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Abstract

Functional encryption (FE) is advanced encryption that enables us to issue functional decryption
keys where functions are hardwired. When we decrypt a ciphertext of a messagem by a functional
decryption key where a function f is hardwired, we can obtain f(m) and nothing else. We say FE is
selectively or adaptively secure when target messages are chosen at the beginning or after function
queries are sent, respectively. In the weakly-selective setting, function queries are also chosen at the
beginning. We say FE is single-key/collusion-resistant when it is secure against adversaries that are
given only-one/polynomially-many functional decryption keys, respectively. We say FE is sublinearly-
succinct/succinct when the running time of an encryption algorithm is sublinear/poly-logarithmic in
the function description size, respectively.

In this study, we propose a generic transformation from weakly-selectively secure, single-key, and
sublinearly-succinct (we call “building block”) PKFE for circuits into adaptively secure, collusion-
resistant, and succinct (we call “fully-equipped”) one for circuits. We assume only the existence
of the building block PKFE for circuits. That is, our transformation relies on neither concrete
assumptions such as learning with errors nor indistinguishability obfuscation (IO). This is the first
generic construction of fully-equipped PKFE that does not rely on IO.

As side-benefits of our results, we obtain the following primitives from the building block PKFE
for circuits: (1) laconic oblivious transfer (2) succinct garbling scheme for Turing machines (3)
selectively secure, collusion-resistant, and succinct PKFE for Turing machines (4) low-overhead
adaptively secure traitor tracing (5) key-dependent-message secure and leakage-resilient public-key
encryption. We also obtain a generic transformation from simulation-based adaptively secure garbling
schemes that satisfy a natural decomposability property into adaptively indistinguishable garbling
schemes whose online complexity does not depend on the output length.

Keywords: Functional encryption, Adaptive security, Succinct encryption, Adaptive garbled
circuit, Laconic oblivious transfer
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1 Introduction

1.1 Background

Achieving stronger cryptographic primitives by using weaker ones is one of the central and fundamental
tasks in cryptography. We would like to minimize assumptions to achieve more secure and advanced
cryptography. A typical example is how to achieve IND-CCA secure public-key encryption from IND-CPA
secure one [NY90, DDN00, Sah99]. The objective of this study is showing how to achieve more secure
and efficient functional encryption (FE) from less secure and efficient one in a generic way.

FE [BSW11] is encryption that enables us to issue functional decryption keys skf where a function f
is hardwired. We can decrypt a ciphertext ctm of a message m by using skf . A notable feature of FE is that
we obtain f(m) and nothing else when we decrypt ctm by skf . If we can encrypt messages by a public-key
(resp. a master secret key), then we call public-key (resp. secret-key) FE (PKFE and SKFE for short).
FE can control what information of messages can be given to owners of functional decryption keys by
using various functions. Moreover, FE is a versatile tool to achieve useful cryptographic primitives such
as trapdoor permutations, universal samplers, non-interactive multi-party key-exchange [GPSZ17]. The
most prominent application of FE is achieving indistinguishability obfuscation (IO) [BGI+12, GGH+16]
from FE [AJ15, BV15, BNPW16, KS17, KNT18a].

There are three main performance measures of FE. One is the number of issuable functional decryption
keys. Another is the level of security. The other is the size of an encryption circuit. If an FE scheme can
securely release one/polynomially-many functional decryption key/s, we call it a single-key/collusion-
resistant scheme. Roughly speaking, an FE scheme is secure if adversaries cannot distinguish whether a
target ciphertext is an encryption of m0 or m1 chosen by them. In the security game, adversaries can send
functional decryption key queries and receives skf for queried f as long as f(m0) = f(m1). If adversaries
are required to commit target messages (m0,m1) (resp. and queries f1, . . . , fq) at the beginning of the
game, we call it selective (resp. weakly selective) security. If adversaries can decide target messages after
they send functional decryption key queries1, then we call it adaptive security. The size of an encryption
circuit must depend on the length of messages to be encrypted. Moreover, the size might depend on
the size of functions supported by the scheme as several known FE schemes do [SS10, GVW12]. The
dependence on the size of functions should be as low as possible to achieve better efficiency. FE is called
succinct/sublinearly-succinct if the dependence is logarithmic/sublinear.

It is desirable to achieve the best properties of all performance measures simultaneously. Therefore,
the following question is natural.

Can we achieve adaptively secure, collusion-resistant, and succinct PKFE for circuits by using only
weakly-selectively secure, single-key, and sublinearly-succinct one?

This question has been extensively studied [ABSV15, BV15, AJS15, GS16, LM16, HJO+16, JSW17,
GS18], but all previous studies gave only partial answers. In this study, we give an affirmative answer to
the open question above, which was clearly stated by Garg and Srinivasan [GS16]. We sometimes call
the building-block and goal-primitive in the question above obf-minimum2 and fully-equipped PKFE,
respectively in this paper.

One might wonder why we do not start with weakly-selectively secure, single-key, and non-succinct FE.
This is because there is a huge gap between non-succinct FE and sublinearly-succinct one. We know that
sub-exponentially-secure sublinearly-succinct FE implies IO for circuits [AJ15, BV15, GS16, KNT17a,
KNT17b, KNT18b, KNT18a]. We also know that non-succinct PKFE (resp. SKFE) is achieved by plain
public-key encryption (resp. one-way function) [SS10, GVW12]. It is unlikely that we can achieve IO
from plain public-key encryption.Thus, we start with sublinearly-succinct FE. We also emphasize that

1Of course, adversaries can send queries after they decided a pair of target messages.
2See the subsequent paragraph for the reason of naming “obf-minimum”.
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we focus on transformations with polynomial security loss in this study. If sub-exponential security loss
is allowed, we can achieve IO from obf-minimum SKFE/PKFE. We rely on neither sub-exponential
security nor IO in this study. We stress that avoiding sub-exponential security loss is one of big issues in
cryptography. Sub-exponential security loss significantly degrades security and efficiency of cryptographic
schemes in general. In particular, in the area of obfuscation-based (or FE-based) cryptography, avoiding
sub-exponential security loss has been actively studied [GS16, GPS16, GPSZ17, LZ17, ACH18].

Hereafter, we use the following notations. Relationships between different notions of PKFE and
SKFE are parameterized by (#ct,#key, sec, eff). Here, #ct ∈ {1ct, unbct},#key ∈ {1key, unbkey}
denote the number of ciphertexts/functional-decryption-keys: unb means unbounded polynomially many,
sec ∈ {w-sel, sel, ada} denotes weakly-selective, selective or adaptive security, eff ∈ {ns, sls, fs} denotes
the efficiency: ns, sls, and fs denote non-succinct, sublinearly-succinct, and succinct, respectively. In the
case of PKFE, we omit #ct3.

KnownTransformations forBetter Security andEfficiency. There are several techniques to strengthen
security and/or improve the efficiency of FE. Ananth, Brakerski, Segev, and Vaikuntanathan [ABSV15]
presented a transformation from selectively secure FE to adaptively secure FE. Unfortunately, this
transformation does not preserve (sublinear-)succinctness. This is because the transformation uses a
(unbkey, 1ct, ada, ns)-SKFE scheme4 [GVW12] as a key building block. Garg and Srinivasan [GS16],
and Li and Micciancio [LM16] presented transformations from single-key and sublinearly-succinct PKFE
to collusion-resistant one. More specifically, the transformation by Garg and Srinivasan [GS16] is
from (1key,w-sel, sls)-PKFE to (unbkey, sel, fs)-PKFE. However, these transformations do not preserve
adaptive security. Ananth, Jain, and Sahai [AJS15] and Bitansky and Vaikuntanathan [BV15] presented
a transformation from (unbkey, sel, ns)-PKFE to (unbkey, sel, fs)-PKFE. This transformation also does
not preserve adaptive security. Ananth and Sahai [AS16] presented a transformation (denoted by AS16
transformation) from (unbkey, sel, fs)-PKFE for circuits to (unbkey, ada, fs)-PKFE for Turing machines
(TMs) by using (1key, 1ct, ada, fs)-SKFE for TMs. If the building block (1key, 1ct, ada, fs)-SKFE is for
circuits, then the transformation also works and we obtain the resulting PKFE for circuits. The difference
from the transformation by Ananth et al. [ABSV15] is that we can start with (1key, 1ct, ada, fs)-SKFE.
AS16 transformation is the closest to what we want, but not satisfactory since it uses IO (that is,
sub-exponentially secure FE). All these transformations sacrifice either adaptive security or succinctness
or rely on IO. Thus, the transformation in the question above has been a famous open problem in the area
of FE.

Crucial Ingredient: Adaptive Garbling. As we saw above, if we can obtain (1key, 1ct, ada, fs)-SKFE
for circuits from (1key,w-sel, sls)-PKFE, then we resolve the open question above by using the transforma-
tions of Garg and Srinivasan [GS16] and Ananth and Sahai [AS16]. In fact, (1key, 1ct, ada, fs)-SKFE for
circuits is essentially the same as adaptively indistinguishable garbling schemes (indistinguishability-based
definition [JSW17]) whose online computational complexity is poly(log |C|, n, λ) where C is a circuit to
be garbled, n is the input length of C, and λ is the security parameter5. We call garbling schemes whose
online computational complexity is poly(log |C|, n, λ) circuit-succinct garbling schemes.6 Thus, we
focus on adaptive and circuit-succinct garbling schemes.

3In the case of PKFE, #ct is trivially unb.
4In the setting of SKFE, only an entity that has a master secret-key can generate ciphertexts. Thus, adversaries is allowed to

send messages as queries and receives ciphertexts in its security game. When adversaries can send one/polynomially-many
message(s), we say one/many-ciphertext SKFE.

5In fact, there are subtle issues to transform a garbling scheme into a single-key and single-ciphertext SKFE (the opposite is
easy). See Section 5.3 for more details.

6Note that this is different from succinct garbling schemes [AL18, BCG+18] since ours is for circuits while succinct garbling
schemes are for TMs.
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Several adaptively secure garbling schemes have been proposed [BHR12, HJO+16, JW16, JSW17,
JKK+17, GS18]. The garbling scheme of Bellare, Hoang, and Rogaway is not circuit-succinct, that is,
the online computational complexity is poly(|C|, λ). The garbling scheme of Hemenway, Jafargholi,
Ostrovsky, Scafuro, and Wichs [HJO+16] achieves online computational complexity (n+m+w)poly(λ)
where n,m, and w are the input length, output length, and width of a circuit to be garbled, respectively
(they also presented a garbling scheme for NC1 circuits whose complexity is (n+m)poly(λ)). Jafargholi,
Scafuro, and Wichs [JSW17] presented an adaptively indistinguishable garbling scheme whose online
computational complexity is (n+ w)poly(λ). The garbling scheme of Garg and Srinivasan [GS18] (we
call GS18 scheme in this paper) achieved online computational complexity O(n+m) + poly(log |C|, λ).
Others [JW16, JKK+17] are garbling scheme for NC1 circuits. None of these is satisfactory for our goal
since the complexity depends on a polynomial of |C|, w, d, orm.

GS18 scheme is closest to what we want. However, there are two issues as follows.

1. GS18 scheme is based on a concrete assumption (the CDH, LWE, or factoring assumptions). More
specifically, the scheme is based on updatable laconic oblivious transfer (LOT) [CDG+17], which
is achieved by the CDH, LWE, or factoring assumptions [CDG+17, BLSV18, DGHM18].

2. GS18 scheme is simulation-based secure. Therefore, the online computational complexity must be
at least linear inm since Applebaum, Ishai, Kushilevitz, and Waters [AIKW15] showed the lower
bound of online complexity for simulation-based secure garbled circuits.

Getting Rid of the Dependence onOutput Length. If we can generically transform a simulation-based
adaptively secure garbling scheme whose online computational complexity is poly(n,m, g(|C|), λ) where
g(·) is some function (such as log(·)) into an adaptively indistinguishable garbling scheme whose online
computational complexity is poly′(n, g(|C|), λ), then we can solve the second issue explained above by
using GS18 scheme [GS18] as a building block. In fact, Jafargholi et al. left such a transformation as an
open problem [JSW17]. We quote their sentence in a footnote.7 This open question is related to our main
question since (1key, 1ct, ada, fs)-SKFE is the crucial ingredient as explained above.

1.2 Our Contributions

We solved the open problem explained in the previous section. In particular, we prove the following
theorem.

Theorem 1.1 (Main theorem). Assume that there exists weakly-selectively secure, single-key, and
sublinearly-succinct PKFE for circuits, then there exists adaptively secure, collusion-resistant, and
succinct PKFE for circuits.

Note that all our constructions and transformations in this study incur only polynomial security loss.
To obtain our crucial ingredient, (1key, 1ct, ada, fs)-SKFE, we will prove the (informal) theorems below,
which are of independent interests, and construct an adaptively secure garbling scheme whose online
computational complexity is poly(log |C|, n, λ) by combining (a variant of) GS18 scheme.

Theorem 1.2 (Informal, see Theorem 4.8). Assume that there exists (1key,w-sel, sls)-PKFE for circuits,
then there exists updatable laconic oblivious transfer.

That is, we can generically construct updatable LOT from obf-minimum FE. This solves the first
issue of GS18 scheme. This itself is interesting since this is the first construction of LOT that relies on

7Jafargholi et al. wrote “It remains an open problem whether it is possible to show a more general transformation from
garbled circuits with adaptive security (and maybe other natural properties) to garbled circuits with indistinguishability based
adaptive security and online complexity independent of the output size.”[JSW17]
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neither specific number theoretic assumptions nor IO.8 Therefore, we obtain an adaptively secure garbling
scheme whose online computational complexity is O(n + m) + poly(log |C|, λ) from obf-minimum
PKFE via GS18 scheme. Note that, to achieve this, we need some tweaks for the garbling scheme since
the security level of our updatable LOT is slightly weaker than that used in GS18 scheme. In fact, we
prove that such a weaker LOT is sufficient to achieve an adaptively secure garbling scheme that we need.
However, for simplicity, we give only informal theorems here. See Section 2 for more details.

We propose two solutions for the second issue of GS18 scheme. One is proposing an extension of
AS16 transformation [AS16] in the following theorem.

Theorem 1.3 (Informal, see Theorem 6.1). If there exists (unbkey, sec, eff)-PKFE for boolean circuits,
then there exists (unbkey, sec, eff)-PKFE for circuits where sec ∈ {w-sel, sel, ada} and eff ∈ {ns, sls, fs}.
This transformation preserves adaptive security and succinctness.

If we set m = 1 (that is, single-bit output) in adaptively secure garbling scheme whose online
computational complexity is O(n,m, log |C|, λ), then we obtain adaptively secure circuit-succinct
garbling scheme for boolean circuits. We plug this into AS16 transformation, and then we obtain
(unbkey, ada, fs)-PKFE for boolean circuits. Lastly, by applying the informal theorem above, we can
obtain fully-equipped PKFE. See the next section for more details. Note that it is easy to transform our
variant of GS18 scheme into (1key, 1ct, ada, fs)-SKFE for boolean circuits. See Section 5.3 for details.

The other is using the transformation in the following theorem.

Theorem 1.4 (Informal, see Theorem 7.8). Assume that there exists a simulation-based adaptively
secure garbling scheme whose online computational complexity depends on the output length of circuits
and that satisfies a natural decomposability property, then there exists an indistinguishability-based
adaptively secure garbling scheme whose online computational complexity does not depend on the output
length of circuits. The overhead of the transformation is not large, that is, the online complexity affected
by other parameters (|C|, n, and λ) do not change in an asymptotic sense.

Known adaptive garbling schemes satisfy the natural decomposability property. That is, we solve the
open question by Jafargholi et al. [JSW17]. Note that the first solution is much simpler than the second
one. However, the technique used in the transformation in Theorem 1.4 is related to other our techniques
in this study, and adaptively secure circuit-succinct garbling schemes are closely related to our goal as we
explained so far. Moreover, Theorem 1.4 solves the open problem presented by Jafargholi et al. [JSW17]
(We think this is of an independent interest). Therefore, we also include the second solution in this paper.

More Implications of Our Results. Ananth and Lombardi [AL18] proved that if there exists single-key
and succinct PKFE for circuits and one of CDH/LWE/factoring assumptions holds, then there exists
succinct garbling scheme for TMs. The concrete assumptions come from that they use LOT. We can
replace their LOT with our LOT based on FE9. Thus, we obtain the following corollary.

Corollary 1.5. If there exists (1key,w-sel, sls)-PKFE for circuits, then there exists a succinct garbling
scheme for TMs.

We also obtain the following corollary by combining with the known results [AS16, GS16].

Corollary 1.6. If there exists (1key,w-sel, sls)-PKFE for circuits, then there exists (unbkey, sel, fs)-PKFE
for TMs.

8Ananth and Lombardi present an LOT protocol based on IO [AL18].
9The security level of our LOT is sufficient for their purpose.
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That is, we remove the concrete assumptions from the theorems of Ananth and Lombardi.10 Agrawal
and Maitra [AM18] also proved that if there exists succinct PKFE for circuits, then there exists PKFE for
TMs. However, their PKFE for TMs supports only single/constant-bit output TMs. That is, our corollary
above improves their result since ours supports multi-bit output TMs.11

Nishimaki, Wichs, and Zhandry [NWZ16] presented a traitor tracing scheme that supports an
exponentially large identity space and whose ciphertext overhead is O(logn) where n is the length of
identities. Their scheme is based on fully-equipped PKFE that was instantiated by IO previously. Thus,
we obtain the following corollary.

Corollary 1.7. If there exists (1key,w-sel, sls)-PKFE for circuits, there exists an adaptively secure traitor
tracing scheme whose master key size is poly(logn), secret key size is poly(n), and ciphertext size is
|m|+ poly(logn) where |m| is the message length.

Brakerski, Lombardi, Segev, and Vaikuntanathan [BLSV18] presented a key-dependent-message
(KDM) secure and leakage-resilient PKE scheme based on batch encryption, which is essentially the
same as LOT. Thus, we obtain the following corollary (See the reference [BLSV18] for the details of
parameters in the statement).

Corollary 1.8. If there exists (1key,w-sel, sls)-PKFE for circuits, then there exists a PKE scheme that
satisfies (1) KDM security with respect to affine functions of the secret key and (2) leakage-resilience with
leakage rate 1− o(1).

To the best of our knowledge, except constructions based on IO [DGL+16, MPs16], all existing
generic constructions of PKE satisfying KDM security or leakage resilience of 1− o(1) rate assume some
algebraic property such as homomorphism to the underlying primitive. Our construction is a generic
construction of PKE satisfying the above security notions based on a polynomially secure primitive
without such algebraic properties.

2 Technical Overview

In this section, we give high level overviews of our techniques. We briefly summarize how to arrive at
fully-equipped PKFE from obf-minimum PKFE in Figure 1.

2.1 Laconic OT from Succinct PKFE

We first show an overview of our LOT protocol based on sublinearly succinct PKFE. More precisely, we
construct updatable LOT with arbitrary compression factor based on (1,w-sel, sls)-PKFE.

By the transformation of Cho et al. [CDG+17] and an observation by Ananth and Lombardi [AL18]12,
we can transform non-updatable LOT with compression factor 2 into updatable one with arbitrary
compression factor using Merkle tree. Thus, to achieve our goal, we can focus on constructing non-
updatable LOT with compression factor 2. Our first observation is that we might construct such LOT
based on IBE. In this overview, let the length of a database D be s, that is D ∈ {0, 1}s, and D[i] denotes
the i-th bit of D.

10Note that we cannot obtain an adaptively secure scheme in Corollary 1.6 since the succinct garbling for TMs by Ananth and
Lombardi is not adaptively secure.

11Note that their FE for TMs satisfies a stronger security notion called distributional indistinguishability than standard
indistinguishability.

12Cho et al.’s bootstrapping method is not sufficient for LOT whose security holds only when an adversary declares the
challenge database before seeing CRS. Therefore, we cannot use the bootstrapping method of Cho et al. directly to make our
selective-database (explained later) LOT updatable. However, we can use a minor variant of the bootstrapping method observed
by Ananth and Lombardi [AL18] to bootstrap selective-database LOT into updatable one.
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(1key,w-sel, sls)-
PKFE

(unbkey, sel, fs)-
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Ada-SIM
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Ada-IND Garbling-Opt
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(1key, 1ct, ada, fs)-
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(unbkey, ada, fs)-
PKFE

+

+Sec. 4

Sec. 5

Sec. 7

Sec. 7

Sec. 6
Sec. 5

Trivial

[AS16]

or

[GS16]

Figure 1: Illustration of the path from our starting point to the goal: In this figure, “SKFE boolean” denotes SKFE for
boolean circuits. “Updatable sd-LOT” denotes selective-database updatable laconic OT. Regarding garbling scheme,
“Garbling-Opt” denotes garbling schemes with nearly optimal online complexity and “Output-independence” denotes
the online complexity does not depends on output-length (See Sections 5 and 7 for more details). Ada-SIM/Ada-IND
denote simulation-/indistinguishability-based adaptively secure garbling schemes, respectively. Solid thin arrows
denote known or trivial implications. Thick solid and dotted arrows denote implications that we prove in this study.
Here, in the case of dotted lines, we assume specific properties of underlying tools. See each section for details.

Laconic OT Based on IBE and Its Problem. We first review the definition of LOT. An LOT consists
of four algorithms Gen,Hash, Send, and Receive. We generate a CRS crs using Gen. Hash, given crs
and a database D, outputs a short digest d and private state D̂. The algorithm Send, given d, a database
location L, and two messagesm0 andm1, outputs LOT’s ciphertext e. By using Receive, a receiver who
has the secret state D̂ can decrypt e and obtainmD[L]. For security, we require that an honest receiver
cannot obtain the other messagem1−D[L] even if he has D̂.

Our basic idea for how to construct LOT is as follows. When hashing a database D, we first generate
a master public-key and master secret-key (MPK,MSK) of IBE and ski,D[i] ← KG(MSK, i‖D[i]) for
every i ∈ [s]. Then, we set MPK as a digest of D and {ski,D[i]}i∈[s] as a secret state D̂. When
generating LOT’s ciphertext e for location L ∈ [s] and two messages m0 and m1, we generate
e = (Enc(MPK, L‖0,m0),Enc(MPK, L‖1,m1)). We see that a receiver who has D̂ = {ski,D[i]}i∈[s]
can obtainmD[L]. If the receiver honestly generates D̂ and deletes MSK, he cannot obtainmD[L] based
on the security of IBE. Moreover, if the size of a master public-key of IBE is independent of the identity
length, the size of a digest is also independent of the database size. This construction resembles the
one-time signature with encryption from IBE by Döttling and Garg [DG17].

The above construction seems to satisfy the syntactic and security requirement of LOT. However,
the construction has a problem that the hash procedure is randomized. Though the definition of LOT
by Cho et al. does not explicitly require that the hash algorithm be deterministic, we observe that the
hash algorithm needs to be deterministic for the security notion defined by Cho et al. [CDG+17] to be
meaningful. In fact, the above basic construction has a crucial problem that if a receiver computes a hash
value by himself, he obtains a master secret-key of IBE and can decrypt any ciphertext.

Moreover, it is not clear whether we can apply the bootstrap method proposed by Cho et al [CDG+17]
if the hash function of the underlying LOT is randomized. Their bootstrapping method implicitly assumes
the hash algorithm of the underlying LOT is deterministic.
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Derandomization Using IO. For the above reasons, we need to derandomize the hash algorithm of the
above construction. We can make the hash procedure of the above construction deterministic by using IO
and puncturable pseudorandom function (PRF) as follows.

In a modified construction, we generate a CRS by obfuscating a circuit that, given a database D, first
generates a random coin by using D and a puncturable PRF key and then perform the hash procedure of
the basic construction using the random coin. This circuit outputs a digest that is a master public-key of
IBE and secret state that is secret-keys of IBE corresponding to D, but not master secret-key.

We can prove the security of the modified construction based on the punctured programming technique
proposed by Sahai and Waters [SW14]. However, to complete the proof, we need to require an adversary
to declare the challenge database before seeing a CRS. This is because, in the security proof, we need to
generate a CRS as an obfuscated circuit that has the challenge database hardwired. This security notion
for LOT is weaker than that used by Garg and Srinivasan [GS18] to construct adaptive garbling scheme.

Selective-Database Security. In this work, we show that we can construct an adaptive garbling scheme
based on LOT whose security holds only when the challenge database is selectively determined. We call
an LOT scheme satisfying such a security notion selective-database LOT. Note that we allow an adversary
for LOT to adaptively choose the challenge location and messages. In fact, in our construction of adaptive
garbling scheme, we need LOT whose security holds even if the challenge messages are adaptively chosen.
In contrast, the security notion defined by Cho et al. [CDG+17] that requires an adversary to declare all
challenge instances before seeing CRS is not sufficient for our adaptive garbling scheme. In Section 2.2,
we explain this issue in more detail.

By weakening the required security notion to selective-database security, LOT no longer imply
collision-resistant hash function while the LOT satisfying an adaptive security notion used by Garg and
Srinivasan does. This weakening seems to be necessary to achieve LOT from IO due to the substantial
barrier that was shown by Asharov and Segev [AS15].

Replacing IO with Sublinearly Succinct PKFE. We can replace IO in the above construction with
sublinearly succinct PKFE by relying on the result shown by Liu and Zhandry [LZ17].

Liu and Zhandry generalized previous works [GPS16, GPSZ17, GS16], and showed we can replace
IO with decomposable obfuscation (dO) that can be based on polynomially secure (1,w-sel, sls)-PKFE if
the circuit pair to be obfuscated satisfies some condition. Roughly speaking, they showed that if there is a
polynomial size “witness” for the functional equivalence of a circuit pair to be obfuscated, IO can be
replaced with dO. One particular situation where this condition is satisfied is that in the security proof we
modify a circuit to be obfuscated so that it outputs a hardwired value for a single input and otherwise it
runs in the same way as the original one.

Using the terminology by Liu and Zhandry, hardwiring a single output for an input into a circuit
corresponds to decompose the circuit to the input. We explain this in more detail. Let C be a circuit of
3-bit input. For a bit string x of length less than 3, let Cx be a circuit C(x‖·), that is, C in which x is
hardwired as the first |x| bit of the input. We call such a circuit partial evaluation ofC. When decomposing
C to the input say 100, we represent C as the tuple of partial evaluations (C0, C11, C100, C101). When
considering C as a complete binary tree, (C0, C11, C100, C101) corresponds to the cover of minimum size
that contains 100. We see that computation of C on any input can be done using (C0, C11, C100, C101).
This is essentially the same as hardwiring a single output C(100) on input 100 into C.

Liu and Zhandry showed if C is obfuscated by dO, we can replace it with an obfuscated circuit
that is constructed from partial evaluations (C0, C11, C100, C101) without affecting the behavior of an
adversary. At a high level, this change can be done by removing C and embedding (C0, C11, C100, C101)
into functional keys of the underlying PKFE. Then, we can perform security proofs in a similar way as the
punctured programming.
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Consider a circuit of the form C(x) = C ′(x; FK(x)), where C ′ is a circuit, F is a PRF, and K
is a PRF key. For simplicity, let C be a circuit of 3 bit input as above. We show how to change the
distribution of C(100). By obfuscating C with dO, we can decompose C to 100, that is, we can replace
obfuscated C with obfuscated circuit constructed from (C0, C11, C100, C101). Next, we change FK(100)
with a truly random string. To accomplish this step, we require that FK(100) is pseudorandom even if
partial evaluations of FK(·) for 0, 11, and 101 are given. Liu and Zhandry call such PRF decomposing
compatible PRF and the construction of PRF by Goldreich, Goldwasser, and Micali [GGM86] satisfies
such a property. Once we can replace FK(100) with a truly random string, we can change the distribution
of C(100). Thus, we can complete the security proof.

Instantiating Our Construction with Sublinearly Succinct PKFE. The circuit to be obfuscated in
our construction is of the form C(x) = C ′(x; FK(x)), where C ′ is a circuit executes a setup and key
generation algorithm of IBE. In a similar manner as above, we can change the security game so that the
master public-key and secret-keys related to the challenge database are generated using a truly random
string. Then, we can prove the selective-database security of our LOT based on the selective security of
IBE. Note that in the reduction, the challenge identity in the security game of IBE isL∗‖1−D∗[L∗], where
D∗ and L∗ are challenge database and position in the security game of LOT. The identity L∗‖1−D∗[L∗]
depends on the choice of L∗ by an adversary for LOT. However, the reduction algorithm can guess the
location with the probability at least 1

s+1 , which is inverse polynomial. Thus, a selectively secure IBE is
sufficient for this construction.

Therefore, we can replace IO in our construction with dO, which can be based on (1key,w-sel, sls)-
PKFE. Moreover, selectively secure IBE can be constructed from (1key,w-sel, sls)-PKFE based on the
result by Garg and Srinivasan [GS16]. Their collusion-resistant PKFE based on (1key,w-sel, sls)-PKFE
can be used as an identity-based key encapsulation mechanism the size of whose master public-key is
independent of the length of identities.13 Thus, we can construct selective-database LOT based only on
(1key,w-sel, sls)-PKFE.

Comparison with the Construction by Ananth and Lombardi [AL18]. Ananth and Lombardi
showed a construction of LOT based on IO. As they noted, it seems difficult to replace IO in their
construction with polynomially secure PKFE. The reason why they need IO is that they constructed LOT
based on witness encryption [GGSW13] by modifying the construction proposed by Cho et al. [CDG+17].

Witness encryption based on IO is outside of the framework by Liu and Zhandry. Thus, we cannot
construct witness encryption from sublinearly succinct PKFE using the result by Liu and Zhandry. In fact,
it is believed to be hard to construct witness encryption based on some polynomially secure primitive
including PKFE [GGSW13].

2.2 Adaptive Garbling from Selective-Database Updatable Laconic OT

The adaptive garbling scheme by Garg and Srinivasan (we write GS18 scheme for short) is based on
adaptively secure updatable LOT [GS18], where adversaries can select a database after they see a CRS.
However, our LOT achieves only selective-database updatable LOT, where adversaries must commit a
database before a CRS is given. In fact, we prove that we can achieve an adaptive garbling scheme by
using a selective-database updatable LOT.

Where is the Adaptive Property of LOT Used in GS18 Scheme? In GS18 scheme, a database of an
updatable LOT is determined by an input x. More specifically, the current database is determined by x,
each intermediate wire values determined by x and each gate, and output values. A CRS crs of updatable

13To achieve 1
2 compression in our construction, it is sufficient that the size of a master public-key is logarithmic in the length

of identities. This requirement is more natural for IBE, and thus we assume only this mild condition in the actual construction.
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LOT is generated at the offline phase (i.e., when we generate a garbled circuit C̃) and crs is hardwired in
circuits to be garbled by selectively secure garbling. At this point, x might not be determined yet since we
consider the adaptive setting. Thus, a simulator must have crs before x (and a database) is fixed. This is
why Garg and Srinivasan used the adaptive security of LOT.

Overcoming the Issue. The issues is that we need crs at the offline phase. Our idea is deferring using
crs until we generate a garbled input (i.e., online phase). To look closer at our idea, we need to explain
more on GS18 scheme. In GS18 scheme, “step circuits” are garbled by selectively secure garbling. Each
step circuit has the description of each gate of the circuit C to be garbled by the adaptive garbling scheme.
Roughly speaking, a step circuit takes as input a digest d of updatable LOT and does the following two
procedures.

• Updating the database according to the output wire value of the gate computed from input x.

• Outputting encrypted labels of selectively secure garbling for the next gate via updatable LOT.

The important point is that crs of updatable LOT is hardwired in each step circuit to run Send and
SendWrite algorithms, which was explained in Section 2.1. This is the problem since we do not fix crs at
the offline phase. Here our idea comes in.

Instead of hardwiring crs in each step circuit, we define modified step circuits that take as input not
only digest d but also crs. Now crs is an input for step circuits. By this change, to generate (simulated)
garbled modified step circuits, we do not need crs. As a result, crs need not be determined at the offline
phase. In the construction, we put crs in the state information though we generate crs at the offline phase
in the construction. In the proof, a simulator can adaptively set the state information when the simulator
needs it since the state information is not revealed.

The CRS crs must be fixed when a garbled input x̃ is generated. However, at this point, input x and a
database were already determined. Therefore, we can use the selective-database security of updatable
LOT because, in the simulation, an adversary of updatable LOT can simulate garbled step circuits without
crs, and when x is fixed, the adversary fixes a database based on x and can receive crs in the reduction.
This is the main idea behind our adaptive garbling scheme based on selective-database updatable LOT.

Although we can generate crs at the online phase, we select that we put crs in the state information for
better online complexity and compatibility with the transformation given in Section 7.

Note that, to make our proof work, reduction algorithms attacking updatable LOT need to set the
challenge messages as values computed by using CRS. That is, we allow the challenge messages to depend
on the CRS. This is why we introduce a new security notion selective-database security for LOT. Our
LOT satisfies this security.

From Adaptive Garbling to Adaptively Secure 1-key 1-ciphertext SKFE. By combining two trans-
formations explained in this section and the previous section, we obtain an adaptive garbling scheme
whose online complexity is O(n+m) + poly(log |C|, λ) based on (1key,w-sel, sls)-PKFE. Especially,
by restricting circuits supported by garbling schemes to boolean circuits (circuits of single-bit output), we
obtain an adaptive garbling scheme whose online complexity is O(n) + poly(log |C|, λ) based on the
same assumption.

In the next step, we use the transformation proposed by Ananth and Sahai [AS16]. In order to use their
transformation, we have to transform the constructed adaptive garbling scheme into (1key, 1ct, ada, fs)-
SKFE. Although adaptive garbling scheme with succinct online encoding and (1key, 1ct, ada, fs)-SKFE are
essentially the same primitives, there is a difference between them. The security game for (1key, 1ct, ada, fs)-
SKFE allows an adversary to make an encryption query and key query in arbitrary order while that for
adaptive garbling scheme requires an adversary to always make circuit query first. We can solve this issue
with a simple transformation using a one-time pad. We show the transformation after the construction of
adaptive garbling scheme in Section 5.
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2.3 From Single-Bit to Multi-Bit Succinct FE by Leveraging Collusion-Resistance

As explained in the previous section, we obtained (1key, 1ct, ada, fs)-SKFE for boolean functions from
(1key,w-sel, sls)-PKFE. By using (1key, 1ct, ada, fs)-SKFE for boolean functions in the transformation by
Ananth and Sahai [AS16], we obtain (unbkey, ada, fs)-PKFE for boolean functions. Here, we show that
we can transform (unbkey, ada, fs)-PKFE for boolean functions to one for functions with multi-bit outputs.

The transformation is very simple. We construct a PKFE scheme MultiPKFE for functions with
multi-bit outputs from a PKFE scheme OnePKFE for boolean functions as follows. The encryption
algorithm of MultiPKFE works completely in the same manner as that of OnePKFE. The key generation
algorithm of MultiPKFE, given a function f withm-bit output, first decomposes the function to {fi}i∈[m]
where fi is a function that computes the i-th bit of f(m) on input m. Then it generates decryption
keys skfi for the function fi for i ∈ [m] by the key generation algorithm of OnePKFE, and outputs
skf := {skfi}i∈[m]. The decryption algorithm of MultiPKFE, given a ciphertext CT of a message m and
a decryption key skf = {skfi}i∈[m], computes fi(m) for i ∈ [m] by using the decryption algorithm of
OnePKFE, and outputs f(m) = f1(m)‖ · · · ‖fm(m).

In the above construction, if OnePKFE is adaptively collusion-resistant, then MultiPKFE is also
adaptively collusion-resistant since a decryption key of MultiPKFE consists of a polynomial number
of decryption keys of OnePKFE. Moreover, the transformation also preserves the succinctness of a
ciphertext since a ciphertext of MultiPKFE consists of a ciphertext of OnePKFE.

We note that this transformation has not been explicitly pointed out before despite its simplicity.
Although researchers in this filed might already observe this transformation, we explicitly write it since to
the best of our knowledge, nobody explicitly claims.

By combining the transformation with the results of previous sections, we obtain fully-equipped
PKFE for all polynomial-size functions from (1,w-sel, sls)-PKFE.

2.4 Adaptively Indistinguishable Garbling with Near-Optimal Online Complexity

Weexplained how to construct fully-equippedPKFE for all polynomial-size functions from (1key,w-sel, sls)-
PKFE through Section 2.1, 2.2, and 2.3. As mentioned in Section 1, we have another option to achieve
it.

In the option, after constructing adaptive garbling scheme as explained in Section 2.2, we transform it
into adaptively indistinguishable garbling with near-optimal online complexity. More specifically, we
construct an adaptively indistinguishable garbling scheme whose online complexity only logarithmically
depends on the size of a circuit being garbled, and does not depend on the output length of the circuit.
Similarly to adaptive garbling scheme, adaptively indistinguishable garbling with such online complexity
can be easily transformed into (1key, 1ct, ada, fs)-SKFE for (multi-bit output) circuits using one-time pad.
Thus, by using the transformation by Ananth and Sahai [AS16] with the resulting (1key, 1ct, ada, fs)-SKFE,
we obtain fully equipped PKFE for circuits.

We can generalize the transformation from adaptive garbling scheme into adaptively indistinguishable
garbling that removes the dependence on the output-length of online encoding so that it captures not only our
(and GS18) adaptive garbling scheme but also those proposed by Hemenway et al. [HJO+16] and Jafargholi
and Wichs [JW16]. Thus, this transformation solves the open question posed by Jafargholi et al. [JSW17].
Here, we give an overview of the transformation.

Basic Idea. Our starting point is the simulation-based adaptive garbling given in Section 5 (or in
[GS18]), which we denote by adGC′gs. Recall that the online communication complexity of adGC′gs
is n + m + poly(λ, log |C|) where C is the circuit being garbled with n-bit input and m-bit output.
Especially, we remark that if we only consider circuits of 1-bit output, then the online communication
complexity is n+ poly(λ, log |C|). Our first attempt is to decompose a circuit ofm-bit output to circuits
of 1-bit output, and garble each of them by using adGC′gs. Namely, for garbling a circuit C of m-bit
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output, we garble Ci, which is a circuit that outputs the i-th bit of an output of C, for each i ∈ [m]. For an
input x, the input garbling algorithm generates a single garbled input x̃ by adGC′gs.

At first glance, this idea would lead to a garbling scheme with online communication complexity
n+ poly(λ, log |C|) since we only garble circuits of 1-bit input. However, this idea does not work since
a garbling scheme is defined so that 1 garbled input is associated with 1 garbled circuit whereas we
need a variant of garbling scheme where 1 garbled input is associated with multiple garbled circuits.
Here, we notice that such a variant of garbling scheme can be seen as a single-key SKFE (with function
privacy14) by interpreting garbled circuits and garbled inputs as ciphertexts and decryption keys of SKFE,
respectively. By this interpretation, the online communication and computational complexity as garbling
are translated into the secret key length and running time of key generation, and the size of a circuit being
garbled is translated into the message length. Based on this observation, we can see that what we need to
construct an adaptively indistinguishable garbling with succinct online complexity is an adaptively secure
single-key SKFE scheme with succinct decryption key and key generation in the sense that they only
logarithmically depend on the message-length.

Single-Key SKFEwith Succinct Decryption Key and Key Generation. Our idea to construct such an
SKFE scheme is to plug adGC′gs into the construction of adaptively secure single-key SKFE by Gorbunov,
Vaikuntanathan and Wee [GVW12].15 We first briefly review their construction. In their construction, for
a message m, the encryption algorithm garbles the universal circuit U(m, ·), which is given a description
of a function f as input and outputs f(m), by Yao’s garbling scheme to generate a garbled circuit Ũ
along with labels that are needed to evaluate the garbled circuit. Then it encrypts Ũ and labels by a
secret-key non-committing encryption for receiver (SK-NCER) to generate a ciphertext of the SKFE
scheme.16 Here, SK-NCER is a special type of SKE in which we can generate a “fake” ciphertext that
can be opened to any message that is later chosen along with a corresponding “fake” decryption key.
We note that we can construct an SK-NCER scheme whose decryption-key-length is proportional to the
message-length from any SKE scheme by “double-encryption” construction similarly to some previous
works [CHK05, HPW15]. A decryption key of the SKFE scheme for a function f consists of secret
keys of SK-NCER that enable one to recover labels corresponding to f . By using the decryption key,
one first recovers labels corresponding to f and then evaluate the garbled circuit Ũ with these labels to
obtain U(m, f) = f(m). Intuitively, the security of the SKFE scheme holds since an adversary who
has a decryption key for f cannot obtain labels that do not correspond to f , and thus Ũ does not reveal
information of m beyond the value of U(m, f) = f(m) by the security of Yao’s garbling. We note that it
is essential to encrypt Ũ by SK-NCER for achieving the adaptive security since Yao’s garbling only has
the selective security and thus we cannot simulate Ũ before an input is determined.17 Since the size of Ũ
is proportional to the message-length of the SKFE scheme and the decryption-key-length of SK-NCER
depends on its message-length, the decryption-key-length of their SKFE scheme is proportional to the
message-length of the SKFE scheme.

Here, we observe that if we use an adaptive garbling scheme instead of Yao’s garbling, then we need
not encrypt Ũ since we can simulate Ũ before an input is determined by the adaptive security, and we only
need to encrypt labels by SK-NCER. Since the number of labels corresponds to the online communication
complexity of the underlying garbling scheme, we expect that we could obtain an SKFE scheme with

14We say that an SKFE scheme is function private if a decryption key does not reveal the associated function. As shown by
Brakerski and Segev [BS15], we can generically add the function privacy to any SKFE scheme. Thus we do not care about
function privacy in this overview.

15Though Gorbunov et al. [GVW12] presented their construction in the public key setting, the same construction works in the
secret key setting.

16Though Gorbunov et al. [GVW12] does not use an abstraction as NCER, we observe that their construction can be seen like
this.

17Though Jafargholi and Wichs [JW16] showed that Yao’s garbling scheme is adaptively secure for certain class of circuits
like NC1, we do not know how to prove its adaptive security for all circuits.
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succinct decryption key by plugging adGC′gs into this construction. However, there is a problem that
adGC′gs does not have the decomposability, which means that a garbled input is obtained by choosing labels
according to each bit of the input whereas the above construction requires the garbling scheme to have the
decomposability. Nonetheless, we observe that adGC′gs has a similar property to the decomposability
called the quasi-decomposability, which we introduce in this paper. The quasi-decomposability roughly
means that there exists a hash function H such that a garbled input for an input x is generated by choosing
labels according to each bit of H(x) instead of x. We prove that the quasi-decomposability is sufficient to
realize the above idea. See Section 7 for the details.

Now, we obtained adaptively secure single-key SKFE with succinct decryption key.18 We can also
see that the key generation algorithm of the scheme is also succinct. As discussed in the previous
paragraph, such an SKFE scheme yields an adaptively indistinguishable garbling scheme with succinct
online communication/computational complexity.

Other Instantiations. The above construction gives a generic construction of an adaptively indistin-
guishable garbling scheme whose online complexity does not depend on the output length of the circuit
being garbled based on any (quasi-)decomposable adaptive garbling scheme. For example, we can also
instantiate the construction with adaptive garbling schemes proposed by Hemenway et al. [HJO+16] and
Jafargholi and Wichs [JW16] (the latter is Yao’s garbling itself) since they are decomposable. As a result,
we obtain adaptively indistinguishable garbling schemes for corresponding circuit classes whose online
complexity do not depend on output-length. Previously, such garbling schemes are constructed in an
ad hoc manner by Jafargholi et al. [JSW17]. On the other hand, our construction is generic, and thus
resolves the open question posed by Jafargholi et al. [JSW17].

Alternative Ad-hoc Way. Knowledgeable readers might think that we can achieve an adaptively
indistinguishable garbling scheme that we need by replacing selectively secure garbling schemes in the
somewhere adaptive garbling scheme by Garg, Miao, and Srinivasan [GMS18] with GS18 scheme. This
idea might work. However, the idea is an ad-hoc solution. Moreover, to formally prove its security, we
must use the specific property (and internal structure) of Yao’s garbling scheme [Yao86, LP09] and GS18
scheme at least. We cannot use those schemes in a black-box way.19 To avoid this issue, prove security in
a modular way, and achieve a general transformation, we selected the design explained above.

3 Preliminaries

3.1 Notations

We write x r←− X to denote that an element x is chosen from a finite set X uniformly at random and
y ← A(x; r) to denote that the output of an algorithm A on an input x and a randomness r is assigned to
y. When there is no need to write the randomness explicitly, we omit it and simply write y ← A(x). For
strings x and y, x‖y denotes the concatenation of x and y. Throughout this paper, λ denotes a security
parameter. We denote by x[i] i-th bit of a string x ∈ {0, 1}∗. poly denotes an unspecified polynomial. A
function f(λ) is a negligible function if f(λ) tends to 0 faster than 1

λc for every constant c > 0. We write
f(λ) = negl(λ) to denote that f(λ) is a negligible function. PPT stands for probabilistic polynomial time.
Let [`] denote the set of integers {1, · · · , `}.

18Strictly speaking, the SKFE scheme achieves a security notion called key-adaptive security slightly weaker than the adaptive
security, in which an adversary cannot make any encryption queries after making the key query. We note that this is sufficient for
constructing an adaptively indistinguishable garbling scheme since the adaptive security of a garbling scheme only considers the
case where a garbled input is generated after a garbled circuit is generated.

19We can formally prove adaptive security of the somewhere adaptive garbling scheme by Garg et al [GMS18] by using the
specific property (and internal structure) of Yao’s selectively secure garbling scheme instead of using selective security in a
black-box way.
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3.2 Basic Tools

We review basic cryptographic tools.

Pseudorandom Functions.

Definition 3.1 (Pseudorandom Functions [GGM86]). For sets D and R, let {FK(·) : D → R|K ∈
{0, 1}λ} be a family of polynomially computable functions. We say that F is pseudorandom if for any
PPT adversary A, it holds that

Advprf
F,A(λ) = |Pr[AFK(·)(1λ) = 1 | K r←− {0, 1}λ]− Pr[AR(·)(1λ) = 1 | R r←− U ]| = negl(λ) ,

where U is the set of all functions from D toR.

Definition 3.2 (Puncturable Pseudorandom Function [BW13, KPTZ13, BGI14, SW14]). For sets D
and R, a puncturable pseudorandom function PPRF consists of a tuple of algorithms (F,Punc) that
satisfies the following two conditions.

Functionality Preserving under Puncturing: For all polynomial size subset {xi}i∈[k] of D, and for all
x ∈ D \ {xi}i∈[k], we have Pr[FK(x) = FK∗(x) : K ← {0, 1}λ,K∗ ← Punc(K, {xi}i∈[k])] = 1.

Pseudorandomness at Punctured Points: For all polynomial size subset {xi}i∈[k] of D, and any PPT
adversary A, it holds that

Pr[A(K∗, {FK(xi)}i∈[k]) = 1]− Pr[A(K∗, Uk) = 1] = negl(λ) ,

whereK r←− {0, 1}λ,K∗ ← Punc(K, {xi}i∈[k]), and U denotes the uniform distribution overR.

Secret Key Encryption.

Definition 3.3 (Secret Key Encryption). A SKE scheme SKE is a two tuple (Enc,Dec) of PPT algorithms.

• The encryption algorithm Enc, given a key K ∈ {0, 1}λ and a message m ∈ M, outputs a
ciphertext c, whereM is the plaintext space of SKE.

• The decryption algorithm Dec, given a keyK and a ciphertext c, outputs a message m̃ ∈ {⊥}∪M.
This algorithm is deterministic.

Correctness We require Dec(K,Enc(K,m)) = m for everym ∈M and keyK.

Security Let SKE be an SKE scheme whose message space isM. We define the security game between a
challenger and an adversary A as follows. Below, let n be a fixed polynomial of λ.

Initialization First the challenger selects a challenge bit coin r←− {0, 1}. Next the challenger
generates n keysKj

r←− {0, 1}λ for every j ∈ [n] and sends 1λ to A.
A may make polynomially many encryption queries adaptively.

Encryption Query A sends (j,m0,m1) ∈ [n]×M×M to the challenger. Then, the challenger
returns c← Enc(Kj ,mcoin).

Final Phase A outputs coin′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

Advcpa
SKE,n,A(λ) = |Pr[coin′ = 1 | coin = 0]− Pr[coin′ = 1 | coin = 1]|.

We say that SKE is secure if for any PPT A, we have Advcpa
SKE,n,A(λ) < negl(λ).
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Definition 3.4 (SKE with Pseudorandom Ciphertext). Let Advpr
SKE,n,A is the same as Advcpa

SKE,n,A
except thatM = {0, 1}` and A sends (j,m) ∈ [n]×M to the challenger as an encryption query and
receives c where c← Enc(Kj ,m) if coin = 0, otherwise c r←− {0, 1}`. We say that SKE is pseudorandom
if for any PPT A, we have Advpr

SKE,n,A(λ) < negl(λ).
Theorem 3.5 ([Gol04]). Assuming the existence of one-way functions, then there exists SKE with
pseudorandom ciphertext.

The construction above is based on pseudorandom functions. More specifically, SKE.Enc(K,m) :=
(r,PRFK(r)⊕m) whereK r←− {0, 1}λ, PRF : {0, 1}λ → {0, 1}`m , and r r←− {0, 1}λ. See the textbook
by Goldreich [Gol04, Construction 5.3.9] for more details.

3.3 Identity-Based Encryption

We define identity-based encryption (IBE).
Definition 3.6 (Identity-Based Encryption). An IBE scheme IBE is a four tuple (Setup,KG,Enc,Dec)
of PPT algorithms. Below, let ID andM be the identity space and message space of IBE, respectively.

• The setup algorithm Setup, given a security parameter 1λ and the length of identities 1n, outputs a
public parameter MPK and a master secret key MSK.

• The key generation algorithm KG, given a master secret key MSK and identity id ∈ {0, 1}n, outputs
a user secret key skid.

• The encryption algorithm Enc, given a public parameter MPK, identity id ∈ {0, 1}n, and message
m ∈M, outputs a ciphertext CT.

• The decryption algorithm Dec, given a user secret key skid and ciphertext CT, outputs a message
m̃ ∈ {⊥} ∪M.

Correctness We require Dec(KG(MSK, id),Enc(MPK, id,m)) = m for every m ∈ M, id ∈ {0, 1}n,
and (MPK,MSK)← Setup(1λ, 1n).

We define indistinguishability against selective ID attacks for IBE.
Definition 3.7 (Selective Security for IBE). Let n be a polynomial of λ denoting the length of identities.
Let IBE be an IBE scheme whose message space isM. We define the selective security game between a
challenger and an adversary A as follows.

1. At the beginning of the game, A declares the challenge identity id∗ ∈ {0, 1}n. The challenger
chooses a challenge bit coin r←− {0, 1} and generates (MPK,MSK)← Setup(1λ, 1n). Then, the
challenger sends MPK to A.
Throughout the game, A can make key extraction queries.

Extraction Queries A sends id ∈ {0, 1}n to the challenger. The challenger returns skid ←
KG(MSK, id) to A if id 6= id∗. Otherwise, the challenger returns ⊥ to A.

2. A sends (m0,m1) ∈ M×M to the challenger. We require that |m0| = |m1|. The challenger
generates CT← Enc(MPK, id∗,mcoin) and sends CT to A.

3. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

Advsel
IBE,A(λ) = |Pr[coin = coin′]− 1

2 | = |Pr[coin′ = 1 | coin = 0]− Pr[coin′ = 1 | coin = 1]| .

We say that IBE is selectively secure if for any PPT adversary A, we have Advsel
IBE,A(λ) = negl(λ).
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3.4 Garbling Schemes

Definition 3.8 (Garbling Scheme). A garbling scheme YaoGC for circuits is a tuple (Grbl,Eval) of two
PPT algorithms.

• A garbling algorithm Grbl, given a security parameter 1λ, a circuit C with n-bit input, and input
labels {labelk,b}k∈[n],b∈{0,1}. This algorithm outputs a garbled circuit C̃. In general, labels labelk,b
for all k ∈ [n] and b ∈ {0, 1} are uniformly and randomly chosen from {0, 1}λ.

• The evaluation algorithm, given a garbled circuit C̃ and n labels {labelk}k∈[n], outputs y.

Correctness: We require Eval(C̃, {labelk,xk}k∈[n]) = C(x) for every λ ∈ N, a circuit C with n-bit
input, and x ∈ {0, 1}n, where C̃ ← Grbl(1λ, C, {labelk,b}k∈[n],b∈{0,1}) and xk is the k-th bit of x
for every k ∈ [n].

Security: Let Sim be a PPT algorithm. We define the following game between a challenger and an
adversary A as follows.

1. The challenger chooses the challenge bit coin r←− {0, 1} and sends security parameter 1λ to
A.

2. A sends a circuit C with n-bit input and an input x ∈ {0, 1}n to the challenger.
• If coin = 0, then the challenger chooses labelk,b ← {0, 1}λ for all k ∈ [n], b ∈ {0, 1} and
computes C̃ ← Grbl(1λ, C, {labelk,b}k∈[n],b∈{0,1}) and returns (C̃, {labelk,x[k]}k∈[n]) to
A.

• If coin = 1, then it chooses labelk,b ← {0, 1}λ for all k ∈ [n], b ∈ {0, 1} and computes
C̃ ← Sim(1λ, 1|C|, C(x), {labelk,x[k]}), and returns (C̃, {labelk,x[k]}k∈[n]) to A.

3. A outputs coin′ ∈ {0, 1}.

In this game, we define the advantage of A as

Advsel
YaoGC,A,Sim(λ) = 2|Pr[coin = coin′]−1

2 | = |Pr[coin′ = 1 | coin = 0]−Pr[coin′ = 1 | coin = 1]| .

We say that YaoGC is selectively secure if there exists PPT Sim such that for any PPT A, we have
Advsel

YaoGC,A,Sim(λ) = negl(λ).

Theorem 3.9 ([Yao86]). If there exists one-way function, there exists a selectively secure garbling scheme
for all poly-size circuits.

Definition 3.10 (AdaptiveGarblingScheme). Agarbling schemeAdaGC is a three tuple (GbCkt,GbInp,GbEval)
of PPT algorithms.

• The circuit garbling algorithm GbCkt, given a security parameter 1λ and a circuit C, outputs a
garbled circuit C̃ and a state st.

• The input garbling algorithm GbInp, given a state st and an input x, and outputs a garbled input x̃.

• The evaluation algorithm GbEval, given a garbled circuit C̃ and a garbled input x̃, and outputs a
value y.

Correctness: We require Eval(C̃, x̃) = C(x) for every λ ∈ N, a circuit C with n-bit input, and
x ∈ {0, 1}n, where (C̃, st)← GbCkt(1λ, C) and x̃← GbInp(st, x).

15



Security: Let Sim = (SimC, SimIn) be a tuple PPT algorithms. We define the following game between a
challenger and an adversary A as follows.

1. The challenger chooses the challenge bit coin r←− {0, 1} and sends security parameter 1λ to
A.

2. A sends a circuit C with n-bit input to the challenger, and the challenger returns C̃ generated
as follows:

• If coin = 0, then it computes (C̃, st)← GbCkt(1λ, C).
• If coin = 1, then it computes (C̃, st)← SimC(1λ, 1|C|).

3. A sends an input x ∈ {0, 1}n to the challenger, and the challenger returns x̃ generated as
follows:

• If coin = 0, then it computes x̃← GbInp(st, x).
• If coin = 1, then it computes x̃← SimIn(st, C(x)).

4. A outputs coin′ ∈ {0, 1}.

In this game, we define the advantage of A as

Advadp
AdaGC,A,Sim(λ) = 2|Pr[coin = coin′]−1

2 | = |Pr[coin′ = 1 | coin = 0]−Pr[coin′ = 1 | coin = 1]| .

We say that AdaGC is adaptively secure if there exists PPT Sim such that for any PPT A, we have
Advadp

AdaGC,A,Sim(λ) = negl(λ).

We also define a weaker indistinguishability-based security for adaptive garbling.

Definition 3.11 (Adaptive Indistinguishability [JSW17]).We define the following game between a
challenger and an adversary A as follows.

1. The challenger chooses the challenge bit coin r←− {0, 1} and sends security parameter 1λ to A.

2. A sends two circuits (C0, C1) with n-bit input to the challenger, and the challenger computes
(C̃, st)← GbCkt(1λ, Ccoin), and returns C̃ to A.

3. A sends two inputs (x0, x1) ∈ {0, 1}n to the challenger, and the challenger computes x̃ ←
GbInp(st, xcoin), and returns x̃.

4. A outputs coin′ ∈ {0, 1}.

In this game, we define the advantage of A as

Advind-adp
AdaGC,A(λ) = 2|Pr[coin = coin′]− 1

2 | = |Pr[coin′ = 1 | coin = 0]− Pr[coin′ = 1 | coin = 1]| .

We say that a PPT A is valid if we have C0(x0) = C1(x1). We say that AdaGC is adaptively
indistinguishable if for any PPT valid A, we have Advind-adp

AdaGC,A(λ) = negl(λ).
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3.5 Functional Encryption

Secret-Key Functional Encryption. We review the definition of secret-key functional encryption
(SKFE).
Definition 3.12 (Secret-Key Functional Encryption). Let M := {Mλ}λ∈N be a message domain,
Y := {Yλ}λ∈N a range, and F := {Fλ}λ∈N a class of functions f : M → Y . An PKFE scheme for
M,Y , and F is a tuple of algorithms (Setup,KG,Enc,Dec).

• The setup algorithm Setup, given a security parameter 1λ, outputs a master secret key MSK.

• The key generation algorithm KG, given a master secret key MSK and f ∈ F , outputs a decryption
key skf .

• The encryption algorithm Enc, given a master secret key MSK, and m ∈M, outputs a ciphertext
CT.

• The decryption algorithm Dec, given a decryption key skf and a ciphertext CT, outputs y′z ∈ Y .

Correctness: We require Dec(KG(MSK, f),Enc(MSK,m)) = f(m) for every f ∈ F , m ∈ M, and
MSK← Setup(1λ).

Definition 3.13 (Adaptive Security of SKFE). Let SKFE be an SKFE scheme forM,Y , and F . Let q
be a polynomial of λ. We define the adaptive security game between a challenger and an adversary A as
follows.

1. The challenger generates MSK← Setup(1λ) and chooses the challenge bit coin r←− {0, 1}.

2. A is given a security parameter 1λ. A can make at most q key queries and arbitrarily many
challenge queries in any order.

Key Query. When A makes a key query f , the challenger computes skf ← KG(MSK, f) and
returns skf to A.

Challenge Query. When A makes a challenge query (m0,m1), the challenger computes CT←
Enc(MSK,mcoin) and returns CT to A.

3. A outputs coin′ ∈ {0, 1}.

In this game, we define the advantage of A as

Advadp
SKFE,A(λ) = 2|Pr[coin = coin′]− 1

2 | = |Pr[coin′ = 1 | coin = 0]− Pr[coin′ = 1 | coin = 1]| .

A is said to be valid if for all its encryption queries {(m0,i,m1,i)}qc and key queries {fj}j∈[qk], we have
fj(m0,i) = fj(m1,i). We say that SKFE is qk-key qc-ciphertext adaptively secure if for any valid PPT A,
we have Advadp

SKFE,A(λ) = negl(λ).
In addition, we say that SKFE is adaptively secure and collusion-resistant if qk and qc are a-priori

unbounded polynomial.
We also consider relaxed security notions which we call key-adaptive security and ciphertext-adaptive

security.
Key-Adaptive Security. We say that A is key-adaptively valid if all challenge queries are made before

its first key query. We say that SKFE is qc-ciphertext and qk-bounded key-adaptively secure if for
any key-adaptively valid PPT A, we have Advadp

SKFE,A(λ) = negl(λ). If we omit qc-ciphertext, then
we mean qc is a-priori unbounded polynomial.

Ciphertext-Adaptive Security. We say that A is ciphertext-adaptively valid if all key queries are made
before the challenge query. We say that SKFE is qk-key and q-bounded ciphertext-adaptively secure
if for any ciphertext-adaptively valid PPT A, we have Advadp

SKFE,A(λ) = negl(λ).
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Public-Key Functional Encryption. We review the definition of public-key functional encryption
(PKFE).

Definition 3.14 (Public-Key Functional Encryption). Let M := {Mλ}λ∈N be a message domain,
Y := {Yλ}λ∈N a range, and F := {Fλ}λ∈N a class of functions f : M → Y . An PKFE scheme for
M,Y , and F is a tuple of algorithms (Setup,KG,Enc,Dec).

• The setup algorithm Setup, given a security parameter 1λ, outputs a public parameter MPK and
master secret key MSK.

• The key generation algorithm KG, given a master secret key MSK and f ∈ F , outputs a functional
decryption key skf .

• The encryption algorithm Enc, given a public parameter MPK and m ∈M, outputs a ciphertext
CT.

• The decryption algorithm Dec, given a functional decryption key skf and a ciphertext CT, outputs
y′ ∈ Y .

Correctness: We require Dec(KG(MSK, f),Enc(MPK,m)) = f(m) for every f ∈ F , m ∈ M, and
(MPK,MSK)← Setup(1λ).

Next, we introduce adaptive security for PKFE schemes.

Definition 3.15 (q-Bounded Adaptive Security). Let PKFE be a PKFE scheme forM, Y , and F . Let q
be a polynomial of λ. We define the adaptive security game between a challenger and an adversary A as
follows.

1. The challenger generates (MPK,MSK)← Setup(1λ) and chooses the challenge bit coin r←− {0, 1}.
Then, the challenger sends MPK to A.

2. A is given a security parameter 1λ. A can make at most q key queries and one challenge query in
any order.

Key Query. When A makes a key query f , the challenger computes skf ← KG(MSK, f) and
returns skf to A.

Challenge Query. When A makes a challenge query (m0,m1), the challenger computes CT←
Enc(MPK,mcoin) and returns CT to A.

3. A outputs coin′ ∈ {0, 1}.

In this game, we define the advantage of A as

Advadp
PKFE,A(λ) = 2|Pr[coin = coin′]− 1

2 | = |Pr[coin′ = 1 | coin = 0]− Pr[coin′ = 1 | coin = 1]| .

A is said to be valid if for all its key queries {fi}i∈[q] and the challenge query (m0,m1), we have
fi(m0) = fi(m1). We say that PKFE is q-bounded (or q-key) adaptively secure if for any valid PPT A,
we have Advadp

PKFE,A(λ) = negl(λ).
In addition, we say that PKFE is adaptively secure and collusion-resistant if q is an a-priori unbounded

polynomial.
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Definition 3.16 ((Weakly) Selective Security). In the game of adaptive security in Definition 3.15, if A
must commit (m0,m1) at the beginning of the game, that is, before MPK is give, then we say that PKFE
is (q-bounded or q-key) selectively secure (and collusion-resistant).

In addition, we say that PKFE is weakly-selectively secure if A must commit not only (m0,m1) but
also key queries (f1, . . . , fq) at the beginning of the game.

Next, we define the succinctness for FE.

Definition 3.17 (Succinctness). In the following, let `f and `m be the bit-length needed to describe
elements of F andM, respectively.

Succinct: Wesay that PKFE is succinct if the size of the encryption circuit is bounded bypoly(λ, `m, log `f ).

Sublinearly-Succinct: We say that PKFE is sublinearly-succinct if the size of the encryption circuit is
bounded by `γf · poly(λ, `m), where γ < 1 is a fixed constant.

Known Results on Functional Encryption Ananth and Sahai proved the following theorem (See
Appendix A for details).

Theorem 3.18 ([AS16]). If there exists (unbkey, sel, fs)-PKFE for circuits and (1key, 1ct, ada, fs)-SKFE
for (resp. boolean) circuits, then there exists (unbkey, ada, fs)-PKFE for (resp. boolean) circuits.

Garg and Srinivasan [GS16] proved the following theorem.

Theorem3.19 ([GS16]). If there exists (1key,w-sel, sls)-PKFE for circuits, then there exists (unbkey, sel, fs)-
PKFE for circuits.

By combining these theorems, we obtain the following theorem.

Theorem 3.20 ([GS16, AS16]). If there exists (1key,w-sel, sls)-PKFE for circuits and (1key, 1ct, ada, fs)-
SKFE for (resp. boolean) circuits, then there exists (unbkey, ada, fs) for (resp. boolean) circuits.

3.6 Indistinguishability Obfuscation

We review the definition of indistinguishability obfuscation (IO).

Definition 3.21 (Indistinguishability Obfuscation [BGI+12, GGH+16]). A PPT algorithm iO is an
indistinguishability obfuscator (IO) for a circuit class {Cλ}λ∈N if it satisfies the following two conditions.

Functionality: for all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(1λ, C)] = 1 .

Indistinguishability: for any poly-size distinguisher D, there exists a negligible function negl(·) such
that the following holds: for all security parameters λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ of
the same size and such that C0(x) = C1(x) for all inputs x, then

|Pr
[
D(iO(1λ, C0)) = 1

]
− Pr

[
D(iO(1λ, C1)) = 1

]
| = negl(λ) .
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3.7 Somewhere Equivocal Encryption

Definition 3.22 (SomewhereEquivocal Encryption [HJO+16]). Let s,n, and t be black-length, message
length in blocks, and equivocation parameter. A somewhere equivocal encryption scheme consists of the
following five algorithms.

KeyGen(1λ)→ sek: This algorithm takes as input the security parameter 1λ, and outputs a key sek.

Enc(sek,m)→ c: This algorithm takes as input sek and a vector of messages m = m1‖ · · · ‖mn where
mi ∈ {0, 1}s, and outputs a ciphertext myvecc.

Dec(sek, c)→m: This algorithm takes as input sek and c, and outputs m = m1‖ · · · ‖mn.

SimEnc({mi}i/∈I , I)→ (st, c̃): This algorithm takes as input a set of indices I ⊆ [n] and a vector of
messages {mi}i/∈I , and outputs a ciphertext c̃ and a state information st.

SimKey(st, {mi}i∈I)→ s̃ek: This algorithm takes as input st and {mi}i∈I , and outputs a simulation
s̃ek.

These algorithms satisfy the following three properties.

Correctness. For every sek← KeyGen(1λ), for every m ∈ {0, 1}sn, it holds that

Pr[Dec(sek, c) | c← Enc(sek,m)] = 1.

Simulation with No Holes. For any m, it holds that

(sek, c)
p
≈ (sek′, c′),

where sek ← KeyGen(1λ), c ← Enc(sek,m), (st, c′) ← SimEnc(m, ∅), and sek′ ← SimKey(st, ∅)
and

p
≈ denotes that the two distributions are identically distributed.

Security. For any PPT adversary A, it holds that

|Pr[Expsw-eqenc
A,Σ (1λ, 0) = 1]− Pr[Expsw-eqenc

A,Σ (1λ, 1) = 1]| ≤ negl(λ),

where the experiment Pr[Expsw-eqenc
A,Σ (1λ, coin) is defined as follows.

1. A takes as input 1λ and outputs a set of indices I ⊆ [n] such that |I| < t, a vector {mi}i/∈I , and a
challenge j ∈ [n] \ I . Let Î := I ∪ {j}.

• If coin = 0, then the challenger computes (st, c)← SimEnc({mi}i/∈I , I).
• If coin = 1, then the challenger computes (st, c)← SimEnc({mi}i/∈Î , Î).

2. The challenger sends c to A.

3. A returns the set of remaining messages {mi}i∈I .

• If coin = 0, then the challenger computes s̃ek← SimKey(st, {mi}i∈I).
• If coin = 1, then the challenger computes s̃ek← SimKey(st, {mi}i∈Î).

4. The challenger sends s̃ek to A.

5. A outputs coin′ ∈ {0, 1} and this experiment outputs coin′.

Theorem 3.23 ([HJO+16]). If there exists one-way functions, then there exists a somewhere equivocal
encryption scheme for any polynomial message-length n, block-length s, and equivocation parameter t
whose key length is t · s · poly(λ) bits and ciphertext length is n · s · poly(λ) bits.
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4 Selective-Database Laconic OT from PKFE

In this section, we show how to construct (updatable) laconic OT satisfying a security notion we call
selective-database security from sublinearly succinct PKFE. We first show that by using IO, we can
construct selective-database laconic OT with the compression factor 2. Then, we show that we can replace
IO in our construction with sublinearly succinct PKFE by relying on the result of Liu and Zhandry [LZ17].
Finally, we transform our selective-database laconic OT with compression factor 2 into updatable one
based on the transformation using Merkle tree proposed by Cho et al. [CDG+17].

4.1 Definition of Selective-Database Laconic OT

We use (updatable) laconic OT proposed by Cho et al [CDG+17]. However, the security level that we
need in this work is slightly different from those by Cho et al, Garg and Srinivasan [GS18], and Ananth
and Lombardi [AL18].

Definition 4.1 (Selective-Database Laconic OT). A laconic OT (LOT) A laconic OT protocol consists
of four algorithms.

Gen(1λ)→ crs: This algorithm takes as input the security parameter and outputs a common reference
string crs.

Hash(crs, D) =: (d, D̂): This deterministic algorithm takes as input crs and a database D ∈ {0, 1}∗
and outputs a digest d of D and a state D̂.

Send(crs, d, L,m0,m1)→ e: This algorithm takes as input crs, d, a database location L ∈ N, and two
messagesm0 andm1 of length p(λ), and outputs a ciphertext e.

ReceiveD̂(crs, e, L)→ m: This is a RAM algorithm with random read access to D̂. It takes as input crs,
e, and L ∈ N, and outputs a messagem.

These algorithms satisfy the following three properties.

Correctness. For any database D of size at mostM = poly(λ), any memory location L ∈ [M ], any
pair of messages (m0,m1) ∈ {0, 1}p(λ), it holds that

Pr

m = mD[L]

∣∣∣∣∣∣∣∣∣
crs ← Gen(1λ),

(d, D̂) := Hash(crs, D),
e ← Send(crs, d, L,m0,m1),
m ← ReceiveD̂(crs, e, L)

 = 1.

Selective-DatabaseAdaptive-Message Sender Privacy against Semi-Honest Receivers. There exists
a PPT simulator Sim that satisfies the following.

|Pr[Realsel-db
`OT (λ) = 1]− Pr[Simsel-db

`OT (λ) = 1]| ≤ negl(λ),

where the experiments Realsel-db
`OT (λ) and Simsel-db

`OT (λ) are defined as follows.
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Realsel-db
`OT (λ)

1. (D, st)← A(1λ)
2. crs← Gen(1λ),
3. d := Hash(crs, D),
4. (L,m0,m1, st′)← A(st, crs),
5. e← Send(crs, d, L,m0,m1),
6. b′ ← A(crs, e, st′)

Simsel-db
`OT (λ)

1. (D, st)← A(1λ),
2. crs← Gen(1λ),
3. d := Hash(crs, D),
4. (L,m0,m1, st′)← A(st, crs),
5. e← Sim(crs, D, L,mD[L]),
6. b′ ← A(crs, e, st′)

where |D| = M = poly(λ), L ∈ [M ], and m0,m1 ∈ {0, 1}p(λ). We call this security selective-
database sender privacy for short in this paper.

Efficiency. We require that |d| is bounded by a fixed polynomial in λ independent of |D|, the running
time of Hash is |D| · poly(log |D|, λ), and the running time of Send and Receive are poly(log |D|, λ).

Definition 4.2 (Selective-Database Updatable Laconic OT). An updatable laconic OT protocol is not
only a laconic OT but also has additional two algorithms.

SendWrite(crs, d, L, b, {mj,0,mj,1}|d|j=1)→ ew: This algorithm takes as input crs, d, L, a bit b ∈ {0, 1}
to be written in the database, and |d| pairs of messages {mj,0.mj,1}|d|j=1, where each mj,c is of
length p(λ), and outputs a ciphertext ew.

ReceiveWriteD̂(crs, L, b, ew)→ {mj}j∈[d]: This is a RAM algorithm with random read and write access
to D̂. It takes as input crs, L ∈ N, b ∈ {0, 1}, and ew, and outputs messages {mj}j∈[|d|].

The additional two algorithms satisfy the following properties.

Correctness with regard to Write. For any database D of size at mostM = poly(λ), any memory
location L ∈ [M ], any bit b ∈ {0, 1}, any D∗ such that D∗ is identical to D except that D∗[L] = b, any
messages {(mj,0,mj,1)}|d|j=1 wheremj,b ∈ {0, 1}p(λ), it holds that

Pr

∀j m
′
j = mj,d∗[j]

∣∣∣∣∣∣∣∣∣∣∣∣

crs ← Gen(1λ),
(d, D̂) := Hash(crs, D),

(d∗, D̂∗) := Hash(crs, D∗),
ew ← SendWrite(crs, d, L, b, {(mj,0,mj,1)}|d|j=1),

{m′j}
|d|
j=1 ← ReceiveWriteD̂(crs, L, ew)

 = 1.

Selective-Database and Adaptive-Message Sender Privacy against Semi-Honest Receivers with
regard to Writes. There exists a PPT simulator SimWrite that satisfies the following.

|Pr[Realsel-db-wr
`OT (λ) = 1]− Pr[Simsel-db-wr

`OT (λ) = 1]| ≤ negl(λ),

where the experiments Realsel-db-wr
`OT (λ) and Simsel-db-wr

`OT (λ) are defined as follows.
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Realsel-db-wr
`OT (λ)

1. (D, st)← A(1λ),
2. crs← Gen(1λ),
3. d := Hash(crs, D),
4. (L, b, {mj,0,mj,1}|d|j=1, st′)← A(st, crs),
5.

6. e← SendWrite(crs, d, L, b, {mj,0,mj,1}|d|j=1),
7. b′ ← A(crs, e, st′)

Simsel-db-wr
`OT (λ)

1. (D, st)← A(1λ),
2. crs← Gen(1λ),
3. d := Hash(crs, D),
4. (L, b, {mj,0,mj,1}|d|j=1, st′)← A(st, crs),
5. (d∗, D̂∗) := Hash(crs, D∗)whereD∗ is iden-

tical to D except that D∗[L] = b,
6. e← SimWrite(crs, D, L, b, {mj,d∗[j]}j∈[|d|]),
7. b′ ← A(crs, e, st′)

where |D| = M = poly(λ), L ∈ [M ], and mj,0,mj,1 ∈ {0, 1}p(λ) for all j ∈ [|d|]. We call this
security selective-database sender privacy for writes for short in this paper.

Efficiency. We require that the running time of SendWrite and ReceiveWrite are poly(log |D|, λ).

4.2 Selective-Database Laconic OT with Compression Factor 2 from IO

We show how to construct laconic OT from IO in this subsection. Let IBE = (IBE.Setup, IBE.KG,
IBE.Enc, IBE.Dec) be an IBE scheme. For simplicity, we assume that the randomness space of IBE.Setup
is {0, 1}λ and IBE.KG is deterministic.20 We let the length of a master public-key of IBE be bounded by
some fixed polynomial polyMPK(λ, n), where n is the length of identities. Then, there exists a polynomial
s = poly(λ) such that s ≥ polyMPK(λ, log s+ 2). Let PPRF = (F,Punc) be a puncturable PRF whose
domain and range are {0, 1}2s and {0, 1}λ, respectively. Let iO be an IO.

We construct an LOT protocol `OT = (Gen,Hash, Send,Receive) whose hash algorithm Hash
hashes a 2s bit database to a digest of polyMPK(λ, log s+ 2) ≤ s bit. Thus, our construction achieves
compression factor 2. In the construction, for an integer i ∈ [2s], str(i) denotes the bit representation of i.

Gen(1λ) :

1. GeneratesK r←− {0, 1}λ.

2. Computes crs← iO
(
1λ,SetupKG[K]

)
. The circuit SetupKG is defined in Figure 2.

3. Outputs crs.

Hash(crs, D) :

1. Outputs
(
d, D̂

)
← crs(D).

Send(crs, d, L,m0,m1) :

1. Parses MPK← d.
2. For α ∈ {0, 1}, computes CTα ← IBE.Enc(MPK, str(L)‖α,mα).
3. Outputs e := (CT0,CT1).

ReceiveD̂(crs, e, L) :

1. Sets D̂ :=
(
D, {ski}i∈[2s]

)
.

2. Parses e← (CT0,CT1).

3. Outputsm← IBE.Dec
(

skL,CTD[L]
)
.
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Setup and key generation circuit SetupKG[K]
Hardwired: puncturable PRF keyK.
Input: D ∈ {0, 1}2s.
Padding: circuit is padded to size pad := max(|SetupKG|, |SetupKG∗|), where SetupKG∗ is defined in the security

proof.

1. Computes r ← FK(D).
2. Computes (MPK,MSK)← IBE.Setup(1λ, 1log s+2; r).
3. For every i ∈ [2s], computes ski ← IBE.KG (MSK, str(i)‖D[i]).
4. Outputs d := MPK and D̂ :=

(
D, {ski}i∈[2s]

)
.

Figure 2: The description of SetupKG.

Theorem 4.3. Let IBE be a selectively secure IBE scheme and PPRF be a puncturable PRF. Let iO be
IO. Then, `OT be a selective-database laconic OT.

Proof. The correctness of `OT follows from that of IBE and the functionality of iO. Below, we show the
selective-database sender privacy against semi-honest receivers of `OT.

Let A be a PPT adversary that attacks `OT. We consider the following sequence of experiments.
Below, let Tk be the event that A outputs 1 in Exp k.

Exp 0: This experiment is Realsel-db
`OT (λ). The details of this experiment is as follows.

1. (D∗, st)← A(1λ), where |D| = 2s,

2. K r←− {0, 1}λ and crs← iO
(
1λ,SetupKG[K]

)
,

3. MPK∗ = d∗ ← crs(D∗),
4. (L∗,m∗0,m∗1, st′)← A(st, crs),
5. CTα ← IBE.Enc(MPK∗, str(L∗)‖α,m∗α) for α ∈ {0, 1},
6. b′ ← A(crs, e = (CT0,CT1), st′)

Exp 1: This experiment is the same as Exp 0 except that crs is generated by obfuscating the circuit
SetupKG∗ shown in Figure 3 using iO. SetupKG∗ has hardwiredK{D∗},MPK∗, and {sk∗i }i∈[2s].
They are generated by K{D∗} ← Punc (K,D∗), (MPK∗,MSK∗) ← IBE.Setup(1λ; r∗), and
sk∗i ← IBE.KG (MSK∗, str(i)‖D∗[i]) for every i ∈ [2s], where r∗ ← FK (D∗).

We see that SetupKG and SetupKG∗ are functionally equivalent. Thus, from the indistinguishability
property of iO, |Pr[T0]− Pr[T1]| = negl(λ).

Exp 2: This experiment is the same as Exp 1 except that r∗ is generated as a truly random string.

From the pseudorandomness at punctured points of PPRF, |Pr[T1]− Pr[T2]| = negl(λ).

Exp 3: This experiment is the same as Exp 2 except that CT1−D∗[L∗] is generated by CT1−D∗[L∗] ←
IBE.Enc

(
MPK∗, str(L∗)‖1−D∗[L∗], 0λ

)
.

20We can always modify any IBE scheme so that it satisfies these two conditions by using PRF.
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Setup and key generation circuit SetupKG∗
[
D∗,K{D∗},MPK∗, {sk∗i }i∈[2s]

]
.

Hardwired: databaseD∗, punctured PRF keyK{D∗}, master public-key MPK∗, and secret keys {sk∗i }i∈[2s].
Input: D ∈ {0, 1}2s.
Padding: circuit is padded to size pad := max(|SetupKG|, |SetupKG∗|).

1. IfD = D∗, then return d∗ := MPK∗ and D̂∗ :=
(
D∗, {sk∗i }i∈[2s]

)
. Otherwise, compute as follows.

2. Compute r ← FK(D).
3. Compute (MPK,MSK)← IBE.Setup(1λ, 1log s+2; r).
4. For every i ∈ [2s], compute ski ← IBE.KG (MSK, str(i)‖D[i]).
5. Return d := MPK and D̂ :=

(
D, {ski}i∈[2s]

)
.

Figure 3: The description of SetupKG∗.

By the previous change, MPK∗ is generated by using truly randomness instead of FK(D∗). More-
over, D̂∗ does not include sk∗L∗ ← IBE.KG(MSK∗, str(L∗)‖1 − D∗[L∗]) while D̂∗ includes sk∗L∗ ←
IBE.KG(MSK∗, str(L∗)‖D∗[L∗]). Then, based on the selective security of IBE, we can prove |Pr[T2]−
Pr[T3]| = negl(λ). More specifically, using A, we can construct the following adversary B that attacks
the selective security of IBE.

1. B first invokes A(1λ) and obtains (D∗, st). B next randomly picks L∗ r←− [2s]. Then, B sends
str(L∗)‖1−D∗[L∗] to the challenger as its challenge identity and obtains MPK∗.

2. B generates a CRS crs as follows. B first generates K r←− {0, 1}λ and computes K{D∗} ←
Punc (K,D∗). Next, B makes a key extraction query str(i)‖D∗[i] and obtains sk∗i for every
i ∈ [2s]. Then, B generates crs← iO

(
1λ,SetupKG∗[D∗,K{D∗},MPK∗, {sk∗i }i∈[2s]]

)
.

3. B invokes A(st, crs) and obtains (L′,m∗0,m∗1, st′). If, L∗ 6= L′, B outputs coin′ r←− {0, 1} and
terminates. Otherwise, B runs as follows.

4. B sends (m1−D[L∗], 0λ) as its challenge messages and obtains the answer CT1−D[L∗]. B also
generates CTD[L∗] ← IBE.Enc

(
MPK∗, str(L∗)‖D∗[L∗],mD∗[L∗]

)
and sets e := (CT0,CT1).

5. B invokes b′ ← A(crs, e, st′), outputs coin′ := b′, and terminates.

Let coin be the challenge bit in the selective security game for IBE. We can estimate the advantage of
B as

Advsel
IBE,B(λ) = |Pr[coin′ = 1 | coin = 0]− Pr[coin′ = 1 | coin = 1]|

= 1
2s |Pr[coin′ = 1 | coin = 0 ∧ L∗ = L′]− Pr[coin′ = 1 | coin = 1 ∧ L∗ = L′]| .

If coin = 0 and L∗ = L′ hold, B perfectly simulates Exp 2 for A. If coin = 1 and L∗ = L′ hods, B
perfectly simulates Exp 3 forA. Moreover, when L∗ = L′, B outputs if and only ifA outputs 1. Thus, we
have |Pr[coin′ = 1 | coin = 0 ∧ L∗ = L′]− Pr[coin′ = 1 | coin = 1 ∧ L∗ = L′]| = |Pr[T2]− Pr[T3]|.
Therefore, we obtain |Pr[T2] − Pr[T3]| = 2s · Advsel

IBE,B(λ). Since IBE is selectively secure, we also
obtain |Pr[T2]− Pr[T3]| = negl(λ).

Exp 4: We undo the change from Exp 1 to Exp 2. Concretely, this experiment is the same as Exp 3
except that r∗ is generated by r∗ ← FK(D∗).
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From the pseudorandomness at punctured points of PPRF, |Pr[T3]− Pr[T4]| = negl(λ).

Exp 5: We undo the change from Exp 0 to Exp 1. Concretely, this experiment is the same as Exp 4
except that crs is generated by obfuscating SetupKG using iO.

By using the indistinguishability property of iO again, we can prove |Pr[T4]− Pr[T5]| = negl(λ).
In Exp 5, crs is generated in exactly the same way as Gen. Moreover, there exists a PPT simulator

Sim that given crs, D∗, L∗, and m∗D[L], generates e = (CT0,CT1) exactly in the same way as Exp 5. The
description of Sim is as follows.

Sim
(

crs, D∗, L∗,m∗D∗[L∗]
)

:

• Compute
(

MPK∗, D̂∗
)
← crs(D∗).

• Compute CTD∗[L∗] ← IBE.Enc
(

MPK∗, str(L∗)‖D∗[L∗],m∗D∗[L∗]
)

• Compute CT1−D∗[L∗] ← IBE.Enc
(

MPK∗, str(L∗)‖1−D∗[L∗], 0λ
)
.

• Return e := (CT0,CT1).

Therefore, Exp 5 corresponds to Simsel-db
`OT (λ) in which the above Sim is used. From these, we see that

`OT satisfies selective-database sender privacy against semi-honest receivers.

4.3 Replacing IO with sublinearly Succinct PKFE

IO in our construction can be replaced with sublinearly succinct PKFE by relying on the result of Liu and
Zhandry [LZ17]. Liu and Zhandry showed we can replace IO with decomposable obfuscation (dO) that
can be based on sublinearly succinct PKFE if the circuit pair to be obfuscated satisfies some condition by
generalizing previous works [GPS16, GPSZ17, GS16]. Roughly speaking, they showed that if there is a
polynomial size “witness” for the functional equivalence of a circuit pair to be obfuscated, IO can be
replaced with dO. One particular situation where this condition is satisfied is that in the security proof we
modify a circuit to be obfuscated so that it outputs a hard-wired value for a single input and otherwise it
runs in the same way as the original one. More formally, we obtain the following theorem as a special
case of the result by Liu and Zhandry.

Theorem 4.4 ([LZ17]). Let C ′(x, r) be a circuit. Let PPRF = (F,Punc) be a punctured PRF and
K ∈ {0, 1}λ. Let Punc be deterministic. We define a circuit CK as CK(x) = C ′(x,FK(x)). Moreover,
we define a circuit C∗ as

C∗x∗,K∗,y∗(x) =
{
y∗ (x = x∗)
C ′ (x,FK∗(x)) (otherwise)

,

where x∗, K∗ ← Punc(K,x∗), and y∗ = C(x∗) are hardwired into C∗. CK and C∗x∗,K∗,y∗ are
parameterized byK and x∗, and they are functionally equivalent for allK and x∗.

Then, assuming (1key,w-sel, sls)-PKFE, there exists a special type of puncturedPRFand decomposable
obfuscation whose indistinguishability property holds for each pair of circuits {(CK , C∗x∗,K∗,y∗)}K,x∗ by
implementing them using the PRF.

In the above theorem, “a special type of punctured PRF” is a primitive called decomposing compatible
PRF by Liu and Zhandry. Decomposing compatible PRF can be constructed from one-way functions via
the construction proposed by Goldreich et al. [GGM86], and thus its existence is implied by that of PKFE.
See Section 2.1 or the paper by Liu and Zhandry [LZ17] for details.

In the construction of selective-database laconic OT based on IO in Section 4.2, we apply IO for a pair
of circuits SetupKG and SetupKG∗. We see that when we apply IO to these circuits, they have exactly the
same functional relationship as C and C∗ in Theorem 4.4. That is, we obtain the following.
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Lemma 4.5. Circuits SetupKG[K] and SetupKG∗[D∗,K{D∗},MPK∗, {sk∗i }i∈[2s]] in Section 4.2 fall
into the circuit class CK and C∗x∗,K∗,y∗ defined in Theorem 4.4.

Therefore, fromTheorem4.4 andLemma 4.5, IO that is needed in our construction of selective-database
laconic OT in Section 4.2 can be instantiated based on sublinearly succinct PKFE.

Moreover, selectively secure IBE can be constructed from sublinearly succinct PKFE [GS16], and
puncturable PRF can be based on one-way functions. Thus, we obtain the following theorem.

Theorem 4.6. Assume that there exists (1key,w-sel, sls)-PKFE for circuits. Then, there exists selective-
database laconic OT with compression factor 2.

4.4 From Non-Updatable to Updatable

Cho et al. [CDG+17] showed we could bootstrap a laconic OT with the compression factor 2 into an
updatable laconic OT with arbitrary compression factor using a garbling scheme and Merkle hash tree.
Their bootstrapping method considers laconic OT that satisfies a weak security notion where in addition
to the challenge database, the challenge location and messages are also fixed at the beginning of the
security game. As Ananth and Lombardi [AL18] pointed out, if we use selective-database laconic OT
as a building block for the bootstrapping method, then we have to use a minor variant of the method
to obtain selective-database updatable laconic OT (the original bootstrapping method is not sufficient
for us). More specifically, we have to sample fresh crsj for each depth j of the Merkle hash tree in the
bootstrapping method. We use this variant since our laconic OT is selective-database secure. That is, we
have the following theorem.

Theorem 4.7 ([CDG+17, AL18]). Assume that there exists selective-database laconic OT with the
compression factor 2. Then, there exists selective-database updatable laconic OT with arbitrary
compression factor.

By combining Theorems 4.6 and 4.7, we obtain the following theorem.

Theorem 4.8. Assume that there exists (1key,w-sel, sls)-PKFE. Then, there exists selective-database
updatable laconic OT with arbitrary compression factor.

5 Adaptive Garbling from Selective-Database Laconic OT

In this section, we present an adaptive garbling scheme with nearly optimal online communica-
tion/computational complexity based on selective-database updatable LOT. Garg and Srinivasan presented
such an adaptive garbling scheme based on adaptively secure updatable LOT [GS18], which is instantiated
by concrete assumptions such as CDH [CDG+17, DGHM18, BLSV18]. However, we cannot directly use
their adaptive garbling scheme due to the following two reasons.

1. Our goal in this section is achieving adaptive garbling scheme from succinct PKFE (i.e., we do not
rely on any specific assumption such as the CDH assumption).

2. The updatable LOT protocol presented in Section 4 is selective-database updatable LOT.

We will show that we can achieve an adaptive garbling scheme with nearly optimal online communi-
cation/computational complexity from selective-database updatable LOT in the rest of this section.
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5.1 Description of Our Adaptive Garbling Scheme

In this section, we present our adaptive garbling scheme and properties that it satisfies.

Theorem 5.1. If there exist selective-database updatable LOT, somewhere equivocal encryption, and
selectively secure garbled circuits, then there exists an adaptively secure garbling scheme for circuits
with online communication complexity n+m+ poly(λ, log |C|) and online computational complexity
O(n+m) + poly(λ, log |C|).

From this theorem and Theorems 3.9, 3.23 and 4.8, we obtain the following theorem.

Theorem5.2. If there exists (1key,w-sel, sls)-PKFE, then there exists an adaptively secure garbling scheme
for circuits with online communication complexity n+m+ poly(λ, log |C|) and online computational
complexity O(n+m) + poly(λ, log |C|).

Conventions. Without loss of generality, we assume that circuits consist of only NAND gates. Let n,
m, and N − n be the input length, output length, and the number of NAND gates of the circuit. An
index is assigned to each input and gate. That is, from 1 to n are input wires, from n+ 1 to N −m are
intermediate NAND gates, and N −m+ 1 to N are output gates of the circuit. Note that a gate whose
inputs come from gate i and j has an index greater than i and j. Each gate g ∈ [n+ 1, N ] is represented
by a pair (i, j) ∈ [g − 1]× [g − 1]. That is, the inputs of g is outputs of gates i and j. In this section, we
use ri, xi, and yi instead of r[i], x[i], and y[i] to mean the i-th bit of r, x, and y, respectively for notational
simplicity.

A Variant of GS18 Garbling Scheme. We prove Theorem 5.1 in the rest of this section. First, we
describe our adaptive garbling scheme. We put red underlines at different points from the adaptive
garbling scheme by Garg and Srinivasan [GS18]. Let Σ := (KeyGen,Enc,Dec,SimEnc, SimKey),
GC := (GC.Grbl,GC.Eval,GC.Sim), and Π := (Gen,Hash, Send,Receive,SendWrite,ReceiveWrite)
be a somewhere equivocal encryption scheme, a (selectively secure) garbling scheme, and an updatable
LOT protocol, respectively. Our adaptive garbling scheme adGC′gs := (GbCkt,GbInp,GbEval) is as
follows.

GbCkt(1λ, C): This algorithm garbles a circuit C : {0, 1}n → {0, 1}m as follows.

1. Generates sek← KeyGen(1λ), and chooses r ← {0, 1}N .
2. Generates crs← Gen(1λ).
3. Chooses labelgk,b ← {0, 1}λ and labelg,crs

k,b ← {0, 1}λ for g ∈ [n + 1, N + 1], k ∈ [λ], and
b ∈ {0, 1}.

4. From g = N to g = n+ 1 (decrement g), does the following.
(a) Interprets gate g as (i, j).
(b) Computes S̃Cg ← GC.Grbl(1λ, SC[(ri, rj , rg), (i, j), {(labelg+1

k,b , labelg+1,crs
k,b )}k∈[λ],b∈{0,1} ,

0], ({labelgk,b}k∈[λ],b∈{0,1} , {labelg,crs
k,b }k∈[λ],b∈{0,1})).

5. Generates c← Enc(sek, {S̃Cg}g∈[n+1,N ]).

6. Outputs C̃ := c and st := (r, sek, {(labeln+1
k,b , labeln+1,crs

k,b )}k∈[λ],b∈{0,1} , crs).

GbInp(st, x): This algorithm garbles an input x ∈ {0, 1}n as follows.

1. Parses st := (r, sek, {(labeln+1
k,b , labeln+1,crs

k,b )}k∈[λ],b∈{0,1} , crs).
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2. Sets D := r1 ⊕ x1‖ · · · ‖rn ⊕ xn‖0N−n.
3. Computes (d, D̂) := Hash(crs, D).
4. Outputs x̃ := ({(labeln+1

k,d[k], labeln+1,crs
k,crs[k] )}k∈[λ], crs, r1⊕x1, . . . , rn⊕xn, sek, rN−m+1, . . . , rN ).

GbEval(C̃, x̃): This evaluation algorithm does the following.

1. Parses C̃ = c and x̃ := ({(labelk,d[k], labelcrs
k,crs[k])}k∈[λ], crs, r1⊕x1, . . . , rn⊕xn, sek, rN−m+1,

. . . , rN ).
2. Sets D := r1 ⊕ x1‖ · · · ‖rn ⊕ xn‖0N−n.
3. Computes (d, D̂) := Hash(crs, D).
4. Computes {S̃Cg}g∈[n+1,N ] ← Dec(sek, c).

5. Set label := {labelk,d[k]}k∈[λ] and labelcrs := {labelcrs
k,crs[k]}k∈[λ].

6. For g = n+ 1, . . . , N
(a) Interprets g as (i, j).
(b) Computes (gout1, gout2) := GC.Eval(S̃Cg, (label, labelcrs)).
(c) Computes (γ, e) := ReceiveD̂(crs,ReceiveD̂(crs, gout1, i), j).
(d) Sets label := ReceiveWriteD̂(crs, g, γ, e) and labelcrs := gout2.

7. Reads D from D̂.
8. Outputs DN−m+1 ⊕ rN−m+1‖ · · · ‖DN ⊕ rN .

Remark 5.3. We assume that the length of crs isλ for ease of notation instead ofwriting{labelg,crs
k′,b }k′∈[poly(λ)],b∈{0,1} .

We often omit the region where indices (k, b) run if it is clear from the context. That is, we often write
{labelgk,b} and {labelg,crs

k,b } to denote {labelgk,b}k∈[λ],b∈{0,1} and {labelg,crs
k,b }k∈[λ],b∈{0,1} .

Modified Step Circuit SC
Input: A digest d and the CRS crs.
Hardwired value: (ri, rj , rg), (i, j), {labelk,b}, {labelcrs

k,b}, and flag ∈ {0, 1}.

1. Generates eb ← SendWrite(crs, d, g, b, {labelk,0, labelk,1}k∈[λ]) for b ∈ {0, 1}.
2. If flag = 0, then γ(α, β) := NAND(α⊕ ri, β ⊕ rj)⊕ rg for all α, β ∈ {0, 1}.
3. If flag = 1, then γ(α, β) := rg for all α, β ∈ {0, 1}.
4. Generates

f0 ← Send(crs, d, j, (γ(0, 0), eγ(0,0)), (γ(0, 1), eγ(0,1)))
f1 ← Send(crs, d, j, (γ(1, 0), eγ(1,0)), (γ(1, 1), eγ(1,1)))

5. Outputs Send(crs, d, i, f0, f1) and {labelcrs
k,crs[k]}.

Figure 4: The description of modified step circuit

Claim 5.4. adGC′gs satisfies the correctness.

Proof. Let Dg? and Dg?
g be the all entries and g-th entry of the database at the end of Step 6.(c) of

GbEval in the g?-th iteration of the “For” loop where g? ∈ [n + 1, N ] g ∈ [N ]. We will show that
Dg?
g is a masked value of the output of gate g for any g ∈ [1, g?] by an inductive argument. That is,
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Dg?
g = NAND(Dg?−1

i ⊕ ri, Dg?−1
j ⊕ rj)⊕ rg? holds for n < g ≤ g? where the inputs of g are the outputs

of i and j and Dg?
g = xg ⊕ rg for 1 ≤ g ≤ n.

Base case (Before into the loop): It is easy to see that the equation holds for g? = n since the initial
database is Dn = r1‖ · · · ‖rn ⊕ x‖0N−n.
Inductive step:Wewill show that γ in Step 6.(b) ofGbEval is equal toNAND(Dg?−1

i ⊕ri, Dg?−1
j ⊕rj)⊕rg? .

This value is written in Dg?
g by the ReceiveWrite(crs, g, γ, e) in Step 6.(c).

First, by the definition of the modified step circuit and the correctness of GC, it holds that

(gout1, gout2) = GC.Eval(S̃Cg, (label, labelcrs)) =
(

Send(crs, d, i, f0, f1), {labelg+1,crs
k,crs[k] }

)
.

Next, it holds that
f
Dg

?−1
i

= ReceiveD̂(crs, Send(crs, d, i, f0, f1), i)

since the output of i-th gate is Dg?−1
i . By the definition of fb for b ∈ {0, 1}, it holds that

f
Dg

?−1
i

= Send(crs, d, j, (γ(Dg?−1
i , 0), e

γ(Dg
?−1
i ,0)), (γ(Dg?−1

i , 1), eγ(Dl−1
i ,1))).

Therefore, it holds that

(γ, e) := ReceiveD̂(crs,ReceiveD̂(crs, gout1, i), j)

= (γ(Dg?−1
i , Dg?−1

j ), e
γ(Dg

?−1
i ,Dg

?−1
j ))

= (NAND(Dg?−1
i ⊕ ri, Dg?−1

j ⊕ rj)⊕ rg? , eNAND(Dg
?−1
i ⊕ri,Dg

?−1
j ⊕rj)⊕rg?

).

Therefore, the inductive step is completed.
Finally, the correctness follows by setting g? := N since it is easy to see that we obtain DN

g ⊕ rg =
C(x)[g] where g ∈ [N −m+ 1, N ] at Step 8 of GbEval.

Online Complexity of GbInp. We confirm that our garbling scheme satisfies the complexity described
in Theorem 5.2.

Online Communication Complexity: It is easy to see that |x̃| = λ2 + λ+ |crs|+ n+m+ |sek|. By
the efficiency of updatable LOT, |crs| = λ holds21. Recall that |sek| = t · s · poly(λ) where
s is the block-length and t is the equivocation parameter. In our setting, we set s := |S̃C| and
t := logN . Moreover, by the efficiency of updatable LOT, |S̃C| = poly(logN,λ). Therefore,
|sek| = poly(logN,λ). Thus, |x̃| = n+m+ poly(log |C|, λ) (note that |C| = N ).

Online Computational Complexity: The running time of our GbInp depends on N since it computes
Hash(crs, D). However, we can reduce the computational complexity using a specific structure of
the updatable LOT by Cho et al. [CDG+17] (recall that our updatable LOT in Section 4 also uses
this structure) by using the same technique as GS18 scheme. We briefly review it.
The construction uses Merkle hash tree technique. Therefore, we can efficiently update a hash value.
Let y and y′ consist of ` blocks of λ-bits strings. Assume that y is different from y′ only in the
first k blocks. Given the Merkle hash on y and a set of log |y| hash values, there exists an efficient
algorithm that computes the Merkle hash on y′ and whose running time is O(λ(k + log |y|)).
By using this efficient update algorithm, we can reduce the computational complexity as follows.
At offline phase, we compute a hash value on 0N . We set each block length to be 1. That is, when

21In fact, in our LOT protocol in Section 4, |crs| = poly(λ). However, it does not matter here since it is absorbed in
poly(log |C|, λ) part.
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x ∈ {0, 1}n is given, we update the first dne blocks. For updating the hash value on 0N to the hash
value on (r ⊕ x‖0N−n), it takes O(1 · (n + logN)) time. That is, the running time of GbInp is
O(n+m) + poly(log |C|, λ) since GbInp computes the hash value and outputs poly(λ) + n+m
values. Note that GbInp need not output (rn+1, . . . , rN−m).

5.2 Security Proof of Adaptive Garbling from Selective-Database Laconic OT

In this section, we prove the adaptive security of adGC′gs.

Simulation and Hybrids.

To prove the security, we must present simulation algorithms SimC and SimIn and prove that simulated
garbled circuit C̃ and garbled input x̃ are indistinguishable from the real ones. We can define the
simulation algorithm of adGC′gs and hybrid simulations via the notion of circuit configurations introduced
by Hemenway et al. [HJO+16].

Definition 5.5 (Circuit Configuration). A circuit configuration conf consists of a set I ⊆ [n + 1, N ]
and a set of tuples (g,modeg) where modeg ∈ {White,Gray,Black} indicates the mode of simulation
strategies for each gate g ∈ [n+ 1, N ]. That is, conf = (I, {(g,modeg)}g∈[n+1,N ]).

Definition 5.6 (Valid Configuration).We say that a configuration conf = (I, {(g,modeg)}g∈[n+1,N ])
is valid if and only if

• If modeg = Black, then for every k > g, modek = Black.

• If modeg = Gray, then g ∈ I .

We define Hybconf to be a hybrid distribution of C̃ and x̃ for every valid circuit configuration
conf = (I, {(g,modeg)}g∈[n+1,N ]) in Figure 5. We can observe that

• The real experiment of adaptive garbling scheme, that is, coin = 0 case in Definition 3.10
corresponds to r.conf := conf = (∅, {(g,White)}g∈[n+1,N ]).

• The ideal experiment of adaptive garbling scheme, that is, coin = 1 case in Definition 3.10
corresponds to s.conf := conf = (∅, {(g,Black)}g∈[n+1,N ]).

Note that we abuse the notation. We use Hyb to denote not only a hybrid distribution in a hybrid
game but also the description of the hybrid game.
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Hybrid Simulation for configuration conf = (I, {(h,modeh)}h∈[n+1,N ])
SimC(1λ, C): Note that SimC uses the circuit C : {0, 1}n → {0, 1}m only in hybrid simulations.

1. Chooses r ← {0, 1}N .
2. Chooses labelgk,b ← {0, 1}

λ and labelg,crs
k,b ← {0, 1}

λ for g ∈ [n+ 1, N + 1], k ∈ [λ], and b ∈ {0, 1}.
3. From g = N to g = n+ 1 (decrement g) such that g /∈ I , does the following.

• Interprets gate g as (i, j).
• If modeg = White, then computes

S̃Cg ← GC.Grbl(1λ,SC[(ri, rj , rg), (i, j), labelsg+1
, 0], labelsg)

where SC is described in Figure 4 and labelsg = ({labelgk,b}, {labelg,crs
k,b }).

• If modeg = Black, then computes

S̃Cg ← GC.Grbl(1λ, SC[(0, 0, rg), (i, j), labelsg+1
, 1], labelsg)

where labelsg = ({labelgk,b}, {labelg,crs
k,b }).

4. Generates (st1, c)← SimEnc(I, {S̃Cg}g/∈I).

5. Outputs C̃ := c and st := (r, st1, {labeln+1
k,b }, {labeln+1,crs

k,b })

In the ideal experiment, we do not need any gate description since all g ∈ [n + 1, N ] are Black mode and
flag = 1 in SC.

Notation for simulated input garbling: For g ∈ [n+ 1, N ],Dg is defined as follows.

Dg[w] :=


xw ⊕ rw w ≤ n
Ew ⊕ rw n+ 1 ≤ w < g

0 otherwise,

where Ew is the bit assigned to wire w of C when the input is x. We also use dg for the digest ofDg , that is,
(dg, D̂g) := Hash(crs, Dg). We let dg[k] be the k-th bit of dg .

SimIn(st, x, y): Note that SimIn uses the input x ∈ {0, 1}n only in the hybrid simulations.

1. Parses st = (r, st1, {labeln+1
k,b }, {labeln+1,crs

k,b }).

2. Generates crs← Gen(1λ).
3. From g = N to g = n+ 1 (decrement g) such that g ∈ I , does the following.

(a) Computes e← SimWrite(crs, Dg, g,Dg+1, {labelg+1
k,dg+1[k]}).

(b) Computes gout1 ← Sim(crs, Dg, i, Sim(crs, Dg, j, e)) and sets gout2 := {labelg+1,crs
k,crs[k]}.

(c) Computes S̃Cg ← GC.Sim(1λ, 1|SC|, (gout1, gout2), ({labelg
k,dg [k]}, {labelg,crs

k,crs[k]})).

4. Computes s̃ek← SimKey(st1, {S̃Cg}g∈I).
5. From g ∈ [N −m+ 1, N ] (increment g), does the following

(a) If modeg = Black, then sets r′g := rg ⊕ y[w −N +m].
(b) Else, sets r′g := rg .
Outputs x̃ := ({labeln+1

k,dn+1[k]}k∈[λ], {labeln+1,crs
k,crs[k] }k∈[λ], r1 ⊕ x1‖ . . . ‖rn ⊕

xn, s̃ek, r′N−m+1, . . . , r
′
N ).

In the ideal experiment, we consider x := 0n and it holds r1 ⊕ x1‖ · · · ‖rn ⊕ xn = r1‖ · · · ‖rn. Thus, we do
not need x.

Figure 5: Simulation for hybrid configurations.
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Rules of Indistinguishability

Our goal is proving that Hybr.conf
c≈ Hybs.conf . To prove this, we use the same indistinguishability rules

introduced by Garg and Srinivasan [GS18]. We can use those rules as they are though the proofs of
indistinguishability are slightly different from theirs since our scheme is based on selective-database
updatable LOT.

Definition 5.7 (Rule A [GS18]). For any valid configuration conf, we can change the mode of a gate g∗
such that modeg∗ = White into modeg∗ = Gray if g∗ is the first gate or if its predecessor is also in Gray
mode.

Let conf = (I, {(g,modeg)}g∈[n+1,N ]) and conf ′ = (I ′, {(g,mode′g)}g∈[n+1,N ]) be two valid circuit
configurations and g∗ ∈ [n+ 1, N ] be a gate such that

• For all g ∈ [n+ 1, N ] \ g∗, it holds that modeg = mode′g.

• It holds that g∗ /∈ I , I ′ = I∪{g∗}, and |I ′| ≤ twhere t is the equivocation parameter of somewhere
equivocal encryption.

• It holds either g∗ = n+ 1 or (g∗ − 1,Gray) ∈ conf.

• It holds that (g∗,White) ∈ conf and (g∗,Gray) ∈ conf ′.

In Lemma 5.10, we will prove that it holds Hybconf
c≈ Hybconf′ .

Definition 5.8 (Rule B [GS18]). For any valid configuration conf, we can change the mode of a gate g∗
such that modeg∗ = Gray into modeg∗ = Black if all gates subsequent to g∗ are in Black mode and its
predecessor is in Gray mode.

Let conf = (I, {(g,modeg)}g∈[n+1,N ]) and conf ′ = (I ′, {(g,mode′g)}g∈[n+1,N ]) be two valid circuit
configurations and g∗ ∈ [n+ 1, N ] be a gate such that

• For all g ∈ [n+ 1, N ] \ g∗, it holds that modeg = mode′g.

• It holds that g∗ ∈ I , I ′ = I \ {g∗}, and |I| ≤ t where t is the equivocation parameter of somewhere
equivocal encryption.

• For all g ∈ [g∗ + 1, N ], it holds that (g,Black) ∈ conf.

• It holds either g∗ = n+ 1 or (g∗ − 1,Gray) ∈ conf.

• It holds that (g∗,Gray) ∈ conf and (g∗,Black) ∈ conf ′.

In Lemma 5.18, we will prove that it holds Hybconf
c≈ Hybconf′ .

Pebbling Game and Optimal Strategy

We can prove Hybr.conf
c≈ Hybs.conf by using rules A and B many times. However, to achieve the

communication/computational complexity described in Theorem 5.1, we cannot apply these rules in a
naive way. This is because we can use at most logN Gray mode gates (i.e., |I| ≤ t = logN ) in each
configuration. Garg and Srinivasan proposed the optimal pebbling strategy, which enables us to set
t = logN .

Lemma 5.9 (Optimal Pebbling Strategy [GS18]). For any N ∈ N, there is a procedure that changes
r.conf = (∅, {g,White}g∈[n+1,N ]) into s.conf = (∅, {g,Black}g∈[n+1,N ]) by applying Rule A and Rule
B at most poly(N) times, and using at most logN Gray modes during the transition. That is, during
the transition from all White mode to all Black mode, conf = (I, {g,modeg}g∈[n+1,N ]) always satisfies
|I| ≤ logN .
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For proving Theorem 5.1, what remains is to prove that if conf is changed to conf ′ by applying Rule
A or Rule B, then we have Hybconf

c≈ Hybconf′ .

Proof of Indistinguishability for Rule A and B

Now, all we have to do is proving the indistinguishability of the two rules.

Lemma 5.10 (Rule A). Let conf and conf ′ be two valid configurations that satisfy the conditions of rule
A in Definition 5.7. If there exists selectively secure garbling scheme for circuits, somewhere equivocal
encryption, and selective-database updatable laconic OT in Definitions 3.8, 3.22 and 4.1, then it holds
that Hybconf

c≈ Hybconf′ .

Proof of Lemma 5.10. We define the sequence of hybrid games.

Hybconf: We start from the configuration conf = (I, {(g,modeg)}g∈[n+1,N ]).

Hyb1: This hybrid is the same asHybconf except thatwe change the configuration from (I, {(g,modeg)}g∈[n+1,N ])
to (I ′, {(g,modeg)}g∈[n+1,N ]). Note that we do not change how to generate S̃Cg∗ at this point. We
will prove Hybconf

c≈ Hyb1 by using the security of somewhere equivocal encryption in Lemma 5.11.

Hyb2: This hybrid is the same as Hyb1 except that we defer choosing {labelg
∗

k,b} and {labelg
∗,crs
k,b } and

computing S̃Cg∗ to SimIn phase (not SimC phase). This is purely conceptual change. We will prove
Hyb1 = Hyb2 (i.e., two distributions are identical) in Lemma 5.12.

Hyb3: This hybrid is the same as Hyb2 except that we change how to choose ({labelg
∗

k,b}, {labelg
∗,crs
k,b })

and compute S̃Cg∗ as follows.

• We do not choose {labelg
∗

k,1−dg∗ [k]} and {labelg
∗,crs
k,1−crs[k]} anymore. That is, we use only

{labelg
∗

k,dg∗ [k]} and {labelg
∗,crs
k,crs[k]}. These are sufficient for our simulation of x̃ and S̃Cg∗−1

since g∗ − 1 is in Gray mode in this setting.
• We compute (gout1, gout2)← SC[crs, (ri, rj , rg), (i, j), {labelg

∗+1
k,b }, {labelg

∗+1,crs
k,b }, 0](dg∗ , crs)

and

S̃Cg∗ ← GC.Sim(1λ, 1|SC|, (gout1, gout2), ({labelg
∗

k,dg∗ [k]}, {labelg
∗,crs
k,crs[k]}))

by using the simulator of the selectively secure garbling scheme. Note that S̃Cg∗ is generated
at SimIn and crs is already generated at this point. We will prove Hyb2

c≈ Hyb3 by using the
selective security of garbling scheme (GC.Grbl,GC.Eval,GC.Sim) in Lemma 5.13.

Hyb4: This hybrid is the same as Hyb3 except that we change how to compute gout1 hardwired in S̃Cg∗
as follows. Instead of using both f0 and f1 as in Hyb3, we compute

gout1 ← Sim(crs, Dg∗ , i, fDg∗ [i]).

That is, we use the simulator of updatable laconic OT Π by only using fDg∗ [i]. We will prove
Hyb3

c≈ Hyb4 by using the selective-database sender privacy in Lemma 5.14. Recall that i is the
index of the gate whose output is an input of the gate g∗.

Hyb5: This hybrid is the same as Hyb4 except that we change how to compute fDg∗ [i] as follows.
Instead of using fDg∗ [i] ← Send(crs, d, j, (γ(Dg∗ [i], 0), eγ(Dg∗ [i],0)), (γ(Dg∗ [i], 1), eγ(Dg∗ [i],1))),
we compute

Sim(crs, Dg∗ , j, (Dg∗+1[g∗], eDg∗+1[g∗])),
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where eDg∗+1[g∗] ← SendWrite(crs, d, g∗, Dg∗+1[g∗], {labelg
∗+1
k,0 , labelg

∗+1
k,1 }). Note that, by the

definition, Dg∗+1[g∗] = γ(Dg∗ [i], Dg∗ [j]). We will prove Hyb4
c≈ Hyb5 by using the selective-

database sender privacy in Lemma 5.15.

Hyb6: This hybrid is the same as Hyb5 except that we change how to compute eDg∗+1[g∗] as follows.
Instead of using SendWrite(crs, d, g∗, Dg∗+1[g∗], {labelg

∗+1
k,0 , labelg

∗+1
k,1 }), we compute

SimWrite(crs, Dg∗ , g
∗, Dg∗+1[g∗], {labelg

∗+1
k,dg∗+1[k]}).

That is, we use the simulator for writes of updatable laconic OT Π by using {labelg
∗+1
k,dg∗+1[k]}. We

will prove Hyb5
c≈ Hyb6 by using the selective-database sender privacy for writes in Lemma 5.16.

Hyb7: This hybrid is the same as Hyb6 except that we change how to choose {labelg
∗

k,b} and {labelg
∗,crs
k,b }.

We choose {labelg
∗

k,b} and {labelg
∗,crs
k,b } for all k ∈ [λ] and b ∈ {0, 1} at SimC again. This change is

purely conceptual. It is easy to see that this game is the same as Hybconf′ .

Lemma 5.11. If Σ is somewhere equivocal encryption scheme, then it holds that Hybconf
c≈ Hyb1.

Proof. We construct an algorithm B that breaks the security of somewhere equivocal encryption by using
a distinguisher A for hybrid games Hyb0 and Hyb1. When B is given 1λ, it uses I in conf as an index set
and sets Î := I ∪ {g∗}, that is, g∗ is the challenge index.

Simulation of the Garbled Circuit. B does the following to generate C̃.

1. Does the 1st to 4th steps of SimC described in Figure 5.

2. Sends {S̃Cg}g/∈I generated above to the challenger of somewhere equivocal encryption as the
challenge messages with the challenge set I and index g∗. B receives c from the challenger.

3. Outputs C̃ := c and st := (r, st1, {labeln+1
k,b }, {labeln+1,crs

k,b }).

Simulation of the Garbled Input. B does the following to generate x̃.

1. Does the 1st to 3rd steps of SimIn described in Figure 5.

2. Sends {S̃Cg}g∈I generated above to the challenger of somewhere equivocal encryption as the
remaining challenge messages and receives s̃ek.

3. Does the 5th step of SimIn described in Figure 5 and outputs x̃ by using s̃ek from the challenger.

It is easy to see that if (c, s̃ek) comes from coin = 0 case of somewhere equivocal encryption, B perfectly
simulates Hybconf and if (c, s̃ek) comes from coin = 1 case of somewhere equivocal encryption, B
perfectly simulates Hyb1. This completes the proof.

Lemma 5.12. It holds that Hyb1 = Hyb2 (i.e., two distributions are identical).

Proof. We can choose {labelg
∗

k,b} and {labelg
∗,crs
k,b } at SimIn because {labelg

∗

k,b} and {labelg
∗,crs
k,b } are not

used in SimC but in SimIn to compute x̃, S̃Cg∗−1, and S̃Cg∗ . We note that it holds that modeg∗−1 = Gray
by the condition of Rule A and g∗ − 1 ∈ I ′. Thus, we do not need {labelg

∗

k,b} to generate S̃Cg∗ . Therefore,
deferring choosing {labelg

∗

k,b} and {labelg
∗,crs
k,b } and computing S̃Cg∗ does not change anything.

Lemma 5.13. If GC is a selectively secure garbling scheme, then it holds that Hyb2
c≈ Hyb3.
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Proof. We construct an algorithm B that breaks the selective security of garbling scheme by using a
distinguisher A for hybrid games Hyb2 and Hyb3. Note that we do not need any value from the selective
security of GC for simulating the garbled circuit C̃ since we change how to generate S̃Cg∗ and g∗ ∈ I at
this point.

Simulation of the Garbled Circuit. Note that B do not need {labelg
∗

k,b} and {labelg
∗,crs
k,b }. This is

because they need not to be committed by the assumption that g∗ − 1 is in Gray mode or g∗ = n + 1.
Moreover, {labelg

∗,crs
k,b } is needed only for x̃.

1. B chooses labelgk,b and labelg,crs
k,b for all g ∈ [n+ 1, N ] \ {g∗}, k ∈ [λ], and b ∈ {0, 1}.

2. B generates C̃ as in Hyb2.

Simulation of the Garbled Input. B does the following.

1. PreparesSC[(ri, rj , rg∗), (i, j), {labelg
∗+1
k,b }, {labelg

∗+1,crs
k,b }, 0] and (dg∗ , crs) by usingHash(crs, Dg∗)

and sends them as the challenge circuit and input for selective security of GC.

2. Receives S̃Cg∗ and ({labelg
∗

k,dg∗ [k]}k∈[λ], {labelg
∗,crs
k,crs[k]}k∈[λ]) from the challenger of GC.

3. Generates S̃Cg as in Figure 5 for all g ∈ I ′ \ {g∗}. Note that we need only {labelg,crs
k,crs[k]} for g ∈ I

′.
Moreover, we need only {labelg

∗

k,dg∗ [k]}k∈[λ] to generate S̃Cg∗−1.

4. Does the same things for the rest of the steps in Figure 5 and outputs x̃.

It is easy to see that if S̃Cg∗ comes from coin = 0 of the selective security of GC, then B perfectly
simulates Hyb2 and if S̃Cg∗ comes from coin = 1 case then B perfectly simulates Hyb3. This completes
the proof.

Lemma 5.14. If Π is selective-database sender private updatable laconic OT, then it holds that Hyb3
c≈

Hyb4.

Proof of Lemma 5.14. We construct an adversary B for selective-database sender private updatable
laconic OT that uses a distinguisher A for hybrid games Hyb3 and Hyb4. First, B must decide a database
before B is given crs.

Simulation of the Garbled Circuit. B simulate C̃ = c as in Hyb3. Note that B do not need crs for this
simulation since crs is not hardwired in S̃C for g /∈ I .

Simulation of the Garbled Input. WhenB generates x̃, B is given the input x. Thus,Dg∗ is determined
at this point according to the definition of Dg[w] in Figure 5. Note that (i, j) are input wires of the gate
g∗. Therefore, B sets a database to Dg∗ , sends Dg∗ to the challenger of selective-database sender privacy,
and receives crs.

Now, B can compute S̃Cg∗ as follows.

1. Computes e0, e1, f0, f1 as in Figure 4 since B has crs at this point.

2. Sends the location i and the messages (f0, f1) to the challenger of selective-database sender privacy.
Then, B obtains gout1 as the target ciphertext.

3. Computes S̃Cg∗ ← GC.Sim(1λ, 1|SC|, (gout1, gout2), ({labelg
∗

k,dg∗ [k]}, {labelg
∗,crs
k,crs[k]}))wheregout2 =

{labelg
∗+1,crs
k,crs[k] }.
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Next, B generates S̃Cg for all g ∈ I ′ \ {g∗} as in Hyb3. For other steps of SimIn in Figure 5, B does the
same things and generates x̃.

It is easy to see that if gout1 comes from Realsel-db
`OT (λ), then B perfectly simulates Hyb3 and if gout1

comes from Simsel-db
`OT (λ) case then B perfectly simulates Hyb4. This completes the proof.

Lemma 5.15. If Π is selective-database sender private updatable laconic OT, then it holds that Hyb4
c≈

Hyb5.

Proof. We can prove this lemma by the similar argument to that in the proof of Lemma 5.14 since when
B generates x̃, B is given the input x and Dg∗ is determined at this point according to the definition of
Dg[w] in Figure 5. Moreover, B does not need crs for the simulation of C̃. Thus, B can prepare the
challenge messages eb ← SendWrite(crs, d, g∗, b, {labelk,0, labelk,1}) and the challenge location j. For
all g ∈ I ′ \ {g∗}, B can simulate S̃Cg since crs is already given at this point. See the proof of Lemma 5.14
for the detail.

Lemma 5.16. If Π is selective-database sender private updatable laconic OT, then it holds that Hyb5
c≈

Hyb6.

Proof. We construct an algorithm B that breaks the selective-database sender privacy for writes by using
a distinguisher A for hybrid games Hyb5 and Hyb6. First, B must decide a database before B is given crs.

Simulation of the Garbled Circuit. B simulate C̃ = c as in Hyb5. Note that B do not need crs for this
simulation since crs is not hardwired in S̃C for g /∈ I .

Simulation of the Garbled Input. WhenB generates x̃, B is given the input x. Thus,Dg∗ is determined
at this point according to the definition of Dg[w] in Figure 5. Note that (i, j) are input wires of the gate
g∗. Therefore, B sets a database to Dg∗ , sends Dg∗ to the challenger of selective-database sender privacy
for writes, and receives crs.

Now, B can compute S̃Cg∗ as follows.

1. Sends g∗, Dg∗+1[g∗], and {labelg
∗+1
k,b } as the challenge location, bit, and messages, respectively.

2. Receives eDg∗+1[g∗] from the challenger.

3. Computes fDg∗+1[g∗], gout1, and gout2 as in Hyb5.

4. Computes S̃Cg∗ ← GC.Sim(1λ, 1|SC|, (gout1, gout2), ({labelg
∗

k,dg∗ [k]}, {labelg
∗,crs
k,crs[k]})).

Next, B generates S̃Cg for all g ∈ I ′ \ {g∗} as in Hyb5. For other steps of SimIn in Figure 5, B does the
same things and generates x̃.

It is easy to see that if eDg∗+1[g∗] comes from Realsel-db-wr
`OT (λ), then B perfectly simulates Hyb5 and if

eDg∗+1[g∗] comes from Simsel-db-wr
`OT (λ) then B perfectly simulates Hyb6. This completes the proof.

Lemma 5.17. It holds that Hyb6 = Hyb7.

Proof. The simulator can choose {labelg
∗

k,b} and {labelg
∗,crs
k,b } for all k ∈ [λ], b ∈ {0, 1} at this point since

we had already used the selective security of GC. Moreover, the simulator can choose those at SimC.
Thus, the distributions of Hyb6 and Hyb7 are completely the same.

By Lemmata 5.11 to 5.17, we complete the proof of Lemma 5.10.
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Lemma 5.18 (Rule B). Let conf and conf ′ be two valid configurations that satisfy the conditions of rule
B in Definition 5.8. If there exists selectively secure garbling scheme for circuits, somewhere equivocal
encryption, and selective-database secure updatable laconic OT in Definitions 3.8, 3.22 and 4.1, then it
holds that Hybconf

c≈ Hybconf′ .

Proof of Lemma 5.18. We define the sequence of hybrid games. The lemma is proved with hybrid games
in reverse order similarly to GS18 scheme.

Hybconf′: We start from the configuration conf ′ = (I ′, {(g,mode′g)}g∈[n+1,N ]).

Hyb1: This hybrid is the same asHybconf′ except thatwe change the configuration from (I ′, {(g,mode′g)}g∈[n+1,N ])
to (I, {(g,mode′g)}g∈[n+1,N ]). If Σ is somewhere equivocal encryption, it holds that Hybconf′

c≈
Hyb1. We can prove this in a similar way to Lemma 5.11.

Hyb2: This hybrid is the same as Hyb2 except that we defer choosing {labelg
∗

k,b} and {labelg
∗,crs
k,b }

and computing S̃Cg∗ to SimIn phase (not SimC phase). We can do this because {labelg
∗

k,b} and
{labelg

∗,crs
k,b } are not used in SimC but in SimIn to compute S̃Cg∗−1, S̃Cg∗ , and x̃. We note that it

holds that modeg∗−1 = Gray by the condition of Rule B and g∗−1 ∈ I ′. It holds that Hyb1 = Hyb2
(i.e., two distributions are identical). We can prove this in a similar way to Lemma 5.12.

Hyb3: This hybrid is the same as Hyb2 except that we change how to choose {labelg
∗

k,b} and {labelg
∗,crs
k,b }

and computing S̃Cg∗ as follows.

• We do not choose {labelg
∗

k,1−dg∗ [k]} and {labelg
∗,crs
k,1−crs[k]} anymore. That is, we use only

{labelg
∗

k,dg∗ [k]} and {labelg
∗,crs
k,crs[k]}. These are sufficient for our simulation of S̃Cg∗−1 and x̃

since g∗ − 1 is in Gray mode in this setting and {labelg,crs
k,crs[k]} is used only in x̃.

• We compute (gout1, gout2)← SC[crs, (0, 0, rg), (i, j), {labelg
∗+1
k,b }, {labelg

∗+1,crs
k,b }, 1](dg∗ , crs)

and

S̃Cg∗ ← GC.Sim(1λ, 1|SC|, (gout1, gout2), ({labelg
∗

k,dg∗ [k]}, {labelg
∗,crs
k,crs[k]})).

Note that S̃Cg∗ is generated at SimIn and crs is already generated at this point.

If GC is selectively secure garbled circuit, it holds that Hyb2
c≈ Hyb3. We can prove this in a similar

way to Lemma 5.13.

Hyb4: This hybrid is the same as Hyb3 except that we change how to compute gout1 hardwired in S̃Cg∗
as follows. Instead of using both f0 and f1, we compute

gout1 ← Sim(crs, Dg∗ , i, fDg∗ [i]).

That is, we use the simulator of updatable laconic OT Π by only using fDg∗ [i]. If Π is selective-
database sender private, it holds that Hyb3

c≈ Hyb4. We can prove this in a similar way
to Lemma 5.14.

Hyb5: This hybrid is the same as Hyb4 except that we change how to compute fDg∗ [i] as follows. Instead
of using fDg∗ [i] ← Send(crs, d, j, erg∗ , erg∗ ), we compute

Sim(crs, Dg∗ , j, erg∗ ),

where erg∗ ← SendWrite(crs, d, g∗, rg∗ , {labelg
∗+1
k,0 , labelg

∗+1
k,1 }). If Π is selective-database sender

private, it holds that Hyb4
c≈ Hyb5. We can prove this in a similar way to Lemma 5.15.
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Hyb6: This hybrid is the same as Hyb5 except that we change how to compute erg∗ as follows. Instead of
using SendWrite(crs, d, g∗, rg∗ , {labelg

∗+1
k,0 , labelg

∗+1
k,1 }), we compute

SimWrite(crs, Dg∗ , g
∗, rg∗ , {labelg

∗+1
k,dg∗+1[k]}).

If Π is selective-database sender private for writes, it holds that Hyb5
c≈ Hyb6. We can prove this

in a similar way to Lemma 5.16.

Hyb7: This hybrid is the same as Hyb6 except that we change how to choose {labelg
∗

k,b} and {labelg
∗,crs
k,b }.

We choose {labelg
∗

k,b} and {labelg
∗,crs
k,b } for all k ∈ [λ] and b ∈ {0, 1} at SimC again. It holds

that Hyb6 = Hyb7 (i.e., two distributions are identical). We can prove this in a similar way
to Lemma 5.12.

Hyb8: This hybrid is the same as Hyb7 except that how to generate Dg∗+1[g∗] is different as follows. In
Hyb8,Dg∗+1[g∗] := rg∗⊕NAND(Dg∗ [i]⊕ri, Dg∗ [j]⊕rj). Note that, in Hyb7,Dg∗+1[g∗] := rg∗ .
In fact, the distributions of Hyb7 and Hyb8 are the same. There are two cases as follows.

Case g∗ ≤ N −m: In this case, rg∗ does not appear in x̃. Moreover, rg∗ is not hardwired in S̃C
since S̃C is simulated by the simulation of GC. Thus, both rg∗ and rg∗ ⊕ NAND(Dg∗ [i]⊕
ri, Dg∗ [j]⊕ rj) are uniformly and identically distributed.

Case g∗ > N −m: In this case, it holds that r′g∗ = yg∗−N+m ⊕ rg∗ in Hyb7 (this corresponds
to Black mode by the definition in Figure 5). This is because Dg∗ [i] = ri ⊕ Ei (resp.
Dg∗ [j] = rj ⊕Ej) and (Ei, Ej) are real wire values connected to gate g∗ when the input is x.
That is,

rg∗ ⊕ NAND(Dg∗ [i]⊕ ri, Dg∗ [j]⊕ rj) = rg∗ ⊕ NAND(Ei, Ej) = rg∗ ⊕ yg∗−N+m.

The distribution of r′g∗ = yg∗−N+m ⊕ rg∗ is identical to that of r′g∗ = rg∗ in Hybconf since
rg∗ is uniformly random.

Finally, it is easy to see that Hyb8 is exactly the same as Hybconf .

5.3 Secret-Key FE from Our Adaptive Garbling

We slightly modify the garbling scheme in Section 5.1. The modification is as follows. Instead of
running procedure GbCkt(1λ, C) (described in Section 5.1), which would sample fresh values for the state
information, it runs a slightly modified procedure GbCkt∗(1λ, C,MSK) which takes the state information
as an external input. That is, we set MSK := (r, sek, {labeln+1

k,b }, {labeln+1,crs
k,b }, crs). Note that it is not a

problem that crs is included in MSK because a master secret key of secret-key FE is never public in the
setting of secret-key FE and a simulator adaptively set a master secret-key in the security game.

1-Key and 1-Bounded Ciphertext-Adaptively Secure and Succinct SKFE. First, we present 1-key
and1-bounded ciphertext-adaptively secure and succinct SKFE scheme ctadFE1-1

gs = (Setup′,KG′,Enc′,Dec′),
which is based on the garbling scheme adGC′gs in Section 5.1.

Setup′(1λ): This algorithm outputs a master secret-key MSK as follows.

1. Generates sek← KeyGen(1λ), and chooses r ← {0, 1}N .
2. Generates crs← Gen(1λ).
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3. Chooses labelgk,b ← {0, 1}λ and labelg,crs
k,b ← {0, 1}λ for g ∈ [n + 1, N + 1], k ∈ [λ], and

b ∈ {0, 1}.
4. Outputs MSK := (r, sek, {(labelgk,b, labelg,crs

k,b )}k∈[λ],b∈{0,1},g∈[n+1,N+1], crs).

KG′(MSK, f): This algorithm outputs a functional decryption key skf as follows.

1. Parses MSK = (r, sek, {(labelgk,b, labelg,crs
k,b )}k∈[λ],b∈{0,1},g∈[n+1,N+1], crs).

2. From g = N to g = n+ 1 (decrement g) of f , does the following.
• Interprets gate g as (i, j).
• Computes S̃Cg ← GC.Grbl(1λ, SC[(ri, rj , rg), (i, j), {labelg+1

k,b }, {labelg+1,crs
k,b }, 0], ({labelgk,b},

{labelg,crs
k,b })).

3. Generates c← Enc(sek, {S̃Cg}g∈[n+1,N ]).
4. Outputs skf := c.

Enc′(MSK,m): This algorithm outputs a ciphertext CTm as follows.

1. Parses MSK = (r, sek, {(labelgk,b, labelg,crs
k,b )}k∈[λ],b∈{0,1},g∈[n+1,N+1], crs).

2. Sets D := r1 ⊕m1‖ · · · ‖rn ⊕mn‖0N−n.
3. Computes (d, D̂) := Hash(crs, D).
4. OutputsCTm := ({labeln+1

k,dk
}k∈[λ], {labeln+1,crs

k,crsk }k∈[λ], crs, r1⊕m1, . . . , rn⊕mn, sek, rN−m+1,
. . . , rN ).

Dec′(skf ,CTm): This algorithm runs as follows.

1. Parses skf = c andCTm = ({labelk}k∈[λ], {labelcrs
k }k∈[λ], r1⊕m1, . . . , rn⊕mn, sek, rN−m+1,

. . . , rN ).
2. Sets D := r1 ⊕m1‖ · · · ‖rn ⊕mn‖0N−n.
3. Computes (d, D̂) := Hash(crs, D).
4. Computes {S̃Cg}g∈[n+1,N ] ← Dec(sek, c).

5. Set label := {labelk}k∈[λ] and labelcrs := {labelcrs
k }k∈[λ].

6. For g = n+ 1, . . . , N
• Interprets g as (i, j).
• Computes (gout1, gout2) := GC.Eval(S̃Cg, (label, labelcrs)).

• Computes (γ, e) := ReceiveD̂(crs,ReceiveD̂(crs, gout1, i), j).
• Sets label := ReceiveWriteD̂(crs, g, γ, e) and labelcrs := gout2.

7. Reads D from D̂.
8. Outputs DN−m+1 ⊕ rN−m+1‖ · · · ‖DN ⊕ rN .

Theorem 5.19. If there exists (1key,w-sel, sls)-PKFE, then ctadFE1-1
gs = (Setup′,KG′,Enc′,Dec′) is

1-key and 1-bounded ciphertext-adaptively secure SKFE scheme for circuits whose encryption algorithm
runs in time O(n + m) + poly(log |C|, λ). Moreover, if we set m = 1, then ctadFE1-1

gs is 1-key and
1-bounded ciphertext-adaptively secure and succinct SKFE for boolean circuits.

Note that we use the hash update trick explained in Section 5.1 for the efficiency.

Proof. This immediately follows from Theorem 5.2.
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Adaptively Secure, Single-Key, Single-Ciphertext, and Succinct SKFE. Our adaptively secure
scheme adFE1-1

gs = (Setup,KG,Enc,Dec) is based on ctadFE1-1
gs = (Setup′,KG′,Enc′,Dec′). Let `(m)

be the upper bound of the length of a ciphertext of ctadFE1-1
gs for a message of lengthm.

Setup(1λ): This algorithm outputs a master secret-key MSK as follows.

1. Generates MSK′ ← Setup′(1λ), and chooses a random mask ρ← {0, 1}`(m).
2. Outputs MSK := (MSK′, ρ).

KG(MSK, f): This algorithm outputs a functional decryption key skf as follows.

1. Parses MSK = (MSK′, ρ).
2. Generates sk′f ← KG′(MSK′, f).
3. Outputs skf := (ρ, sk′f ).

Enc(MSK,m): This algorithm outputs a ciphertext CTm as follows.

1. Parses MSK = (MSK′, ρ).
2. Computes CT′m ← Enc′(MSK′,m).
3. Outputs CTm := CT′m ⊕ ρ.

Dec(skf ,CTm): This algorithm decrypts as follows.

1. Parses skf = (ρ, sk′f )
2. Compute CT′m = CTm ⊕ ρ.
3. Computes and outputs y′ ← Dec′(sk′f ,CT′m).

Theorem 5.20. If ctadFE1-1
gs is 1-key and 1-bounded ciphertext-adaptively secure succinct SKFE for

(boolean) circuits, then adFE1-1
gs is (1key, 1ct, ada, fs)-SKFE for (boolean) circuits.

It is easy to see that the correctness holds. We give the proof of Theorem 5.20 in Appendix B.1 since
it is a standard proof.

Combining Theorems 5.19 and 5.20 we obtain the following theorem.

Theorem 5.21. If there exists (1key,w-sel, sls)-PKFE for circuits, then there exists (1key, 1ct, ada, fs)-
SKFE for boolean circuits.

By combining Theorems 3.20 and 5.21, we obtain the following theorem.

Theorem 5.22. If there exists (1key,w-sel, sls)-PKFE for circuits, then there exists (unbkey, ada, fs)-PKFE
for boolean circuits.

6 Adaptively Secure, Collusion-Resistant, and Succinct FE

In this section, we show a conversion from collusion-resistant PKFE for boolean circuits to one for all
circuits without sacrificing succinctness. Combined with Theorem 5.22, this gives our main theorem,
Theorem 1.1.
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6.1 From Single-bit to Multi-bit Succinct FE by Leveraging Collusion-Resistance

LetOnePKFE = (OnePKFE.Setup,OnePKFE.KG,OnePKFE.Enc,OnePKFE.Dec) be anPKFE scheme
forM,Y ′ := {0, 1}, and boolean circuits. We construct an PKFE schemeMultiPKFE = (MultiPKFE.Setup,
MultiPKFE.KG,MultiPKFE.Enc,MultiPKFE.Dec) forM, Y := {0, 1}`, and circuits as follows.

MultiPKFE.Setup(1λ) :

1. Computes (MPK,MSK)← OnePKFE.Setup(1λ).
2. Outputs (MPK,MSK).

MultiPKFE.KG(MSK, f) :

1. Computes ski ← OnePKFE.KG(MSK, fi) for every i ∈ [`] where fi(m) outputs the i-th bit
of f(m).

2. Outputs skf := {skfi}i∈[`].

MultiPKFE.Enc(MSK,m) :

1. Computes CTm ← OnePKFE.Enc(MSK,m).
2. Outputs CT := CTm.

PKFE.Dec(skf ,CTm) :

1. Parses {skfi}i∈[`] ← skf .
2. Computes yi ← OnePKFE.Dec(skfi ,CTm) for every i ∈ [`].
3. Outputs y := y1‖ . . . ‖y`.

Correctness. Correctness of MultiPKFE easily follows from correctness of OnePKFE.

Security. The security of MultiPKFE can be stated as follows.

Theorem6.1. IfOnePKFE is (unbkey, sec, eff)-PKFE for boolean circuits, thenMultiPKFE is (unbkey, sec, eff)-
PKFE for circuits where sec ∈ {w-sel, sel, ada} and eff ∈ {ns, sls, fs}.

This can be proven by a standard hybrid argument.

The Running Time of Encryption Algorithm. Since the encryption algorithm of MultiPKFE only
runs the encryption algorithm of OnePKFE, the running time of MultiPKFE.Enc is the same as that of
OnePKFE.Enc. OnePKFE.Enc is succinct, so MultiPKFE.Enc is.

6.2 Fully-Equipped PKFE

By combining Theorems 5.22 and 6.1, we obtain the main theorem in this study, that is, Theorem 1.1.
We obtain adaptively secure, collusion-resistant, and succinct public-key FE for circuits from weakly-
selectively secure, single-key, and sublinearly-succinct public-key FE for circuits.
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7 Adaptively Indistinguishable Garbling with Near-Optimal Online Com-
plexity

In this section, we give a construction of an adaptively indistinguishable garbling scheme for all circuits
whose online complexity does not depend on output-length of the circuit to garble. Namely, the length
of online part in our construction is 2n+ poly(log |C|, λ) where n and |C| denote the input-length and
circuit size, respectively. Our construction is generic, and can be instantiated based on any adaptive
garbling scheme with a special structure called quasi-decomposability and a weaker security called
input-privacy-free security. Our adaptively indistinguishable garbling scheme for all circuits can be
obtained by plugging the input-privacy-free variant of the adaptive garbling scheme given in Section 5
(or GS18 scheme [GS18]) into the above generic construction. We also note that we can instantiate the
generic construction based on input-privacy-free variants of known adaptive garbling schemes based
on one-way functions [HJO+16, JW16]. This gives an alternative modular construction of adaptively
indistinguishable garbling schemes for certain function classes, which were originally constructed in an
ad hoc manner by Jafargholi et al. [JSW17].

7.1 Roadmap

Here, we describe a roadmap of this section. In Section 7.2, we introduce a cryptographic primitive
called secret key non-committing encryption for receiver (SK-NCER), which is used in our construction
of SKFE from a garbling scheme in Section 7.4, and show that an SK-NCER scheme can be constructed
based on any SKE scheme. In Section 7.3, we define a property called the quasi-decomposability for
garbling schemes, and observe that a slight variant of the adaptive garbling scheme given in Section 5 (and
the one given by Garg and Srinivasan [GS18]) have the quasi-decomposability. Then we convert a quasi-
decomposable adaptive garbling scheme with online communication complexity n+m+poly(log |C|, λ)
and online computational complexity O(n+m) + poly(log |C|, λ) to an adaptively indistinguishable
garbling scheme with online communication complexity 2n+ poly(log |C|, λ) and online computational
complexity O(n) + poly(log |C|, λ) where C : {0, 1}n → {0, 1}m is the circuit being garbled. The
conversion consists of the following three steps:

• In Section 7.4, we give a construction of SKFE scheme for 1-bit functions with succinct key
generation based on quasi-decomposable with succinct online-complexity. Here, succinct key
generation means that the computational complexity of the key generation algorithm (and thus the
decryption-key-length) only logarithmically depend on the message-length. This part is based on a
similar construction to the one by Gorbunov, Vaikuntanathan and Wee [GVW12].

• In Section 7.5, we convert SKFE scheme for 1-bit functions to one for multi-bit functions without
losing efficiency of key generation. This part is based on a very simple idea to decompose a function
in a output-bit-wise manner similarly to the conversion in Section 6.1.

• In Section 7.6, we give a construction of adaptively indistinguishable garbling scheme (for multi-bit
functions) with succinct online complexity based on an SKFE scheme (for multi-bit functions) with
succinct key generation. This part is based on the work by Brakerski and Segev [BS15], which
showed how to add function privacy to any SKFE scheme.

By applying the above transformations to a slight variant of the adaptive garbling scheme given in Section 5
(or GS18 scheme [GS18]), we obtain an adaptively indistinguishable garbling scheme with succinct
online complexity as desired. In Section 7.7, we also discuss instantiations of the above conversions with
adaptive garbling schemes based on one-way functions [HJO+16, JW16].
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7.2 Secret-Key Non-Committing Encryption for Receiver

Here, we define a secret-key non-committing encryption for receiver (SK-NCER), which is the secret-key
variant of NCER [JL00, CHK05]. Roughly speaking, SK-NCER is SKE which allows one to generate a
“fake” ciphertext so that it can be later revealed to any message along with a “fake” decryption key. The
formal definition is given below.

Definition 7.1 (Secret-Key Non-Committing Encryption for Receiver). A secret key non-committing
encryption for receiver (SK-NCER) scheme NCER is a five tuple (KG,Enc,Dec,Fake,Reveal) of PPT
algorithms.

• The key generation algorithm KG, given a security parameter 1λ and message length 1`m , outputs
an encryption key ek and decryption key dk.22

• The encryption algorithm Enc, given an encryption key ek and messagem ∈ {0, 1}`m , outputs a
ciphertext CT.

• The decryption algorithm Dec, given a decryption key dk and ciphertext CT, outputs a message
m ∈ {0, 1}`m .

• The fake algorithm Fake, given an encryption key ek, outputs a fake ciphertext CT and state st.

• The reveal algorithm Reveal, given a state st and messagem∗ ∈ {0, 1}`m , outputs a fake decryption
key dk∗.

Correctness WerequireDec(dk,Enc(ek,m)) = m for everym ∈ {0, 1}`m and (ek, dk)← KG(1λ, 1`m).

Security Let A = (A1,A2) be a PPT adversary. We consider the following game between A and a
challenger for any λ ∈ N and `m ∈ N.

1. The challenger chooses the challenge bit coin r←− {0, 1}, generates (ek, dk)← KG(1λ, 1`m)
and sends security parameter 1λ and message length 1`m to A.

2. A makes arbitrarily many encryption queries and single challenge query in any order.
Encryption Query. When A makes an encryption query m ∈ {0, 1}`m , the challenger

computes CT← Enc(ek,m) and returns CT to A.
Challenge Query. When A makes a challenge querym∗ ∈ {0, 1}`m , the challenger returns

(CT∗, dk∗) generated as follows:
• If coin = 0, then it computes CT∗ ← Enc(ek,m∗) and dk∗ := dk.
• If coin = 1, then it computes (CT∗, st)← Fake(ek) and dk∗ ← Reveal(st,m∗).

3. A outputs coin′ ∈ {0, 1}.

In this game, we define the advantage of A as

Advncer
NCER,A(λ, `m) = 2|Pr[coin = coin′]−1

2 | = |Pr[coin′ = 1 | coin = 0]−Pr[coin′ = 1 | coin = 1]| .

We say that NCER is secure if for any PPT A, we have Advncer
NCER,A(λ, `m) = negl(λ) for any

`m = poly(λ).
22One may wonder why encryption and decryption keys are separately defined though we consider a secret-key primitive. The

reason is that the security of SK-NCER involves an adversary that obtains a decryption key, and we cannot include all secret
information in a decryption key.
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Construction. Here, we give a construction of an SK-NCER scheme based on any CPA-secure SKE
scheme, which in turn can be constructed based on any one-way function. LetSKE = (SKE.Enc,SKE.Dec)
be a CPA-secure SKE scheme on the message space {0, 1}. We construct an SK-NCER scheme
NCER = (NCER.KG,NCER.Enc,NCER.Dec,NCER.Fake,NCER.Reveal) as follows.

NCER.KG(1λ, 1`m) :

1. GeneratesKi,b
r←− {0, 1}λ for every i ∈ [`m] and b ∈ {0, 1}.

2. Generates x r←− {0, 1}`m .

3. Outputs ek := {Ki,b}i∈[`m],b∈{0,1} and dk :=
(
x, {Ki,x[i]}i∈[`m]

)
.

NCER.Enc(ek,m) :

1. Parses {Ki,b}i∈[`m],b∈{0,1} ← ek.
2. Generates CTi,b ← SKE.Enc(Ki,b,m[i]) for every i ∈ [`m] and b ∈ {0, 1}.
3. Outputs CT := {CTi,b}i∈[`m],b∈{0,1}.

NCER.Dec(dk,CT) :

1. Parses
(
x, {Ki}i∈[`m]

)
← dk and {CTi,b}i∈[`m],b∈{0,1} ← CT.

2. Computem[i]← SKE.Dec(Ki,CTi,x[i]) for every i ∈ [`m].
3. Outputsm := m[1]‖ . . . ‖m[`m].

NCER.Fake(ek) :

1. Parses {Ki,b}i∈[`m],b∈{0,1} ← ek.

2. Generates x∗ r←− {0, 1}`m .
3. Compute CTi,x∗[i] ← SKE.Enc(Ki,x∗[i], 0) and CTi,1−x∗[i] ← SKE.Enc(Ki,1−x∗[i], 1) for

every i ∈ [`m].

4. Outputs CT := {CTi,b}i∈[`m],b∈{0,1} and st :=
(
x∗, {Ki,b}i∈[`m],b∈{0,1}

)
.

NCER.Reveal(st,m∗) :

1. Parses
(
x∗, {Ki,b}i∈[`m],b∈{0,1}

)
← st.

2. Outputs dk∗ :=
(
x∗ ⊕m∗, {Ki,x∗[i]⊕m∗[i]}i∈[`m]

)
.

Correctness of NCER easily follows from correctness of SKE.
The security of NCER is stated as follows.

Theorem 7.2. If SKE is CPA-secure, then NCER is a secure SK-NCER scheme.

Proof. Let A be a PPT adversary that attacks the security of NCER. We consider the following sequence
of experiments.

Exp 0: This is the experiment defining the security of SK-NCER in which coin is fixed to 0. Specifically,
this is described as follows.

1. The challenger generatesKi,b
r←− {0, 1}λ for every i ∈ [`m] and b ∈ {0, 1} and x r←− {0, 1}`m ,

and sends security parameter 1λ and message length 1`m to A.
2. A makes arbitrarily many encryption queries and single challenge query in any order.
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Encryption query. When A makes an encryption query m ∈ {0, 1}`m , the challenger
computes CTi,b ← SKE.Enc(Ki,b,m[i]) for every i ∈ [`m] and b ∈ {0, 1}, and returns
CT := {CTi,b}i∈[`m],b∈{0,1} to A.

Challenge query. When A makes a challenge query m∗ ∈ {0, 1}`m , the challenger com-
putes CT∗i,b ← SKE.Enc(Ki,b,m

∗[i]) for every i ∈ [`m] and b ∈ {0, 1}, sets CT∗ :=
{CT∗i,b}i∈[`m],b∈{0,1}, and returns (CT∗, dk).

3. A outputs coin′ ∈ {0, 1}.

Exp 1: This experiment is identical to the previous experiment except that CT∗i,1−x[i] is generated by
SKE.Enc(Ki,1−x[i], 1 −m[i]) for every i ∈ [`m]. Since {Ki,1−x[i]}i∈[`m] is not given to A, A’s
advantage to distinguish these two experiments is negligible by the CPA-security of SKE.

Exp 2: This experiment is identical to the previous experiment except that the challenger generates x∗ r←−
{0, 1}`m , sets CT∗i,x[i]∗ ← NCER.Enc(Ki,x∗[i], 0) and CT∗i,1−x[i]∗ ← NCER.Enc(Ki,1−x∗[i], 1),
and dk :=

(
x∗ ⊕m∗, {Ki,x[i]∗⊕m∗[i]}i∈[`m]

)
. A’s advantage to distinguish these two experiments

is 0 since we can see that these two experiments are identical if we set x := x∗ ⊕m∗.

Here, we notice that Exp 2 is exactly identical to the experiment defining the security of SK-NCER in
which coin is fixed to 1. The above sequence of experiments demonstrates that A cannot distinguish the
two cases of coin = 0 and coin = 1, which concludes the security proof of NCER.

7.3 Additional Definitions for Adaptive Garbling.

Here, we define additional properties of adaptive garbling scheme that is needed in this section. Let
AdaGC = (GbCkt,GbInp,GbEval) be a garbling scheme. We define input-privacy-free adaptive security
and quasi-decomposability for AdaGC as follows.

Input-Privacy-Free Adaptive Security: Here, we define a weaker security notion for adaptive garbling
which we call input-privacy-free security. Roughly speaking, this security notion allows an online
encoding x̃ to reveal x itself, whereas a garbled circuit C̃ still hides C. This is captured by giving
an input x to a simulator. The formal definition is given below.
Let Sim = (SimC, SimIn) be a tuple PPT algorithm. We define the following game between a
challenger and an adversary A as follows.

1. The challenger chooses the challenge bit coin r←− {0, 1} and sends security parameter 1λ toA.
2. A sends a circuit C with n-bit input to the challenger, and the challenger returns C̃ generated

as follows:
• If coin = 0, then it computes (C̃, st)← GbCkt(1λ, C).
• If coin = 1, then it computes (C̃, st)← SimC(1λ, 1|C|).

3. A sends an input x ∈ {0, 1}n to the challenger, and the challenger returns x̃ generated as
follows:

• If coin = 0, then it computes x̃← GbInp(st, x).
• If coin = 1, then it computes x̃← SimIn(st, x).

4. A outputs coin′ ∈ {0, 1}.

In this game, we define the advantage of A as

Advipf-adp
AdaGC,A,Sim(λ) = 2|Pr[coin = coin′]−1

2 | = |Pr[coin′ = 1 | coin = 0]−Pr[coin′ = 1 | coin = 1]| .
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We say that AdaGC is adaptively input-privacy-free-secure if there exists PPT Sim such that for any
PPT A, we have Advipf-adp

AdaGC,A,Sim(λ) = negl(λ).
It is easy to see that the adaptive security in Definition 3.10 implies the input-privacy-free adaptive
security.

Quasi-Decomposability. We say that AdaGC = (GbCkt,GbInp,GbEval) for a circuit class C =
{Cλ}λ∈N is a quasi-decomposable garbling scheme associatedwith PPT algorithms (HashGen,AuxGen,
GbCkt′) if GbCkt and GbInp are of the form given below:

• GbCkt(1λ, C) takes as inputs security parameter 1λ and a circuit C ∈ Cλ with n-bit
input, generates a polynomial-time-computable hash function H ← HashGen(1λ, 1|C|)
with n-bit input and `α-bit output whose description size is `H, auxiliary information
aux ← AuxGen(1λ, 1|C|) whose length is `aux, and labels labelk,b

r←− {0, 1}λ for k ∈ [`α] and
b ∈ {0, 1}, computes C̃ ← GbCkt′

(
C, aux, {labelk,b}k∈[`],b∈{0,1}

)
, and outputs a garbled

circuit C̃ and a state information st =
(

H, aux, {labelk,b}k∈[`α],b∈{0,1}
)
.

• GbInp(st, x) parses
(

H, aux, {labelk,b}k∈[`α],b∈{0,1}
)
← st, computesα = H(x), and outputs

a garbled input x̃ =
(
x,H, aux, {labelk,α[k]}k∈[`α]

)
.

We denote the description size of H by `H, the length of α by `α, and the length of aux by `aux.
We call them hash-description-size, hash-output-length, auxiliary-information-length, respectively.
We note that these parameters depend on the circuit class C. We omit to explicitly state them as a
function of C for notational simplicity.

Remark 7.3. Since x̃ contains x itself, a quasi-decomposable garbling scheme cannot satisfy a usual
security definition of garbling schemes. On the other hand, quasi-decomposable garbling scheme
may satisfy the input-privacy-free security as discussed below.

Examples. Here, we give some examples of quasi-decomposable garbling scheme that satisfies the
input-privacy-free adaptive security.
First, we consider an “input-privacy-free variant” of the scheme given in Section 5 (or GS18
scheme [GS18]). Namely, we set “input masks” (r1, ..., rn) to be 0n instead of choosing them
randomly. We can see that this variant has the quasi-decomposability by defining H(x) :=
(Hash(crs, (x1‖ · · · ‖xn‖0N−n), crs), aux := (sek, rN−m+1, . . . , rN ). In this construction, we
have `H = poly(λ), `α = poly(λ), `aux = poly(log |C|, λ) +m, and computational complexity of
H is O(n) + poly(log |C|, λ). We can see that this variant satisfies the input-privacy-free adaptive
security in almost the same manner as the security proof of the adaptive security given in Section 5.
Second, we remark that “input-privacy-free variants” of adaptive garbling schemes based on
one-way functions [HJO+16, JW16] also satisfy the quasi-decomposability and input-privacy-free
adaptive security. An online encoding for an input x in the scheme in [HJO+16] is of the form
x̃ =

(
sek, {labelk,xk}k∈[n],b∈{0,1}

)
where sek is a key of somewhere equivocal encryption. If we

consider a variant of this scheme in which x itself is included in x̃, then this variant satisfies the
quasi-decomposability by setting H to be the identity function and aux := sek. Moreover, it is
easy to reduce the input-privacy-free adaptive security of the variant to the adaptive security of the
original scheme. In this construction, we have `H = 0, `α = n, and `aux = (n+m+ t)poly(λ)
wherem is the output-length and t is a parameter called the pebble complexity of the circuit being
garbled. In particular, we can set t = w where w is the width of the circuit, or t = d where d is the
depth of the circuit if the circuit is in NC1, i.e., d = O(logn). See [HJO+16] for the details of the
pebble complexity. We can also see that input-privacy-free variant of the scheme in [JW16] (which
is essentially the same as the Yao’s garbled circuit) satisfies the similar property.
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7.4 SKFE from Quasi-Decomposable Garbling

Here, we construct a 1-bounded key-adaptively secure SKFE scheme based on quasi-decomposable
input-privacy-free adaptive garbling. (Recall that the key-adaptive security means the security against
adversaries that does not make any challenge query after making its first key query.) A good feature of the
scheme is that the complexity of key generation algorithm only logarithmically depends on the message
length if the online computational complexity only logarithmically depends on the size of circuit being
garbled. To state this property more precisely, we first define a slight variant of SKFE called SKFE for
tagged functions.

SKFE for Tagged Functions. Let F = {fτ,λ : {0, 1}`m → {0, 1}∗}τ∈{0,1}`τ ,λ∈N be a class of
polynomial-time-computable functions fτ indexed by a tag τ ∈ {0, 1}`τ . An SKFE scheme for a class
F of tagged functions is similarly defined to an SKFE scheme as defined in Definition 3.12 except
that the key generation and decryption algorithm take a tag τ as input instead of the description of the
function fτ . As an efficiency requirement, we require that the running time and decryption key size are
poly(λ, `τ , log `m). Especially, they only logarithmically depend on the input-length `m of a function.
We note that this efficiency requirement is meaningful when `τ is much smaller than `m. Looking ahead,
this is needed in the construction of a garbling scheme from an SKFE scheme where a message and
decryption key correspond to a garbled circuit and garbled input, respectively. Since we want to construct
a garbling scheme whose online complexity only logarithmically depends on the circuit size, we have to
assume that the decryption-key-length of the underlying SKFE scheme only logarithmically depends on
the message-length as defined above. In the following, we omit λ from subscripts, and simply denote a
family of tagged functions as F = {fτ : {0, 1}`m → {0, 1}∗}τ∈{0,1}`τ for notational simplicity.

Construction. Let F = {fτ : {0, 1}`m → {0, 1}∗}τ∈{0,1}`τ be a class of polynomial-time-computable
tagged functions. Let NCER = (NCER.KG,NCER.Enc,NCER.Dec,NCER.Fake,NCER.Reveal) be
an SK-NCER scheme. For m ∈ {0, 1}`m , Um denotes a circuit such that Um(τ) = fτ (m) for any
τ ∈ {0, 1}`τ . We assume that for all `m ∈ N, Um has the same size M for all m ∈ {0, 1}`m by
an appropriate padding. Let AdaGC = (GbCkt,GbInp,GbEval) be a quasi-decomposable garbling
scheme with hash-description-size `H, hash-output-length `α, and auxiliary-information-length `aux
associated with (HashGen,AuxGen,GbCkt′). We construct an adaptively secure SKFE scheme SKFE =
(SKFE.Setup,SKFE.KG,SKFE.Enc,SKFE.Dec) for the class F of tagged functions as follows.

SKFE.Setup(1λ) :

1. Generates H← HashGen(1λ, 1M ).
2. Generates (ek0, dk0)← NCER.KG(1λ, 1`aux).
3. Generates (ekk,b, dkk,b)← NCER.KG(1λ, 1λ) for every k ∈ [`α] and b ∈ {0, 1}.

4. Outputs MSK :=
(

H, ek0, {ekk,b}k∈[`α],b∈{0,1}, dk0, {dkk,b}k∈[`α],b∈{0,1}
)
.

SKFE.KG(MSK, τ) :

1. Parses (H, ek0, {ekk,b}k∈[`α],b∈{0,1}, dk0, {dkk,b}k∈[`α],b∈{0,1})← MSK.
2. Computes α := H(τ).

3. Outputs skτ :=
(

H, dk0, {dkk,α[k]}k∈[`α]
)
.

SKFE.Enc(MSK,m) :

1. Parses (H, ek0, {ekk,b}k∈[`α],b∈{0,1}, dk0, {dkk,b}k∈[`α],b∈{0,1})← MSK.
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2. Generates aux ← AuxGen(1λ, 1M ).
3. Generates labelk,b

r←− {0, 1}λ for k ∈ [`α] and b ∈ {0, 1}.
4. Computes Ũ ← GbCkt′(Um, aux, {labelk,b}k∈[`α],b∈{0,1}).
5. Computes CT0 ← NCER.Enc(ek0, aux).
6. Computes CTk,b ← NCER.Enc(ekk,b, labelk,b) for every k ∈ [`α] and b ∈ {0, 1}.

7. Outputs SKFE.CT :=
(
Ũ ,CT0, {CTk,b}k∈[`α],b∈{0,1}

)
.

SKFE.Dec(τ, skτ ,SKFE.CT) :

1. Parses
(

H, dk0, {dkk}k∈[`α]
)
← skτ .

2. Parses
(
Ũ ,CT0, {CTk,b}k∈[`α],b∈{0,1}

)
← SKFE.CT.

3. Computes aux ← NCER.Dec(dk0,CT0).
4. Computes α := H(τ).

5. Computes labelk ← NCER.Dec
(

dkk,CTk,α[k]
)
for every k ∈ [`α].

6. Sets τ̃ :=
(
τ,H, aux, {labelk}k∈[`α]

)
.

7. Outputs z ← GbEval(Ũ , τ̃).

Correctness. Let skτ =
(

H, dk0, {dkk,α[k]}k∈[`α]
)
and SKFE.CT =

(
Ũ ,CT0, {CTk,b}j∈[λ],b∈{0,1}

)
be a secret key and ciphertext generated by SKFE.KG(MSK, τ) and SKFE.Enc(MSK,m), respectively. By
correctness of NCER, we have aux = NCER.Dec(dk0,CT0) and labelk,α[k] = NCERDec(dkk,CTk,α[k])
for every k ∈ [`α] where aux and {labelk,b}k∈[`α],b∈{0,1} are the ones generated in the execution of
SKFE.Enc(MSK,m) and α := H(τ). Then by correctness of AdaGC, we have GbEval(Ũ , τ̃) = Um(τ) =
fτ (m) where τ̃ = (τ,H, aux, {labelk,α[k]}k∈[`α]) and α = H(τ).

Security. The security of SKFE can be stated as follows.

Theorem 7.4. If AdaGC satisfies the input-privacy-free adaptive security and NCER is secure, then SKFE
is 1-bounded key-adaptively secure.

Proof. Let A be a key-adaptively valid PPT adversary that attacks the 1-bounded key-adaptive security
of SKFE. For i ∈ {0, ..., q} where q denotes the number of A’s challenge queries and a ∈ {0, 1, 2}, we
consider experiments Exp i.a as follows.

Exp i.0: In this experiment, the challenger encrypts m1 for the first i challenge queries, and m0 for the
rest.

1. The challenger generates H ← HashGen(1λ, 1M ), (ek0, dk0) ← NCER.KG(1λ, 1`aux), and
(ekk,b, dkk,b) ← NCER.KG(1λ, 1λ) for every k ∈ [`α] and b ∈ {0, 1}, and sets MSK :=
(H, ek0, {ekk,b}k∈[`α],b∈{0,1}, dk0, {dkk,b}k∈[`α],b∈{0,1}).

2. A is given security parameter 1λ, and A makes arbitrarily many challenge queries.

Challenge Query. WhenAmakes its j-th challenge query (m(j)
0 ,m(j)

1 ), the challenger works
as follows:
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• If j ≤ i, then the challenger returns SKFE.CT ← SKFE.Enc(MSK,m(j)
1 ) to A.

Namely, the challenger generates aux(j) ← AuxGen(1λ, 1M ) and label(j)k,b for every
k ∈ [`α] and b ∈ {0, 1}, computes Ũ (j) ← GbCkt′(Um(j)

1
, aux(j), {label(j)k,b}k∈[`α],b∈{0,1}),

CT(j)
0 ← NCER.Enc(ek0, aux(j)), and CT(j)

k,b ← NCER.Enc(ekk,b, label(j)k,b) for ev-
eryk ∈ [`α] and b ∈ {0, 1}, and returnsSKFE.CT(j) :=

(
Ũ (j),CT(j)

0 , {CT(j)
k,b}k∈[`α],b∈{0,1}

)
to A.

• If j > i, then the challenger returns SKFE.CT ← SKFE.Enc(MSK,m(j)
0 ) to A.

Namely, the challenger generates aux(j) ← AuxGen(1λ, 1M ) and label(j)k,b for every
k ∈ [`α] and b ∈ {0, 1}, computes Ũ (j) ← GbCkt′(Um(j)

0
, aux(j), {label(j)k,b}k∈[`α],b∈{0,1}),

CT(j)
0 ← NCER.Enc(ek0, aux(j)), and CT(j)

k,b ← NCER.Enc(ekk,b, label(j)k,b) for ev-
eryk ∈ [`α] and b ∈ {0, 1}, and returnsSKFE.CT(j) :=

(
Ũ (j),CT(j)

0 , {CT(j)
k,b}k∈[`α],b∈{0,1}

)
to A.

3. A makes a single key query τ .
Key Query. When A makes a key query τ , the challenger computes α := H(τ) and returns

skτ :=
(

H, dk0, {dkk,α[k]}k∈[`α]
)
to A.

4. A outputs coin′.

Exp i.1: This experiment is identical to the previous game except that the challenger generates SKFE.CT
for A’s (i + 1)-th challenge query by using the fake encryption algorithm and skτ by using the
reveal algorithm of NCER. Specifically, the experiment is described as follows.

1. The challenger generates H ← HashGen(1λ, 1M ), (ek0, dk0) ← NCER.KG(1λ, 1`aux), and
(ekk,b, dkk,b) ← NCER.KG(1λ, 1λ)for every k ∈ [`α] and b ∈ {0, 1}, and sets MSK :=
(H, ek0, {ekk,b}k∈[`α],b∈{0,1}, dk0, {dkk,b}k∈[`α],b∈{0,1}).

2. A is given security parameter 1λ, and A makes arbitrarily many challenge queries.

Challenge Query. WhenAmakes its j-th challenge query (m(j)
0 ,m(j)

1 ), the challenger works
as follows:

• If j ≤ i, then the challenger returns SKFE.CT(j) ← SKFE.Enc(MSK,m(j)
1 ) to A.

• If j = i + 1, then the challenger generates aux(i+1) ← AuxGen(1λ, 1M ) and
label(i+1)

k,b for every k ∈ [`α] and b ∈ {0, 1}, computes Ũ (i+1) ← GbCkt′(Um(j)
0
,

aux(i+1), {label(i+1)
k,b }k∈[`α],b∈{0,1}) and (CT(i+1)

0 , st0) ← NCER.Fake(ek0), and
(CT(i+1)

k,b , stk,b)← NCER.Fake(ekk,b) for every k ∈ [`α] and b ∈ {0, 1}, and returns

SKFE.CT :=
(
Ũ (i+1),CT(i+1)

0 , {CT(i+1)
k,b }k∈[`α],b∈{0,1}

)
to A.

• If j > i+ 1, then the challenger returns SKFE.CT(j) ← SKFE.Enc(MSK,m(j)
0 ) to

A.
3. A makes a single key query τ .

Key Query. When A makes a key query τ , the challenger computes α := H(τ), dk0 ←
NCER.Reveal(st0, aux(j)), and dkk,α[k] ← NCER.Reveal(stk,α[k], label(j)k,α[k]) for every
k ∈ [`α] and returns skτ :=

(
H, dk0, {dkk,α[k]}k∈[`α]

)
to A.
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4. A outputs coin′.

It is straightforward to reduce the indistinguishability from the previous experiment to the security
of NCER by a hybrid argument.

Exp i.2: This experiment is identical to the previous one except that H, Ũ (i+1), aux(i+1), and
{label(i+1)

k,α[k]}k∈[`α] (whereα := H(τ)) are generated by the simulators ofAdaGC, and {label(i+1)
k,1−α[k]}k∈[`α]

is not generated. We remark that this modification makes sense since H is not used in the challenge
phase, and {label(i+1)

k,1−α[k]}k∈[`α] is not used throughout the experiment. Specifically, the experiment
is described as follows.

1. The challenger generates (ek0, dk0)← NCER.KG(1λ, 1`aux), and (ekk,b, dkk,b)← NCER.KG(1λ, 1λ)
for every k ∈ [`α] and b ∈ {0, 1}, and sets MSK := (H, ek0, {ekk,b}k∈[`α],b∈{0,1}, dk0,
{dkk,b}k∈[`α],b∈{0,1}).

2. A is given security parameter 1λ, and A makes arbitrarily many challenge queries.
Challenge query. WhenA makes its j-th challenge query (m0,m1), the challenger works as

follows:
• If j ≤ i, then the challenger returns SKFE.CT(j) ← SKFE.Enc(MSK,m(j)

1 ) to A.
• If j = i + 1, then the challenger computes (Ũ (i+1), stSim) ← SimC(1λ, 1M ),

(CT(i+1)
0 , st0) ← NCER.Fake(ek0), and (CT(i+1)

k,b , stk,b) ← NCER.Fake(ekk,b) for
every k ∈ [`α] and b ∈ {0, 1}, and returns SKFE.CT(i+1) := (Ũ (i+1),CT(i+1)

0 ,

{CT(i+1)
k,b }k∈[λ],b∈{0,1}) to A.

• If j > i+ 1, then the challenger returns SKFE.CT(j) ← SKFE.Enc(MSK,m(j)
0 ) to

A.
3. A makes a single key query τ .

Key query. WhenAmakes a key query τ , the challenger computes (τ,H, aux, {labelk,α[k]}k∈[`α])←
SimIn(stSim, τ), dk0 ← NCER.Reveal(st0, aux), and dkk,α[k] ← NCER.Reveal(stk,α[k],

labelk,α[k]) for every k ∈ [`α] and returns skτ :=
(

H, dk0, {dkk,α[k]}k∈[`α]
)
to A.

4. A outputs coin′.

It is straightforward to reduce the indistinguishability from the previous experiment to the input-
privacy-free adaptive security of AdaGC.

By considering game hops from Exp i.0 to Exp i.2 in the reverse order, we can prove that A cannot
distinguish Exp i.2 and Exp (i+1).0 with non-negligible advantages. Then by a standard hybrid argument
shows that A cannot distinguish Exp 0.0 and Exp q.0 with non-negligible probability. This means that
SKFE is 1-bounded key-adaptively secure.

Efficiency of Key Generation. We note that the key generation algorithm of the above SKFE scheme
is efficient if the underlying garbling scheme has small online complexity. Especially, if we instantiate
the scheme based on the input-privacy-free variant of the scheme given in Section 5, the key generation
algorithm works in time poly(λ, logM,m) and the size of decryption key of SKFE ism+poly(λ, logM)
wherem is the output length of functions in the class. Especially, if F is a class of 1-bit output functions,
(i.e., ifm = 1), then the key generation algorithm works in time poly(λ, logM) and the decryption key
size is poly(λ, logM).
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7.5 From 1-Bit to Multi-Bit SKFE

Here, we give a transformation from SKFE scheme for 1-bit output functions to a one for multi-bit
output functions without increasing the running time of the key generation algorithm and decryption
key length. Let F = {fτ : {0, 1}`m → {0, 1}m}τ∈{0,1}`τ be a family of polynomial-time computable
tagged functions. Let F ′ = {f ′τ : [m] × {0, 1}`m → {0, 1}}τ∈{0,1}`τ be a family of tagged functions
that consists of functions f ′τ that is given i ∈ [m] and m ∈ {0, 1}`m as input, and outputs the i-th
bit of fτ (m). Let OneSKFE = (OneSKFE.Setup,OneSKFE.KG,OneSKFE.Enc,OneSKFE.Dec) be an
SKFE scheme forF ′. We construct an SKFE scheme MultiSKFE = (MultiSKFE.Setup,MultiSKFE.KG,
MultiSKFE.Enc,MultiSKFE.Dec) for F as follows.

MultiSKFE.Setup(1λ) :

1. Computes MSK← OneSKFE.Setup(1λ).
2. Outputs MSK.

MultiSKFE.KG(MSK, τ) :

1. Computes skτ ← OneSKFE.KG(MSK, τ)
2. Outputs skτ .

MultiSKFE.Enc(MSK,m) :

1. Computes CTi ← OneSKFE.Enc(MSK, (i,m)) for every i ∈ [m].
2. Outputs CT := {CTi}i∈[m].

SKFE.Dec(τ, skτ ,CT) :

1. Parses {CTi}i∈[m] ← CT.
2. Computes zi ← OneSKFE.Dec(τ, skτ ,CTi) for every i ∈ [m].
3. Outputs z := z1‖ . . . ‖zm.

Correctness. Correctness of MultiSKFE easily follows from correctness of OneSKFE.

Security. The security of MultiSKFE can be stated as follows.

Theorem 7.5. If OneSKFE is 1-bounded key-adaptively secure, then MultiSKFE is 1-bounded key-
adaptively secure.

This can be proven by a standard hybrid argument.

Efficiency of key generation. Since the key generation algorithm of MultiSKFE just runs that of
OneSKFE, the computational complexity of the key generation algorithm and decryption key length of
MultiSKFE are the same as those of OneSKFE.
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7.6 Adaptively Indistinguishable Garbling from 1-Bounded Key-Adaptive SKFE

Here, we describe a construction of adaptively indistinguishable garbling scheme based on any 1-bounded
key-adaptively secure SKFE scheme. The construction is similar to the construction of function-private
SKFE scheme based on any SKFE scheme by Brakerski and Segev [BS18]. Let C be a class of circuits of n-
bit inputs. For (c, c′) ∈ {0, 1}n×{0, 1}n, we define a function fc,c′ : C×C×{0, 1}n×{0, 1}n → {0, 1}∗
by

fc,c′(C,C ′, r, r′) :=
{
C(c⊕ r) if C 6= ⊥
C ′(c′ ⊕ r′) otherwise

.

Let SKFE = (SKFE.Setup, SKFE.KG, SKFE.Enc, SKFE.Dec) be an SKFE scheme for the class
F := {fc,c′}(c,c′)∈{0,1}n×{0,1}n of tagged functions. Then we construct a garbling scheme AdaGC =
(GbCkt,GbInp,GbEval) for circuit class C as follows.

GbCkt(1λ, C) :

1. Generates MSK← SKFE.Setup(1λ).
2. Generates r, r′ r←− {0, 1}n.
3. Computes SKFE.CT← SKFE.Enc(MSK, (C,⊥, r,⊥)).
4. Outputs C̃ := SKFE.CT and st := (MSK, r, r′).

GbInp(st, x) :

1. Parses (MSK, r, r′)← st.
2. Computes c = x⊕ r and c′ = x⊕ r′.
3. Computes skc,c′ ← SKFE.KG(MSK, (c, c′)).
4. Outputs x̃ := (c, c′, skc,c′).

GbEval(C̃, x̃) :

1. Parses SKFE.CT← C̃ and (c, c′, skc,c′)← x̃.
2. Computes z ← SKFE.Dec((c, c′), skc,c′ , SKFE.CT).
3. Outputs z.

Correctness. Let C̃ = SKFE.CT and x̃ = (c, c′, skc,c′) be an honestly generated garbled circuit
and garbled input, i.e., SKFE.CT ← SKFE.Enc(MSK, (C,⊥, r,⊥)), c = x ⊕ r, c′ = x ⊕ r′ and
skc,c′ ← SKFE.KG(MSK, (c, c′)) where MSK← SKFE.Setup(1λ) and r, r′ r←− {0, 1}n. By correctness
of SKFE, we have SKFE.Dec((c, c′), skc,c′ , SKFE.CT) = fc,c′(C,⊥, r,⊥)) = C(c⊕ r) = C(x).

Security. The security of AdaGC can be stated as follows.

Theorem 7.6. If SKFE is 1-bounded key-adaptively secure, then AdaGC is adaptively indistinguishable.

Proof. Let A be a PPT valid adversary that attacks adaptive indistinguishability of AdaGC. We consider
the following sequence of experiments.

Exp 0: This is the experiment defining adaptive indistinguishability inwhich coin is fixed to 0. Specifically,
the experiment is described as follows.
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1. A is given security parameter 1λ.
2. A sends two circuits (C0, C1) to the challenger, and the challenger generates r, r′ r←− {0, 1}n,

computes SKFE.CT← SKFE.Enc(MSK, (C0,⊥, r,⊥)), and returns C̃ = SKFE.CT to A.
3. A sends two inputs (x0, x1) ∈ {0, 1}n to the challenger, and the challenger computes
c = x0⊕r, c′ = x0⊕r′, and skc,c′ ← SKFE.KG(MSK, (c, c′)), and returns x̃ := (c, c′, skc,c′).

4. A outputs coin′ ∈ {0, 1}.

We note that we have C0(x0) = C1(x1) since A is valid.

Exp 1: This experiment is identical to the previous experiment except that c′ is generated as c′ = x1 ⊕ r′.
A cannot distinguish Exp 1 and 2 because r′ is only used for generating c′ in both experiments, and
thus c′ is a uniformly and independently random string from A’s view in both experiments.

Exp 2: This experiment is identical to the previous experiment except that SKFE.CT is generated
as SKFE.CT ← SKFE.Enc(MSK, (⊥, C1,⊥, r′)). A’s advantage to distinguish Exp 1 and 2
is negligible if SKFE is 1-bounded key-adaptively secure since all ciphertexts are generated
before generating a decryption key in these experiments, and we have fx0⊕r,x1⊕r′(C0,⊥, r,⊥) =
C0(x0) = C1(x1) = fx0⊕r,x1⊕r′(⊥, C1,⊥, r′).

Exp 3: This experiment is identical to the previous experiment except that c is generated as c = x1 ⊕ r.
A cannot distinguish Exp 2 and 3 because r is only used for generating c in both experiments, and
thus c is a uniformly and independently random string from A’s view in both experiments.

Exp 4: This experiment is identical to the previous experiment except that SKFE.CT is generated
as SKFE.CT ← SKFE.Enc(MSK, (C1,⊥, r,⊥)). A cannot distinguish Exp 3 and 4 under the
1-bounded key-adaptive security of SKFE similarly to the game hop from Exp 1 and 2.

It is clear that Exp 4 is the experiment defining adaptive indistinguishability in which coin is fixed to
1, and A cannot distinguish Exp 0 and 4 with non-negligible advantage.

7.7 Adaptively Indistinguishable Garbling with Near-Optimal Online Complexity

Here, we discuss how to obtain adaptively indistinguishable garbling with near-optimal online complexity
(especially, whose online encoding length does not depend on the output length of a circuit) based
on any selective-database LOT (which in turn can be constructed based on CDH, factoring, LWE,
or selectively secure succinct PKFE) combining the constructions given in Section 7.4, Section 7.5,
and Section 7.6. As discussed in Section 7.3, a slight modification to the scheme given in Section 5
(or GS18 scheme [GS18]) gives a quasi-decomposable input-privacy-free adaptive garbling from any
selective-database LOT. Especially, if we only consider garbling for 1-bit output circuits, then we have
`H = poly(λ), `α = poly(λ), and auxiliary-information-length is `aux = poly(log |C|, λ), and H can be
computed in time O(n) + poly(log |C|, λ).

By applying the conversion in Section 7.4 to the above scheme, we obtain 1-bounded key-adaptive SKFE
scheme for 1-bit-output tagged functions whose decryption key is of the form

(
H, dk0, {dkk,αk}k∈[`α]

)
where dk0 and dkk,αk are decryption keys of an SK-NCER scheme of message-length `aux and λ,
respectively. Especially, its length is `H + poly(λ, `aux) + `aux · poly(λ) = poly(logM,λ) and the
running time of the key generation algorithm is O(`τ ) + poly(logM,λ) where `τ andM are as defined
in Section 7.4. Next, by applying the conversion in Section 7.5, we can transform any SKFE scheme
for 1-bit-output functions to a scheme for multi-bit-output functions neither increasing decryption key
size nor computational complexity of key-generation algorithm. Finally, by applying the conversion
in Section 7.6, we obtain an adaptively indistinguishable garbling for all circuits with succinct online
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complexity. Namely for obtaining a garbling scheme for a circuit class C of n-bit inputs, we rely on SKFE
scheme for fc,c′ : C × C × {0, 1}n ×{0, 1}n → {0, 1}∗ which is defined in Section 7.6. For this function
class, we haveM = poly(|C|, λ) and `τ = 2n whereM is the maximum size of a universal circuit that is
used in the construction in Section 7.4. Since a garbled input consists of (c, c′) ∈ {0, 1}n ×{0, 1}n and a
decryption key of the underlying SKFE, the online communication complexity is 2n+ poly(log |C|, λ)
and online computational complexity is O(n) + poly(log |C|, λ). In summary, we obtain the following
theorem.

Theorem 7.7. If one of the {CDH,Factoring, LWE} assumptions holds or (1key,w-sel, sls)-PKFE for
circuits exists, then there exists an adaptively indistinguishable garbling scheme whose online communica-
tion complexity is 2n+ poly(log |C|, λ) and online computational complexity isO(n) + poly(log |C|, λ)
where C is the circuit being garbled of n-bit input.

More generally, the above conversion works based on any quasi-decomposable input-privacy-free
adaptive garbling schemes (including the input-privacy-free variants of [HJO+16, JW16]). To state this
formally, we introduce a notation for circuit classes. For a circuit class C of circuits of n-bit input and
m-bit output, we consider another circuit class U [C] := {Ui,C,C′,r,r′ : i ∈ [m], C, C ′ ∈ C, r, r′ ∈ {0, 1}n}
where Ui,C,C′,r,r′ is a circuit with 2n-bit input defined by

Ui,C,C′,r,r′(c, c′) :=
{
Ci(c⊕ r) if C 6= ⊥
C ′i(c′ ⊕ r′) otherwise

.

where Ci and C ′i denote circuits that computes i-th bit of outputs of C and C ′, respectively.
Then our result can be stated as follows.

Theorem 7.8. If there exists quasi-decomposable input-privacy-free adaptive garbling scheme for a circuit
class U [C] with hash-description-size `H, hash-output-length `α, and auxiliary-information-length `aux,
there exists an adaptively indistinguishable garbling scheme for a circuit class C with online communication
complexity is 2n + `H + `aux · (λ + 1) + `α · λ(λ + 1) and online computational complexity is the
hash-computation-complexity of the underlying quasi-decomposable garbling plus (`α + `aux) · poly(λ).

As discussed in Section 7.3, “input-privacy-free variants” of known adaptive garbling schemes based
on one-way functions [HJO+16, JW16] satisfy the quasi-decomposability and input-privacy-free adaptive
security with `H = 0, `α = n, and `aux = (n+m+ t)poly(λ) wherem is the output-length and t is a
parameter called the pebble complexity of the circuit being garbled. In particular, we can set t = w where
w is the width of the circuit, or t = d wherem is the output-length and d is the depth of the circuit if the
circuit is in NC1, i.e., d = O(logn).

It is easy to see that if the maximum width of a circuit in C is at most w, then the maximum width
of a circuit in U [C] is at most max{w, 2n}, and if C ∈ NC1, then we also have U [C] ∈ NC1. Then by
applying Theorem 7.8 to the input-privacy-free variant of adaptive garbling schemes of [HJO+16, JW16],
we obtain the following corollary.

Corollary 7.9 (Also proven in [JSW17]). The following hold:

1. If a one-way function exists, then there exists an adaptively indistinguishable garbling scheme
for NC1 whose online communication/computational complexity are n · poly(λ) where n is the
input-length of the circuit being garbled.

2. If a one-way function exists, then there exists an adaptively indistinguishable garbling scheme for
all circuits whose online communication/computational complexity are (n+ w) · poly(λ) where n
is the input-length and w is the width of the circuit being garbled.
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Though Jafargholi et al. [JSW17] already proved the same statement, their construction is obtained by
modifying (simulation-based) adaptive garbling scheme by Hemenway et al. [HJO+16] in an ad hoc and
complicated manner. On the other hand, our construction is generic, and gives a modular construction.
We note that we can generalize the above corollary by parameterizing circuits by the pebble complexity
similarly to [JSW17] . Namely, we can prove that if a one-way function exists, then there exists an
adaptively indistinguishable garbling scheme whose online communication/computational complexity are
(n+ t) · poly(λ) for circuits with pebble complexity t. This can be seen by observing that the pebble
complexity of Ui,C,C′,r,r′ is almost the same as that of C and C ′. We only gave special cases above for
avoiding complicated discussions on pebble complexity.
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Building Blocks.

• Selectively secure succinct PKFE for circuits: ssFEpk = (ssFEpk.Setup, ssFEpk.KG, ssFEpk.Enc, ssFEpk.Dec)

• Selective-message function private23 single-key succinct SKFE for circuits: 1keyFEsk = (1keyFEsk.Setup,
1keyFEsk.KG, 1keyFEsk.Enc, 1keyFEsk.Dec)

• Adaptively secure single-key and single-ciphertext succinct SKFE for circuits: 1ctkeyFEad =
(1ctkeyFEad.Setup, 1ctkeyFEad.KG, 1ctkeyFEad.Enc, 1ctkeyFEad.Dec)

• PRF: PRF

• SKE with pseudorandom ciphertext: SKE = (SKE.Enc,SKE.Dec)

AS16 Transformation. fully-equipped scheme FullFE = (Setup,KG,Enc,Dec) is as follows.

Setup(1λ): Generates (ssFEpk.MPK, ssFEpk.MSK)← ssFEpk.Setup(1λ) and outputs (MPK,MSK) :=
(ssFEpk.MPK, ssFEpk.MSK).

KG(MSK, f):

1. Samples ske.CT← {0, 1}`ske .
2. Samples τ := τ0‖τ1‖τ2‖τ3 ← {0, 1}4λ.
3. Generates skg[f,ske.CT,τ ] ← ssFEpk.KG(ssFEpk.MSK, g[f, ske.CT, τ ]) where g[f, ske.CT, τ ]

is defined in Figure 6.
4. Outputs skf := ssFEpk.skg[f,ske.CT,τ ].

Enc(MPK,m):

1. Chooses a PRF key K← {0, 1}λ.
2. Generates 1keyFEsk.MSK← 1keyFEsk(1λ).
3. Generates 1keyFEsk.skh[m] ← 1keyFEsk.KG(1keyFEsk.MSK, h[m]), where h[m] is defined

in Figure 7.
4. Generates ssFEpk.CT← ssFEpk.Enc(ssFEpk.MPK, (1keyFEsk.MSK,K,⊥, 0))
5. Outputs CTm := (1keyFEsk.skh[m], ssFEpk.CT).

Dec(skf ,CTm):

1. Computes (1ctkeyFEad.skf , 1keyFEsk.CT)← ssFEpk.Dec(ssFEpk.skg[f,ske.CT,τ ], ssFEpk.CT).
2. Computes 1ctkeyFEad.CT← 1keyFEsk.Dec(1keyFEsk.skh[m], 1keyFEsk.CT).
3. Computes and outputs m′ ← 1ctkeyFEad.Dec(1ctkeyFEad.skf , 1ctkeyFEad.CT).

As we see the transformation, if 1ctkeyFEad is for boolean circuits, the transformation gives FE for
boolean circuits.

Ananth and Sahai [AS16] proved the following.

Theorem A.1 ([AS16]). If all building blocks are secure, then FullFE is (unbkey, ada, fs)-PKFE.

Since all building blocks except (1key, 1ct, ada, fs)-SKFE can be constructed from (unbkey, sel, fs)-
PKFE, we obtain Theorem 3.18.

23Informally, in the security game, adversaries send not only challenge messages (m0,m1) but also challenge functions
(f0, f1) such that f0(m0) = f1(m1). We can obtain function privacy for free. See the paper by Brakerski and Segev [BS15] for
details.
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g[f, ske.CT, τ ](1keyFEsk.MSK,K, ske.k, flag1)
1. Parses τ = τ0‖τ1‖τ2‖τ3.
2. If flag1 = 0, then computes

ρi ← PRFK(τi)
1ctkeyFEad.MSK ← 1ctkeyFEad.Setup(1λ; ρ0)

1ctkeyFEad.skf ← 1ctkeyFEad.KG(1ctkeyFEad.MSK, f ; ρ1)
1keyFEsk.CT ← 1keyFEsk.Enc(1keyFEsk.MSK, (ρ2, 0); ρ3)

and outputs (1ctkeyFEad.skf , 1keyFEsk.CT).
3. Else computes and outputs (1ctkeyFEad.skf , 1keyFEsk.CT)← SKE.Dec(ske.k, ske.CT).

Figure 6: This circuit g is an input of the key generation algorithm of ssFEpk (selectively secure and succinct
public-key FE). This circuit outputs a functional decryption key of f by the single-key and single-ciphertext scheme
and an encryption of randomness that will be used in the circuit h under the master-key of the single-key scheme.

h[m](1ctkeyFEad.MSK, ρ, flag2)
1. If flag2 = 0, then computes and outputs 1ctkeyFEad.CTm ← 1ctkeyFEad.Enc(1ctkeyFEad.MSK,m; ρ).
2. Else outputs ⊥.

Figure 7: This circuit h is an input of the key generation algorithm of 1keyFEsk (selectively secure, single-key,
and succinct secret-key FE). This circuit outputs an encryption of m under the master secret key of 1ctkeyFEad.

B Omitted Proofs

B.1 Proof of Theorem 5.20

Proof. The security proof is as follows.

Exp 0: This is the experiment defining the security of 1-key 1-ciphertext adaptive security in which coin
is fixed to 0. Specifically, this is described as follows.

1. The challenger generates MSK′ ← Setup′(1λ) and chooses a random mask ρ r←− {0, 1}`(m),
and sends security parameter 1λ to A.

2. A makes a single key query and single challenge query in any order.
Key Query. When A makes a key query f , the challenger computes sk′f ← KG′(MSK′, f),

and returns skf := (ρ, sk′f ) to A.
Challenge Query. When A makes a challenge query (m0,m1), the challenger computes

CT′m0 ← Enc′(MSK′,m0), sets CT∗ := CT′m0 ⊕ ρ, and returns CT∗ to A.
3. A outputs coin′ ∈ {0, 1}.

Exp 1: This experiment is identical to the previous experiment except that when A makes a challenge
query (m0,m1) before it makes a key query f , the challenger does the following:

Challenge Query: A chooses a random string ρ′ r←− {0, 1}`(m0) and sends CT∗ := ρ′ as a target
ciphertext to A.

Key Query: When the challenger receives a key query f after the challenger query, the challenger
generates sk′f ← KG′(MSK′, f) and CT′m0 ← Enc′(MSK′,m0), sets ρ̃ := ρ′ ⊕ CT′m0 and
sends skf (ρ̃, sk′f ) to A.
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That is, we defer generating CT′m0 until the key query phase. The distribution of CT∗ and skf are the
same as those in the original experiment for coin = 0. This is because (1) It holds ρ̃⊕ ρ′ = CT′m0
in this experiment and A obtains the same decryption result as in the original experiment. (2) This
is the 1-key and 1-ciphertext setting and ρ and ρ′ are uniformly random elements. Thus, it holds
that (ρ, sk′f ,CT′m0 ⊕ ρ)

p
≈ (ρ′ ⊕ CT′m0 , sk′f , ρ′).

Exp 2: This experiment is identical to the previous experiment except that when the challenger generates
CT′m1 ← Enc′(MSK′,m1) instead of CT′m0 ← Enc′(MSK′,m0).
If A can distinguish the difference between the first and second experiments, then we can break
1-key and 1-bounded ciphertext-adaptive security of ctadFE1-1

gs . There are two cases:

1. A first sends a key query f , and then A sends a challenge query (m0,m1). This is the exactly
the same setting as that in 1-key and 1-bounded ciphertext-adaptive security. Therefore, we
can use the distinguisher of the two experiments as it is.

2. A first sends a challenge query (m0,m1), then A sends a key query f . In this case, an
adversary B of 1-key and 1-bounded ciphertext-adaptive security does the same thing as in
the first experiment. That is, when A send the challenge query, B sends a fake ciphertext
CT∗ := ρ′ to A. Then, when A sends the key query f , B passes f to its own challenger
in 1-key and 1-bounded ciphertext-adaptive security and receives sk′f . Now, B can passes
the challenge query (m0,m1) to its own challenger and receives CT′mcoin . Finally, B sets
skf := (CT′mcoin ⊕ ρ

′, sk′f ) to A. This completes the reduction.

In both cases, we can reduce distinguishing two experiments to break 1-key and 1-bounded
ciphertext-adaptive security.

We can arrive at the experiment defining the security of 1-key 1-ciphertext adaptive security in which
coin is fixed to 1 by applying the changes in reverse order. This completes the proof.
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