77 and R}y € G, Tmplicitly setting w = (u1 = 8301, ua, . . ., un),
B creates a secret key SK(; ;) (4,p):

gui(ge/*) R S Ry, i1, # ]
X aT+1C 2\rles . - . =
K0: go‘t(g( )/)1J.h‘151h32]—{07 IZ:Z,j#‘]
9% (g")" - h'hy Ro, i# i =].
Ki=g¢""Ry, Ky=g" Ry, K,= Zfl
{Ks3 = hA“él gXime Anctep S Ro Ky = g% Ry,
Kspo=f5* {Kspi = (fria fi 7" )gkRs k.t bte|T] Fhel-

o if (i,5) = (4,7): it implies that A is querying a secret key with the challenge index (i, j), and (A, p)
is not satisfied by S*. B first computes a vector @ = (4y,...,U,) € Z% that has first entry equal to 1
(i.e. w3 = 1) and is orthogonal to all of the rows Ay of A such that p(k) € S* (i.e. Ay -u = 0 Vk €
[l] s.t. p(k) € S*). Note that such a vector must exist since S* fails to satisfy (A,p), and it is effi-
ciently computable. B picks random 87, 0o, {&k re[i] s.t. p(k)es=s 1&L I hell] st. plk)gs= Uas -+ Uy, € Zy, R =
(Ro, Ry, Ro, {R3 1, Ra ke, Rs 1,0, { R5 ket yteT frep)) € GHZ(SJFT), and R € Gy, Let u' = (0,u, ..., uy,) € ZY
B sets the values of 0y € Zn, u € Z3;, {€x € ZN bre] s.t. p(k)gs+ Dy implicitly setting

0 —aric;/By =61 mod p1, u=u'+(a 15006, a,

T
&+ ZP k)'eda™ 1) Byrich (A - @) /(81 84) = & mod py Vk € [I] s.t. p(k) ¢ S*.

t=0
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Note that for p(k) ¢ S* we have p(p(k)) # 0. B creates a secret key SK; 7y (4,,) as follows:
Ko = g“h"h3 Ry, K1 = ¢ (¢*) "%/ Ry, Ko = g% Ry, K} = (K1)% R),

o for k € [I] s.t. p(k) € S*,
Ksp = g WS Ry ), = gWAr )t B (A i)t g g(Aew)pbipy

Kip = 9% Rap, Kspo=f5" {Kspr= (ft+1f1_p( ’ )&% Rs kot eepr)
o for k €[] s.t. p(k) ¢ S*,
Kz = g hg Ry,

_ g(Ak.u’) _gaT‘Hﬁé(é’l7ar§c§/61)(Ak-ﬁ)

/ ’ ot — Y ’ aTHi-t, v — !l
. hik . (gaT+1,34)afBSTZCj(Ak'u)/(ﬂ1ﬂ4) . ( aT+1B4)(Zf:0 W()i)p(k))ﬁsr c;(A k'u)/(5154)R3,k

g
/ a2T+2-t, o)t 1o — ’
= gUAew) | e P (Aem) gk (S0 St (A @) Bl R

RN

T
— glAr) (g0 B (AE) hi’“ , (H(ga””*tcd)m )ﬁs%mk quR
t=0

Kyp = ggkR47k _ g§§c+(a+m “io P(k)t’Cd‘lT+17t)ﬁé7"/C' (Ak'ﬁ)/(ﬁiﬁi)R47k

T v o — !l
& (g)farics(Aem)/(B150) (H(gaTH*tcd),,’;sz,l’)) YA/ Gt

t=0

=g

Ks 50 = f§" Rs k.0

— kL (gPhgaT e/ H @ i yaBlrie (AwB)/(5167)
/ oT+1 aitl /a2 “tedp(k)tNgr 0 0
c/d H /d (Zt 0 p(p(k‘,)) )B37; C5 (Ax-a)/(B181) R5 k.0

T
_ fO;f . ((ga)%)BéTécé(Ak‘ﬁ)/(ﬂiﬂf;) _(gaT+2c/d)B‘%T%C%(Ak'ﬁ)/(ﬁiﬁé) . (H(gai+2/d2)—cf)ﬂéT%cg(Ak'ﬁ)/(ﬁiﬁé)

=0

/241
12}

L 7)0oBirics (A ®)/ (515))

. ( lT_[(gaT+17th) p?;()

U3

T
(L= sttt ) Bories (w5150

Yy

H H QT e/ sefdLk )Bé%C%(Akﬂ)/(ﬂ{ﬂé)RS o
t=013=0
wl . (gaT+2C/d)ﬁ«;T£C§(Akﬁ)/(ﬁiﬁz&) . w2 . w3 . w‘l

] ity q SO0 Bl (A-@)/(818)
(H H (ga C/d)W) 37765 (Ak- 4 18,
t=0i€(0,T]\{t}

Uy, for i#t
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T . —c¥F t ror — ! ar
. (H(gaT'*'H'z_"c/d) p(tb‘()g;; )537"253(1419'“)/(5154) R5,k,0
t=0

for i=t
wl . (gaT+20/d) ﬁé%% (Akﬁ)/(ﬁiﬁzlx

).y72.y73.y74.y75

A

- >F jcrp)?t

. ((gaT+2c/d)W)ﬁéTéC%(Ak‘ﬁ)/(ﬁiﬁg) R57k70

A=, since YL, i p(k)t=p(p(k))
=V Wy U3 Wy -Us - Rs 10,
Ks = (ft+1f17p(k)l)§kR5,k7t vt € [1,T)
_ (ft+1f;p(k)f’)§;c '(gngrlgat*l/dQ (ge;ga/aﬂ)_p(k)t) (a+—p(p}k,>) > l)(k)icdaTJrl*i)B§r§c§(Ak'ﬁ)/(ﬁiﬂé)RS,k,t
—— —
s
Y oGt tl g2 o a/d2 — t aﬁ,récé(An.ﬁ)/(ﬂiﬁ/)
= WG . (get+1 01 p(k) g /d (g /d ) p(k) ) 3 k 4
(gl —tir g e (ga/af)fp(k)t) (setmy 0o P00 eda™177) Byrich (@) /(81 55) R

ig)

= W - ()0 Oio)" L ga /A (gaz/dz)—p(k)t)5éT%C§(Ak-ﬁ>/<ﬂiﬂé>

144

£ 04 11-01p(k)"

. (H(gcdaTJrl*i)p(k)i)Wﬁé’"%cé(Ak‘ﬁ)/(ﬂiﬂé)
=0

Ys

(g7 ey Rt P (e m) /(51

.E]ﬂ

N
Il
o

. . t 1 I — ’ ’
(g7 el )=o) st e (/BB

g

1~

K2

=y - Uy - Uy

. ( H <gaT+2+t7ic/d>p(k)i> mBST'écé(Ak'ﬁ)/(ﬁiﬁé) . ((gaTJrz“*tc/d)p(k)t) mﬁé%c;(‘qk'ﬁ)/(ﬁiﬁi)

1€[0,T\{t} o it

Yy, for i#t
T
a2 ey~ p(k)'\ By Barich (Ak-@)/(BLBY) | aT+2 0 jdy— p(k)° iy B47ch (Ar-@)/ (8155)

(D ) ) ((g ) Rs b

= for i=0

‘Pm, for 14750

=g - Wy -Ug - Wy - Uy - R5 . ¢
Note that B can calculate the values of Ko, K1, Ko, K{, { K3, K4k, K5 1,0, {5 k.t }te[7) ke using the suit-

able terms of the assumption.

Challenge. A submits a message M. B randomly chooses

! ! / ! ! !
Ty S1yee vy 852187 Sig1s -1 Smy L1y Gt Gy by € LN,

_ ! 3
Wi, Wi, WS, Wy, € LY,
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B randomly chooses 14,1y, 7, € Zn, and sets x1 = (12,0,72), x2 = (0,7y,72), X3 = X1XX2 = (—Tryrs, —TaT2, T2Ty).
B randomly chooses
v, €73 Vi€ {l,...,i—1},
vy € span{xi, X2}, v{ € span{xs},
v; € span{x1,x2} Vi€ {i+1,...,m},
vP € span{x1,xz2}, vl =rv3xs € span{xs}.

B sets the value of k,7,s;,t;(i € [m]\ {i}) € Zn, v.,v; € Z%;, {w; € Z}}" -, m,7, 7' € Zx by implicitly

setting

g=i' T
o™t =k mod p1, o2’ =7 mod py, Sé/aTH = 57 mod py,
ti + B’ s5(v! - vl) /2 =t mod py Vi€ {1,...,i—1},
t; —a’ BT si (v wE) [z + B (v] - vl) /2 =ty mod py Vi € i+ 1, m},
c
Ve =2 vp+vq, vg:’l_)?"‘;vg,

I ! ! —
w: — ac:7'vP = w> mod py,

j 3T Ve J
w) — cciT'vl =wj mod py Vi€ {j+1,...,m},

7' —er'si(v? - vl) = T mod p1, 7' 4 cfy7'si(v] - vl) /B3 = 7 mod py,
— dpyByT s5(v vl v?)/B% = 7 mod p;.
It is worth noticing that v; and v, are random vectors in Z3; as required, and (v;-v.) = £ (v?-v2)+<(v?-v1),
since x3 is orthogonal to span{x1, x2} and Z3%; = span{x1, X2, X3}
B creates a ciphertext (S*, (Py, P2, P3, Py, Ps, Ps), (R, R}, Qi, Qi 1, Q;, Ti)iy, (Cj, Ch)iLy) as follows:

L Py =g™ (¢°) 70w Py = (Py)P2, Py=h['hf, Py=g" (g°)miwivd/os,
T
Ps = hi(fo H fity)
t=0
T

_ hﬂ "+eBiT' sy (v wd) /By gloga™ el H at' Hay=c, _H(gegﬂgat“/cﬂ)c:)%/—dBQBQT’S%(v?vZ)//Bé

t=0

N (gaT+16 )0617/5/( v3)/B; . ( % T+lc/d H 0111 Ct #'—dB By’ si(v]-vE) /By

— hZ' . (g )54517/5/( v9) /Bl (996 Hg(’éﬂcz)ﬁ’fdﬂiﬁir'sé(v%vi)/ﬁé

| (ge" el )R BB ST 5y

T T
= By - (go" P e)PBT sl 5 (B [Tg% < )ﬁ' ((gh% T (g™ et )—5152“8%@? ve)/Bs
t=0
. (gaT'Hc/d)ﬁ/ . <gaT+1c) *ﬁiﬁ:;T/S%(vg'vZ)/ﬁé
T (0L net B BAT ST By (T4 oy 7
Hg Y . (gd)90 H(gd)0t+1 ) 1P4T 55V Ve )/ P3| (ga c/cl)Tr
t=0

Py = g = gﬁ/*dﬁlﬁéTls%(”;' /85

= g™ (g%) PP s (0w D)/ By
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2. For each i € [m]:
— if ¢ < : it randomly chooses §; € Z,, then sets

T+1

Ri=g" Ri=(s" )", Qi=g" Qi1=h{'Z'h,
q

Qiz = (Q)™, Qi=g"(¢")"TivDE T, = B},

— if § = 4: it sets

T+1 ’ P

q T+1 V] /N D D ’ot 9.4
)T;s;vz (ga c/z)r;s;vgj Qz — gT s5(v7 'uc)(gc)r 55 (vf ’UC)’

R, = grésffiv? (gc/z)r%s%v27 R; _ (ga
sl l) . .
Qia=hy " ZERT D Qia=(Q)P, Qp=g", Ti=M-e(g™, Q)

—if § > 4: it sets

T+1 1

Ri — gmsivi’ R; — (ga )7‘18{1}17 Q’L _ (gaT+ )T'Si(vi'vz)’ Q,L'J _ Z:7h711—/7

e aTHIN B s (vivP) )2l e\B T st (vi-wd) /2! a;
Qip = (@), Q) =gli(g" ) sz (gr)im s iD= T = M- e(g™, Qy).-

3. For each j € [m]:
— if j < j: it randomly chooses u; € Zy and implicitly sets the value of ; such that (aT“c)’l,u;V;g -

T (gt T yws C', = g¥i.
’

v3 = p; mod pp, then sets C; = (g(aTHC)/Z)C;T/”E - g%
—ifj =it sets Gy =T Y (g% )W, C)=g"r - (g°) TV
—if > Jrit sets Cj = (9@ /H)GTVE L (g T O = g - (go) STV
T = g“T+2Z, then the ciphertext is a well-formed encryption to the index (i, 7). If T is randomly chosen,

say T = g" for some random r € Z,,, the ciphertext is a well-formed encryption to the index (i,j + 1) with
implicitly setting p; such that (-4, — 1)v3 = p; mod p;.

Guess. A outputs a guess b’ € {0,1} to B, then B outputs this b’ to the challenger.

The distributions of the public parameters, secret keys and challenge ciphertext are the same as that in
the real scheme. B’s advantage in the Modified (T'+1, 1)-EDHE3 game will be exactly equal to A’s advantage
in the selective index-hiding game.

E Proof of the Lemma [1] for the Fully Secure ABE with Ciphertexts
Associated with DFAs

To make the proof easy to follow, we present the details of the resulting AugABE scheme first.

E.1 The Resulting Augmented ABE with Ciphertexts Associated with DFAs
Setupp(\, U, K = m?) — (PP,MSK). Run G() to get (N, p1, p2, p3, G, Gr, e). Pick generators g € G,,, X3 €
Gyps- Set d =9,dy = 2. Pick random B = (Bi,...,B9) € Z%. Pick random {a;, 7;, 2 € 7N Yiemm]s 165 €
ZN}jefm)- The public parameter is

PP = ( (N,G,Gr,e),g,h = (h1 =g",... hg = g™), X5,
{Bi=el9.9)*, Gi=g"", Zi=9"}Yicpm)» {Hj=9}icim] )

The master secret key is MSK = (al, ey QU Ty ey Ty Clye ey cm).
A counter ctr = 0 is implicitly included in MSK.
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KeyGen, (PP, MSK, u € (Zn)*) — SK(; j),u- Set ctr = ctr + 1 and compute the corresponding index in the
form of (i,7) where 1 < i,5 < m and (i — 1) *m + j = ctr. Let [ = |ul, and parse u = (uq,...,u;).
Pick random § = (51, 52750,51, . ,51) € Z?V_H, R= (Ro, Ry,..., Ry, R5,0, {R5,k7R6,k}ke[l]) S Gg;—m, and
Ry € G,,. Output a secret key SK(; ;) , as

SK(Lj),'u, = ( (ivj)a/u’7
Ko =gt n'hd2 . Ry, Ky =g% Ry, Kao=g"-Ro,
K3 =h3*h§ - R3, Ky =h5 - Ry, Kso=g% - Rsy,
{Ks1 = g% - Rs e, Koi = (hehs*)* " (hshg®)** - Re i tres
Ky= 2" Rp).
Encrypta (PP, M, M, (i, 7)) — CTi.
1. For any DFA M = (Q,Zn,J,q0,F = {gu-1}) where n = |Q|, let J = |J|, and parse J =

{(gz,,qy,,00)t € [1,J]}. Pick random =« = (7T,7_I',7To,7T1,...,WJ,{Vm}qer\{qnil}) S Ziﬁ"”‘" and im-
plicitly set v, _1 := B47. Set

P =g, Py = gher, Py = ghmghsT,
P4:gﬁ7 P5:gﬂ—07 P6:g—l/oh75707
{Pry=g™, Pgi=g"+(heh7*)™, Poir=g " (hghg')™ }ren, -
Note that for ¢ € [1,J], if 74 = n — 1, then Py, is computed as Py ; = h%(hghst)™; if y, = n — 1, then
Py, is computed as Py; = hy " (hghg')™.
2. Pick random
Ky T, S1,--+58m, t1,...,tm € ZN,
Ve, Wi,ye.., Wy, € Z?’v.
Pick random ry, 7y, 7. € Zy, and set x1 = (7,0,72), X2 = (0,7y,72), X3 = X1 XX2 = (—TyTz, —Talz, T2Ty).
Pick random
v, €ZX Vi€ {l,... i},
v; € span{x1,x2} Vi € {i+1,...,m}.

For each row i € [m]:
— if ¢ < 2: randomly choose §; € Z,, and set

Ri = gviv R; = gﬁvia Qi = gSia QiJ = (gBI)SIZth (gﬂ1)777 Qi,Q = (gﬂz)&ia
Qi=g", T,=Ej.
— if i > set
Ro= G, R= QP Qo= g7 Qu = (0P 2 (g, Qua = (o)),
Qi=g" Ti=M B
7 ’ 1 °
For each column j € [m]:
—ifj < i randomly choose p; € Z,, and set C; = H;(v“ﬂ”m) g™, C = gvi.
—ifj>jiset Cj=H[" g™, C}=g"i.

3. ()utput the CipherteXt CTM = <M7 (Plu P27 PS» P4a P57 P67 {P7,t7 PS,tv P9,t}t€[1,J])7 (RM R;7 in Qi,l» Qi,27 Q;7
1’1)?217(03"09)}7’:1)-
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DecryptA(PP, CTm, SK(i,j),u) — M or L. Parse CTM to CTM = <I\/JI7 (Ph ]327 P3, P4, P5, PG, {P7’t, ,Pg’t7 PQ,t}te[l,J])a
(Ri, R}, Q;,Qi1, Qi Q) Th)i%y, (Cj, C))7y) and SK(; jy o t0 SK(; jy w = ((4,), w, (Ko, K1, K2, K3, K4, K50,
{K5,k7K6,k}k€[l,l]7K(I))vWhereM (QvZNajquﬂF {qnfl}) withn = ‘Q|7J: ‘j|,J: {qa?uqytvat}té[l,J]v
and w = (uq,...,u;). Suppose M accepts u (if Ml does not accept u, output L).

1. Find a sequence of states pg, p1,. .., p € Q such that py = qg, for k = 1 to [ we have (pg_1, pr, ux) € J,
and p; € F. Let (qz,, , qy,, » 0t) = (Pk—1, pi, ug). Compute

Do H e(Ksr—1,Ps1,) - e(Ks56Pot,)
T e(Kﬁ,k)a P7,tk)

L[ g ) el g (h )
e((hehy" )s=1(hshg" ), g™ )

ke(1,l]

= I el 9" elg®.g7")  (since oy, = up)
ke(1,]]

:e(g&’,g"”l) . e(ggl,gﬂ’ytl) (since yy, = x4, fork=1,...,1-1)
=e(g%,9") - e(g*
:6(9503 gyo) : e(ggla hlﬁ)

,g Uh) (since xy, = 0,yy, =n — 1)

Compute
D e(K1, P3) - e(K3, Py) - e(Ks50, Ps) - Dr
p <
€(K47P5)
_elg™ 977 g%7) - e(hs b gT) - e(g, g~ hE°) - e(g%, g™) - e(g by ™)
e(h’,g™)

:e(g‘sl,gﬁl”).

2. Compute

e(KO7Qi) €(K67Q;) . 63(R;,C;)
e(K1,Qi1) - e(K2,Qi2) e3(R;,Cj)’

3. Computes M < T;/(Dp - D) as the output message.

D[(—

E.2 Proof of Lemma [1]

Proof. Suppose there exists a polynomial time adversary A that selectively breaks the index-hiding game
with advantage e. We build a PPT algorithm B to solve a Modified (n, J)-EDHE2-Dual problem instance in
a subgroup as follows. B is given

D = ((N.G,Gr,e), 9,9 ¢", 9", g“"_lbc/z, 92, 93+

al/d? _a'b/d a’d;/d? ibd; /d.s a'/d® _ad;/dS
Vienl, jaegey 9% 4, g¢ 0 gl g* bl hr gatbdi/dyr gal/dy getds/dy
v‘e[o 1], j€[1,J] galc g” de'
T sn—1], J s ) )
“bed?
ViE[O,n], jJ€[1,J] g* ",
a’bed; /d? a’bed? /d
Viel2n-1], jjen iz 9 R
Tbe/d;
Vel an—1)izn, jep,g) 9°°7 _ ,
d? a'b’ed;/d; a’bed;/dS ic/d® a‘beds/d? ih2ed® /d,
Vie2n_1], jjeim 9% g“ edi/dyr  go'beds/dy gae/d;  gatbed; /] gatbied;/d; Y
R R R R R
and T, where (N = plpgpg,G Gr,e) «— G, g+— G,,, g2 ¢— Gp,, g3 <— Gy, a,b,c,2,d1, . .. dJ +— Zn,

and T is either equal to ¢g*"°* or is a random element from Gyp,. B’s goal is to determine T' = g*"¢* or T is
a random element from G, .
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Init. A gives B the challenge DFA M* = {Q*,Zn,J*, 90, qn—1}, where n = |Q*|, let J = |J|*, and parse
j = {(qw1aQy170’I)a R ] (qu?qyJ70-§)}'

Setup. B randomly chooses {ai € Zn}ticim)s {76, 21 € ZN}icpmp\G}s T3 % € ZN, {¢; € ZN}jepm), and
B1, B2, B%, By, B, B, BY, B, By € Zy. B gives A the public parameter PP:

(9. 1= @)% ho = g%, = (9%, ha = (6°)%, by = g% -/,
he=g% - ([ gie" " /diga" AN =P (] g,

tefl,J] tell,J]
hs = g% (T g7 " Hg A by = g% (] g,
te[1,J] te[1,J]

{Ei = e(gag)ai}ie[m]a
{Gi=g"", Zi = (9" Vicmpgip {H; = (0" Yeppgy Gi= (9" )7, Zi=g%, Hy=(g")% )

Note that B implicitly chooses r;, z;(i € [m]\ {i}), ¢;(j € [m]), Bi1,Bs, B4, Bs: Bs, Br, Bs: B € Zn such that

n—1

a"ter; = r; mod p1, az; = z; mod py Vi € [m] \ {i},
acj = ¢; mod p1, (b/2)c; = ¢; mod p1 Vj € [m] \ {7},

aBy = fr mod py, afy = B3 mod p1, aBy = By mod py, G5 +a"b/dy = 5 mod py,
B + Z (oFa" "t Jd?—a"""*b/d;) = B¢ mod p1, B% + Z (—a""t /d?) = By mod py,

s~

tell,J] te(L,Jd]
By+ Y (—ora™ ¥ /df +a" V'b/dy) = Bs mod py, By + »_ (a" ¥ /df) = By mod py.
te(l,J] te[1,J]

Query Phase. To respond to A’s query for ((4,7),u), let I = |u|, and parse u = (uq,...,u;),
e if (i,5) # (i,7): B picks random & = (81,02, &0, &1, ..,&) € ZN ', R = (Ro, Ry,. .., Ra, Rs0,{Rs 1, Ro &
Yrem) € Gg;‘m, and Rj € G,,. B creates a secret key SK(; jy o,

9o (g"*)" - Ry - Ro, i, #]
Ko = 4 gm(g"" loyies B R, i= 1,47
g% (g")" T WP h3? - Ro, wi i) =],

Ki=¢" R, Ko=¢" Ry, Kj=2"" Ry,
K3 =h3"h§ - Rs, Ky =hS® - Ry, Kso= QEO 'R5,07
{Ksi = g% - Rs e, Ko = (hehy*)*"(hshg*)** - Re 1 }reqi-

e if (i,7) = (i, 7): it implies that A is querying a secret key with the challenge index (3, ), and M* does not
accept u. We denote by uy, the vector formed by the last [ —k symbol of w. That is ug, = (ug+1,- -, u;). Hence
ug = u and wu; is the empty string. For ¢; € {qo, ..., qn—1} = @, let M be the same DFA as M* except that
the start state is set to ¢;. Then for each k € [0,1] we define U, = {i € [0,n — 1]|M} accepts uy}. From this
and the query restriction that M* does not accept u, we have 0 ¢ Uy. Due to the WLOG condition, we have
U, = {n—l}. B piCkS random 6 = ( i,ég,fé,fi, - ’Ell) S Z?VJFZ, R = (Ro7 R1, Cey R47 R5’07 {R5’]€, RG,k}ke[l]) S
GS1?, and Rf) € Gp,.

B sets the values of 01 € Zy, w € ZR;, {&, € Zn }rep by implicitly setting

5 =07 —a"" crc/ﬁl,

S =& —riciB/ BN (D de)(1+ 0 D /(o7 —w))),

i€l tG 1 J
s.t.o] ;éul
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Vke[Li-1: & =& —rid8/Ba)( X a'e)(1+ (b D di/(of — i)
i€Ug te(1,J]
s.t.0; Fupy1

oY Ao —w)).

tell,J]
s.t.o; #uy
&= —rds/Ba (Y de)(1+ 0 Y d/or —w)),
i€l te(l,J]
s.t.o; #uy

B creates a secret key SK; 5 ,, as follows:

n—1

1.6 "a c\—rict /B!
Ko = g h{*hy* - Ry, K1 =g"(g )P Ry, Ky = g™ - Ry, Ky = (K1)% - Ry,

K3 = h3 "' hS - Rs

. o 7r£c§5é/(5iﬂ:;)(zi€[]l aic) <1+(bz te[1,J] df/(gt*,u,)))
= h3—51hil . (gaﬁé)a eric /By (gaﬂﬁ;) s.t.ofFu - Ry

Lo - —’%C%ﬂé/(ﬂiﬂé)a”’lc(1+(bZ tel1,J] df/<a:_ul)))
_ h3 51h5z . (ganc)rgcjﬁg/& . (ga,@jl) stor ‘R
(since Uy = {n —1})
= h3 5/1h5’l’ . (ganC)T%C%Bé’/Bi . (ga"0> —r5c5B5/B1 ( H (ga"bcdf)l/(of—uz))_T#%Bé/ﬁﬁ - Rs

te(l,J]

s.t.opFuy

= hg_élhil . ( H (ga"bcdf)l/(tffful))*r;c;ﬁs/ﬁl R,
te(l,J]
s.t.a;‘;éul

Ky =h5 - Ry
_ hgé . (gﬁg .ganb/dl)—réc;ﬂé/(ﬂ{ﬂf;)(EiEUO aic)

_,«gcgﬁg/(ﬁgﬁg)(zie% aic) ((bz te[1,] dt/(g;_ul)))

. (g,@é . ganb/ch) s.t.o; #uy - Ry
_ hg(’) ) ( H gaic) —T%céﬂéﬁé/(ﬁiﬂé) ) ( H ga"+ibc/d1)_réc_/?ﬁé/(ﬁiﬁfl)
€Uy €Uy

note that 0¢Uy

(H I (gaibcdt)l/w:—ul))—réc_’;ﬁéﬁg/wmg)

ielUo te[l J]
s.t.o] ;éul

( H H (ga"“b%dt/dl)1/(‘7:—u1))77‘563ﬁ3/(ﬁlﬁ4) ‘R,
ielo te[1 J]
s.t.o] #ul

Ks0=g%"Rsp

)

_récgﬁé/(ﬁiﬁﬁl)(zieuo aic) ((bz te[1,] dt/(g:_ul)))

€ . g_T£C§Bé/(51ﬁ:L)(ZiGUO alc) - g s.t.of #uq - Rs 0

=g
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_ gE(/) . ( H gaic) _T%%ﬁ:’s/(ﬁiﬁzx . H H a bcdt 1/(o; 7u1)) 7’%%5:’5/(5152) . R5,O

1€Up €U te[l,]]
s.t.oy #uy

K5 = g% - Ry for ke 1,1 —1]

sw&cgﬁé/miﬁg)(zmka’ic) (1+(bz tep) de/or—u)+ (0T yepn d?/(a:fuw))

=g s.t.oy gy s.t.op Fuk . R5 k
_ gg,; . ( H gaic)frécéﬁé/(ﬁiﬁi) . ( H H (gaibcdt)l/(az‘7uk+1))7"'£céﬁé/(ﬁiﬁzl1)
i€Uy €U te[l,J]

s.t.0; Fupy1

H H a “bed; 1/(01 —uk)) Ty/cg’ﬁé/(ﬁiﬁi) - Rs 1,

€U, te[l,J]
s.t.op Fuk

Ks; = g% - Rsy

s;—r;c;ﬁg/wm(ziem o) (1S sep i)

=g s.t.o; #ug . R5,l
. H g T1C353/(5154 . H H a “bed? 1/ 7ul))77”§c§:8:,3/(:81,34,1) - Rsy,
icl; €U te[l,J]
s.t.oy Fuy

Ke1 = (heh$")% (hshg")* - Re 1
= (hehy!)% (hshi' )%

v

(st (] iy ztb/dt))-r;c;zag/w;ﬁ@(zieyo o)

te[1,J]
_rgcg,gg/(/a;ﬁg)(zie% aic) ((bz el dt//(U:/—ul)))
3 <gﬁé+5;u1 H g ol —ui)a™" 1’/d2 a™~ J”'b/dt)> s.t.oy Fuy
tE[1,J]

(oo (T gm0 ()

te(l,J]
_rgcg,eg/(,egﬁg)<ziwl aic) ((bz el dt//(at*,—uz)))
. <gﬁé+5é“1 . ( H g—(lﬁ—ul)a"*“/dfga"“ytb/dt)) s.t.o Aus
te(l,J]
‘ 7r§c§ﬁ§/(ﬁiﬁi)<zieul aic) ((bz — df,/(az,ful))>
. <g/5é+ﬁéu1 H g (of—u1)a™" yt/d?ga“*ytb/dt)) s.t.o) #uy 'RG,l
te(l,J]
. ( H ga’i ) 3¢5 85 (B +Brur)/( 5154 H H ot ztﬂc/d?)(a:_ul))frécéﬁé/(ﬁiﬁfl)
1€Up te[1,J]i€Uo
lI/Q l1/3
—rici B3/ (B1BL)

I )

te[1,J] i€l
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—rich B (Bs+B5u1)/(B184)

<H H (gaibcdt/)l/(afl_ul))

i€Uo t'€[1,J]
s.t. a't/7£u1

Yy

H H H (ga"’mt+ibcdt//df)(‘7:—"1)/(0':/—“1)>

te[l,J]i€lo t'€[1,J]
s.t. ot,7ﬁu1

IT II 1I (9“"’“”‘*ib20dt//dt)*1/<o:,fu1>)—Tz?C%ﬁé/(ﬁiﬁD

te1,J]i€lo ¢'€[1,J]
s.t.oy, Ful

—rich B /(B1BY)

s
*chiﬁé (5é+ﬂ§/)u1 6164

. ( H gaic) H H n*yt“c/df)—(o:—m))7%63%/(%@1)

S te1,J] €U,

Us w,
H H (ganfytﬂbc/dt))*Técﬁﬁé/(b’iﬁi)
te[l,J] i€l -
H H (gaibcdt,)1/(0;—u2))*Tzcjﬁs(ﬁngﬁgm)/(ﬁlﬁﬁ

elUr t'el1,J]

sto‘t,#uQ
'S
H H H (gan—yt%—ibcd“/d?)7(0-2‘711,1)/(0-:,—11,2))_7'20363/(6164)
te[l,J]i€Ur t'€[1,J]
s.t.0;, Fus
Uy
a""vttin2ed,, /d, 1/(0fi—u2) 77«%%[3&/@1@1)
IIII II G )
te[1,J]i€Ur t'€[1,J]
s.t.o), Fus
21
(H II (gaibcdf/)l/(a;—ul)>_7‘”;53(5#59“1)/(5154)
ieUr t'el1,J]
s.t.o; F#uy
Y11
—rtct 85/(8185)

H H H (ga"_7’f+ibcdf,/df)*(aifﬂl)/(gflful)>

te[l,J]i€Us t'€[1,J)]
s.t. O't;éu1

H H H (gan_”tﬂchdi’,/dt)1/(0:/*711)) —7-%03[3&/([31[‘32) ~R6,1

te[l,J] €U t'€[1,J]

s.t.o; Fuy
4P
an—Tt+ipe/d.\ —1 _Técéﬁé/(ﬁiﬁﬁ
—weveve (I IT6 7))
te[1,J]i€Uo
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H H H (ga”’zt“b(:dt//d?)(U:—ul)/(ff;—m))_Téc./?ﬁé/(ﬁiﬁi)

te[1,J]i€lo t'€[1,J]
s.t.o‘f/;éul

an—viFipe —r5c5Bs/(B1BY)
-!175'2176'u77'( H H(g ’ b/dt)) s o - V1o - 1
te[l,J] i€l

(H I 11 (gwwbcdi//df)—<rr:—u1>/<a:/—m>)*r%céﬁé/wiﬁb

te[l,J]i€Ur t'€[1,J]

sto’t;éul
W2+ Re 1
et _1\ —TictB5/(818Y)
:wl.¢2.¢3.< IT IT (o el 1) IR g,
te[l,J]i€Uo

( H H H (ga”_“‘t-%—ibcdt,/df)(Gz‘ful)/(g;*,,ul)>—7'%5%5&/(51621)

te[l, )] i€Uo t'e[1,J]
s.t.of #uy s.t.07 #uy

at Yt Tipe 77‘&6‘%3{5/(5134)
.%.1116.%.( IT II b‘/dt)) Wy Wy - W - ¥y
te[l,J] i€l

( I I 11 (Qa"*wibcdi’//d?)—(of—ul)/(o:—ul))’Téc?ﬂé/(ﬁmi)

te[l,J] €U ¢'€[1,J]

sto’t;éul s.t.o] #u1

W9 - R
=0 -¥y U3
n—ws+i 1 *Técéﬂé/(ﬂiﬂi) n—xp+i 1 *Técéﬁg/(ﬁiﬁé)
O E e R | B | (A R
te[l,J] i€Ug te(1,J] i€Uo
s.t.o) #uy s.t.oy=uq
Agl, forof#uy for of=u;

I I I ¢ ganfwbcdt//df)<a:-m>/<a;—m>)*T%%Bé/ (B153)

te[l,J] i€Ug t'e[1,J]
StUt75U1 s.t.0y, Fur,t' #t

V13, for t'#t

H H an~ wt+ib(1dt/d?)(o': —ul)/(of—ul)) —ric5B3/(B181)

t€[1 J] i€Uo
s.t.o] ;éul
Ag, for t'=t
s W - Wy
o= ’ ’ ’r ’ ’ ’
H H n—ytﬂbc/dt)) —ric5 B/ (B164) ) ( H H n.fyt#»ibc/dt)) —ric5B3/(B1BY)
te[l,J] €U tell,J] i€l
stat;éul stat—ul

Ay, for of #ux for of=uy

“Wg - Wy - Wyg - Yy
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< I 11 I (ganfywribcdf//d?)—(o‘f—ul)/(a'z,—u1)>_Técéﬁé/(ﬁiﬁé)

te[l,J] €Uy t'e[1,J]
St0t7£U1 s.t.of Aug,t' £t

V14, for t'#t

( I1 H(ga"wwcd?/df)—<o:—u1>/(o:—u1))*T%céﬁé/wwin

te[l,J] €Uy
s.t.o; #uy

A;l,for t'=t

“W1o - Rg 1
=" - U3
H H n—wt+ibc/dt)—1>7T%C§Bé/(ﬁiﬁ<’1) ' ( H H (gan—mt+ibc/dt)_1)*rééﬁé/(ﬁiﬁi)
tell,J]  i€Uo te[l,J]  i€Uo
sfo—uls‘”?éﬂct sta—u1Qf’ Tt

W15, for i#xy for i=zy (if x+€Up)
Wy W3- Vs - W - Wy

H H n*yt‘*”ibc/dt))77‘£Cgﬁé/(ﬂiﬁ4’1) ) H H (ganfytJribc/dt))77{563’3%/(’8162‘)
te[l,J] i€l te[l,J] i€Ux
sta—ulstwéyt sto—ulstl Yt
W6, for i#y: for i=y; (if y:€Ui)

W Wy Wi - Wiy - Wra - Vi - Re 1
=0 - Uy W3- W5 - Wy - W3- U5 - W - Wy - Wi - Ug - Wy - W1 - Y11 - Y1s - P12 - R 1
(since for ¢ € [1, J] such that o] = uy, we have(z; € Uy Ay € Uy) or (x¢ ¢ Ug Ayr ¢ Ur).)

Ko = (heh* )1 (hgh§* )% - Re x for ke [2,1—1]
= (hehi* )51 (hghy* )

.(gﬁgw;uk ( I o "Zt/dfga"”b/dt))_Ticjﬁs/(ﬁlﬂ“)(z@k1‘“6)

tell,J]
77‘%%/63/(515:1) ( ZieUk71 diC) ((bZ t'e[1,J] dt’/(U:/*uk)))
. <gﬁé+f3;uk H g —up)a™" 'ct/d2 an—Tt b/dt)) s.t.oy, Fu
te[1,J]
_récgﬁé/(ﬁiﬂé)(z1'euk71 aic) ((bZ t'e[1,J] di’,/(a:/—uk,l))>
) <95é+5;uk H g (o7 —ug)a™" ”/dz an— -Efb/df)) s.t.oy Fuk—1
te[1,J]

: (gﬁgwguk (11 9@uwa"'yt/dfga”“b/dt))_Ticjﬁg/(ﬁlﬁ“)(zie% )

te(l,J]
—riciBs/(B184) (Z'ieUk aic) ((bZ e, dt’/(a':/_uk+l)))
A <gﬁé+5éuk . ( H g—(o;‘—uk)anfyt/dfga”*ytb/dt)> s.t.of AUkl
te(l,J)
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*Técgﬂ%/(ﬂiﬂz/l) (ZieUk aic> ((bZ t/G[l,J] df//(a':/*uk)))

(ﬂgwguk_ ( JI g yt/dfga"*yfb/dtn 510y Fuk - Ro &
tell,J]
= (heh* %=1 (hghg* )
M

< H gaic>—T’écgﬁé(ﬁé-ﬁ'ﬂ;"k)/(ﬁiﬁf;)
1€Uk_1

/2]

H H (gan—mﬁic/df)(ﬂt*—“k))

te[l,J] i€Uk—1

—rich 85/ (8164)

Vs

H H (ga'L’“”t*ibc/dt)—l)77«%6;@%/@1’8‘1)

te[l,J]i€Uk_1

H H (galb(:tlt/)l/(af/—uk))

1€Uk—1 t'€[l,J]
s.t.oy, Fu

—rich By (Bg+B5ur)/ (B18L)

Uy

H H H (gan—zﬂribcdtl/df)(a't*fuk)/(df,fuk)>

te[l,J]i€Uk—1 t'€[1,J]
s.t.oy, Fuk

IIT II 1II (9“"’”*%%@/@)‘1/<a:/—uk>)_’%Céﬁé/(ﬁmb

te[1,J]i€Uk—1 t'€[1,J]
s.t.oy, Fu

—rictBy/(B15%)

43

) ( H H (gaibcdf,)l/(df,—uk71)>*Tﬁc%ﬂé(ﬂé+5;uk)/(ﬁiﬁé)

i€Uk—1  t'€[1,J]
s.t.o), Auk—1

s

I 11 11 (ga"*”“bcdi/d%)<or—uk>/(o;‘,—ukfl>(ganfrwb%di/dt)—1/<a;s—uk71>)

te[1,J]i€Ux—1 t'€[1,J]
s.t.oy Fuk_1

—rick By /(B154)

vy
i ) —r5¢5 85 (Bs+Bour)/ (81 8%)

.<Hgac

€Uy
Uy
" Vttic/qb —(o; —uk) 77%6;76&/(61&1)
[T IJ oy )
te[l,J] i€Uy
Yy
v 8 /(8151

[T IT @)

te[l,J] €Uy
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<H H ( aibed )1/(0;_%“) —r5¢5 B (Bg+Boun)/ (B184)
ge e : )
€Uk t'e[l,J]
s.t.0y, Fup1

Y10

H H H (ga”*yt+ibcd“/df)_(”;_"k')/(a':/_uk‘+1)(ga"’yt*ichdt//dt)1/(0:/—“k+1)>

te[l,J] €U, t'e[1,J]
s.t.0) Fukrr

—richBL/(B18Y)

%1
—rick By (Bg+Byur)/ (B184)

< H H (gaibcdf,)l/(g:,_uk))

€U, t'e(l,J]
s.t.oy, Fuy

LZP)
H H H (gan—ytﬂbcdfl/dg)—(af—uk)/(gj,_uk))*T%%Bé/(ﬁiﬁé)

te[1,J])i€Ur t'€[1,J]
s.t. Ut,iuk

H H H (ganfyﬂribzcdf//dt)1/(‘7:/*1%)) T1('753/(ﬂ154 ‘Rﬁyk
te[1,J]i€Ur t'€[1,J]
s.t. a't/;éuk

'SF
ric5B5/(B181)

N ( 1 11 (ganfwtﬂbc/dt)—l)* i ,

te[l,J]1€Uk_1

H H H (ga”*““bcdt,/df)(HI—1Lk)/(0§/—1Lk))

te[l,J]i€Uk-1 t'€[1,J]
s.t.o’Z,;ﬁuk

— TGN
-%'%'%'%'%'( IT 11 (o +bc/dt)> I e Wy - Wy
te(l,J] i€Uy

M1 10 (ga”_yt‘“bcdf,/df)*(Uf*uk)/(":/*uk))

te[l,J]i€Ux  t'€[1,J]
s.t. ot,;éuk

—rictBy/(B18%)

—r4ckBy/(B18%)

W3- Re 1,

=0 Wy Uy ( H H an~ ‘”t'“bc/dt)

tElJ] i€Ur_1
s.t.o; #uy

,1)—’“%5@/(/315:‘)

H H (ganfzt+ibc/dt)—1)_7’50353/(5154) -,

te[l,J] i€Ukx—1
s.t.o; =uy

. ( H H H (ga"*wﬁribcdt//df)(U:—uk)/(ojl_uk))

te[l,J] i€Up_1 te[l J]
StUtS‘éuk s.t.oy Fup

U W Wy - W - Wy ( H H (g“n_y”ibc/dt)

te[l,J] €U
s.t.op Fug

—rici s/ (B184)

>—réc§6§./<ﬁiﬁg)
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H H (ga"*ytﬂ‘bc/dt))_Tic;ﬁs/(ﬁ1ﬁ4) U Ty

te[l,J] €U
s.t.o; =uy

H H H (g(lnf'yt‘Fidef//d?)_(U:—Uk)/(o':/_uk))77’%(;%,3&/(,31[341)

te[1,J] i€Ux t'g[L,J]
s.t.o] ;éuk s.t. Ut/?éuk

W3- Reg

— U Wy Uy ( H H nfwwibc/dt)q)*T%%Bé/(ﬁiﬁg)

te[l,J] 1€Ur-1
s.t.oy #Uk

-1
AO

( I T1I (ga"wwc/dt)—l)fréc;f-ﬁg/ww;).%

te[l,J] i1€Uk_1
s.t.o; =uy

. ( H H H (ga"*'ltJr'ibcdt//d;")(Uf—uk)/(O'Z/—uk)>*T%c%ﬂé/(ﬂiﬂé)

te[l,J] i€Uk_1 t'€[1,J]
StO't Fup Sto'f,/#ulwt £t

V14, for t'#t
H H (ga”*wt*ibcdt/df) (U:—uk)/(af—uk)) —73¢5P3/(B154)

te[l,J] i1€Uk_1
s.t.o; Fuy

Ay, for t'=t

L
'W5'W6'W7'u78'u79'( H H(g“ y*bC/dt)) 585/ (B184)

te[l,J] €U
S.t.o't*;éuk,

Ay

( II IIG “—1;t+ibc/dt))_rgcgﬁé/(ﬁwb'%o'wu'%?

tell,J] €Uy
sta't_uk

. < H H H (ganfywibcdf,/dg)7(oj—uk)/(g;«,,uk)>—rgcf;gg/(gmi)

te(l,d] i€Ux  t'e[1,J]
s.t.o;] #uy 5.t.07 At At

W15, for t/'#t

H H ﬂ_yt'Hbcd‘;’/df)*(szuk)/(a,:—uk))—7‘%0&,{3:’,’/(51[3&)

te[l,J] i€Ug
Stat;éuk

A1_17 for t'=t
. !p13 : R6,k

PRI LT YT
:W1~Lp2~kp3~( H H (ga t+ bc/d,) 1) 5/ (B1 4)-g[/4.g714

te[l,J] i€Up_1
s.t.o; =uy

53



Wy - W - Wy - W - Wy - ( IT 11 (g el LSURY VI SURN SERY SERP Y

tE[l,J] i€Ug
s.t.of=uk

=" - Uy - Py - ( H H ”*wt“bc/dt)—l)*Técéﬁé/(ﬁiﬁi)

te[l,J] €Uk
s.t.oy —ukStGﬁxt

)—T£C§ﬁé/(ﬁiﬁi)

U6, for i#xy

II II ( a”‘mwbc/dt)il) e Wy - Wy

tell,J] i€Uk_1
stﬂr_uké‘ti Tt

for i=xy (if x¢€Uk_1)

Wy W - Wy - Wy - Wy ( H H (ganfy‘“bC/dz))

t€[1,.]] i_GUk
s.t.of=uk £ Yt

—rich B3/ (B154)

Uiz, for i#y:
—r5cs 5/ (B18Y)

[ I )

te[1,J] i€Us
s.t.oy =uy =Yt

for i=y (if ye€Uyk)
Wi - Wy -V - W5 - Wiz - Re i
=V Uy U3 Ui - Wy - Wiy U5 - Vs - Wy -Ug - Yy - Wiy -Wio- W11 - V12 - Vi5 - Vi3 - Re ks
(since for ¢ € [1, J] such that o} = ug, we have(z; € Uy_1 Ay € Ug) or (x4 € Up—1 Ays & Ur).)

Ko = (hhy")%=" (hshg')" - R,
= (heh¥")%i~1 (hghy)%

) ( ﬁe+57ul . 1—[ g (oF —u)a™™ Tt/dQ a" " th/d, ))—7-i0j;63/(ﬂ1ﬂ4)(2ieull alc)

te(l,J]
_rgcgﬁg/(ﬁm)(zwlil aic> ((bz Ve, dt//(cr:/—ul))>
. <gﬁé+ﬁ;ul H g T—u)a™” “/d2 a™” Itb/d,,)) s.t.a:,;éul
te(l,J]
—Tﬁcﬁﬂé/(ﬂiﬂé) ( Eieul,l aic) ((bZ t'e(1,J] df,/(a:,—ul,l)))
. (g/@é"rﬂ;ul H g —up)a™ ot /d2 g an— ub/(h)) st.ofAui—
te(l,J]

(g (] gteimee w/dfga““b/dt))Ticjﬁg/(ﬁlﬂ“)<ziﬂ’z“)

te(1,J]
_T%‘%Bé/(ﬁiﬁé)(zleyl aic) ((bz t’E[l,J] df’/(o':/_ul)))
) (gﬁé"rﬁéul ] ( H g_(o_:_ul)anf'yt/d?ga"*ytb/d,/)> s.t.ol Fuy . Rﬁ,l
te(l,J]

= (hehy') i1 (hshy')"

21
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< H wic\ ~Ti% B (BetBrw)/ (B18Y)
. g ‘)

€U

2}
H H (ganfmwc/dg)(a;_ul))fréc’;-ﬁ;/miﬁg).( H (ganfztﬂbc/dt)_l)frécgﬁé/w;m)
te[l,J]i€Ui_1 te[l,J]i€Ui_1

Vs

. ( H H (gaibcdt/)l/(a:,_ul)),Técéﬁé

1€Ui—1 t'e[1,J]
s‘t.az‘,;éul

(Bs+B7ur)/(B18%)

Uy

II II 1II (ga“—wbcdt,/df)<o:—uz>/<a:~uz>)—"'%céﬁé/wwi)

te[1,J]i€li—1 t'€[1,J]
s.t.a:/;éul

H H H (ga”*wtﬂbzcdt//dt)—1/(0:/_1”))

te[l,J]i€lUi—1 t'€[1,J]
s.t.a:,;éul

—rich 5/ (8164)

s

H H (galbcdf,)l/(gflfuz—l))

€1 t'eg[l,J)]
s.t.oyFurq

—rics B (Bs+Brui)/(B1684)

s

[[ TT I (g ersedbty(cimm/ionmeen garsestieds g ot

te[l,J]i€lUi—1  t'€[1,J]
s.t.a:,;éul_l

—rich 85/ (8164)

44

(H i\ —THCh B (B +Byun)/ (BLBY)
. g )

el

Ug

n—yttic) qo —(”:—Ul)) frgc'j,@é/(ﬂiﬁé) ( amvttipe/d, frécgﬁg/(ﬁiﬁi)
II II G ) (11 11 G )
te[l,J]i€l; te(l,J]i€l;

Yy

. ( H H (gaibcdf/)1/(0:/—7,,1))77«55%/35

€U ' eg(1,J]
s.t.o’f, #uy

(Bs+Byur)/(B18%)

Y10

H H H (ga"*yt+ibcdf//d?)—(o‘,;‘ful)/(o';‘,ful»)—T%c%ﬁé/(ﬁiﬂé)

te[1,J]i€lr t'e[1,J]
s.t.oy, Fu
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H H H (ga"*yﬁrib?cdf//dt)l/(a':, —ul)) ) _%C;’ﬁ;/(ﬁiﬁé) -RG’I

te[1,J]i€li t'e[1,J]
s.t.oy, Fu

Y11

noeeti —1\ ~7iciBs/ (B1 8]
:W1~W2~W3~< H H (ga +bc/dt) 1) 5B3/(B1BY)

tell,J]i€U; 1

II II 1II (g“"’”“bcdw/df)<a:—ul>/<o;—uz>>*"%C%BMB?BD

te[l,J]i€lUi-1 t'€[1,J]

s.t.oy, Fu
n—ypt+ip, —T%C‘l;ﬂé/(ﬂiﬁfx)
~@5'W6'W7'W8'W9'( H H(ga b/dt))
te[l,J] i€l

n—ypti —(oF—u) /(0" —u —rzcsB5 /(8184
'%0'( H H H (ga ‘ +b0df'/d?) it l))> A W11 - Rey

te[l,J] €U t'e[1,J]
s.t. at,;éul

comne (1L 6

tG 1 ]] i€elU;_1
sto’t#ul

( H H (gan*1t+ibc/dt)—l)7T%c§ﬁg/(ﬁiﬁé)

tell,J] i€U;—1
s.t.oy=u

I II II (ga"‘““bcdt//df)<a:ful>/<a:ﬁul>)—T%céﬁé/wm

te[l,J] €Ui—1 t'€[1,J]

—rici B/ (B184)

s.t.oy ;éul stcrf,;&ul
N A
'WS'WG'EP’T'EIIS'WQ'( H H yt+bc/dt)) §P3/\P1Pg
te[l J] €U,
s.t.o} ;ﬁul
( H H n*yt+'ibc/dt,))77‘%6.%5:;/(515:1)
te[l,J] i€U;
s.t. o’t =uy

n—y¢+i —u m 7T7;C/J’-ﬁ/ ﬁ/ﬁl
W - ( H H H (ga + bcdf,/df) (o) —w)/ (o) — l))) s/ (B184) Wy - Rﬁ,l

te[l,J] €U t'e[1,J]
s.t.oy F#uy stUt,gﬁul

=Y - ( H H a™~ It“bc/dt)fl)—T§C§Bé/(ﬁiﬁﬁ)

te[l,J] €U
s.t.oy ;éul

Apt

H H (gan_mt+ibc/dt)71>_T%C§ﬁé/(ﬁiﬁi)

te[l,J] €Uy
s.t.o;=u
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< H H H (ganfwt+ibcdt//df)(Ut*—uz)/(at*,—ul))—T%c%ﬁé/(ﬁiﬁi)

te[l,J] i€U;—1 t'e[1,J]
stat;éul stcrt,yéul,t #t

Wia, for t'#t
H H (gan—mt-%—ibcdt/d?)(J;‘ful)/(offul)>—’7“%035:2/(5{/3!;)

tE[l,J] i€eU;_1

s.t.o; #ug
Ao, for t'=t
i N T B (B
.%.%.%.WS.%-( I I b(’/d")) ]
tell,J] i€l
s.t.op #uy
Ay
R —ric5B5/(8184)
n yt+wbc/dt TLCJ 3 1~4
(I T )
tell,J] 1€l
s.t.oy=u

n—ys+ip. g5 —(o7—w) /(o) —u —r:c5Bs/(B1BY)
.g,lo.( 1 11 I1 (g " eedi/at (o7 —w)/( »)) 58

te[l J] i€eU; t'el1,J]
s.t.op Fuy s.t.07 Fup,t' £t

Y3, for t'#t

H H (ganfyﬁribcdf/df) —(o;‘—ul)/(a:_ul)) ) *TgC;ﬂ3/(ﬂ1ﬁ4) -Wll ' RGJ
te[l,J] i€l
s.t.oy #uy

A;l, for t'=t
r5ci B85/ (B1684)

—womew (T T e ) Wy Wy

tell,J] €U

s.t.of =u;
n—uy i 7T£C£6:/3/(6164/1)
'%'%'%'Ws'%'( 1T I Jt+bc/dt)> ’ Yo - W3- Rey
tell,J] €U,
s.t.oy=u;

Tt 1\ —TiciB5/(B18Y)
:w1~¢2~¢/3.( H H +bc/d¢) 1) i3 1P4

te[l,J] i€U;_y
s.t.oy=u; 1#£Tt

W4, for i#zy

. ( H H a"*wﬁibc/dt)—l)*’“2‘3353/(5152)

te[l,J] €U
stat—ul i=T¢

L ZRR'ZV;

for i=zy (if z+€U;—1)

U W Wy - W - Wy ( H H (gan_y”"'bc/dt))

te[l,J] €U,
s.t.oy=u; 1# Yt

—rict By /(B18%)

Y15, for i#y:
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. il B4/ (B15L)
H H + bc/dt)) 3 Yy W Wy - R

tE 1 J 1€Ul
s.t.o;=u; 1=yt

for i=yz, (ify:€Ui)
=0 Yy W3 Wiy Wy Vg Vs Vg - V7 - Ug - Wy - W5 - Yio - Vi3 - Y11 - Re g
(since for ¢ € [1,J] such that o} = w;, we have(xy € U1 Ay € Up) or (xs ¢ U1 Ay ¢ Up).)
Note that B can calculate the values of KO,K17K2,K6,K37K4,K5707{K5,k,K67k}k€[l] using the suitable

terms of the assumption.

Challenge. A submits a message M. B randomly chooses

/ ! / ! / !
Ty S1yeevs 852187 Siq1s -1 Smy L1y Gt Gy by € LN,
/ / 3
Wi, W), Wy, Wy € Ly
/ —/ / / / !
T, T, o, Ty« Ty EZN? {l/a: EZN}%EQ\{%A}'

B randomly chooses 74,7y, 7, € Zn, and sets x1 = (12,0,72), x2 = (0,7y,72), X3 = X1XX2 = (—Tyrs, =TT, T2Ty).
B randomly chooses

v, €Ly Vie{l,... i—1},
v? € span{x1, x2}, v € span{xs},
v; € span{x1,x2} Vi € {i+1,...,m},
vP € span{x1,x2}, v =rv3xs € span{xs}.

B sets the value of k, T, sj,t;(i € [m]\{i}) € Zn, v.,v; € Z3, {w; € Z3}™ -,

T T, T, Ty € Zn,{v, €
7N }q,eQ\{gn_.} by implicitly setting

a" e =k mod py,

a" 'ezm’ =7 mod p1, s5/(a"'c) = s; mod py,
ti + 0By 7 s5(v? - vl) /2 =t mod py Vi€ {1,...,i— 1},

q

Z

27 n— lcﬂlTS( ’Up)/Z +b/317”$/( Ug)/Z:EthOdpl V’LG{E+1,,m},

1 b
— D q P q
Ve = ;vc—kvc, v; = U; —&—;v{,

L — actm'vP = w-
w3 achvC_w]modpl,

w; — bejT'vl = wymod py Vj € {j+1,...,m},
7' —br'si(v] - vl) = wmod p1, T 4 0BT si(v] - vl)/By = T mod py,

mo + d1 By By 7 55 (v? - vl) /By = mo mod py,

w4+ di By ST sy (v - wl) /By = m mod py Yt € [1, ],

v, +a" " B8 T sy (v - vl) /By = v, mod p1 Vg, € Q\ {gn-1}.

Also, B implicitly sets vy, 1 := 47 = a4 (7' + 0B 7’85 (v - vd)/B3) mod p;.

It is worth noticing that v; and v, are random vectors in Z3; as required, and (v; - v.) = 2(v? - vE) +
%(vg -w?), since x3 is orthogonal to span{x1, x2} and Z3%, = span{x1, X2, X3}-

B creates a ciphertext <M*, (P17 PQ, Pg, P4, P5, f)67 {P77t7 P&t, P9,t}t€[J])7 (Ri, R;, Qi7 Qi717 Qi,27 Q:, T’i)?ll,
(C;,C%)7y) as follows:

1.

/

P = gﬂ' _ gT( (gb)_T/s%(”g'vg)’ Py = (Pl)ﬂz’ Py = h hE = hﬂ' 7r
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P, = gﬁ' _ gﬁ" (gb),(iir’s%(vg“vg)/ﬁé P;=g™ = gﬂé (gdl)ﬁflﬁiTlS%(vg'Ug)/Bé’
Ps =g "ohl = g*Vo a"bBy By si(vivd)/B; hgé (gﬁé . ga"b/d1)dl,é’jl,é’if’sg(vgvg)/ﬁé

= g*l’ohgo (gd1)55ﬁ4ﬁ17'52(v;-vZ)/837

for t € [1,J],
Pri=g" = g - (g)PabiT s (0] ve) /By
ifxy =n—1,
Py = g" (heh§' )™
_ O S (T D) B8 (g BT BB S )
_ (ga)B;ﬁ/gaﬁ;bﬂﬁ/sg(ug~vg)/ﬁ3 (hﬁh?t )Trt (gﬁswgag)dtﬁmh/é/(v 0E)/Bs

(( H g ofanT zf//d - z,/b/dt/), H (g a™” “‘t’/d2)a )

t’'e(1,J] t'e[1,J]
— (go) P goBibBLT ST vl B (g BTy (gie) (Pt BroD) P (vl 8

di BBy 7 55 (v vl) /By

]

H gfa" It’b/d,/)d1545175 i(vivd)/Bs
t/e[l 7]
=1 ! ’ v ’ ’ * ’ ’ ! ‘i g' q 7
_ (ga),847r ga[i4b[317— si(vT-vl)/Bh (hGh ) (gdt>(ﬂ5+57‘7t)54517' s3(vi-vd)/Bs
H gfa"_xt’bdt/dt,)ﬁ451‘f’3§(1’;'1’3)/5é
t'e(1,J]
— (g“)ﬂﬁ'g“ﬂabﬁar’sé(v%vz>/ﬂé(h ot )™ (g dt)wéw;o:)w;r's/(v v?)/B}
( II o by BT VD/5h(a SLBT S D)5

t tel[;tJ] for t'=t
for t/#t
= (¢*)*™ (hgh ‘Tt)Wt(gdt)(5é+5§ﬂf)Bgﬁir’sg(vg.vg)/gé
H g *t’bdt/dt/)—541517/3%(1;?.1,3)//33’
t'e(1,J]

ifaey #n—1,
Pay = g% (hehy )™
gt gt T OBBLT S ) B (T BT S (0] ) /B,
N A A R GV (h@h;:)ﬂ—; (gﬂg+5;a;)dtﬁéﬁiT/s%(v?vZ)/ﬁé

(( H ga:,a”*“'t'/df,g—a”*“'t'b/dt/). H (g—a" oy /d2)

t'e[1,J] t’'e(1,J]

o )d1B4B£7/5/("’ vi)/B

b gt T OBABT S (V0D /By hor)ﬂ;( dt)(ﬁfls""ﬂ;":)5:151"',5%(”%'”2)/5§

= gy-"’:t
H g b/d,/)d%BiT’s’(v v?)/Bs
t'e(1,J]
_ gy;t . ga"*'” bﬂéﬂ{T/s%(‘U%vZ)/ﬁé (hﬁh;'f* )7T; (gdg)(5é+6;‘7:)52517/5%(1’?1’5)/53
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(10 g by BT S 0 5,

t'e(1,J]
= g gt TV SO B (g T ) (g) et Bre BT T /5
| H g—a"’wt/bdt/dt/)5:1517/3%(”?'”2)/6& . (g_a"*wtb)ﬂéﬂh%(vg~v2)/6§,
t'e[1,J]
4t for t'=t
for t'#t
_ gu;t -(hﬁhgj)”; (gdt)(ﬁéﬂféd:)ﬁiﬁiT'Sé(vg'vg)/ﬁé ) ( H ga"—mt’ bdt/dt,)*ﬁéﬁi‘f’s%(vg'vg)/ﬁé
t'e[1,J]
t'#t

ify, =n—1,
P9,t = gil’yt (hghg:)ﬂ—t

_ g OB S (D) B (R A BLBLT S(vE w) /

= (g%) BT gmaBRbBL T S (v B (g pTE Y (gBactBoet ) PSS (V) By

. (( H giU:/a"_yt//df/ga”—yt/ b/dt’) . ( H gan—yt//d?/)gt

t'e[1,J] t'e[1,J)]

= (@) P gmaBibBi TSt Wl v D)/ By (g Ty (gdt)(ﬁé”é"f A G VEA

(T g vy ST,

t'e(1,J)]

= (g%) P gmaBRbB T S (] wD) By (g T Y (g ) (B AT S (T vt /s

| H ga”*ywbdt/dt,)ﬂ&ﬂiT’S%(v?-vi‘-)/ﬁé

t'e(1,J]

— (g) I OB ST 8% (g ) () (PRI )

T b ) A5 S OTODIB (o) BB 0] 1)/ B

t'e[1,J]

ttt for t'=t
for t/#t
— (ga)—ﬁéﬂ-'(hghg:)ﬂ'é (gdt)(Bé""ﬁéo':)ﬁz/;ﬂiq—/s%(’vg’UZ)/ﬁé . ( H ga7L7yt/bdt/dt/)ﬂ‘/Lﬂ
t'e[1,J]
t'#t

if Yt 7é n— 17
Pyo = g7 (hshy )™

= g—VLt .g*a"_“bﬁiﬁif'S%(”?-vZ)/ﬁé(hshg:)ﬂHdtﬂéﬁﬁT'S%(v?-vZ)/ﬁé

= gV - g T BB (w0 /By (g pTE Y (gﬂg+ﬁga:)dtﬁéﬁif'sé(v?vZ)/ﬂé

. ) di By By 55 (vIvd) /By

VN
17'52

. (( H g_UZ/a’“yt’ /d?/ganf’yt'b/dy) : ( H g“"’yw /dfl)g:’)dtﬁiﬁiT(s%(vg.vg)/ﬁé

t’'e(1,J] t'e(1,J]

Ve g T YSB S (00D B (g gy () PR BaeBAT (E) s

N H ga"’yt’b/d,/)dtﬁiﬁi"'IS%(”g'Ug)/ﬁé

telL,J]
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’t

Voo g T VBB S (00D B (g g Y () B BT () s

= g7
. ( H ga"*yt' bdt/d,/)5if317/5%(”g'1’3)/5§
tre1,J]
= gV g T BT S (0T )/ B (g Ty (e ) (Bt Booi BB (0w E) /B

) ( H ga"_yt’bdt/dt/)5:1517/5%("?'”2)/53 . (g“”_”b)ﬁ&ﬁiT'S%(”%"vg)/ﬁé

t/te,[;é’tj] for t'=t
for t'#t
— gV - (hghZF Y (g ) PHPRTDBBT S B I g ) PATLD)
t'e[1,J]
t'#t

Note that the values of (Py, P2, Ps, Py, Ps, Ps,{Prt, Pst, Pot }te[1,7]) can be calculated using the suitable
terms of the assumption.
2. For each i € [m]:
— if ¢ < : it randomly chooses §; € Z,, then sets

n—1

Ri=g", Ri=(g" )", Qi=g¢", Qui=h{'Z'h,

Qiz = (Q))%, Qi =g~ (") CIw0= T = B

— if § = 7: it sets

ristvP 1 b)z\rlistvd / a” tevristioP o a™ " lbe/z\risto?d 7' sl (vPvP)  byT s (v vl
Ri:gl'll(g/)lll, RZ:(g )LZz(g /)7,17,’ QZ:g ’l(z L)(g) l(l L)

)

7’55 (v7 -wh)

Qi1 =N ZURT, Qiz=(Q), Qi=g", Ti=M-e(g™, Q).
—if 4 >4 it sets
p O PRI n1 o\ s (15 P o
R, = gnslvi, Rz — (ga c)nslm7 Qz _ (ga c)‘r si(v; 'vc)’ Qi,l _ Zzlh;r ,
’ n—1
Qiz=(Q)™, Qi=g"(g" °
3. For each j € [m]:
— if j < j: it randomly chooses ,u} € Zy and implicitly sets the value of p; such that (a”flbc)’lugug —
v3 = i mod p1, then sets C; = (g“n_lbc/z)C;T,US -gC;T%”Z S(g* o)ws, C;» = g¥i.
— if j = j: it sets C; = T57vE (" )i, C = g - (ga)_%T/”g.

w
J
—if > Jrit sets Cj = (g0 P/ GTVE L (go" ey Wh, O = g - (g%) STV

)T D P DIELT — Me(™,Qu).

n—1

n—1

If T = ¢g*"°*, then the ciphertext is a well-formed encryption to the index (i,7). If T is randomly chosen,
say T = g¢" for some random r € Z,,, the ciphertext is a well-formed encryption to the index (4, j 4+ 1) with
implicitly setting p; such that (77— — 1)v3 = p; mod p;.

acz

Guess. A outputs a guess b’ € {0,1} to B, then B outputs this b’ to the challenger.

The distributions of the public parameters, private keys and challenge ciphertext are the same as that
in the real scheme. B’s advantage in the Modified (n,J)-EDHE2-Dual game will be exactly equal to A’s
advantage in the selective index-hiding game.

F Proof of the Lemma [1| for the Large Universe CP-ABE on Prime Order
Groups

To make the proof easy to follow, we present the details of the resulting AugABE scheme first.
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F.1 The Resulting Augmented CP-ABE

Setupp(\, I, K = m?) — (PP,MSK). Run (p,G,Gr,e) + G(\). Pick a generator g € G. Set d = 4,dy = 1.
Pick random B = (b1,...,04) € Z,. Pick random {«;, i, 2 € Zp}icim], {¢j € Zp}jcm)- The public
parameter is

PP = ( (p,G7GT,e),g,h = (hl = gﬂla .. '7h4 = 954)7
{Ei=elg,9)™, Gi=g", Zi=9"}ietm), {Hj=9%}jem )-

The master secret key is MSK = (al, ey Qi Ty eeesTamy Clyevny cm).
A counter ctr = 0 is implicitly included in MSK.

KeyGen, (PP, MSK, S C Z,) — SK(; j),s- Set ctr = ctr + 1 and then compute the corresponding index in
the form of (¢,7) where 1 <4,j <m and (i — 1) * m + j = ctr. Let | x n be the size of A. Pick random

6 =(61,{0s}zes) € Z;HS‘. Output a secret key SK; ;) 5 as
SK(i.j),s = ((4,5),5,
Ky = gTicj"l‘aigﬂlél’ K, = 951’ {Kz’2 _ 99z7 Kz,B _ (gﬁzwgﬁa) (954) 61}9:657
Ky=2ZM).

EncryptA(PP, Ma (A7 p)7 (Zv])) - CT(A,p)-
1. Upon input a ciphertext policy (A4,p) € Y, where A is an [ X n matrix over Z,, and p : [1,]] = Z,

maps each row of A to an attribute in Z,. Pick random m = (7, ug,...,upn,&1,...,§) € Ziﬁ‘” and set
u = (T, U, ..., Up). Set

P =g, {Pk,l — gﬁl(Ak-u)gﬁ4Ek’ Ppo= (9520(16)953)*51@7 Pp3= gsk}ke[l]'
2. Pick random K, T, $1,...,8m, t1,...,tm € Lp, Ve, W1,..., Wy € L.

Pick random ry, 7y, 7, € Zy, and set x1 = (74, 0,7;), X2 = (0,7y,72), X3 = X1 XX2 = (—TyT2, —TaT2, TxTy)-
Pick random w; E Z3Vie{l,... i}, w; €span{xi,x2} Vi€ {i+1,...,m}.
For each row i € [m]:

— if 4 < 2: randomly choose 3§; € Z,,, and set

Ri=g", R,=g"", Qi=g" Qi1=(¢g")"Z'(¢")", Q;=g" T;=E;.
— if 4 > 7 set
R, = G5, R; = Grvi Q= gTsi(vi"Uc)’ Qi1 = (gﬁl )Tsi(vi‘vc)Zfi (g/%)ﬂ’
Qi=g". Ti=M- B[,
Note that dy = 1, thus there is only Q; 1.
For each column j € [m]:
— if j < j: randomly choose p; € Z,, and set C; H
—if j > jiset Cj = H]" - g*i, C = g*
3. Output the Clphel"teXt CTia,p) = (4, p) (P, {Pr,1, Peoy Prstren), (Ri, R}, Qi,Qin, Qf,Ti)i%,
(Cj,C)ixn)-

DecryptA ]73F5 CT(A )3 SK(Z ), S) — M or 1. Parse CTA p) to CT(A 0) = <(A p) (Pl, {Pk,lvpk,27pk,3}ke[l])7
(Ri7 R; Qw Ql,l) Qw T; )2217 (C],CJ)J:1> and SK(z,j),S to SK(z,g),S = (( ) S (K07 K, {Kx,27 Kw,3}z€5’7 K(/))
Suppose S satisfies (A, p) (if S does not satisfies (4, p), output L).

1. Compute constants {wg } ,(x)es such that Z (k)es wrpAr = (1,0,...,0). Compute

Dp [[ (e(K1, Pep) - e(Kpy 20 Pr) - (K pry 3, Pra)) ™
p(k)es

T(VetpiXs) -gm"j, C; — gwj

2. Compute

e(Ko, Qi) - e(Kp, Q) es(B, CF)
e(K1, Qi) e3(R;,C;)

3. Computes M < T;/(Dp - Dy) as the output message.

Dy +
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F.2 Proof of Lemma [

Proof. Suppose there exists a polynomial time adversary A that selectively breaks the index-hiding game
with advantage e. We build a PPT algorithm B to solve an Extended Source Group g-parallel BDHE problem
as follows. B is given a problem instance as

D= ((p,GGT, )gg Lg%, g

9", gb, gt g% g Vi, j € [d),
“Io Vi€ [2¢)\ {g+1},5 € [d],
g‘”’/b o Vi € (2q),5,5 €[] st. 5 # 4,
gri o, geet Vi€ ld,g.j €la st j#5)
and T, where (p,G,Gr,e) £ g, g £ G, a,c,d,by,...,bq £ Z,, and T is either equal to gcanrl or is a

random element of G. B’s goal is to determine T = gc“q+1 or T is a random element from G.
Init. A gives B the challenge LSSS matrix (A*, p*), where A* is an | x n matrix with [,n <g.

Setup. B randomly chooses {a; € Zp}icim], {7, 2 € Zplicimn\giy> 5% € Zp, {¢) € Zp}jem), and
B4, 85,8y € Z,. B gives A the public parameter PP:

(g7 hl—g h2_gﬁ2, H H t/bz

kell] te[n]

7953'1—[1—[ f/b2 —p" (k)AL h*954'HH ’/bk

kell] te[n] kell] ten]
{Ez = e(gvg)a1}z€[m]7
{Gi=g"". Zi = (0" Yicpmpiiys {Hj = (9D Y jepmpgy, Gi= (9")", Zi =g, Hj = (g)% )
Note that B implicitly chooses 75, z;(i € [m]\ {i}), ¢;(j € [m]), Bi, B2, B3, B1 € Zy, such that

a?ri = r; mod p, az; = z; mod p Vi € [m] \ {i},
dc; = c¢j mod p Vj € [m]\ {j}, acj = ¢; mod p,

a=prmodp, fy+ Y Y (a'/b)(A;,) = Bz mod p,

kell] te[n]
53+ZZ (0" /b3) (—p" (k) A} ) = B3 mod p,
[l] te[n]
54+ZZ (a /bk) (A}, ;) = B4 mod p,
[ ten]

Query Phase. To respond to A’s query for ((4,7), S),
o if (4,7) # (i,7): B picks random & = (81, {0, }ses) € Z}flsl, then creates a secret key SK(; ;) g

gr i (gNGnY, it A
Ko = g (g")ries h‘” Li=0,5# ]
gu (") GRS, i i =]
Ky =g¢%, K,=2%,
{Km,2 =49 17 Kac,S = (hghfi)owhzél }Z’GS'

o if (i,j) = (4,7): it implies that A is querying a secret key with the challenge index (i, j), and S does
not satisfy (A*,p*). B first computes a vector @ = (i, ...,%,) € Z; that has first entry equal to —r%c%
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(i.e. g = —ric;) and is orthogonal to all of the rows A} of A* such that p*(k) € S (ie. Af -u =0Vk €
[1] s.t. p*(k) € S). Note that such a vector must exist since S fails to satisfy (A*,p*), and it is efficiently
computable. Then B randomly chooses (87, {0.}.cs) € ZII,HSI and sets the values of d; and {0;}zes by

implicitly setting
5 =48+ Z Gpa?tt ¢ (1)

te[n]
o , Utbk/aq+1 t
Op =0 + 0y - Z (k’ + Z Z (2)
K ell] ke
P (k)¢S P*(k')ﬁfs
Note that for € S and p*(k’) ¢ S we have z — p*(k') #0
B creates a secret key SK(; 5) ¢ as follows:
Ko =g%hy ([T ™), K=o TTe*" ™, Ko = (K1),
t=2 t=1

For xz € S, we have

Kes=g" =g% ( J] (@)% ( I I (") e &)y,

K ell] Kel] ten]
p™(K')¢S o™ (K')¢S
Note that for x € S, we have
/ 5 b Uyr bk’aq+17t/
(hhs)? = (h3hs)% -(hghs)™ el ot (S T (h%hs)z’“’€[ll=p*<k’>¢s Lvem Ty
——
2181
—wae (T (P T T G s it =i
ke[l ke(l) teln]
p™(K")¢S
ﬂt/bk,a,‘I*l*t/
H H (g% 5 H H a /by (@—p” ))Az,t)w)
E'ell] t'€n] ke(l] te[n]
P (K')¢sS
—wy- ([ (o) e N (T T I (e AL
k' ell] ke[llte[n] K€l
o™ (k)¢S o™ (k)¢S
Y12
(II (gbk/a‘”l*")ﬂu(ﬁ;mﬂ;)/(r—p*(k’)))
Kell] ven]
p* (k)¢S
V1,3
N |1 I R R =)
ke(llte[n] K'e[l] t'€ln]
o™ (k") ¢S
t x wopt (k)
=V Vo ( H H (9" bk//b")(S 1Ak =T )
kell] ten] k€[]
p(k)ES p (K¢S

U4 (for p*(k)ES)
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CTLT1 T @y (T TLe i) o,

ke[l te[n] k' e[l \{k} ke[l te[n]
P (k)¢S o™ (K')¢S pr (k)¢S
U5 (for p*(k)gs k' #k) Vi6  (for p*(k)¢S,k'=k)
CIUTLTL Loy
ke[l} te[n] k'e t'e
p*(k)ES p* (K’ )gES

vz (fOT p*(k)ES)

k
(I I T Iyt iy

ke[l te[n] k&’ e[l \{k} t’'€[n]
p (k)¢S p* (k)¢S

Vis  (for p*(k)¢S,k'#k)

I (e

ke[l] te[n]t'€[n]
p* (k)¢S

(for p*(k)ES,k'=k)

=W V2 Va5 Ve Vs Y7 LD1,8 H H H artt H/bk)A" tutl)
ke(l] te[n] t'e€ln]
p(k)ES

121

’
hy "= h 64 H H “ /b" Akt = Xirepm Bra®

ke[l te[n]
= ny T () e H H TT (o= /)iy
t'€[n] t€[n] t’€[n]

H H [T o™y,

[l teln] t'€[n]

where U1 =W, 1 - ¥, 5 ---- ¥ g and ¥, can be calculated using the suitable terms of the assumption.
Thus, we have

K5 = (h‘"ghg)gmh"sl

— Wl H H H adt1i— t! +t/bk) Ak t“t/)

kell] te[n]t’€ln]

p*(k)ES

_ aq+17,5/+t/b ut/ . aq+1/b &,
Lpl H H H k t H H k k . )
kell] te[n]veln)\{t} kel teln]
p*(k)ES s
v (for t'78) for t'=t
=, Uy Uy - ( H (gaq+1/bk)*(A;-’l_L))
kell]
p*(k)es

=y - WUy W3, (since A} -u=0Vk €[] s.t. p*(k) € 5)

Note that ¥;, ¥, and W3 can be calculated using the suitable terms of the assumption, B can calculate K, 3.
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Challenge. A submits a message M. B randomly chooses

!/ !

T, 81,...,57-1,87, 5i41r+ -+ 5m € ZLp,
!/ / / !/
oo ot st € Ty,

. / / 3
Wi, Wi, W, Wy € Z,,

E1seo &l T €Ly, u = (0,uh,...,uy,) €Zy.

B randomly chooses r, 7y, 7, € Zy,, and sets x1 = (r3,0,72), X2 = (0,7y,72), X3 = X1 XX2 = (—TyTs, —T2l2, TaTy),

then randomly chooses

v, €ZVie{l,... i~ 1},
o? € span{xa, Xz}, v! € span{xs}.
v; € span{x1,Xx2} Vi € {i+1,...,m},
vP € span{x1,xz2}, v1=v.x3 € span{xs}.
B sets the values of k,7, s7, t;(i € [m]\ {i}) € Zy, v;, v, w;(j € {j,...,m}) € Z3, w € Ly, w € L7, and
{kx € Zp}rep by implicitly setting
a? = k mod p, calt’ =7 mod p, s%/aq = s; mod p,
Vie{l,...,i—1}: t;+cdr'si(v] vl)/z =t; mod p,
Vie{i+1,...,m}: t;—a%m'si(v;i-vE)/z + cdr'si(v? - vl)/z = t; mod p,
v; =o' + dv!, v.=coh + v,
w’; — ac;T'vk = w; mod p,
Vie{j+1,....,m}: wj—cddjr'vi=w;modp,
vl =nmodp, u=mn(1,a,a%...,a" )+,
VE e [l]: & + cdbp'si(v? - v) = & mod p.

7' — cdr' st (vd
T ()

It is worth noticing that v; and v, are chosen from Z3 at random as required, and (v; - v.) = l(vf .

vP) 4 d(v? - v?), since x3 is orthogonal to span{x1, x2} and Z3 = span{x1, X2, X3}. B creates a ciphertext
<(A*7p*)a (P17 {Pk,la Pk,?a Pk,3}k€[l]) (RZa Rm QH Ql,la QzaT)zflv (CJ7C/) = > as follows:

L Pr= g™ (g°) s,
For each k € [I]: we have

Poy = (hy)Aupse = (pihi(bamea Oym g’ hfk. Bl (g@/bwr YAur ) odbeT s (0] wE)
e = () S = (b ) H 11w ')

PS €ll] te[n]

= (TL (o)) ey (g ) 5RO (T gy i)

ten] 2 k'€l te[n]

2

(L) (T @) %) g, o,

te[n] te[n]

@3 A
cdat AT 7’85 (vlvl) cdat\Ar T s5(vE-0l)
( H H(gd bk/bk)Aw,t) i\Yi .(H(g ) k,t) AN
K €[\ {k} te[n] teln]
&y (for k'+#k) A1 (for k'=k)

= P3Py - Dy - Dy,
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]Jk,2 — (hg*(k)hg)*ﬁk
_ (hg*(k)h?))_g;C ) (gﬁép*(k)+ﬁg)_Cdka/S%(vg'”g) . ( H H a /bi, (p™ (k)—p™ (K’ ))AZ/ ) Cdka/S%(’Ug"Uz)
k'ell] te[n]
_ (hp*(k)hg)fgfc ) (gcdbk)*(ﬁép*(k)Jrﬁé)T’S%(v%vﬁ) ( H H cda’by /b2, (P*(k')*P*(k))AZ/,t)T'S%(v%vg)
- 2

pe k’€[l] te[n]

— B - ( H H cdatby, /b2, (p*(k’)—p*(k))AZ/,t)T’S%(v?‘vZ)
k' e[l]\{k} te[n]

Ps  (for k'#k)
) ( H (gcdatbk/bi)(P*(k)*P*(k))A;,t)T/S:f(”g'vg)

te[n]
1 (for k'=k)
= D5 - Pg,
Pis = gtk = gEL (gcdbk)T'S%(v?f-vZ)'
Note that &1,...,Pg can be calculated using the suitable terms of the assumption, B can calculate

Py, P2, P 3.
2. For each i € [m]:
— if ¢ < i: randomly chooses 3; € Z,, and sets

Ri = g'Ui,’ R;, = (gaq)vi7
Qi =g%, Qi1 =(9")"Z(g")", Q) =g"(g°")" =i D/= T, = B

sets

Sl

- ifi=

q

R, = g'r%s%vg . (gd)rlgv;7 R{ _ ( aq)r%s%vg’ . (gdaq)rlgv;7

Qz _ g-r s% (v? vp)(gcd)r st (v vl Qz L= ( a)‘r s;(v?vg)zﬁ(ga)ﬂ , Q”L — gt;7
T% =M - e(gaiﬁQi)'

—if i >4: sets
La.ay. q Loy
R, = gr”s"””, R;» = (g“ )“5”’1

Q; = (ga‘Z)T/s?;(v,pvf)’ Qi1 = Z_t;(g(l)ﬂ' ’ Q; _ gt;(gaq)—‘r’si(v,yvzc’)/z,;(gcd)f’s%(vg-'vZ)/z;’
Ti =M -e(g™, Q).

3. For each j € [m]:
— if j < j: randomly chooses p; € Z,, and implicitly sets the value of p; such that (1}/(cda?) —1)v, =

1 mod p, then sets: C; = (g9 )7 Ve . g&iT Ve . (ga®)ws, C) = g

—if j = j: sets C; = T57 Ve . (g2 )5, Ci=g Wi (g) G e
o lfj > j sets Cj _ (gdaq)cj'r vl (gaq)wj’cg _ g’wj . (gcd)fcj‘r ’UZ'

)

If T = g°@""", the ciphertext is a well-formed encryption to the index (i,7). If T is randomly chosen, say
T = g¢" for some random r € Z,, the ciphertext is a well-formed encryption to the index (¢,j + 1) with
implicit setting y; such that (—f= — 1)v. = p; mod p.

Guess. A outputs a guess b’ € {0,1} to B, then B outputs this b’ to the challenger.

The distributions of the public parameters, private keys and challenge ciphertext are the same as that
in the real scheme. B’s advantage in solving the Extended Source Group g¢-parallel BDHE problem will be
exactly equal to A’s advantage in the selective index-hiding game.
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