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Abstract. This paper addresses fast scalar multiplication for elliptic
curves over finite fields. In the first part of the paper, we obtain sev-
eral efficiently computable formulas for basic elliptic curves arithmetic
in the family of twisted Edwards curves over prime fields. Our 2Q + P
formula saves about 2.8 field multiplications, and our 5P formula saves
about 4.2 field multiplications in standard projective coordinate systems,
compared to the latest existing results. In the second part of the paper,
we formulate bucket methods for the DAG-based and the tree-based ab-
stract ideas. We propose systematically finding a near optimal chain for
multi-base number systems (MBNS). These proposed bucket methods
take significantly less time to find a near optimal chain, compared to an
optimal chain. We conducted extensive experiments to compare the per-
formance of the MBNS methods (e.g., greedy, ternary/binary, multi-base
NAF, tree-based, rDAG-based, and bucket). Our proposed formulas were
integrated in these methods. Our results show our work have an impor-
tant role in advancing the efficiency of scalar multiplication.

Keywords: twisted Edwards curves, Edwards curves, scalar multiplication, ef-
ficient formulas, DBNS, MBNS

1 Introduction

Elliptic curve cryptography (ECC) is a type of public key cryptography that
was initially introduced by Koblitz and Miller [22, 32]. ECC has an efficiency
advantage over other public key cryptographies. For instance, a key length of 283-
bit in ECC is regarded as secure as 3072-bit in RSA public key cryptography
[25]. Scalar multiplication (tP ) is the most expensive ECC operation that is
extensively used in cryptographic protocols. It is an operation that adds P to
itself t times such that tP = P + P + ...+ P︸ ︷︷ ︸

t times

where P is a point on an elliptic
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curve over finite fields and t is a large positive integer. Scalar multiplication
efficiency in our framework relies on the method (e.g., binary, NAF) and the
cost of formulas (e.g., point doubling (2P ), point addition (P + Q)). The cost
of 2P and P + Q formulas varies in different coordinate systems over different
finite fields.

We express the cost of formulas by the number of field inversions (I), mul-
tiplications (M), and squarings (S). We discuss a class of specific curves over
prime fields called twisted Edwards curves Ea,d, as represented by Equation (1)
and Equation (3). We express the notations Ma or Md to represent field multi-
plication with one of the multiplicands to be twisted Edwards curves coefficient
a or d. Addition/subtraction operations are ignored since they are cheap oper-
ations over both prime and binary fields. We express the conjugate of T by T̄ .
To obtain the conjugate of a binomial, we need to change the sign between the
two terms. For example, let T = Y +X. Then T̄ = Y −X.

We use the squaring to multiplication (S/M) ratio to measure the squaring
cost. This is because the S/M ratio varies in different devices over different
finite fields. The cost of one squaring operation is less than or equal to one
multiplication operation. For prime fields, the S/M ratio is a high ratio and it
is closer to one. For binary fields, it is a low ratio and the squaring is closer to
a free operation [19, 8]. To simplify the comparison over prime fields, we assume
1S = 0.8M, Md = 1M, and Ma is a free operation as will be seen later, a
is usually a small number. An inversion operation is more expensive than a
multiplication operation over both binary and prime fields. We use the inversion
to multiplication (I/M) ratio to measure the inversion cost. The I/M ratio also
varies in different devices over different finite fields [19, 8].

One technique to speed up scalar multiplication is to use projective coordi-
nate systems. When we use projective coordinates, we avoid inversion operations
completely. First, we convert an affine point to a projective point. Then, we per-
form scalar multiplication without any inversion operations. Lastly, we reverse
a projective point to an affine point. The cost of converting an affine point to
a projective point or vice versa is very minor in comparison to the cost of a
scalar multiplication operation. As a result, the number of operations can be
significantly reduced, especially for a high I/M ratio device. For this reason,
numerous studies proposed projective coordinate systems for different elliptic
curves [2, 5, 35, 24, 23, 20]. For Weierstrass curves over prime fields, Jacobian co-
ordinates in our framework are the most efficient projective coordinates [20]. For
twisted Edwards curves over prime fields, standard projective coordinates in our
framework are the most efficient projective coordinates [2].

Another technique to speed up scalar multiplication is to use double-base
number system (DBNS) forms [13]. Integer t is represented in the DBNS in

the form of t =
l∑
i=1

si 2ai 3bi where ai, bi > 0, si ∈ {−1,+1}, and l is the

form length. When integer t is represented in the DBNS, the form length on
average becomes shorter than when it is represented in the single-base number
system. This minimizes the number of point additions and speeds up scalar
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multiplication since point addition is an expensive operation in comparison to
other formulas. Multi-base number system (MBNS) is a natural extension of the
DBNS [33]. When integer t is represented in the MBNS, the number of point
additions continues to minimize.

The MBNS requires optimized point tripling (3P ) and point quintupling
(5P ) formulas to be fast and practical. Therefore, numerous studies proposed
optimized 3P and 5P formulas in different elliptic curves over different finite
fields. The state of the art 3P and 5P formulas are described as follows. For
Weierstrass curves, Yu, Kim, and Jo derived 3P formulas in affine coordinates
over both binary and prime fields [38]. Longa and Miri derived a 3P formula and
Giorgi, Imbert, and Izard derived a 5P formula in Jacobian projective coordi-
nates over prime fields [28, 17]. Al Musa and Xu derived 3P and 5P formulas in
λ-projective coordinates over binary fields [1]. For twisted Edwards curves over
prime fields, Bernstein, Chuengsatiansup, and Lange derived a 3P formula and
Li, Yu, and Wang derived a 5P formula in standard projective coordinates [4,
26].

For efficiency reasons, when integer t is represented in the DBNS, it has to
be represented as a double-base chain. In a double-base chain, the sequence of
the exponents ai and bi decreases. Therefore, other studies proposed methods
that convert integer t to a double-base chain. Dimitrov, Imbert, and Mishra
proposed the greedy method [11]. Ciet, Joye, Lauter, and Montgomery proposed
the ternary/binary method [9]. Longa and Gebotys proposed the multi-base
NAF method [27]. Doche and Habsieger proposed the tree-based method [15].
Bernstein et al. proposed the rDAG-based method [4]. These methods can be
extended to convert integer t to a multi-base chain [33, 39].

1.1 Our Contribution

In this paper, we consider the efficiency problem of scalar multiplication for el-
liptic curve cryptography and present three main contributions. The first part
of our contribution is to derive formulas for twisted Edwards curves. We derive
2Q + P and 5P formulas in standard twisted Edwards coordinate systems over
prime fields. To the best of our knowledge, our 2Q + P is the first proposed
dedicated formula for twisted Edwards curves. It saves 1M + 1Md + 1Ma + 1S
≈ 2.8M in comparison to a non-dedicated formula. It saves 3S in comparison to
2Q+P in Jacobian Weierstrass (a = −3) coordinates. Our 5P formula costs 15M
+ 1Ma + 3S ≈ 17.4M. It saves 4.2M in comparison to the state of the art 5P
formula [26]. It saves approximately 2M in comparison to 5P in Jacobian Weier-
strass (a = −3) coordinates. We also improve the P + Q formula by using the
pre-computation concept. This proposed P + Q formula with pre-computation
saves 1Md + 1Ma ≈ 1M over the P +Q formula without pre-computation.

The second part of our contribution is to advance the MBNS methods. We
formulate bucket methods for the DAG-based and the tree-based abstract ideas.
The bucket methods provide a systematic way to balance the chain quality and
the time to find the chain. They find a near optimal chain for integer t in signifi-
cantly less time than finding an optimal chain. To the best of our knowledge, we
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are the first study that proposes systematically finding a near optimal chain for
the MBNS methods. Moreover, these proposed methods show that the tree-based
method is far from producing a near optimal chain.

The third part of our contribution is to conduct experimental comparison
between the MBNS and the NAF methods. We utilize our formulas in these
MBNS methods. The investigated MBNS methods are greedy, ternary/binary,
multi-base NAF, tree-based, rDAG-based, and bucket methods. We use three
types of measurements to compare the methods: the chain length, the chain cost,
and the running time. The running time takes into consideration the conversion
cost. Other experimental results in [4, 9, 11, 15, 27] were conducted without con-
sidering the running converting time. Our experimental results show that the
MBNS methods without pre-computation had an approximately 12% to 16%
lower average chain cost in comparison to the NAF method. Except for the
greedy method, they gave an approximately 12% to 18% faster average running
time. They also show that the chain cost could be further improved if the MBNS
methods with pre-computation were considered. However, this pre-computation
could lead to extra time to find the chain.

1.2 ECC Applications

ECC is appropriate for an application that requires higher security and efficien-
cy. One application for ECC is the Internet of Things (IoT). IoT can be seen
as many embedded systems and sensors connected through an insecure chan-
nel. These embedded systems and sensors have restricted resource capabilities.
For example, He and Zeadally suggested ECC authentication schemes for radio-
frequency identification (RFID) chips [21]. This is because ECC is more efficient
for the computing resources than other public-key cryptographic systems. An-
other practical application for ECC is within a blockchain. The blockchain is
formed from distributed systems that work together to verify transactions [10].
For example, Bitcoin blockchain uses ECC digital signature schemes to verify
digital currency transactions [34]. In addtion, computer network protocols use
ECC in key agreement and digital signature schemes. For example, the latest
version of the Transport Layer Security (TLS 1.3) protocol includes ECC in the
supported cipher suite list [36].

The rest of the paper is organized into five sections. The proposed 2Q+P and
5P formulas are presented in Section 2. In Section 3, we introduce the MBNS and
proposed the bucket methods. In Section 4, we conducted experiments to com-
pare the performance of the MBNS methods with and without pre-computation.
Finally, we conclude our work in Section 5.

2 Twisted Edwards Curves

Bernstein, Birkner, Joye, Lange, and Peters introduced twisted Edwards curves
over prime fields Fp [2]. Twisted Edwards curves Ea,d are represented by

Ea,d : ax2 + y2 = 1 + dx2y2 (1)
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where a, d ∈ Fp, p > 3 is a prime number, a 6= d and a, d 6= 0. The denotation
Ea,d(Fp) is the set of all points (x, y) where x, y ∈ Fp that satisfies the above
equation. Ea,d(Fp) is an abelian group under the point addition operation. The
identity point for the group is the point (0, 1). The negative of point P = (x, y) ∈
Ea,d(Fp) is another point −P = (−x, y) ∈ Ea,d(Fp). Ea,d has a unified formula
for both P+Q and 2P . Let P = (x1, y1) ∈ Ea,d(Fp) and Q = (x2, y2) ∈ Ea,d(Fp).
Then P +Q = (x3, y3) ∈ Ea,d(Fp) can be computed by

x3 =
x1y2 + y1x2

1 + dx1y1x2y2

y3 =
y1y2 − ax1x2

1− dx1y1x2y2
.

Edwards curves are a special class of twisted Edwards curves. Edwards curves
Ed are represented by

Ed : x2 + y2 = 1 + dx2y2 (2)

where d ∈ Fp and d 6= {0, 1}. In other words, Edwards curves are twisted Ed-
wards curves with the coefficient a = 1 [6, 5].

2.1 Standard Projective Coordinates

Bernstein et al. also introduced two main representations for twisted Edwards
curves in projective coordinates: standard twisted Edwards coordinates and in-
verted twisted Edwards coordinates [2]. A projective point in standard twisted
Edwards coordinates is represented as (X,Y, Z). An affine point can be convert-
ed to projective point by using the relation (X,Y, Z) = (x, y, 1). A projective
point can be converted to an affine point by using the relation (x, y) = (XZ ,

Y
Z )

where Z 6= 0. The curve equation in standard twisted Edwards coordinates is
represented by

(aX2 + Y 2)Z2 = Z4 + dX2Y 2. (3)

2P in standard twisted Edwards coordinates saves 1Md in comparison to 2P
in inverted twisted Edwards coordinates. It saves approximately 0.8M in com-
parison to 2P in Jacobian Weierstrass coordinates (a = −3), as Table 1 shows.
In our framework of scalar multiplication methods, 2P is used more frequently
than other formulas (e.g., P + Q, 3P ). Therefore, 2P has a greater impact on
the performance than other formulas. As a result, more efforts were made to
derive efficient formulas in standard twisted Edwards coordinates and this is the
reason we derive efficient formulas in standard twisted Edwards coordinates.

2.2 A Proposed P + Q Formula

In standard twisted Edwards coordinates, the cost of P + Q is 10M + 1Md

+ 1Ma + 1S ≈ 11.8M [2]. It costs an extra 1M in comparison to P + Q in
inverted twisted Edwards coordinates. It costs approximately an extra 0.6M in
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Table 1. The Cost of Efficient Formulas in Twisted Edwards and Jacobian Weierstrass
Coordinates over Fp

Standard twisted Edwards (a = 1) Jacobian Weierstrass (a = −3)

Mixed P +Q 9M + 1S ≈ 9.8M (this work) 7M + 4S ≈ 10.2M [28]
P +Q 10M + 1S ≈ 10.8M (this work) 11M + 5S ≈ 15M [28]
2P 3M + 4S ≈ 6.2M [2] 3M + 5S ≈ 7M [28]
3P 9M + 3S ≈ 11.4M [4] 7M + 7S ≈ 12.6M [28, 12]
Mixed 2Q+ P 11M + 4S ≈ 14.2M (this work) 11M + 7S ≈ 16.6M [29]
5P 15M + 3S ≈ 17.4M (this work) 9M + 13S ≈ 19.4M [17, 33, 30]

≈ means 1S = 0.8M.

comparison to P +Q in Jacobian Weierstrass coordinates [28]. See Appendix A
for the P +Q fromula in standard twisted Edwards coordinates.

Let P = (X1, Y1, Z1) ∈ Ea,d(Fp) be the base point and Q = (X2, Y2, Z2) ∈
Ea,d(Fp) be a temporary derived point. Then, P +Q can be improved by using
our proposed steps. First, pre-compute the values X1 · Y1, d ·X1Y1, a ·X1, and
a ·X1Y1. This pre-computation step costs 1M + 1Md + 2Ma ≈ 2M. Then, the
pre-computed values can be used with the proposed P +Q formula during scalar
multiplication, as Table 2 shows. As a result, P +Q with pre-computation saves
1Md + 1Ma ≈ 1M in comparison to P + Q without pre-computation. We say
that P +Q is mixed P +Q when Z1 = 1. The cost of mixed P +Q is 9M + 1Md

+ 1Ma + 1S ≈ 10.8M. It saves approximately 0.4M in comparison to mixed
P +Q in Jacobian Weierstrass coordinates [28].

Table 2. Operation Counts for P + Q with pre-computation in Standard Twisted
Edwards Coordinates over Fp

Formula terms Operation counts

F = (Z1 · Z2)2 − dX1Y1 ·X2 · Y2 3M + 1S
X3 = Z1Z2 · F ·

(
(X1 +X2) · (Y1 + Y2)−X1Y1 −X2Y2

)
3M

Y3 = Z1Z2 · F̄ ·
(
(X2 + Y1) · (Y2 − aX1)−X2Y2 + aX1Y1

)
3M

Z3 = F · F̄ 1M

10M + 1S

F̄ is the conjugate of F .

Underlined terms are pre-computed.

2.3 A Proposed 2Q + P Formula

In standard twisted Edwards coordinates, the cost of a non-dedicated 2Q + P
formula is 13M + 1Md + 1Ma + 5S ≈ 18M. However, our work shows that a
dedicated 2Q+ P formula has a lower cost. We propose a 2Q+ P formula with
or without pre-computation. See Theorem 1 for the proposed 2Q + P formula
and Appendix B for the proof.
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Theorem 1 Let P = (X1, Y1, Z1) ∈ Ea,d(Fp) and Q = (X2, Y2, Z2) ∈ Ea,d(Fp).
Then 2Q + P = (X3, Y3, Z3) in standard twisted Edwards coordinates is repre-
sented by

T = Y 2
2 + aX2

2

F = Z2
1T (T − 2Z2

2 ) + dX1Y1 2X2Y2T̄
G = 2X2Y2(T − 2Z2

2 )
X3 = F

(
− T T̄X1Z1 + Y1Z1G

)
Y3 = F̄

(
− T T̄Y1Z1 − aX1Z1G

)
Z3 = FF̄

where T̄ and F̄ are the conjugates of T and F respectively.

Remark 1. 1. The cost of the proposed 2Q+ P formula with pre-computation
is 12M + 1Ma + 4S ≈ 15.2M, as Table 3 shows. It saves 1M + 1Md

+ 1S ≈ 2.8M in comparison to a non-dedicated 2Q + P formula. The pre-
computed values are Z2

1 , X1 ·Y1, d·X1Y1, X1 ·Z1, Y1 ·Z1, X1Z1 ·Y1Z1, a·X1Z1,
and a · X1Z1Y1Z1. This pre-computation step costs 4M + 1Md + 2Ma +
1S ≈ 5.8M.

2. The cost of the proposed mixed 2Q+P formula with pre-computation is 11M
+ 1Ma + 4S ≈ 14.2M. It saves 1M + 1Md + 1S ≈ 2.8M in comparison to
a non-dedicated mixed 2Q+P formula. It saves 3S in comparison to 2Q+P
in Jacobian Weierstrass (a = −3) coordinates, as Table 1 shows [29]. The
cost of the proposed mixed 2Q+P formula without pre-computation is 12M
+ 1Md + 3Ma + 4S ≈ 16.2M. It trades 1S with 2Ma in comparison to a
non-dedicated mixed 2Q+ P formula. To the best of our knowledge, we are
the first to propose a 2Q+ P formula in twisted Edwards coordinates.

Table 3. Operation Counts for 2Q + P with Pre-computation in Standard Twisted
Edwards Coordinates over Fp

Formula terms Operation counts

T = Y 2
2 + a ·X2

2 1Ma + 2S
2X2Y2 = (X2 + Y2)2 −X2

2 − Y 2
2 1S

F = Z2
1 · T · (T − 2Z2

2 ) + dX1Y1 · 2X2Y2 · T̄ 4M + 1S
G = 2X2Y2 · (T − 2Z2

2 ) 1M
X3 = F ·

(
(G+X1Z1) · (Y1Z1 − T · T̄ ) +G · T T̄ −X1Z1 Y1Z1

)
4M

Y3 = F̄ ·
(
(G+ Y1Z1) · (−aX1Z1 − T T̄ ) +GTT̄ + aX1Z1 Y1Z1

)
2M

Z3 = F · F̄ 1M

12M + 1Ma + 4S

T̄ and F̄ are the conjugate of T and F respectively.

Underlined terms are pre-computed.

2.4 A Proposed 5P Formula

5P can be obtained without a dedicated formula through 4P + P or 2P + 3P .
In standard twisted Edwards coordinates, the cost of 4P + P is 15M + 1Md
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+ 3Ma + 9S ≈ 25.2M and the cost of 2P + 3P is 22M + 1Md + 3Ma +
8S ≈ 29.4M. However, many studies show a dedicated 5P formula has a lower
cost. Bernstein, Birkner, Lange, and Peters initially proposed two dedicated 5P
formulas in standard Edwards coordinates with cost 17M + 7S ≈ 22.6M and
14M + 11S ≈ 22.8M [3]. Recently, Rao proposed a dedicated 5P formula in
standard Edwards coordinates with cost 15M + 9S ≈ 22.2M [37]. Li, Yu, and
Wang proposed a 5P formula in standard Edwards coordinates with cost 12M
+ 12S ≈ 21.6M [26]. We propose the most efficient 5P formula. See Theorem 2
for the proposed 5P formula and Appendix B for the proof.

Theorem 2 Let P = (X1, Y1, Z1) ∈ Ea,d(Fp). Then 5P = (X5, Y5, Z5) in stan-
dard twisted Edwards coordinates is represented by

T = Y 2
1 + aX2

1

A = T T̄ + 2Y 2
1 (T − 2Z2

1 )
B = T T̄ − 2aX2

1 (T − 2Z2
1 )

C = −T T̄AĀ+ 2Y 2
1 (T − 2Z2

1 )BB̄
D = T T̄BB̄ + 2aX2

1 (T − 2Z2
1 )AĀ

X5 = X1CC̄
Y5 = Y1DD̄
Z5 = Z1CD

where T̄ , Ā, B̄, C̄, and D̄ are the conjugates of T,A,B,C, and D respectively.

Remark 2. 1. The cost of the proposed 5P formula is 15M + 1Ma + 3S ≈
17.4M, as Table 4 shows. It saves 4.2M over Li et al.’s formula. Also, it saves
approximately 2M in comparison to 5P in Jacobian Weierstrass (a = −3)
coordinates, as Table 1 shows [17, 33, 30].

2. The proposed 5P formula needs only 2 temporary variables. This means that
it can be performed using the same number of temporary variables as the
3P formula. See Appendix A for the cost of 3P in standard twisted Edwards
coordinates and Appendix C for our proposed steps to perform the 3P and
the 5P formulas with the fewest temporary variables.

3 MBNS Methods

3.1 Introduction

A scalar multiplication method in our framework, as figure 1 shows, goes through
two phases: the converting phase and the performing phase. The first phase
is to convert integer t to a chain and the second phase is to perform scalar
multiplication on a given chain. We emphasize the conversion phase of a method
since it is sufficient to determine the conversion cost, the average chain length,
and the average chain cost of a method.
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Table 4. Operation Counts for 5P in Standard Twisted Edwards Coordinates over Fp

Formula terms Operation counts

T = Y 2
1 + a ·X2

1 1Ma + 2S
A = T · T̄ + 2Y 2

1 · (T − 2Z2
1 ) 2M + 1S

B = T T̄ − 2aX2
1 · (T − 2Z2

1 ) 1M
C = −T T̄ ·A · Ā+ 2Y 2

1 (T − 2Z2
1 ) ·B · B̄ 4M

D = T T̄ ·BB̄ + 2aX2
1 (T − 2Z2

1 ) ·AĀ 2M
X5 = X1 · C · C̄ 2M
Y5 = Y1 ·D · D̄ 2M
Z5 = Z1 · C ·D 2M

15M + 1Ma + 3S

T̄ , Ā, B̄, C̄, and D̄ are the conjugates of T,A,B,C, and D respectively.

The converting phase The first phase of a method is to convert integer t to
a chain. A chain can be a single-base chain or a multi-base chain. We focus on
three types of chains: a single-base chain with {2}-integers, a double-base chain
with {2, 3}-integers, and a multi-base chain with {2, 3, 5}-integers.

Definition 1 A positive integer t is represented in a multi-base chain with
{2, 3, 5}-integers in the form of

t =

l∑
i=1

si 2ai 3bi 5ci

where si ∈ {−1,+1} , l is the chain length, a1 > a2 > · · · > al > 0, b1 > b2 >
· · · > bl > 0, and c1 > c2 > · · · > cl > 0.

Other studies proposed many methods that convert integer t to single-base
chains or multi-base chains. The binary and the NAF methods convert integer t
to a single-base chain with {2}-integers [20]. The greedy, the ternary/binary, the
multi-base NAF, the tree-based, and the rDAG-based methods convert integer
t to a multi-base chain [11, 33, 9, 27, 15, 39, 4]. These methods use different tech-
niques to convert integer t to a chain. Therefore, we use the converting cost to
measure the converting phase of a method. We express the converting cost by the
time complexity of converting integer t to a chain. For example, the conversion
cost of the binary method is O(log2 t) and of the rDAG-based method is approx-
imately O

(
(log2 t)

2
)
. It is important to note that that the time complexity of

the converting phase might not be an accurate evaluation. This is because the

integer t =⇒ Converting phase =⇒ chain =⇒ Performing phase =⇒ tP

conversion cost chain length
chain cost

Fig. 1. Description of a Scalar Multiplication Method
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time complexity ignores the constant. The constant can affect the running time
of the methods. It is hard to know the conversion cost of some methods, such
as the greedy method. Therefore, we use our experimental results to determine
the conversion cost of these methods.

The performing phase The second phase of a method is to perform a chain by
executing a number of point addition (ADD), doubling (DBL), tripling (TPL),
and quintupling (QPL) operations. The performing phase highly depends on a
chain that is provided by the converting phase. We use the chain length and the
chain cost to measure the performing phase. The chain length shows a broad
indication of how good a chain is. It considers only the number of ADD to
evaluate a chain. The chain cost shows an accurate indication of how good a
chain is. It considers the number of ADD, DBL, TPL, and QPL to evaluate
a chain.

Remark 3. Our theoretical studies and experimental results show that when
integer t is represented by a multi-base chain, on average, we have a shorter
length and a lower cost than a single-base chain.

The question is, why do the multi-base chains have a lower average cost than
the single-base chain? In other words, why, when we replace ADD with DBL,
TPL, or QPL, do we have lower average chain cost? We can explain that by
the following reason. The cost of ADD is higher than the cost of DBL in many
coordinate systems. Even though the cost of ADD is lower than the cost of
TPL and QPL in many coordinate systems, we still prefer TPL and QPL over
ADD because they are the least costly way to do three and five jumps. See
Table 1 for the cost of ADD, DBL, TPL, and QPL in twisted Edwards and
Jacobian coordinates.

An optimal chain There are no agreements among researchers on the definition
of an optimal chain that represents integer t. However, we define an optimal
chain as a chain that represents t with the lowest cost, as Definition 2 shows.
The question is, do we have a method that generates an optimal chain? We know,
as Experiment I shows, the greedy, ternary/binary, multi-base NAF, and tree-
based methods do not produce an optimal chain. However, two methods were
proposed by other studies to find an optimal chain: the enumeration approach
and the rDAG-based method.

Definition 2 An optimal chain for integer t is a chain that represents t, and it
is the least costly in a particular coordinate system.

Definition 3 A near optimal chain is a chain that has a small cost difference
from an optimal chain. This small difference is at most the cost of 1 DBL in a
particular coordinate system.
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In the first study, Doche proposed the enumeration approach to find an opti-
mal chain with respect to the length [14]. This is a type of brute force approach
that takes exponential time to find an optimal chain. In the second study, Bern-
stein, Chuengsatiansup, and Lange proposed the rDAG-based method to find an
optimal chain with respect to the cost [4]. The conversion cost in the rDAG-based
method is approximately O

(
(log2 t)

2
)
. Even though the conversion cost of the

rDAG-based method is much better than the conversion cost of the enumeration
approach, the rDAG-based method seems impractical for applications that re-
quire the converting phase to be on-the-fly, as Experiment II shows. We propose
a solution to improve the rDAG-based method. We develop bucket methods to
find a near optimal chain with the advantage of taking significantly less time
than the rDAG-based method for an optimal chain. See Definition 3 for a near
optimal chain definition and see the third result of Experiment II for a near
optimal chain example.

3.2 Proposed Bucket Methods

DAG/bucket method The idea for this newly proposed method is to create
buckets that are indexed by chain cost. A bucket contains nodes that are ordered
by t. A node is represented in the form of (t, (s, a, b), (cost, seq), (prei, prej))
where :

t positive integer
(s, a, b) s 2a3b where s ∈ {+1, 0,−1} and a, b ∈ {0, 1}
(cost, seq) cost is chain cost

seq is a node sequence number in Bucket[i], and seq ∈ {0, ..., bucket-size− 1}
(pre i, pre j) pre i is an index of the previous bucket

pre j is an index of the previous node in Bucket[pre i]

Algorithm 1 shows the steps of the DAG/bucket method. First, this method
investigates nodes in a bucket with the lowest chain cost. Then, the method
moves to the next bucket with the next lowest chain cost and investigates nodes.
The method repeats the steps until it finds a node with t = 1. Finally, the
method stops and returns the chain. Returning the chain is accomplished by
get-chain, which traces (pre i, pre j) of nodes that are necessary for the chain.
See Appendix D for an example of the DAG/bucket method.

An investigated node creates two or three nodes that are inserted into new
buckets with a higher cost. This is because this method follows the DAG-based
abstract idea, as Definition 4 shows. A node is inserted into a bucket accord-
ing to its cost. The chain cost of nodes monotonically increases. This property
guarantees that the method investigates all nodes and no node is skipped.

Definition 4 The DAG-based abstract idea states that if t is odd, three options
are investigated: (t− 1)/2, (t+ 1)/2, and (t− s)/3. If t is even, two options are
investigated: t/2 and (t− s)/3 where s ∈ {−1, 0,+1}.

The DAG/bucket method is similar to the rDAG-based method in that they
both follow the DAG-based abstract idea. However, they are different in the
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following way. The objective of the rDAG-based method is to find an optimal
chain without paying much attention to the time it takes to reach it [4]. The
objective of the DAG/bucket method is to provide flexibility to control the chain
quality and the time to find the chain. The flexibility is obtained by bucket-size,
a value which balances the chain quality and the time to find the chain.

Algorithm 1 DAG/bucket Method

Input: positive integer t
Output: (s1, a1, b1), ..., (sl, al, bl) where l is expansion length
initialize Bucket[bucket-max]
insert new node(t, (0, 0, 0), (0, 0), (0, 0)) in Bucket[0]
for i← 0 to bucket-max do
if (Bucket[i] is empty) then continue
for each node in Bucket[i]
if (node.t = 1) then return get-chain(Bucket, i, node.seq)
for each s ∈ {+1, 0,−1}
if ((node.t− s) (mod 2) ≡ 0) then
t← (node.t− s)/2
cost← node.cost + DBL + |s| ADD
insert new node(t, (s, 1, 0), (cost, seq), (i, node.seq)) in Bucket[round(cost)]
remove any redundant nodes with respect to t
keep the smallest nodes with respect to t within bucket-size
if ((node.t− s) (mod 3) ≡ 0) then
t← (node.t− s)/3
cost← node.cost + TPL + |s| ADD
insert new node(t, (s, 0, 1), (cost, seq), (i, node.seq)) in Bucket[round(cost)]
remove any redundant nodes with respect to t
keep the smallest nodes with respect to t within bucket-size

Tree/bucket method The idea of the tree/bucket method is to create buckets
that are indexed by chain length. A bucket contains nodes that are ordered by
t. A node is represented in the form of (t, (s, a, b), (seq, pre)) where:

t positive integer
(s, a, b) s 2a3b where s ∈ {+1, 0,−1} and a, b ≥ 0
(seq, pre) seq is a node sequence number in Bucket[i], and seq ∈ {0, ..., bucket-size− 1}

pre is an index of the previous node in Bucket[i− 1]

Algorithm 2 shows the steps of the tree/bucket method. First, the method
starts to investigate a node at bucket length = 1. Then, the method moves
to investigate nodes at bucket length = 2. The method continues investigating
nodes in each next bucket until it finds a node with t = 1. Finally, the method
stops and returns the chain. Returning the chain is accomplished by get-chain,
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which traces pre of nodes that are necessary for the chain. See Appendix D for
an example of the tree/bucket method.

An investigated node always creates two new nodes that are inserted into
the next bucket. This is because the tree/bucket method follows the tree-based
abstract idea, as Definition 5 shows. A node is inserted into a bucket according
to its length. The chain length of nodes monotonically increases. This property
guarantees that the method investigates all nodes and no node is skipped.

Definition 5 The tree-based abstract idea states that if t is coprime with 6,
then two options are investigated: (t + 1)/(2a3b) and (t − 1)/(2a3b) where a, b
are 2-adic and 3-adic valuations of (t+ 1) or (t− 1).

The similarity between the DAG/bucket and tree/bucket methods is that
they both use bucket-size to control the chain quality and the time to find a chain.
The main difference between them is that the tree/bucket method utilizes the
tree-based abstract idea, and the DAG/bucket method utilizes the DAG-based
abstract idea. As a result, the DAG/bucket method generates a higher chain
quality than the tree/bucket method, and the tree/bucket method generates a
chain faster than the DAG/bucket method, as Experiment II shows.

Algorithm 2 Tree/bucket Method

Input: positive integer t
Output: (s1, a1, b1), ..., (sl, al, bl) where l is chain length
initialize Bucket[bucket-max]

t← t/(2a 3b) where a, b are 2-adic and 3-adic valuations of t
insert new node(t, (0, a, b), (0, 0)) in Bucket[1]
for i← 1 to bucket-max do
if (Bucket[i] is empty) then continue
for each node in Bucket[i]
if (node.t = 1) then return get-chain(Bucket, i, node.seq)
for each s ∈ {+1,−1}
t← (node.t− s)/(2a 3b) where a, b are 2-adic and 3-adic valuations of (node.t− s)
insert new node(t, (s, a, b), (seq, node.seq)) in Bucket[i+ 1]
remove any redundant nodes with respect to t
keep the smallest nodes with respect to t within bucket-size

Bucket-size and bucket-max Two important factors that determine the chain
quality in the bucket methods are bucket-size and bucket-max. Bucket-size deter-
mines the number of nodes to be kept in a bucket. When bucket-size increases, it
enhances the chain quality. However, it also increases the time to find the chain.
The improvement percentage of the chain quality gradually decreases by increas-
ing bucket-size. Eventually, the chain quality cannot be enhanced even though
bucket-size is increased. Experimentally, we found that a practical choice for
bucket-size is from 2 to 4.
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The second factor that impacts the chain quality in the bucket methods
is bucket-max. Bucket-max determines the number of buckets that are needed
at maximum to find a chain. Experimentally, we found that when buckets are
indexed by chain cost, bucket-max does not exceed the average chain cost of the
NAF method. When buckets are indexed by chain length, bucket-max does not
exceed the average chain length of the NAF method. This is with the assumption
that the DAG/bucket method rounds the chain cost to the nearest integer. As a
result, the average chain length and the average chain cost of the NAF method
can estimate the value of bucket-max in the bucket methods. The average chain
length of the NAF method is approximately (log2t)/3. The average chain cost
of the NAF method is approximately log2t(1/3 ADD + DBL).

4 Experimental Results

In this section, we show the results of two experiments. Experiment I compares
the multi-base methods with the single-base methods. Experiment II compares
the DAG/bucket method with the tree/bucket method. We incorporated our ef-
ficient formulas P +Q, 2Q+ P and 5P in these MBNS methods. We conducted
these experiments in standard twisted Edwards coordinates over prime fields. We
used three types of measurements to compare the methods: the average chain
length, the average chain cost, and the average running time.

The advantage of the chain length and the chain cost measurements is that
they give the same results if we test the methods in different devices. This is
because the chain length is affected by the integer bit size and the method.
The chain cost is effected by the integer bit size, the method, the coordinate
system, and the S/M ratio assumption. For the chain cost, we ignored addi-
tion/subtraction operations since they are cheap operations. We assumed 1S =
0.8M over prime fields. We did not use inversion operations since we worked in
projective coordinates.

The advantage of the running time measurement is that it evaluates all the
implementation aspects of the methods. It takes into consideration, unlike other
measurements, the time to convert integer t to a chain. The disadvantage of the
running time measurement is that it gives different results if we test the methods
in different devices. This is because the running time is affected directly by var-
ious factors such as the CPU specification, the number of temporary variables,
and the finite field arithmetic library (e.g., GMP, MIRCAL) [18, 31].

The devices specifications for these experiments are described as follows. We
used C programming language and GCC compiler on 64-bit Ubuntu Linux OS.
We used an Intel Core i5-8250U processor with the speed 1.6 GHz. We used
GMP library for field arithmetic operations [18]. We generated 10,000 random
integers within bit size [1, 254]. We repeated this step with 382-bit and 521-bit
integers. Then we took the average for each reading results for accuracy reasons.
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4.1 Experiment I

The goal for Experiment I was to compare the single-base methods with the
multi-base methods. We wanted to measure the obtained improvement if the
multi-base methods were used over the single-base methods. For the single-base
methods, we implemented the binary and the NAF methods [20]. For the multi-
base methods, we implemented the greedy, the ternary/binary, the multi-base
NAF, and the tree-based methods [11] [9, 27, 15]. We assumed bound-size =
1 in the tree-based method because we did not consider the pre-computation
option in Experiment I. However, we considered the pre-computation option in
the converting phase in Experiment II. We present the results of Experiment I
in Table 5 and Table 6. It shows the comparison results of the single-base and
the multi-base methods with respect to the average chain length (l), the average
chain cost (m), and the average running time (t).

Table 5. Theoretical Comparison Between Single-base and Multi-base Methods

254-bit 382-bit 521-bit

l m % l m % l m %

Binary 126.97 2922.86 191.01 4408.98 260.52 6020.79
(2)NAF 85.13 2475.16 127.78 3729.39 174.17 5092.31

(2, 3)greedy 55.94 2135.48 13.72 83.42 3213.16 13.84 113.64 4381.26 13.96
ternary/binary 58.48 2161.99 12.65 87.67 3258.12 12.64 119.51 4449.32 12.63
(2, 3)NAF 61.07 2117.36 14.46 91.59 3191.09 14.43 124.87 4358.21 14.42
(2, 3)tree 55.11 2108.92 14.80 82.62 3178.69 14.77 112.63 4341.50 14.73

(2, 3, 5)NAF 52.11 2083.81 15.81 78.21 3141.32 15.77 106.60 4289.92 15.76
(2, 3, 5)tree 45.65 2077.91 16.05 68.40 3132.04 16.02 93.15 4277.15 16.01

l: The average chain length.

m: The average chain cost.

%: The improvement percentage with respect to m in comparison to (2)NAF.

Results of Experiment I We obtained three main results from Experiment
I. First, with respect to m, all the investigated multi-base methods performed
better than the single-base methods. We saw that the multi-base methods gave
approximately 12% to 16% improvement in comparison to the single-base NAF
method. With respect to t, they gave approximately 12% to 18% improvement,
except for the greedy method (addressed below). The tree-based method with
{2, 3, 5}-integers succeeded to give the highest percentage of improvement in
comparison to other methods.

Second, the triple-base method with {2, 3, 5}-integers had a better perfor-
mance than the double-base method with {2, 3}-integers. This implies that quadruple-
base and quintuple-base methods may lead to a better performance than the
triple-base method. However, we should also note that the improvement decreas-
es with a higher-base method. This is because the improvement from single-base
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Table 6. Running Time Comparison Between Single-base and Multi-base Methods

254-bit 382-bit 521-bit

t % t % t %

Binary 618.24 1121.56 2132.3
(2)NAF 544.52 1025.42 1864.24

(2, 3)greedy 545.71 −0.22 1034.57 −0.89 1867.16 −0.16
ternary/binary 475.45 12.68 874.45 14.72 1562.54 16.18
(2, 3)NAF 479.01 12.03 878.38 14.34 1566.15 15.99
(2, 3)tree 477.20 12.36 877.53 14.42 1563.37 16.14

(2, 3, 5)NAF 469.86 13.71 855.31 16.60 1527.33 18.07
(2, 3, 5)tree 465.18 14.57 849.76 17.13 1522.31 18.34

t: The average running time in µs.

%: The improvement percentage in comparison to (2)NAF.

to double-base methods was higher than the improvement from double-base to
triple-base methods. As a result, we conclude that 7P and 11P dedicated formu-
las seem impractical to use with the multi-base methods since they only achieve
a minor improvement.

Lastly, we found that the greedy method with {2, 3}-integers is impractical
for implementation for two reasons. The first reason is that it requires extra
set-up time to find the best upper bound (amax, bmax). We found that the upper
bounds (140, 73), (210, 109), and (290, 146) are approximately the best value for
254-bit, 382-bit, and 521-bit integers respectively. In contrast, other multi-base
methods do not require extra set-up time to find the best upper bound.

The second reason it is impractical is the converting time. We did not have
an efficient way to find the best approximation for integer t in terms of a {2, 3}-
integer. However, we tried the best available solutions. We used the line search al-
gorithm [39, 7]. Another option is to use a look-up table [16]. However, a look-up
table requires an offline pre-computation and extra memory space. In contrast,
the converting times in other multi-base methods are more efficient and do not
require offline pre-computations. This is because they use a dynamic approach
to convert integer t to a multi-base chain.

4.2 Experiment II

The goal of Experiment II was to compare the tree/bucket and the DAG/bucket
methods. We wanted to measure the bucket-size impact of the bucket methods on
the chain cost and the time to find the chain. We implemented the DAG/bucket
and tree/bucket methods with {2, 3}-integers by using Algorithm 1 and Algo-
rithm 2 respectively. We focused on 254-bit integers. We present the results of
Experiment II in Figure 2. It shows the bucket-size impact of bucket methods
on the chain cost and the time to find the chain.

Results of Experiment II We obtained three main results from Experiment
II. First, the bucket methods use the bucket-size to balance the chain cost and
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Fig. 2. Experimental Comparison Between Tree/bucket and DAG/bucket Methods

the time to find the chain. We noted that when the bucket-size increases, the
chain cost gradually decreases and the time to find a chain gradually increases.
The largest improvement of the chain cost in the bucket methods was when
bucket-size = 2. The improvement of the chain cost became minor when bucket-
size > 4. As a result, we concluded that the bucket methods seem more practical
when the bucket-size is selected from 2 to 4.

Second, the DAG/bucket method produces a lower chain cost than the tree/bucket
method. However, the DAG/bucket method also requires more time to find a
chain. This is due to the ways these methods generate new nodes, as explained
in Section 3. We also saw that the tree/bucket method with bucket-size = ∞
cannot produce a lower chain cost than the DAG/bucket method with bucket-
size > 1. This implies that the tree-based method with unbound-size does not
produce an optimal chain nor a near optimal chain, as Table 7 shows.

Table 7. Experimental Comparison Between Optimal and Near Optimal Chains

254-bit

l m t

(2, 3)tree/bucketsize=∞ 51.01 2070.73
(2, 3)DAG/bucketsize=4 51.54 2040.01 4008.17
(2, 3)rDAG-based 49.61 2035.56 14941.53

l: The average chain length.

m: The average chain cost.

t: The average running time in µs.

Third, a near optimal chain in the DAG/bucket method can be reached in
significantly less time than an optimal chain. We noted that the near optimal
chain for the DAG/bucket method could be reached when bucket-size = 4. This
is because the average chain cost of the rDAG-based method, which produces
an optimal chain, is 2035.56M and the average chain cost of the DAG/bucket



18 Saud Al Musa and Guangwu Xu

method when bucket-size = 4 is 2040.01M. Therefore, the difference between
them is less than DBL cost. We also noted that the near optimal chain of the
DAG/bucket method sped up the performance 73.17% in comparison to the
optimal chain. This is because the time to reach an optimal chain in the rDAG-
based method is 14941.53µs and the time to reach a near optimal chain in the
DAG/bucket method is 4008.17µs, as Table 7 shows.

5 Conclusion

In this paper, we consider the efficiency problem of scalar multiplication for
elliptic curves over finite fields with a twofold focus. Our first focus was to
derive several efficiently computable formulas for the class of twisted Edwards
curves over prime fields. We proposed 2Q + P and 5P formulas in standard
projective coordinate systems. To the best of our knowledge, the 2Q+P formula
given in this paper is the first dedicated formula for twisted Edwards curves. It
saves about 2.8 field multiplications, compared to a non-dedicated formula. Our
5P formula improves on the best one in the literature [26] by about 4.2 field
multiplications. Our 2Q + P saves 3 field squarings and our 5P saves about
2 field multiplications, compared to 2Q + P and 5P in Jacobian Weierstrass
(a = −3) coordinates. In addition, using the pre-computation concept, we were
able to compute P +Q with one less field multiplication.

Our second focus dealt with the efficiency of generating MBNS chains. We
formulated bucket methods for the DAG-based and the tree-based abstract ideas.
These proposed bucket methods systematically balance the chain quality and the
time to find the chain. We proposed finding a near optimal chain that relaxes
the requirement of a chain being optimal. This is because finding a near optimal
chain is more efficient than finding an optimal chain. We also demonstrated that
the tree-based method does not produce an optimal chain nor a near optimal
chain.

We conducted extensive experiments to compare the performance of the MB-
NS methods with respect to the average chain cost and the average running time.
We used the running time to evaluate the two phases of the methods: the con-
verting phase and the performing phase. We used the chain cost to evaluate
only the performing phase of the methods. The investigated MBNS methods
were the greedy, the ternary/binary, the multi-base NAF, the tree-based, the
rDAG-based, and the bucket. Our proposed P + Q, 2Q + P , and 5P formulas
were utilized in these MBNS methods. Our results showed that the MBNS meth-
ods without pre-computation had an approximately 12% to 16% lower average
chain cost than the NAF method. Except for the greedy method, they showed
that the MBNS methods had an approximately 12% to 18% faster average run-
ning time. They showed that the MBNS methods with pre-computation could
further lower the average chain cost and affect the average running time.
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6 Appendix A: Formulas

This appendix shows the operation counts for P + Q, 2P , and 3P formulas
represented in standard twisted Edwards coordinates. These formulas can be
found in [2, 4]. However, we use different notations to present these formulas
because we want to unify the notations for the complete set P +Q, 2P , 3P , and
5P . Also, it is necessary to present these formulas here because the proofs of the
new 5P , and 2Q+ P formulas depend on these formulas.

Table 8. Operation Counts for P +Q in Standard Twisted Edwards Coordinates

Formula terms Operation counts

F = (Z1 · Z2)2 − d ·X1 ·X2 · Y1 · Y2 4M+1Md+1S
X3 = Z1Z2 · F ·

(
(X1 + Y1) · (X2 + Y2)−X1X2 − Y1Y2

)
3M

Y3 = Z1Z2 · F̄ · (Y1Y2 − a ·X1X2) 2M+1Ma

Z3 = F · F̄ 1M

10M+1Md+1Ma+1S

F̄ is the conjugate of F .

Table 9. Operation Counts for 2P in Standard Twisted Edwards Coordinates

Formula terms Operation counts

T = Y 2
1 + a ·X2

1 1Ma + 2S
X2 =

(
(X1 + Y1)2 −X2

1 − Y 2
1

)
· (T − 2Z2

1 ) 1M + 2S
Y2 = −T · T̄ 1M
Z2 = T · (T − 2Z2

1 ) 1M

3M + 1Ma + 4S

T̄ is the conjugate of T .

Table 10. Operation Counts for 3P in Standard Twisted Edwards Coordinates

Formula terms Operation counts

T = Y 2
1 + a ·X2

1 1Ma + 2S
A = T · T̄ + 2Y 2

1 · (T − 2Z2
1 ) 2M + 1S

B = T T̄ − 2aX2
1 · (T − 2Z2

1 ) 1M
X3 = X1 ·A · Ā 2M
Y3 = −Y1 ·B · B̄ 2M
Z3 = Z1 ·A ·B 2M

9M + 1Ma + 3S

T̄ , Ā, and B̄ are the conjugates of T,A, and B respectively.
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7 Appendix B: Proofs

7.1 Proof of Theorem 1

Proof. We shall prove Theorem 1 by the fact

(X2Q+P , Y2Q+P , Z2Q+P ) = (X2Q, Y2Q, Z2Q) + (XP , YP , ZP ).

From the P +Q formula in Table 8, We have

F = (ZPZ2Q)2 − dXPYPX2QY2Q.

We substitute X2Q, Y2Q, Z2Q with their equivalent terms in Table 9. We have

T = Y 2
Q + aX2

Q.

F =
(
ZPT (T − 2Z2

Q)
)2

+ dXPYP 2XQYQ(T − 2Z2
Q)T T̄

= T (T − 2Z2
Q)
(
Z2
PT (T − 2Z2

Q) + dXPYP 2XQYQT̄
)
.

From the P +Q formula, we have

X2Q+P = ZPZ2QF (XPY2Q + YPX2Q).

Y2Q+P = ZPZ2QF̄ (YPY2Q − aXPX2Q).

Z2Q+P = FF̄ .

We cancel Z2Q by the facts x2Q+P = X2Q+P /Z2Q+P and y2Q+P = Y2Q+P /Z2Q+P .
We have

F = Z2
PT (T − 2Z2

Q) + dXPYP 2XQYQT̄ .

X2Q+P = ZPF (XPY2Q + YPX2Q).

Y2Q+P = ZP F̄ (YPY2Q − aXPX2Q).

Z2Q+P = FF̄ .

For X2Q+P , we substitute X2Q, Y2Q with their equivalent terms. We have

G = 2XQYQ(T − 2Z2
Q).

X2Q+P = ZPF
(
XP (−T T̄ ) + YPG

)
.

= F
(
− T T̄XPZP + YPZPG

)
.

= F
(
(G+XPZP )(YPZP − T T̄ ) +GTT̄ −XPYPZ

2
P

)
.

For Y2Q+P , we substitute X2Q, Y2Q with their equivalent terms. We have

Y2Q+P = ZP F̄
(
YP (−T T̄ )− aXPG

)
.

= F̄
(
− T T̄YPZP − aXPZPG

)
.

= F
(
(G+ YPZP )(−aXPZP − T T̄ ) +GTT̄ + aXPYPZ

2
P

)
.ut
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7.2 Proof of Theorem 2

Proof. We shall prove Theorem 2 by the fact 5P = 2P + 3P . From the P + Q
formula shown in Table 8, we have

F = (Z2 · Z3)2 − dX2X3Y2Y3.

We substitute X2, Y2, Z2, X3, Y3, Z3 with their equivalent terms in Table 9 and
Table 10. We have

F =
(
T (T − 2Z2

1 )Z1AB
)2 − 2dX2

1Y
2
1 (T − 2Z2

1 )AĀT T̄BB̄.

From the curve equation dX2
1Y

2
1 = Z2

1 (T − Z2
1 ), we have

F =
(
T (T − 2Z2

1 )Z1AB
)2 − 2Z2

1 (T − Z2
1 )(T − 2Z2

1 )AĀT T̄BB̄

= T (T − 2Z2
1 )Z2

1AB
(
T (T − 2Z2

1 )AB − 2(T − Z2
1 )ĀT̄ B̄

)
.

From the P+Q formula, we have

X5 = Z2Z3F (X2Y3 + Y2X3).

Y5 = Z2Z3F̄ (Y2Y3 − aX2X3).

Z5 = FF̄ .

We cancel Z2Z3 by the facts x5 = X5

Z5
and y5 = Y5

Z5
. We have

F = T (T − 2Z2
1 )AB − 2(T − Z2

1 )ĀT̄ B̄.

X5 = F (X2Y3 + Y2X3).

Y5 = F̄ (Y2Y3 − aX3X2).

Z5 = Z1FF̄ .

For X5, we substitute X2, X3, Y2, X3 with their equivalent terms. We have

X5 = F
(
− 2X1Y1(T − 2Z2

1 )Y1BB̄ − T T̄X1AĀ
)

= X1F
(
− T T̄AĀ− 2Y 2

1 (T − 2Z2
1 )BB̄

)
.

Let C̄ = −T T̄X1AĀ − 2X1Y
2
1 (T − 2Z2

1 )BB̄. Then C = F where C̄ is the
conjugate of C. Thus, we have

X5 = X1CC̄.

For Y5, we also substitute X2, X3, Y2, Y3 with their equivalent terms. We have

Y5 = F̄
(
T T̄Y1BB̄ − aX1AĀ2X1Y1(T − 2Z2

1 )
)

= Y1F̄
(
T T̄BB̄ − 2aX2

1AĀ(T − 2Z2
1 )
)
.

Let D̄ = T T̄BB̄ − 2aX2
1AĀ(T − 2Z2

1 ). Then D = F̄ where D̄ is the conjugate
of D. Thus, we have

Y5 = Y1DD̄.

For Z5, we use the relations F = C and F̄ = D. Thus, we have

Z5 = Z1CD.ut
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8 Appendix C: Algorithms

Algorithm 3 and Algorithm 4 show that point tripling (TPL), and point quin-
tupling (QPL) in standard twisted Edwards coordinates need only 2 temporary
variables. See Table 10 and Table 4 for the 3P and the 5P formulas.

Algorithm 3 Point Tripling
Input: P = (X,Y, Z)
Output: 3P = (X3, Y3, Z3)
X3 = Y 2

Y3 = X2

Y3 = a ·X3

Z3 = X3 + Y3

T1 = X3 − Y3

T1 = T1 · Z3

T2 = Z2

T2 = T2 + T2

T2 = Z3 − T2

X3 = X3 +X3

X3 = X3 · T2

Y3 = Y3 + Y3

Y3 = Y3 · T2

Z3 = T1 +X3

X3 = T1 −X3

X3 = X3 · Z3

T2 = T1 − Y3

Y3 = T1 + Y3

Y3 = Y3 · T2

Z3 = Z3 · T2

Z3 = Z · Z3

X3 = X ·X3

Y3 = Y · Y3

Y3 = −Y3

return: (X3, Y3, Z3)

Algorithm 4 Point Quintupling
Input: P = (X,Y, Z)
Output: 5P = (X5, Y5, Z5)
Z5 = Y 2

Y5 = X2

Y5 = a · Y5

X5 = Z5 + Y5

T1 = Z2

T1 = T1 + T1

T1 = X5 − T1

Z5 = Z5 + Z5

Y5 = Y5 + Y5

Z5 = Z5 · T1

T1 = Y5 · T1

Y5 = X5 − Y5

Y5 = Y5 ·X5

X5 = Y5 + Z5

T2 = Y5 − Z5

X5 = X5 · T2

T2 = Y5 − T1

Y5 = Y5 + T1

Y5 = T2 · Y5

T2 = T2 + T1

T1 = T1 ·X5

Z5 = Z5 · Y5

X5 = T2 ·X5

X5 = −X5

Y5 = T2 · Y5

T2 = X5 + Z5

X5 = X5 − Z5

X5 = T2 ·X5

X5 = X ·X5

Z5 = Y5 + T1

Y5 = Y5 − T1

Y5 = Z5 · Y5

Y5 = Y · Y5

Z5 = T2 · Z5

Z5 = Z · Z5

return: (X5, Y5, Z5)
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9 Appendix D: Examples

9.1 DAG/bucket method

We want to find a chain for t = 13 using the DAG/bucket method with {2, 3}-
integers. Assume the cost of ADD = 2, DBL = 1, TPL = 2. Algorithm 1
creates the following buckets:

cost nodes
0 (13, (0, 0, 0), (0, 0), (0, 0))
3 (6, (1, 1, 0), (3, 0), (0, 0)), (7, (−1, 1, 0), (3, 1), (0, 0))
4 (3, (0, 1, 0), (4, 0), (3, 0)), (4, (1, 0, 1), (4, 1), (0, 0))
5 (2, (0, 0, 1), (5, 0), (3, 0))
6 (1, (0, 0, 1), (6, 0), (4, 0)), (3, (1, 1, 0), (6, 1), (3, 1)), (4, (−1, 1, 0), (6, 2), (3, 1))
7 (1, (1, 1, 0), (7, 0), (4, 0)), (2, (1, 0, 1), (7, 1), (3, 1))
8 (1, (1, 0, 1), (8, 0), (4, 1))
9 (1, (−1, 0, 1), (9, 0), (5, 0))

Then, getting the chain steps can be accomplished by the following Horner’s
rule manner:
(1, (0, 0, 1), (6, 0), (4, 0)) =⇒ chain = 3
(3, (0, 1, 0), (4, 0), (3, 0)) =⇒ chain = (3)2
(6, (1, 1, 0), (3, 0), (0, 0)) =⇒ chain = ((3)2)2 + 1.
Thus, chain = 22 3 + 1 = 13.

9.2 Tree/bucket method

We want to find a chain for t = 29 using the tree/bucket method with {2, 3}-
integers. Algorithm 2 creates the following buckets:

length nodes
1 (29, (0, 0, 0), (0, 0))
2 (5, (−1, 1, 1), (0, 1)), (7, (1, 2, 0), (1, 1))
3 (1, (1, 2, 0), (0, 2))

Getting the chain steps can be accomplished by the following Horner’s rule
manner:
(1, (1, 2, 0), (0, 2)) =⇒ chain = 22 + 1
(5, (−1, 1, 1), (0, 1)) =⇒ chain = (22 + 1)2 3− 1
(29, (0, 0, 0), (0, 0)) =⇒ chain = (22 + 1)2 3− 1.
Thus, chain = 23 3 + 2 3− 1 = 29.


