
Turning HATE Into LOVE:
Compact Homomorphic Ad Hoc Threshold

Encryption for Scalable MPC

Leonid Reyzin?, Adam Smith??, and Sophia Yakoubov? ? ?

1 Boston University, {reyzin, ads22}@bu.edu
2 Aarhus University, sophia.yakoubov@gmail.com

Abstract. In a public-key threshold encryption scheme, the sender pro-
duces a single ciphertext, and any t+ 1 out of n intended recipients can
combine their partial decryptions to obtain the plaintext. Ad hoc thresh-
old encryption (ATE) schemes require no correlated setup, enabling each
party to simply generate its own key pair. In this paper, we initiate a
systematic study of the possibilities and limitations of ad-hoc thresh-
old encryption, and introduce a key application to scalable multiparty
computation (MPC).

Assuming indistinguishability obfuscation (iO), we construct the first
ATE that is sender-compact—that is, with ciphertext length independent
of n. This allows for succinct communication once public keys have been
shared. We also show a basic lower bound on the extent of key sharing:
every sender-compact scheme requires that recipients of a message know
the public keys of other recipients in order to decrypt.

We then demonstrate that threshold encryption that is ad hoc and ho-
momorphic can be used to build efficient large-scale fault-tolerant mul-
tiparty computation (MPC) on a minimal (star) communication graph.
We explore several homomorphic schemes, in particular obtaining one
iO-based ATE scheme that is both sender-compact and homomorphic:
each recipient can derive what they need for evaluation from a single
short ciphertext. In the resulting MPC protocol, once the public keys
have been distributed, all parties in the graph except for the central
server send and receive only short messages, whose size is independent
of the number of participants.

Taken together, our results chart new possibilities for threshold encryp-
tion and raise intriguing open questions.

Keywords: Threshold Encryption, Obfuscation, Setup Freeness, Secure Com-
putation

? Supported in part by NSF grant 1422965.
?? Supported in part by NSF awards IIS-1447700 and AF-1763786 and a Sloan Foun-

dation Research Award.
? ? ? Work done while at Boston University, and was supported in part by NSF grant

1422965.

Table of Contents

1 Introduction . 4

1.1 Our Contributions . 4

1.2 Application: One-server, Fault-tolerant MPC. 6

1.3 Related Work . 7

2 Threshold Encryption (TE) Definitions . 7

2.1 Threshold Encryption Syntax . 8

2.2 Threshold Encryption Flexibility . 9

2.3 Threshold Encryption Security . 10

2.4 Threshold Encryption with Homomorphism 13

2.5 Threshold Encryption Compactness . 13

3 Sender-Compact Ad Hoc Threshold Encryption . 14

3.1 t-Flexibility . 17

3.2 Reducing the Public Key Size . 17

4 Lower Bounds on Ciphertext Size for Recipient-Set-Oblivious Ad
Hoc Threshold Encryption Schemes . 18

5 Recipient-Compact Homomorphic Ad Hoc Threshold Encryption 19

5.1 Building HATE from Homomorphic Encryption and Secret
Sharing . 19

5.2 Building HATE from Obfuscation . 21

6 Large-scale One-server Vanishing-participants Efficient MPC
(LOVE MPC) . 22

6.1 Lower Bounds . 22

6.2 Definitions . 23

6.3 Three-Message LOVE MPC from HATE . 24

A Background for Indistinguishability Obfuscation-Based Constructions . 29

A.1 Indistinguishability Obfuscation . 30

A.2 Puncturable Pseudorandom Functions . 30

A.3 Secret Sharing . 31

A.4 Constrained Signatures . 31

B Threshold Encryption Scheme: Threshold ElGamal 32

C Security of the Obfuscation-Based Ad Hoc Threshold Encryption
Construction . 34

C.1 Proof that Obfuscation-Based Homomorphic Ad Hoc
Threshold Encryption Share-and-Encrypt is Super-Statically
Semantically Secure . 34

C.2 Proof that Obfuscation-Based Ad Hoc Threshold Encryption
Share-and-Encrypt is Super-Partial Decryption Simulatable 37

D HATE from Homomorphic Encryption and Secret Sharing 37

D.1 Background . 37

D.2 Building ATE from Homomorphic Encryption and Secret Sharing 39

Compact Ad Hoc Threshold Encryption 3

D.3 Proofs of Properties of the Share-and-Encrypt Ad Hoc
Threshold Encryption Construction . 39

D.4 Share-and-Encrypt HATE Instantiations . 41
E Homomorphic Recipient-Compact Obfuscation-Based HATE 45

4 Leonid Reyzin, Adam Smith, Sophia Yakoubov

1 Introduction

A public key threshold encryption (TE) scheme gives one the ability to generate
a ciphertext that is decryptable by any t+ 1 out of n intended recipients, while
remaining semantically secure against any smaller group. Among other things,
it enables tasks such as electronic voting [HS00,Hir10] and round-efficient multi-
party computation (MPC) [MW16,BJMS18], where only t+ 1 colluding parties
should be able to learn information about others’ inputs.

One simple way to construct threshold encryption is to use any encryption
scheme, with each of n recipients having independently generated keys. To en-
crypt, the sender applies (t + 1, n)-secret sharing to the message, and encrypts
each share with the key of the respective recipient; we call this share-and-encrypt.

Share-and-encrypt has the advantage of requiring no master secret and no
correlated setup among the recipients. A basic public-key infrastructure is all
that is required. We will call TE schemes with this property ad hoc threshold
encryption (ATE). An additional advantage of this simple approach is that the
length of information sent to each recipient is independent of the number of re-
cipients (since each recipient needs to see only the part of the ciphertext relevant
to them). We will call TE with this property recipient-compact. It is, however,
not sender-compact, because the length of information sent by the sender is
dependent on the number of recipients. This missing feature is particularly de-
sirable when the sender, rather than unicasting information to each recipient,
broadcasts it—for example, by using an intermediate server. Prior to this paper,
whether sender-compactness is achievable for ad hoc TE was an open problem.

1.1 Our Contributions

In this paper, we initiate a systematic study of the possibilities and limitations of
ad hoc threshold encryption, and introduce a key application to scalable MPC.
We start with a definitional framework that systematizes the various options for
functionality and security in Section 2.

As our main feasibility result (Section 3), we show that sender-compactness
is, in principle, achievable.

Contribution 1 (Theorem 1) We describe the first sender-compact ad hoc
threshold encryption scheme.

The price we pay for sender-compactness is that we use indistinguishability
obfuscation (iO), and that every sender needs a public key. This key needs to
be known for decryption, and has a component whose size grows polynomially
with n. However, public keys are published once, whereas ciphertexts are created
and transmitted multiple times, so having the burden of size in the public keys
instead of the ciphertexts can be a big advantage when the sender is already
known to the recipient. Moreover, in some uses of TE, decryption is delayed,
and the linear component of the public key is not needed by every recipient

Compact Ad Hoc Threshold Encryption 5

(for example, if TE is used for backup storage that is usually not accessed; see
Section 1.2 for another example).

We also show a fundamental limitation of sender-compact schemes: recipients
need to know the public keys of other recipients. Specifically, we define (in Section
2) a TE property we call recipient-set-obliviousness, which demands that the
recipient algorithms be run without the public keys of other recipients.

Contribution 2 (Theorem 3) We show that recipient-set-obliviousness and
sender-compactness cannot be simultaneously satisfied.

We formally state and prove this result in Section 4.

Threshold encryption is well suited for applications to multi-party computa-
tion (MPC), because it allows multiple parties to learn shares of a value. Building
MPC protocols is much easier when encryption also allows for some homomor-
phic computation, so that operations on unopened ciphertexts can be used to
operate on the underlying plaintexts.

We demonstrate, in Section 5, how to build recipient-compact ad hoc thresh-
old encryption schemes that support limited homomorphism. We use the acronym
“HATE” to describe ATE schemes that support homomorphism.

Contribution 3 (Theorems 5, 6 and 7) We describe three recipient-compact
HATE schemes that support additive homomorphism.

The first two of these schemes are based on standard assumptions. They
follow the share-and-encrypt paradigm, and allow homomorphism because of a
careful combination of specific encryption and secret sharing schemes. One of
these schemes keeps messages in the exponent, and thus supports only limited
message spaces. Choosing a secret sharing scheme with the right properties is
crucial to enable the scheme to be ad hoc, recipient-compact, and homomorphic.
We use Shamir and CRT secret sharing, both of which are additively homomor-
phic over multiple inputs, do not require pre-distributed correlated randomness,
and have compact shares.

These schemes are recipient-set-oblivious and therefore cannot be sender-
compact, per Section 4. However, they have an additional property on top of
recipient compactness, which we call recipient-local evaluation: namely, not only
does a ciphertext consists of compact recipient-wise components, but also each
recipient can perform homomorphic evaluation locally on its own components.

The third recipient-compact additively homomorphic ATE has the advantage
that a fresh ciphertext (before homomorphic evaluation) is sender-compact, but
at the price of relying on iO. We obtain this scheme by modifying our iO-based
scheme from Section 3. Prior to homomorphic evaluation, a different ciphertext
(of size independent of n) for each recipient must be extracted from the sender-
compact ciphertext. As in the first two schemes, homomorphic evaluation can be
performed locally on these per-recipient ciphertexts, giving the scheme recipient-
local evaluation. This scheme supports only small message spaces.

6 Leonid Reyzin, Adam Smith, Sophia Yakoubov

Open Questions about Ad hoc Threshold Encryption. Our systematic study and
results raise several intriguing open problems about ad hoc threshold encryp-
tion. First, are there sender-compact ad hoc threshold encryption schemes with
constant-size public keys (independent of n)? Are there such schemes which do
not require a sender public key? Can such schemes be based on more standard
assumptions than iO? Are there ad hoc threshold encryption schemes with ci-
phertexts that remain compact even after homomorphic evaluation? Is it possible
to achieve full homomorphism? (We note that share-and-encrypt is not known
to solve this problem: in principle, a multi-input fully homomorphic threshold
secret sharing scheme can be combined with fully homomorphic encryption to
give fully homomorphic ad hoc threshold encryption; however, to the best of our
knowledge, all known constructions of multi-input fully homomorphic threshold
secret sharing require pre-distributed correlated randomness.)

The importance of our results and these questions is reinforced by their
usefulness for scalable MPC, which we discuss next.

1.2 Application: One-server, Fault-tolerant MPC

Consider a service that has an app with a large smartphone user base. Suppose
the service wants to collect aggregate usage statistics, but (for regulatory com-
pliance, or for good publicity, or for fear of becoming a target for attackers and
investigators) does not wish to learn the data of any individual user.

A traditional MPC solution is not suitable for this setting, because the phones
do not communicate directly with one another, and because we cannot expect
every phone to remain engaged for the duration of the protocol, as phones may
go out of signal range or run out of charge. We call MPC protocols in this setting
Large-scale One-server Vanishing-participants Efficient MPC (LOVE MPC).

As we already mentioned, threshold encryption can be used for MPC. Ad hoc
threshold encryption is particularly well-suited for this setting: by not having a
setup phase, it eliminates an important bottleneck, because running a multi-user
setup protocol with vanishing participants may present problems. In particular,
HATE schemes can be used to build LOVE MPC for the honest-but-curious
setting as follows: each phone sends an encryption of its input to the server,
who homomorphically combines them, sends the result out for decryption by all
users, and successfully uses the partial decryptions to get the correct result as
long as more than t phones respond.

Using our HATE constructions, we derive a 3-round LOVE MPC for addition
(Section 6). This improves on the round complexity of prior work by Bonawitz
et al. [BIK+17], who proposed a 5-round protocol. (We also prove, in Section
6.1, that three rounds and some setup — e.g. a PKI — is necessary for LOVE
MPC.)

The resulting LOVE MPC is based on standard assumptions when using the
HATE constructions of Section 5.1, and the linear per-user communication we
obtain asymptotically matches the per-user communication of Bonawitz et al.
[BIK+17]. (Per-user communication was improved to constant by subsequent
work of Bell et al. [BBG+20], but still at the cost of 5 rounds as opposed to our

Compact Ad Hoc Threshold Encryption 7

3.) Additionally, at the price of using our iO-based HATE construction (Section
Section 5.2), we obtain constant per-user communication, which is asymptoti-
cally better than the protocol of Bonawitz et al. [BIK+17] and asymptotically
matches the protocol of Bell et al. [BBG+20] (but, of course, at very high con-
crete costs due to the use of iO).

1.3 Related Work

Threshold Encryption. Known sender-compact threshold encryption schemes are
not ad hoc: they require some correlated setup. For instance, a sender-compact
threshold variant of ElGamal, due to Desmedt and Frankel [DF90] (and de-
scribed in Appendix B) requires a setup phase for every new set of n recipients.
Delerablée and Pointcheval [DP08] designed a sender-compact scheme based on
bilinear maps with a reduced setup requirement. In their scheme, the sender
can pick the set of n recipients dynamically; however, each recipient’s secret key
must be derived from a common master secret key, so this scheme is not ad hoc.

On the other hand, known ad hoc threshold encryption schemes are not
sender-compact. The simple share-and-encrypt construction discussed above re-
quires the sender to send an amount of information that is linear in n. Daza et
al. [DHMR08] use an interpolation-based trick to reduce the ciphertext size to
O(n − t) (and subsequently use bilinear maps to give a matching CCA2-secure
construction [DHMR07]); however, they leave open the problem of further low-
ering the ciphertext size.

Ad hoc fully homomorphic threshold encryption was explored by Boneh
et al. [BGG+18] and Badrinarayanan et al. [BJMS18], as well as by Dodis et
al. [DHRW16] as “spooky” encryption; however, their schemes are not even
recipient-compact, let alone sender-compact.

Ad Hoc Broadcast Encryption. Ad hoc sender-compact encryption has been
achieved in the context of broadcast encryption, which is a special case of thresh-
old encryption with the threshold t = 0, giving any one recipient the ability to
decrypt. Specifically, Boneh and Zhandry [BZ14] construct what they call dis-
tributed broadcast encryption form indistinguishability obfuscation (iO). Their
construction has the downside of long (polynomial in the number n of recipi-
ents) public keys. Later, Ananth et al. [ABG+13] shrink the public keys at the
cost of changing the assumption to differing-inputs obfuscation (diO). Zhandry
[Zha16] improves on these results, shrinking the public keys and replacing the
iO assumption with witness PRFs, but still requiring t = 0.

2 Threshold Encryption (TE) Definitions

A threshold encryption scheme [DF90] is an encryption scheme where a message
is encrypted to a group R of recipients, and decryption must be done collab-
oratively by at least t + 1 members of that group. (This can be defined more

8 Leonid Reyzin, Adam Smith, Sophia Yakoubov

broadly for general access structures, but we limit ourselves to the threshold
access structure in this paper.)

Classically, threshold cryptography involves a secret-shared secret key, which
fixes the set of all key-holders. That is, a single Setup operation suffices only
to establish a single set of recipients, and the sender is not allowed to specify a
recipient set R at encryption time.

Dynamic threshold encryption [DP08] allows a sender to choose the set of
recipients dynamically at encryption time, as described in the Enc algorithm of
Section 2.1. In a dynamic threshold encryption scheme, a single Setup operation
suffices for the establishment of arbitrarily many groups of recipients.

However, dynamic threshold encryption schemes still require trusted setup,
where a central authority distributes correlated randomness to all parties. In
an ad hoc threshold encryption (ATE) scheme, there is no need for any trusted
central authority or master secret key msk. We call a threshold encryption scheme
ad hoc if a public-private key pair can be generated without knowledge of a
master secret key; that is, if each party is able to generate its keys independently.

In this paper, we additionally consider keyed-sender threshold encryption
schemes. In a keyed-sender threshold encryption scheme, in order to encrypt a
message, the sender must use its own secret key in addition to the recipients’
public keys (unlike in typical public-key encryption, where encryption does not
require the knowledge of any secrets). Similarly, in order to decrypt the cipher-
text, recipients need to use the sender’s public key in addition to their secret
keys.

2.1 Threshold Encryption Syntax

A threshold encryption scheme consists of five algorithms, described in this sec-
tion. This description is loosely based on the work of Daza et al. [DHMR07], but
we modify the input and output parameters to focus on those we require in our
constructions, with some additional parameters discussed in the text. Parame-
ters in purple (namely, msk) are absent from ad hoc schemes; parameters in blue
(namely, skSndr and pkSndr) are present only in keyed-sender schemes (for readers
seeing this text in monochrome, we give text explanations in addition to colors).
Keyed-sender schemes additionally require a sixth algorithm, KeyGenSndr.

Setup(1λ, t)→ (params,msk) is a randomized algorithm that takes in a security
parameter λ as well as a threshold t and sets up the global public parameters
params for the system.
If the scheme is not ad hoc, Setup also sets up the master secret key msk for
key generation.
For simplicity, we provide Setup with the threshold t, and assume that t is
encoded in params. However, in t-flexible schemes, t may be decided by each
sender at encryption time, and should then be an input to Enc (and encoded
in the resulting ciphertext). In keyed-sender schemes (where the sender must
use their secret key to encrypt and recipients must use the sender’s public
key to decrypt), t may also be specified in the sender’s public key.

Compact Ad Hoc Threshold Encryption 9

KeyGen(params,msk)→ (pk, sk) is a randomized key generation algorithm that
takes in the global public parameters params (and, if the scheme is not ad
hoc, the master secret key msk) and returns a recipient’s public-private key
pair.

KeyGenSndr(params,msk)→ (pkSndr, skSndr) is a randomized algorithm present in
keyed-sender schemes only; it takes in the global public parameters params
(and, if the scheme is not ad hoc, the master secret key msk) and returns
a sender’s public-private key pair where the private key is used to facilitate
encryption by the sender, the public key is used to facilitate decryption of
messages from the sender.

Enc(params, skSndr, {pki}i∈R,|R|>t,m)→ c is a randomized encryption algorithm
that encrypts a message m to a set of public keys belonging to the parties in
the intended recipient set R in such a way that any size-(t+ 1) subset of the
recipient set should jointly be able to decrypt. We assume t is specified within
params, but (if the scheme is keyed-sender) it may also be specified within
the sender’s public key, or (if the scheme is t-flexible) it may be specified on
the fly as an input to Enc itself.

PartDec(params, pkSndr, {pki}i∈R, skj , c)→ dj is an algorithm that uses a secret
key skj belonging to one of the intended recipients (that is, for j ∈ R) to
get a partial decryption dj of the ciphertext c. This partial decryption can
then be combined with t other partial decryptions to recover the message.

FinalDec(params, pkSndr, {pki}i∈R, c, {di}i∈R′⊆R,|R′|>t)→ m is an algorithm that
combines t+ 1 or more partial decryptions to recover the message m.

In a sender-compact scheme, the size of the ciphertext c is independent of
the number of recipients n. In a recipient-compact scheme, PartDec requires only
a portion ci of the ciphertext c, where the size of ci is independent of n.

2.2 Threshold Encryption Flexibility

Not all threshold encryption schemes allow/require all of the algorithm inputs
described in Section 2.1. Sometimes disallowing an input can make the scheme
less flexible, but, on the other hand, sometimes schemes that do not rely on
certain inputs have an advantage.

More Flexibility: Unneeded Inputs. Ad hocness is an example of gaining an ad-
vantage by eliminating dependence on an input. Ad hoc schemes do not use
the master secret key msk, and thus do not require a trusted central authority
(which in many scenarios might not exist).

Another example of gaining an advantage by eliminating an input is recipient-
set-obliviousness. Requiring both decryption algorithms (PartDec and FinalDec)
to be aware of the set of public keys belonging to individuals in the set R of
recipients can be limiting.

Definition 1 (Threshold Encryption: Recipient-Set-Obliviousness). We
call a threshold encryption scheme recipient-set-oblivious if neither partial de-
cryption nor final decryption use {pki}i∈R.

10 Leonid Reyzin, Adam Smith, Sophia Yakoubov

It may seem that a recipient-set-oblivious scheme should require less commu-
nication, since the sender would never need to communicate R to the recipients.
However, in Section 4 we show that a recipient-set-oblivious ATE scheme cannot
be sender-compact.

More Flexibility: Additional Inputs. In describing the threshold encryption algo-
rithms, for the most part we assumed that the threshold t was fixed within the
global public parameters params (or, in a keyed-sender scheme, in the sender’s
public key). However, some schemes (such as share-and-encrypt) allow the sender
to choose t at encryption time; we call such schemes t-flexible.

2.3 Threshold Encryption Security

The threshold encryption security definition is two-fold. We require semantic
security, informally meaning that encryptions of two messages of the same size
should be indistinguishable. We also require simulatability, informally meaning
that given a ciphertext corresponding to one of two messages, partial decryptions
can be simulated in such a way as to cause the ciphertext to decrypt to either
of the two messages. The latter requirement is useful for MPC applications.

Both for semantic security and simulatability, there are three notions of se-
curity we consider, which differ according to the point in the security game at
which the adversary must commit to the set of corrupt parties C, and the set of
challenge ciphertext recipients R. From weakest to strongest, these are super-
static, static and adaptive security. In super-static security, which is what our
obfuscation-based construction achieves, the adversary specifies both C and R
before seeing the public keys. In static security, which is what our other con-
structions achieve, the adversary specifies C before seeing the public keys, but
can specify R later, at the same time as the two challenge messages, mR and
mL. In adaptive security, the adversary specifies C having seen the public keys,
and can specify R at the same time as the two challenge messages, as in static
security.

Semantic Security. We use the semantic security definition of Boneh et al.
[BGG+18] for threshold encryption schemes. Since we are interested in keyed-
sender schemes, we need to make two changes to their definition: (a) we need
to provide the adversary with the sender public key and use the corresponding
sender secret key to encrypt, and (b) in order to get CPA security, we need to
allow the adversary to make multiple encryption queries, since encryption is no
longer a public operation. In typical public key encryption, a game which allows
multiple encryption queries is equivalent to one that does not, but this is not
true in a keyed-sender setting. These differences are marked in blue in Figure 1.

Definition 2 (Threshold Encryption: Super Static Semantic Security).

For b ∈ {R,L}, let EXP(A, λ, u, n, t, b) denote the game described in Figure 1
played with the adversary A, security parameter λ, number of existing parties

Compact Ad Hoc Threshold Encryption 11

Chal(λ, u, n, t, b) A(λ, u, n, t)

(params,msk)← Setup(1λ, t)
params−−−−−−−−−−−−−−−−−−−−−−→R∗, C ⊆ [u]←−−−−−−−−−−−−−−−−−−−−−−

(pki, ski)← KeyGen(params,msk) for i ∈ [u]
(pkSndr, skSndr)← KeyGenSndr(params,msk)

pkSndr,{pki}i∈[u], {ski}i∈C−−−−−−−−−−−−−−−−−−−−−−→
repeat next two lines polynomially many times:

m,R←−−−−−−−−−−−−−−−−−−−−−−
c← Enc(params, skSndr, {pki}i∈R,m)

c−−−−−−−−−−−−−−−−−−−−−−→
mR,mL←−−−−−−−−−−−−−−−−−−−−−−

c∗ ← Enc(params, skSndr, {pki}i∈R∗ , t,mb)
c∗−−−−−−−−−−−−−−−−−−−−−−→

repeat next two lines polynomially many times:

m,R←−−−−−−−−−−−−−−−−−−−−−−
c← Enc(params, skSndr, {pki}i∈R,m)

c−−−−−−−−−−−−−−−−−−−−−−→
b′←−−−−−−−−−−−−−−−−−−−−−−

A wins if b′ = b, |mR| = |mL| and |R∗ ∩ C| ≤ t

Fig. 1: Super Static Semantic Security Game for Threshold Encryption. Objects
in blue are only present in keyed-sender schemes; objects in purple are only
present in schemes that are not ad hoc.

|U| = u, number of recipients n, threshold t and fixed b. Let WinProb(A, λ, u, n, t, b)
denote the probability that the adversary A wins EXP(A, λ, u, n, t, b).

A threshold encryption scheme (Setup,KeyGen,KeyGenSndr,Enc,PartDec,FinalDec)
is (n, t)-super statically semantically secure if for all u = poly(λ) and efficient
adversaries A, there exists a negligible function negl such that

|WinProb(A, λ, u, n, t, R)−WinProb(A, λ, u, n, t, L)| ≤ 1

2
+ negl(λ).

Note that this definition of security implies that even when the scheme is ad
hoc (and therefore KeyGen can be run by participants independently instead of
by a trusted central party), KeyGen is assumed to be run honestly; in particular,
public keys cannot be generated based on the knowledge of other public keys.
We leave the design of definitions and protocols such that public keys can be
generated maliciously for future work.

Partial Decryption Simulatability. In order to make Definition 2 more analogous
to real world situations, it would make sense to additionally allow the adversary
to query the challenger on messages of its choice, and receive encryptions of
those messages along with all corresponding partial decryptions. For the sake of
simplicity, instead of modifying the static semantic security game in Figure 1
to include partial decryptions, we add a second notion that we call partial de-
cryption simulatability which, informally, implies that receiving partial decryp-
tions will give the adversary no additional information. If a threshold encryption
scheme is partial decryption simulatable, then it is possible to simulate remain-
ing partial decryptions given t or fewer partial decryptions, a ciphertext, and
a desired plaintext output. Our partial decryption simulatability is similar to,

12 Leonid Reyzin, Adam Smith, Sophia Yakoubov

Chal(λ, u, n, t, SimPartDec, b) A(λ, u, n, t)

(params,msk)← Setup(1λ, t)
params−−−−−−−−−−−−−−−−−−−−−−→R∗, C ⊆ [u]←−−−−−−−−−−−−−−−−−−−−−−

(pki, ski)← KeyGen(params,msk) for i ∈ [u]
(pkSndr, skSndr)← KeyGenSndr(params,msk)

pkSndr,{pki}i∈[u], {ski}i∈C−−−−−−−−−−−−−−−−−−−−−−→
repeat next two lines polynomially many times:

m,R←−−−−−−−−−−−−−−−−−−−−−−
c← Enc(params, skSndr, {pki}i∈R,m)

c−−−−−−−−−−−−−−−−−−−−−−→
mR,mL←−−−−−−−−−−−−−−−−−−−−−−

cR ← Enc(params, skSndr, {pki}i∈R∗ , t,mR)
cL ← Enc(params, skSndr, {pki}i∈R∗ , t,mL)

If b = R:
for j ∈ R∗\C, dj ← PartDec(params, {pki}i∈R∗ , t, skj , cR)

If b = L:
for j ∈ R∗ ∩ C, dj ← PartDec(params, {pki}i∈R∗ , t, skj , cL)
for j ∈ R∗\C, dj ← SimPartDec(params, {pki}i∈R∗ , cR, {dk}k∈R∗∩C,mR)

cb, {dj}j∈R∗\C−−−−−−−−−−−−−−−−−−−−−−→
repeat next two lines polynomially many times:

m,R←−−−−−−−−−−−−−−−−−−−−−−
c← Enc(params, skSndr, {pki}i∈R,m)

c−−−−−−−−−−−−−−−−−−−−−−→
b′←−−−−−−−−−−−−−−−−−−−−−−

A wins if b′ = b, |mR| = |mL| and |R∗ ∩ C| ≤ t

Fig. 2: Super Static Partial Decryption Simulatability Game for Threshold En-
cryption. Objects in blue are only present in keyed-sender schemes; objects in
purple are only present in schemes that are not ad hoc.

but stronger than, simulatability of partial decryption defined in [MW16], where
only a single partial decryption can be simulated.

Definition 3 (Threshold Encryption: Super Static Simulatability).

For b ∈ {R,L}, let EXP(A, λ, u, n, t,SimPartDec, b) denote the game described
in Figure 2 played with the adversary A, security parameter λ, number of ex-
isting parties |U| = u, number of recipients n, threshold t, simulation algorithm
SimPartDec and fixed b.

Let WinProb(A, λ, u, n, t,SimPartDec, b) denote the probability that the adver-
sary A wins EXP(A, λ, u, n, t,SimPartDec, b).

A threshold encryption scheme (Setup,KeyGen,KeyGenSndr,Enc,PartDec,FinalDec)
is (n, t)-super statically partial decryption simulatable if there exists an efficient
algorithm SimPartDec such that if for all u = poly(λ) and efficient adversaries
A, there exists a negligible function negl such that

|WinProb(A, λ, n, t,SimPartDec, R)−WinProb(A, λ, n, t,SimPartDec, L)| ≤ 1

2
+negl(λ).

Putting it all together, we say that a threshold encryption scheme has super
static security if it meets both of the above definitions, as specified in Definition
4.

Compact Ad Hoc Threshold Encryption 13

Definition 4 (Threshold Encryption: Super Static Security). A thresh-
old encryption scheme (Setup,KeyGen,Enc,PartDec,FinalDec) is (n, t)-super stat-
ically secure if it is both (n, t)-super statically semantically secure (Definition 2)
and (n, t)-super statically partial decryption simulatable (Definition 3).

2.4 Threshold Encryption with Homomorphism

Homomorphic ad hoc threshold encryption (HATE) can be particularly useful
in applications to multi-party computation.

Definition 5 (Threshold Encryption: Homomorphism). Let F be a class
of functions, each taking a sequence of valid messages and returning a valid
message. An F-homomorphic threshold encryption scheme additionally has the
following algorithm:

Eval(params, {pki}i∈R, [c1, . . . , c`], f)→ c∗ is an algorithm that, given ` cipher-
texts and a function f ∈ F , computes a new ciphertext c∗ which decrypts to
f(m1, . . . ,m`) where each cq, q ∈ [1, . . . , `] decrypts to mq.

Informally, Eval should be correct, meaning that decryption should lead to
the correct plaintext message f(m1, . . . ,m`).

2.5 Threshold Encryption Compactness

Compactness Without Homomorphism. As described in the introduction, we say
that a threshold encryption scheme is sender-compact (or, in other words, that
it has sender-compact encryption) if the size of a ciphertext is independent of
the number of recipients. We say that it is recipient-compact (or, in other words,
that it has recipient-compact encryption) if the portion of the ciphertext required
by each recipient to produce their partial decryption is independent of the num-
ber of recipients. Of course, if a threshold encryption scheme is sender-compact,
then it is also recipient-compact, since each receiver can use the entire (com-
pact) ciphertext to partially decrypt. However, the converse is not necessarily
true. Even if a scheme is not sender-compact, it can be recipient-compact if the
ciphertext c can be split into compact components c = {ci}i∈R such that every
recipient can run PartDec given just one component ci.

Compactness With Homomorphism. When we consider homomorphic threshold
encryption, a fresh ciphertext c may look different than a ciphertext c∗ which
Eval outputs. Of course, the size of c∗ should not grow linearly with the number
` of inputs to f ; otherwise, homomorphism becomes unnecessary, and c∗ could
simply consist of a concatenation of the input ciphertexts.

Notice that this does not preclude ciphertext growth. Even if a fresh ci-
phertext has size independent of n, the output of Eval may grow with n. We
introduce some new terminology to handle this: we say that a homomorphic
threshold encryption scheme has compact evaluation if the output of Eval has

14 Leonid Reyzin, Adam Smith, Sophia Yakoubov

size independent of n, and that it has recipient-compact evaluation if the output
of Eval can be split into recipient-wise compact components. Additionally, we say
that a homomorphic threshold encryption scheme has recipient-local evaluation
if it has recipient-compact encryption and evaluation is performed component-
wise, with Eval taking one recipient’s component of each input ciphertext and
producing that recipient’s compact component of the output ciphertext.

All of our schemes in Section 5 have recipient-compact encryption and recipient-
local evaluation; the scheme in Section 5.2) additionally has sender-compact
encryption.

In a setting where multiple senders send ciphertexts to a single server, who
homomorphically computes on the ciphertexts and sends (the relevant parts of)
the output of Eval to receivers, it is enough to have a sender-compact encryption
and recipient-compact evaluation, even if the overall output of Eval is long. These
properties suffice for reducing bandwidth, because the size of every message
transmitted between two parties is independent of the number of recipients.

If, instead, we have a setting where senders send ciphertexts directly to
receivers who then compute on those ciphertexts themselves, sender-compact
encryption is less important, and recipient-local evaluation becomes key. Each
sender must send something to each receiver anyway (instead of sending only
one thing to the server), and in a setting with direct peer-to-peer channels,
it becomes unimportant whether those things are all the same sender-compact
ciphertext, or receiver-wise components of a recipient-compact ciphertext.

3 Sender-Compact Ad Hoc Threshold Encryption

In this section, we describe a sender-compact ATE. In the share-and-encrypt
construction, the total ciphertext size is Θ(n), because each recipient gets an
encryption of a different share. A natural approach is to compress the ciphertext
using obfuscation: namely, instead of using the encrypted shares as the cipher-
text, we can try to use an obfuscated program that outputs one encrypted share
at a time given an appropriate input (such as a short symmetric encryption of
the message, a recipient secret key, and proof of the recipient membership in the
recipient set R).

However, this strategy fails to achieve sender-compact ciphertexts, because
the obfuscated program remains linear in the size of the threshold t. The reason
is that, within the security proof, in one of the hybrids we are forced to hardcode
t secret shares in the program, and the obfuscated program must be of the same
size in all hybrid games.

Therefore, instead of putting an obfuscated program in the ciphertext, each
sender obfuscates a program as part of key generation. This program becomes the
sender’s public key. While it is long (polynomial in the in the number of recipients
n), it needs to be created and disseminated only once, as opposed to a ciphertext,
which depends on the message. Notice that having this obfuscated program as
the sender’s public key makes our ATE scheme keyed-sender, meaning that in

Compact Ad Hoc Threshold Encryption 15

order to encrypt a message the sender must use its secret key, and in order to
decrypt a message, recipients must use the sender’s public key.

One can think of the obfuscated program in the sender’s public key as a
“horcrux”.3 The sender stores some of its secrets in this obfuscated program,
and when encrypting a message, the sender includes just enough information in
the ciphertext that the obfuscated program can do the rest of the work.

Once we put the obfuscated program in the sender’s public key, we run into
the issue that the outputs of the program on the challenge ciphertext cannot be
dependent on the challenge message. This is because in the proof of security, the
challenge message is chosen dynamically by the adversary, whereas the program
is obfuscated by the challenger at the beginning of the game. In some hybrids,
the outputs corresponding to the challenge message must be hardcoded in the
program; so, they cannot depend on the actual message, which can be picked
after the program is fixed. Therefore, instead of returning secret shares of the
challenge message, the program returns shares of a random mask which is used
to encrypt the message.

Specifically, the program that each sender obfuscates takes as input a random
nonce — together with the sender’s signature on that nonce — and a recipient’s
secret key. The program checks the signature, and that the recipient’s secret key
matches one of the public keys to which the sender addressed this ciphertext
(this “addressing” is performed implicitly, via the same signature). Note that
checking membership in the set of recipients is important: otherwise any party
could extract a secret share of the message. If the checks pass, the program
outputs a secret share of a PRF output on the random nonce. The actual message
is symmetrically encrypted with that PRF output.

The obfuscated program that makes up the sender public key is formally de-
scribed in Algorithm 1, and the obfuscation-based ATE is described in Construc-
tion 1. It uses an indistinguishability obfuscator iO, puncturable pseudorandom
function PPRF, a secret sharing scheme SS, a constrained signature SIG, and a
length-doubling pseudorandom generator PRG with domain {0, 1}λ and range
in {0, 1}2λ. We define all of these primitives in Appendix A.

3 A “horcrux” is a piece of one’s soul stored in an external object, according to the
fantasy series Harry Potter [Row05].

16 Leonid Reyzin, Adam Smith, Sophia Yakoubov

Algorithm 1 fkw,kShare,SIG.pk(−→pv = {pvi}i∈R, idx, sv, nonce, σ)

The following values are hardcoded:
params = (λ, n, t), where

λ is the security parameter,
n is the number of recipients, and
t is the threshold.

kw, a secret PPRF key used to recover the mask w from nonce nonce
kShare, a secret PPRF key used to secret share the mask w
SIG.pk, a signature verification key

The following values are expected as input:
−→pv = {pvi ∈ {0, 1}2λ}i∈R, lexicographically ordered public values
idx, an index
sv ∈ {0, 1}λ, a secret value
nonce
σ, a signature

if (−→pv[idx] = PRG(sv)) and (SIG.Verify(SIG.pk, (−→pv, nonce), σ)) then
w ← PPRFkw (nonce)
r ← PPRFkShare(nonce)
[w]idx ← SS.Share(w, n, t; r)[idx] {This gives the idxth secret share of w}
return [w]idx

Informally, in order to prove security, we will have to show that given an
obfuscation of this program, an adversary who has only t or fewer secret keys
from the recipient set will not be able to tell the difference between an encryption
of a message mR and an encryption of a different message mL. Our proof will
need to puncture kw and kShare on the challenge nonce in order to remove any
information about the challenge plaintext from the program. For the proof to go
through given the guarantees of iO, it is crucial that, as we change the plaintext,
the output does not change for any input — in particular, even if the adversary
is able to forge a signature that ties the ciphertext to a wrong set of public keys.
We ensure this property by using a constrained signature scheme SIG, so that we
can guarantee (in an appropriate hybrid) that a signature tying the ciphertext to
a wrong set of public keys does not exist. This means that the public verification
key (which is incorporated into the obfuscated program) is of size polynomial in
n.

Theorem 1. The obfuscation-based ATE (Construction 1) is (n, t)-super-statically
secure (Definition 4) for any polynomial n, t, as long as iO is a secure indis-
tinguishability obfuscator, PPRF is a secure puncturable PRF, SS is a secure
(n, t)-secret sharing scheme, SIG is a constrained signature scheme, and PRG is
a secure pseudorandom generator.

We prove Theorem 1 in Appendix C.

Compact Ad Hoc Threshold Encryption 17

Let the public parameters params = (λ, n, t) consist of the security parameter λ,
the number of recipients n, and the threshold t.

KeyGen(params):

{The following generates the “receiver” keys.}
sv ← {0, 1}λ

pv ← PRG(sv) ∈ {0, 1}2λ
return (pv, sv)

KeyGenSndr(params):

{The following generates the “sender” keys.}
(SIG.pk, SIG.sk)← SIG.KeyGen(1λ)

kw ← PPRF.KeyGen(1λ)
{This PPRF key will be used to produces the mask w for the message. Its output is
assumed to be in the message space group.}
kShare ← PPRF.KeyGen(1λ)
{This PPRF key will be used to produce the randomness for secret sharing w. We slightly
abuse PPRF notation above; the size of w and the size of the randomness needed to
secret share w might be very different. We simply assume that either the keys used
are of different sizes (that is, kShare might actually consist of multiple keys), or that
the PPRF is chained in the appropriate way to produce a sufficiently large amount of
randomness. We assume that the output of PPRF with kw is in some group G which
contains the message space, and that the output of PPRF with kShare is of whatever form
the randomness for SS.Share should take.}
ObfFunc← iO(fkw,kShare,SIG.pk)

return (pkSndr = ObfFunc, skSndr = (SIG.sk, kw))

Enc(params, skSndr = (SIG.sk, kw),−→pv = {pvi}i∈R,|R|≥t,m):

nonce← PPRF.domain
e = (PPRFkw (nonce) +m)
σ ← SIG.Sign(SIG.sk, (−→pv, nonce))
return c = (nonce, e, σ)

PartDec(params, pkSndr = ObfFunc,−→pv = {pvi}i∈R, svi, c = (nonce, e, σ)):

Let idx be the index of the public value corresponding to the secret value svi in a
lexicographic ordering of {pvi}i∈R
di ← ObfFunc(−→pv, idx, svi, nonce, σ)
return di

FinalDec(params, c = (nonce, e, σ), {di}i∈R′⊂R):

w ← SS.Reconstruct({di}i∈R′⊂R)
m← e− w
return m

Construction 1: Obfuscation-Based ATE

3.1 t-Flexibility

For simplicity, we describe obfuscation-based ATE in a way that is not by default
t-flexible, since the threshold t is fixed within the sender’s public key. However,
it can be made t-flexible in a very straightforward way, simply by including t as
part of the (signed) input to the obfuscated program.

3.2 Reducing the Public Key Size

In the construction described above, the sender’s public key size is polynomial
in the number n of recipients. We can decrease the size of the public key by
relying on differing-inputs obfuscation (diO) [BGI+01,ABG+13] instead of in-
distinguishability obfuscation (iO). If we do, then we can modify the obfuscated

18 Leonid Reyzin, Adam Smith, Sophia Yakoubov

program to take a Merkle hash commitment to the set of recipients’ public keys,
instead of the entire list; additionally, we will be able to replace constrained sig-
natures with any signature scheme. This will enable us to go from poly(n)-size
public keys to poly(t)-size public keys. (We still need poly(t) because that is the
number of secret shares we must hard-code in the program in one of the hybrids
in our security proof.)

4 Lower Bounds on Ciphertext Size for Recipient-
Set-Oblivious Ad Hoc Threshold Encryption
Schemes

One downside of the ATE scheme described in Section 3 is that it is not recipient-
set-oblivious (Definition 1); that is, the decryption algorithms need the set of
recipient public keys as input.

One might hope to be able to combine the sender-compactness of the ATE
scheme in Section 3 with recipient-set-obliviousness. However, in this section,
we show that any recipient-set-oblivious ad hoc threshold encryption scheme
must have ciphertext sizes linear in the number of recipients. In Theorem 2,
we consider the special case of broadcast encryption (that is, t = 0); then, in
Theorem 3, we consider the general threshold encryption case.

Theorem 2. In any recipient-set-oblivious ad hoc threshold encryption scheme
(Setup,KeyGen,Enc,PartDec,FinalDec), the average size of a ciphertext c pro-
duced as

(params)← Setup(1λ, t = 0)

{(pki, ski)← KeyGen(params)}i∈[u]

R ← a random size-n subset of [u]

c← Enc(params, {pki}i∈R,m)

for any m in the message space is O(log2

(
u
n

)
).

Proof. Imagine that Alice runs all four lines described above (that is, generates
u key pairs, a random set R of recipients and a ciphertext). She then sends all
the key pairs to Bob.

Later, she can use c to communicate to Bob her choice ofR. Bob attempts de-
cryption with each key pair. For t = 0, one key pair is sufficient to decrypt; since
our scheme is recipient-set-oblivious, Bob does not need to use the public keys
belonging to other recipients. Thus, Bob identifies those for whom decryption
yields m as belonging to R. (Note that the probability of correct decryption with
a key that does not belong to R should be negligible, or the threshold encryption
scheme is not secure.)

Since there are
(
u
n

)
possibilities for R, Alice must use at least log2

(
u
n

)
bits

to communicate R to Bob. Since the key pairs are generated independently of
R, they don’t count towards those bits; thus, the ciphertext should be at least
log2

(
u
n

)
bits long. In the case when u = 2n, this is lower-bounded by 2n.

Compact Ad Hoc Threshold Encryption 19

Theorem 3. For any t < n, any recipient-set-oblivious ad hoc threshold en-
cryption scheme (Setup,KeyGen,Enc,PartDec,FinalDec), the average size of a
ciphertext c produced as

(params)← Setup(1λ, t)

{(pki, ski)← KeyGen(params)}i∈[u]

R ← a random size-n subset of [u]

c← Enc(params, {pki}i∈R,m)

for any m in the message space is O(log2

(
u−t
n−t

)
).

Proof. The proof goes exactly as it does for Theorem 2, but Alice identifies to
Bob t key pairs in R, so that Bob only needs to identify the n−t remaining ones.
Bob does this by computing partial decryptions using the t identified key pairs,
and testing each of the remaining u − t key pairs. He tests a key pair by using
it to generate a partial decryption and seeing whether that partial decryption
combines with the ones it already has to produce m.

5 Recipient-Compact Homomorphic Ad Hoc Threshold
Encryption

In this section, we describe three recipient-compact HATE constructions. In
addition to recipient-compactness, all three of these schemes have recipient-local
evaluation, meaning that each recipient can perform evaluation locally given just
their compact component of the ciphertext.

Two of them (Section 5.1) are based on the share-and-encrypt paradigm.
These are recipient-set-oblivious, but are not sender-compact. The last (Sec-
tion 5.2) achieves sender-compactness by combining share-and-encrypt with the
obfuscation-based sender-compact ATE from Section 3. However, like the ATE
in Section 3, it is not recipient-set-oblivious.

5.1 Building HATE from Homomorphic Encryption and Secret
Sharing

In this section, we describe our share-and-encrypt homomorphic ad hoc threshold
encryption scheme which, despite its Θ(n)-size ciphertexts, is efficient enough to
be used in practice in some scenarios, because it is recipient-compact.

As we mentioned in the introduction, one natural way to build ATE is to
use a threshold secret sharing scheme SS together with a public-key encryption
scheme PKE. The idea is to secret share the message, and to encrypt each share
to a different recipient using their public key; therefore, we call this the share-
and-encrypt paradigm. We elaborate on it in Appendix D.

Notice that we are able to omit all but the relevant part of the ciphertext as
input to PartDec for each party (where the relevant part is the one encrypted
under their key), making the scheme both recipient-set-oblivious and recipient-
compact. This further saves on communication in some contexts (Section 6.3).

20 Leonid Reyzin, Adam Smith, Sophia Yakoubov

Theorem 4. Share-and-encrypt (described formally in Appendix D, Construc-
tion 3) is a (n, t)-statically secure (Definition 4, modifed to be static instead of
super-static), recipient-set-oblivious, recipient-compact ATE, as long as SS is a
secure share simulatable t-out-of-n secret sharing scheme, and PKE is a CPA-
secure public key encryption scheme.

We prove Theorem 4 in Appendix D.3.
If the secret sharing and encryption schemes are homomorphic in compatible

ways, the share-and-encrypt construction is a Homomorphic ATE. The trick
is finding the right homomorphic secret sharing and encryption schemes. In
particular, if the secret sharing scheme is F-homomorphic, the encryption scheme
must be F ′-homomorphic, where F ′ includes the homomorphic evaluation of F
over secret shares.

Of course, if the secret sharing and encryption schemes are both fully homo-
morphic, they give fully homomorphic ATE. However, no homomorphic thresh-
old secret sharing schemes (with homomorphism over multiple inputs, without
pre-distributed correlated randomness) is known, to the best of our knowledge.4

We show two efficient combinations of secret sharing and encryption which
result in additively homomorphic ATE: Shamir-and-ElGamal (described in detail
in Appendix D.4.1) and CRT-and-Paillier (Appendix D.4.2).

Shamir-and-ElGamal. We build share-and-encrypt HATE out of ElGamal en-
cryption [ElG84] and a variant of Shamir secret sharing. We need to use a variant
of Shamir secret sharing (which we call exponential Shamir secret sharing), and
not Shamir secret sharing itself, because Shamir secret sharing is additively ho-
momorphic (and the homomorphism is applied via addition of individual shares),
so we would need the encryption scheme to support addition; however, ElGamal
is only multiplicatively homomorphic, so if we attempt to apply a homomor-
phism on encrypted shares, it will not work. What we need in order to get an
additively homomorphic ATE scheme is to use ElGamal encryption with a secret
sharing scheme which is additively homomorphic, but whose homomorphism is
applied via multiplication. Therefore, we need to alter our Shamir secret sharing
scheme by moving the shares to the exponent; then, taking a product of two
shares will result in a share of the sum of the two shared values. We refer to
Appendix D.4.1 for a description of the ElGamal encryption scheme and the
exponential Shamir secret sharing scheme which we use.

Theorem 5. Shamir-and-ElGamal (described in Appendix D.4.1) is an addi-
tively homomorphic ad hoc threshold encryption scheme for a polynomial-size
message space.

Shamir-and-ElGamal is an ad hoc threshold encryption scheme by Theo-
rem 4; the homomorphism follows from the homomorphisms of the underlying
encryption and secret sharing schemes.

4 Boyle et al. [BGI+18] give a nice introduction to homomorphic secret sharing. Jain
et al. [JRS17] and Dodis et al. [DHRW16] both build (threshold) function secret
sharing, which gives homomorphic secret sharing, but the homomorphism is only
over a single input.

Compact Ad Hoc Threshold Encryption 21

In Shamir-and-ElGamal we are limited to polynomial-size message spaces
since final decryption uses brute-force search to find a discrete log. Jumping
ahead to LOVE MPC, polynomial-size message spaces are still useful in many
applications, as explained in the introduction. Moreover, the server already does
work that is polynomial in the number of users, so asking it to perform another
polynomial computation is not unreasonable.

CRT-and-Paillier. We also build share-and-encrypt HATE out of Camenisch-
Shoup encryption and Chinese Remainder Theorem based secret sharing. The
Camenisch-Shoup encryption scheme is a variant of Paillier encryption that sup-
ports additive homomorphism. However, we cannot combine it with Shamir se-
cret sharing, since Shamir shares all live in the same group, while each instance
of a Camenisch-Shoup encryption scheme uses a different modulus. Therefore,
we combine Camenisch-Shoup encryption with CRT secret sharing, which has
exactly the property that different shares can live in different groups. Unlike
Shamir-and-ElGamal (Appendix D.4.1), this HATE allows us to use large mes-
sage spaces. We refer to Appendix D.4.2 for a description of the Camenisch-
Shoup encryption scheme and the CRT secret sharing scheme which we use.

Theorem 6. CRT-and-Paillier (described in Appendix D.4.2) is an additively
homomorphic ad hoc threshold encryption scheme.

CRT-and-Paillier is an ad hoc threshold encryption scheme by Theorem 4; the
homomorphism follows from the homomorphisms of the underlying encryption
and secret sharing schemes.

5.2 Building HATE from Obfuscation

As described in Section 3, the obfuscation-based ATE is not homomorphic. In-
formally, in order to make the obfuscation-based ATE F-homomorphic, we can
modify the obfuscated program to:

1. Use a F-homomorphic secret sharing scheme [BGI16]. (As an example, Shamir
secret sharing is additively-homomorphic.) Note that F should always in-
clude subtraction from a constant (in the appropriate group); the obfuscated
program returns shares of the mask w, which we want to use, together with
the masked message e, to obtain shares of m = e− w.
However, this alone is not enough; even if the secret shares returned by
the obfuscated programs are homomorphic, in order to extract them from
the ciphertext, one must know a recipient secret value sv, while evaluation
should require no secrets.

2. Use F ′-homomorphic public key encryption and decryption keys pki, ski
instead of public and private values pvi = PRG(svi), svi. The obfuscated
program would then not require ski as input; instead, it would return a
ciphertext that requires ski for decryption.
F ′ must include the functions necessary to evaluate F on the homomorphic
secret shares.

22 Leonid Reyzin, Adam Smith, Sophia Yakoubov

This modification makes the construction F-homomorphic while preserving
sender-compactness. Thus, anyone (e.g., a server) can evaluate the obfuscated
program to extract encryptions of all recipients’ shares of the mask, homomorphi-
cally convert these into encrypted shares of the message, and homomorphically
compute on those encrypted shares (since our public key encryption scheme is
homomorphic, as are secret shares). The server would then send all parties their
encrypted share of the computation output. Additionally, this construction is
recipient-compact (as long as homomorphic shares are small), since each party
only needs one compact part of the ciphertext for partial decryption.

More concretely, we can use ElGamal encryption [ElG84]. Once the obfus-
cated program is evaluated, we are essentially using the Shamir-and-ElGamal
HATE (Section 5.1). In particular, this implies that we are limited to polynomial-
size message spaces, since final decryption uses brute-force search to find a dis-
crete logarithm.

In Appendix E we give more details about our homomorphic recipient-compact
HATE construction. Construction 4 describes the construction; Algorithm 4
describes the new program that needs to be obfuscated and included in each
sender’s public key.

Theorem 7. The modified obfuscation-based ATE (Construction 4, described
in Appendix E) is (n, t)-super-statically secure (Definition 4) for any polynomial
n, t, as long as iO is a secure indistinguishability obfuscator, PPRF is a secure
puncturable PRF, SS is a secure secret sharing scheme, SIG is a constrained
signature scheme, and PKE is a secure public-key encryption scheme. Moreover,
it is F-homomorphic if SS is F homomorphic (where F includes subtraction from
a constant), and if PKE is F ′-homomorphic (where F ′ includes the evaluation
of F on SS secret shares).

6 Large-scale One-server Vanishing-participants Efficient
MPC (LOVE MPC)

One attractive application of homomorphic ad hoc threshold encryption with
sender-compactness is Large-scale One-server Vanishing-participants Efficient
MPC (LOVE MPC). LOVE MPC is different from more traditional MPC in
two ways: (1) in addition to tolerating corruptions, it tolerates some number
of parties who vanish (i.e., drop out mid-computation), and (2) only the server
learns the output. The vanishing participant property was introduced in the work
of Badrinarayanan et al. [BJMS18], which called such parties “lazy parties”.

6.1 Lower Bounds

We show lower bounds both for the number of message flows in a LOVE MPC
construction, and for the setup requirements.

Theorem 8. For many functions (including addition), a LOVE MPC cannot
be instantiated in fewer than three message flows, and if only three flows are
used, then setup (e.g. correlated randomness or PKI) is unavoidable.

Compact Ad Hoc Threshold Encryption 23

Proof. We prove this theorem in two parts.

Lower Bounds on Number of Message Flows. A one-message protocol (where
each user sends the server a single message, as in non-interactive MPC (NIMPC)
[BGI+14a]) is impossible in our setting for many functions f , for the following
reason. In a one-message protocol, the users would all send a single message to
the server, who would compute the desired output. However, if the protocol is
fault-tolerant, the set of participating users cannot be known in advance. Thus,
an honest-but-curious server would be able to compute f on many different
subsets of participating users, simply by ignoring some of the received messages.
For example, if f is the sum of the users’ individual values, the server could
compute f both with and without a particular user present, thus learning every
user’s input.

A two-message protocol does not make sense, since a second message flow
would involve the server sending the users messages. A server-to-user message
before the user-to-server message does not solve the above problem, and a server-
to-user message after the user-to-server message cannot affect the output, since
the server should be the one to arrive at the output. We conclude that a LOVE
MPC construction requires at least three message flows.

Lower Bounds on Setup Assumptions. A three-message protocol without any
joint setup (e.g. correlated randomness or PKI) allows the server to perform
what is essentially a Sybil attack. By fault-tolerance, the output should still
be computable if a few participants drop out after sending the first message.
Moreover, the output should not change depending on which participants drop
out between the first and third flows; otherwise, the honest-but-curious server
can pretend some users dropped out and see how the output changes (just like in
the argument against one-message protocols). Therefore, the output should be
fixed as soon as the second flow messages are sent by the server. (Generalizing
to more than three message flows, the output should be fixed as soon as the
server sends its last message.) This feature enables an honest-but-curious server
to compute f on any single real user’s input combined with inputs of the server’s
choice, as follows. After receiving the first message from a real user, the server
will simulate the first message of n−1 users with inputs of the server’s choice, and
then simulate the rest of the messages of the protocol as if the real user dropped
out before sending its third message. As long as the protocol can tolerate a single
user dropping out, the server will be able to compute the desired output. We
conclude that a three-message LOVE MPC construction requires some setup.

6.2 Definitions

Our LOVE MPC ideal functionality, described in Figure 3, is a variant of the
trusted party functionality of Badrinarayanan et al. [BJMS18], modified to sup-
port only a single output party (the server Srvr) and to allow functions with
more than a single bit of output.

24 Leonid Reyzin, Adam Smith, Sophia Yakoubov

Let U be the set of all parties, P be the set of parties who do not drop
out by the end of the protocol execution, and C be the set of corrupt parties.
For correctness, we require that |P| > t for a dropout threshold t. For security,
we require that |C| ≤ tc for a corruption threshold tc. Note that in all of our
constructions, we have t = tc.

A static semi-honest adversaryA specifies the following sets: C ⊆ U of corrupt
parties such that |C| ≤ tc, DInput ⊆ U of parties who drop out before the end of
the input phase, and DOutput ⊆ U of parties who drop out after the input phase
(where P = U\(DInput∪DOutput)). Only parties who do not drop out before the
end of the input phase (that is, i ∈ U\DInput) have their inputs included in the
computation. The adversary receives the view of all the parties in C.

Informally, a LOVE MPC protocol has static semi-honest security if for all
input vectors {xi}i∈U and all efficient adversaries A, there exists a simulator S
who interacts with the ideal functionality in Figure 3 and can simulate the view
of A. Badrinarayanan et al. [BJMS18] also discuss security against malicious
parties, which we do not address here.

We present our protocols in the PKI model. Because we consider only honest-
but-curious attackers, the PKI model does not require any additional trust: the
clients could simply exchange public keys via the server in two additional message
flows before the start of the protocol. The importance of the PKI model for our
protocols is that this exchange is independent of the inputs and needs to happen
only once; after that, the protocols can be run repeatedly with the same public
keys.

There are multiple ways to model PKI formally: “global” setup (e.g., Canetti
and Rabin [CR03], Canetti et al. [CDPW07] and Dodis et al. [DKSW09]), which
uses key registration that is shared by multiple, possibly different, protocols; or
“local” setup (e.g., Barak et al. [BCNP04]), in which key registration is per pro-
tocol instance. In any of these, since our adversary is semi-honest, the simulator
is allowed to know the secret keys of the corrupted parties; in addition, local
setup means that the security definition is weaker and the simulator is more
powerful, because the simulator can simulate the setup and thus is able to know
(or even decide) secret keys for the honest parties. The LOVE MPC protocol
that we describe in Section 6.3 can be proven secure with global setup, unless it
is instantiated with the keyed-sender obfuscation-based HATE (Section 5.2), in
which case it requires local setup (but still can be run multiple times with the
same PKI).

6.3 Three-Message LOVE MPC from HATE

Let HATE = (Setup,KeyGen,Enc,PartDec,FinalDec,Eval) be a homomorphic ad
hoc threshold encryption scheme. Assume the HATE has been set up (and so
params is publicly available, and contains t), and that each party has already run
KeyGen and that everyone’s public keys have been distributed through a public
key infrastructure. We describe a three-message HATE-based LOVE MPC in
Construction 2.

Compact Ad Hoc Threshold Encryption 25

Functionality Ff , interacting with server Srvr and parties Pi, i ∈ U .

Init: On input (Init) from the simulator S:
1. Initialize an empty map INPUTS from parties to their inputs.

InputAbort: On input (InputAbort,DInput) from the simulator S, store DInput.
Input: On input (Input, xi) from party Pi: Store INPUTS[i] = xi.
OutputAbort: On input (OutputAbort,DOutput) from the simulator S, store DOutput.
Output: On input (Output) from the simulator S:

1. Remove i from INPUTS for i ∈ DInput.
2. If |U\(DInput ∪ DOutput)| > t: compute y = f(INPUTS).
3. Else: set y = ⊥.
4. Output y to the server Srvr.

Fig. 3: Ideal Functionality Ff for LOVE MPC Secure Against Semi-Honest Ad-
versaries.

Flow 1: Each party Pi sends a message to the server Srvr
Each party Pi, i ∈ U does the following:
1. Computes

ci ← HATE.Enc(params, skSndr,i, {pkj}j∈U , xi).

2. Sends ci to Srvr.
Flow 2: Server Srvr sends a message to each party Pi

Let DInput ⊆ U be the set of parties from whom the server Srvr did not receive a ciphertext.
Srvr computes the sum ciphertext

c← HATE.Eval(params, {pki}i∈U , {ci}i∈U\DInput
, f)

and sends c to all parties i ∈ U\DInput.
Flow 3: Each party Pi sends a message to the server Srvr

Each party Pi, i ∈ U\DInput does the following:
1. Computes

di ← HATE.PartDec(params, {pkj}j∈U , ski, c).

2. Sends di to Srvr.
The server Srvr computes the output

Let DOutput ⊆ U\DInput be the set of parties from whom the server Srvr got a ciphertext ci,
but not a partial decryption di. As long as |P = U\(DInput ∪ DOutput)| > t, Srvr computes

y ← HATE.FinalDec(params, {pki}i∈U , c, {di}i∈P).

Construction 2: LOVE MPC for Function f From HATE in Three Rounds

Theorem 9. HATE-based LOVE MPC (Construction 2) in the global-setup
PKI model returns the correct output of f if fewer than t parties drop out. It
is secure against t static semi-honest corruptions as long as HATE is a (n, t)-
super statically secure (Definition 4) F-homomorphic ATE construction such
that f ∈ F .

Proof. Correctness is true by the correctness of the underlying HATE.

To prove security, we describe a simulator S in Figure 4. Since we require
global setup, S does not have access to honest parties’ secret keys. However,
because of the honest-but-curious assumption, S does see corrupt parties’ secret
keys and randomness. S can simulate by encrypting 0 for each honest party in
Flow 1 (without knowing their secret keys), and simulating the partial decryp-
tions for each honest party in Flow 3 (again without knowing their secret keys),

26 Leonid Reyzin, Adam Smith, Sophia Yakoubov

1. The simulator S sends (Init) to the ideal functionality.
2. S runs the adversary A to determine C, DInput, DOutput, and sends those to the ideal

functionality.
3. [Flow 1] For each honest party Pi, i ∈ U\C, S encrypts 0 in place of the actual input:

ci ← HATE.Enc(params, {pkj}j∈U , 0).

4. [Flow 2] Whether the server Srvr is honest or semi-honest (that is, whether or not its role
is played by the simulator), it will correctly compute the sum ciphertext c and send it to
all parties.

5. [Flow 3] For each corrupt party Pi, i ∈ C, since the simulator S knows ski and
the randomness used by the adversary, S can compute the partial decryption di ←
HATE.PartDec(params, {pkj}j∈U , ski, c), which is guaranteed to equal the one the corrupt
party will send the server Srvr in the final flow. (S can do this even if the adversary is
rushing.) However, since S does not know the honest parties’ keys, S must simulate their
partial decryptions. S sends (Output) to the ideal functionality (note that the output is
fixed at this point, since it is fixed as soon as the server sent the ciphertext), learns the
actual output y, and computes the simulated partial decryptions for the honest parties
by using the partial decryption simulatability (Definition 3) of the HATE. That is, the
simulator runs

{di}i∈U\C ← HATE.SimPartDec(params, {pki}i∈U , c, {di}i∈C, y).

By partial decryption simulatability, these will be indistinguishable from genuine partial
decryptions.

6. [Output Computation] Whether the server Srvr is honest or semi-honest, it will correctly
compute the output from the partial decryptions it receives.

Fig. 4: Simulator S for LOVE MPC from HATE

by first performing partial decryption on behalf of the corrupt parties using their
secret keys and randomness.

Notice that the only points in which the simulation differs from a real execu-
tion view is Flow 1, when the simulator encrypts 0s instead of the actual inputs,
and Flow 3, when the simulator simulates partial decryptions instead of using
genuine ones. The simulated corrupt parties’ view is indistinguishable from a
real view by CPA security and partial decryption simulatability, respectively.

Efficiency. Shamir-and-ElGamal LOVE MPC and CRT-and-Paillier LOVE MPC
requireΘ(n) communication per party, where n = |U|. Since ciphertexts areΘ(n)
in size, each party sends a Θ(n)-size message in Flow 1, and receives a Θ(n)-
size message in Flow 2. However, we can leverage the recipient-compactness of
share-and-encrypt and save some concrete cost by having the server only send
each party the relevant part of the ciphertext in Flow 2; that is, the encryption
of their secret share.

The advantage of obfuscation-based LOVE MPC is that it requires only con-
stant communication per party once public keys have been distributed. Addition-
ally, each party’s public key need only be communicated to the server (perhaps
with a PKI as an intermediary) but not to the other parties, since the server is
the only one who needs to evaluate each party’s obfuscated program. (Parties
do need their peers’ encryption keys in order to compute their ciphertexts for
Flow 1, but those encryption keys comprise a small, constant-size component of
each public key.)

Compact Ad Hoc Threshold Encryption 27

Acknowledgements

We would like to thank Ran Canetti and Ben Kreuter for helpful discussions.

References

AB06. C. Asmuth and J. Bloom. A modular approach to key safeguarding. IEEE
Trans. Inf. Theor., 29(2):208–210, September 2006.

ABG+13. Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark
Zhandry. Differing-inputs obfuscation and applications. Cryptology ePrint
Archive, Report 2013/689, 2013. http://eprint.iacr.org/2013/689.

BBG+20. James Bell, K. A. Bonawitz, Adrià Gascón, Tancrède Lepoint, and Mariana
Raykova. Secure single-server aggregation with (poly)logarithmic overhead.
Cryptology ePrint Archive, Report 2020/704, 2020. https://eprint.iacr.
org/2020/704.

BCNP04. Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Univer-
sally composable protocols with relaxed set-up assumptions. In 45th FOCS,
pages 186–195. IEEE Computer Society Press, October 2004.

BGG+18. Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim,
Peter M. R. Rasmussen, and Amit Sahai. Threshold cryptosystems from
threshold fully homomorphic encryption. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages
565–596. Springer, Heidelberg, August 2018.

BGI+01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 1–18. Springer, Heidelberg, August 2001.

BGI+14a. Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, Sigurd
Meldgaard, and Anat Paskin-Cherniavsky. Non-interactive secure mul-
tiparty computation. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 387–404. Springer,
Heidelberg, August 2014.

BGI14b. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and
pseudorandom functions. In Hugo Krawczyk, editor, PKC 2014, volume
8383 of LNCS, pages 501–519. Springer, Heidelberg, March 2014.

BGI16. Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier
for secure computation under DDH. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 509–539.
Springer, Heidelberg, August 2016.

BGI+18. Elette Boyle, Niv Gilboa, Yuval Ishai, Huijia Lin, and Stefano Tessaro.
Foundations of homomorphic secret sharing. In Anna R. Karlin, editor,
ITCS 2018, volume 94, pages 21:1–21:21. LIPIcs, January 2018.

BIK+17. Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. Practical secure aggregation for privacy-preserving machine
learning. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 1175–1191. ACM Press, Oc-
tober / November 2017.

http://eprint.iacr.org/2013/689
https://eprint.iacr.org/2020/704
https://eprint.iacr.org/2020/704

28 Leonid Reyzin, Adam Smith, Sophia Yakoubov

BJMS18. Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sa-
hai. Secure MPC: Laziness leads to GOD. Cryptology ePrint Archive,
Report 2018/580, 2018. https://eprint.iacr.org/2018/580.

BM82. Manuel Blum and Silvio Micali. How to generate cryptographically strong
sequences of pseudo random bits. In 23rd FOCS, pages 112–117. IEEE
Computer Society Press, November 1982.

BW13. Dan Boneh and Brent Waters. Constrained pseudorandom functions
and their applications. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300. Springer,
Heidelberg, December 2013.

BZ14. Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor
tracing, and more from indistinguishability obfuscation. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of
LNCS, pages 480–499. Springer, Heidelberg, August 2014.

CDPW07. Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Univer-
sally composable security with global setup. In Salil P. Vadhan, editor,
TCC 2007, volume 4392 of LNCS, pages 61–85. Springer, Heidelberg, Febru-
ary 2007.

CFY17. Robert K. Cunningham, Benjamin Fuller, and Sophia Yakoubov. Catch-
ing MPC cheaters: Identification and openability. In Junji Shikata, editor,
ICITS 17, volume 10681 of LNCS, pages 110–134. Springer, Heidelberg,
November / December 2017.

CR03. Ran Canetti and Tal Rabin. Universal composition with joint state. In
Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 265–281.
Springer, Heidelberg, August 2003.

CS03. Jan Camenisch and Victor Shoup. Practical verifiable encryption and de-
cryption of discrete logarithms. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 126–144. Springer, Heidelberg, August 2003.

DF90. Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Bras-
sard, editor, CRYPTO’89, volume 435 of LNCS, pages 307–315. Springer,
Heidelberg, August 1990.

DHMR07. Vanesa Daza, Javier Herranz, Paz Morillo, and Carla Ràfols. CCA2-secure
threshold broadcast encryption with shorter ciphertexts. In Willy Susilo,
Joseph K. Liu, and Yi Mu, editors, ProvSec 2007, volume 4784 of LNCS,
pages 35–50. Springer, Heidelberg, November 2007.

DHMR08. Vanesa Daza, Javier Herranz, Paz Morillo, and Carla Ràfols. Ad-hoc thresh-
old broadcast encryption with shorter ciphertexts. Electr. Notes Theor.
Comput. Sci., 192(2):3–15, 2008.

DHRW16. Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky
encryption and its applications. In Matthew Robshaw and Jonathan Katz,
editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 93–122.
Springer, Heidelberg, August 2016.

DKSW09. Yevgeniy Dodis, Jonathan Katz, Adam Smith, and Shabsi Walfish. Com-
posability and on-line deniability of authentication. In Omer Reingold,
editor, TCC 2009, volume 5444 of LNCS, pages 146–162. Springer, Heidel-
berg, March 2009.

DP08. Cécile Delerablée and David Pointcheval. Dynamic threshold public-key en-
cryption. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 317–334. Springer, Heidelberg, August 2008.

https://eprint.iacr.org/2018/580

Compact Ad Hoc Threshold Encryption 29

ElG84. Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In G. R. Blakley and David Chaum, editors,
CRYPTO’84, volume 196 of LNCS, pages 10–18. Springer, Heidelberg, Au-
gust 1984.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In 54th FOCS, pages 40–49. IEEE Com-
puter Society Press, October 2013.

GMR88. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on
Computing, 17(2):281–308, April 1988.

Hir10. Martin Hirt. Receipt-free K -out-of-L voting based on elgamal encryp-
tion. In David Chaum, Markus Jakobsson, Ronald L. Rivest, Peter Y. A.
Ryan, Josh Benaloh, Miroslaw Kutylowski, and Ben Adida, editors, To-
wards Trustworthy Elections, New Directions in Electronic Voting, volume
6000 of Lecture Notes in Computer Science, pages 64–82. Springer, 2010.

HS00. Martin Hirt and Kazue Sako. Efficient receipt-free voting based on homo-
morphic encryption. In Bart Preneel, editor, EUROCRYPT 2000, volume
1807 of LNCS, pages 539–556. Springer, Heidelberg, May 2000.

JRS17. Aayush Jain, Peter M. R. Rasmussen, and Amit Sahai. Threshold fully
homomorphic encryption. Cryptology ePrint Archive, Report 2017/257,
2017. http://eprint.iacr.org/2017/257.

KPTZ13. Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS
2013, pages 669–684. ACM Press, November 2013.

MW16. Pratyay Mukherjee and Daniel Wichs. Two round multiparty computa-
tion via multi-key FHE. In Marc Fischlin and Jean-Sébastien Coron, edi-
tors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 735–763.
Springer, Heidelberg, May 2016.

Row05. J.K. Rowling. Harry Potter and the Half-Blood Prince. Bloomsbury, 2005.

Sha79. Adi Shamir. How to share a secret. Communications of the Association for
Computing Machinery, 22(11):612–613, November 1979.

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, 46th ACM
STOC, pages 475–484. ACM Press, May / June 2014.

Zha16. Mark Zhandry. How to avoid obfuscation using witness PRFs. In Eyal
Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part II, volume 9563 of
LNCS, pages 421–448. Springer, Heidelberg, January 2016.

A Background for Indistinguishability Obfuscation-Based
Constructions

In our obfuscation-based constructions, we leverage indistinguishability obfuscation [BGI+01],
puncturable pseudorandom functions (PPRFs) [KPTZ13,BW13,BGI14b,SW14], secret
sharing [Sha79], and constrained signatures [BZ14], all of which we describe below. Fi-
nally, we use pseudorandom generators [BM82], for which we do not provide a formal
description since it is such a standard primitive.

http://eprint.iacr.org/2017/257

30 Leonid Reyzin, Adam Smith, Sophia Yakoubov

A.1 Indistinguishability Obfuscation

Informally, indistinguishability obfuscation is a way to obfuscate a program in such
a way that no efficient adversary can distinguish between the obfuscations of two
programs of the same size as long as their input-output behaviors are the same. Indis-
tinguishability obfuscation was first defined by Barak et al. [BGI+01], and a candidate
construction was proposed by Garg et al. [GGH+13].

We restate the indistinguishability obfuscation definition of Garg et al. below (pre-
viously restated and rephrased by Boneh and Zhandry [BZ14]) with the simplification
that we fix the parameter l to be circuit size.

Definition 6 (Definition 1 from Garg et al. [GGH+13] / Definition 2.1 from
Boneh and Zhandry [BZ14]). An indistinguiability obfuscator iO for circuits is an
efficient algorithm satisfying the following conditions:

– iO(C) preserves the functionality of the circuit C. That is, for all circuits C, for
all inputs x, we have that

Pr[ObfC← iO(C) : ObfC(x) = C(x)] = 1.

– For any two circuits C0, C1 of the same size l with the same functionality, the
circuits ObfC0 = iO(C0) and ObfC1 = iO(C1) are indistinguishable. That is, for
any efficient distinguisher D, there exists a negligible function negl such that the
following holds: For all circuit sizes l ∈ N, for all pairs of circuits C0, C1 of size l,
we have that if C0(x) = C1(x) for all inputs x, then

|Pr[D(iO(C0)) = 1]− Pr[D(iO(C1)) = 1]| ≤ 1

2
+ negl(l).

A.2 Puncturable Pseudorandom Functions

A puncturable pseudorandom function (PPRF) [KPTZ13,BW13,BGI14b,SW14] is a
pseudorandom function (PRF) whose keys can be punctured. Let k{x} denote the
PPRF key k punctured at point x; then PPRFk(x′) = PPRFk{x}(x

′) for all x′ 6= x, but
given k{x}, PPRFk(x) is indistinguishable from random.

We give a more formal definition of puncturable pseudorandom functions below.

Definition 7. A puncturable pseudorandom function PPRF consists of three algo-
rithms: KeyGen, Eval and Puncture.

KeyGen(1λ)→ k sets up the PPRF secret key k.
Eval(k, x)→ y evaluates the PPRF at point x ∈ domain to obtain an output y ∈ range

for polynomial-size sets domain and range. In the rest of this paper, we use the
alternative notation PPRFk(x) to denote Eval(k, x).

Puncture(k, x)→ k{x} outputs a punctured PPRF key k{x}.

Furthermore, the algorithms must satisfy the following conditions.

– (KeyGen,Eval) must be a secure PRF.
– Functionality should be preserved over all unpunctured inputs. That is, for all inputs
x∗ ∈ domain and keys k, if k{x∗} ← Puncture(k, x∗), then for all inputs x 6= x∗,
PPRFk(x) = PPRFk{x∗}(x).

– The true value of the PPRF at the punctured point x∗ is indistinguishable from
random given just k{x∗}.

Compact Ad Hoc Threshold Encryption 31

Chal(λ, l, b) A(λ, l)

mR,mL, (i1, . . . , it) ⊆ [n]←−−−−−−−−−−−−−−−−−−−−−−
([mb]1, . . . , [mb]n)← SS.Share(n, t,mb) ([mb]i1 , . . . , [mb]it)−−−−−−−−−−−−−−−−−−−−−−→

b′←−−−−−−−−−−−−−−−−−−−−−−
A wins if b′ = b

Fig. 5: Privacy Game for Secret Sharing

A.3 Secret Sharing

Secret sharing was introduced by Shamir [Sha79]. Informally, a t-out-of-n threshold
secret sharing of a secret m is an encoding of the secret into n pieces, or shares, such
that any t+ 1 shares together can be used to reconstruct the secret m, but t or fewer
shares give no information at all about m.

Definition 8. A secret sharing scheme SS consists of two algorithms: SS.Share and
SS.Reconstruct.

SS.Share(n, t,m)→ ([m]1, . . . , [m]n) takes in a secret m and produces the n secret
shares (where [m]i denotes the ith share of m).

SS.Reconstruct([m]i1 , . . . , [m]it+1)→ m̃ takes in t + 1 secret shares and returns the
reconstructed secret m̃.

Furthermore, the algorithms must satisfy the following two conditions.

Correctness For all inputs m, for all polynomial n, t < n, for all sets of indices
[i1, . . . , it+1] ⊂ [n],

Pr

[
([m]1, . . . , [m]n)← SS.Share(n, t,m),
m̃← SS.Reconstruct([m]i1 , . . . , [m]it+1)

: m̃ = m

]
= 1

Privacy Informally, privacy requires that given t or fewer shares of either mR or mL,
no efficient adversary can guess which message was shared.
For b ∈ {R,L}, let EXP(A, λ, n, t, b) denote the game described in Figure 5 played
with the adversary A, security parameter λ, number of shares n, threshold t and
fixed b. Let WinProb(A, λ, n, t, b) denote the probability that the adversary A wins
EXP(A, λ, n, t, b). Then there exists a negligible function negl such that for all n
and t < n polynomial in λ and efficient adversaries A,

|WinProb(A, λ, n, t, R)−WinProb(A, λ, n, t, L)| ≤ 1

2
+ negl(λ).

A.4 Constrained Signatures

Constrained signatures, introduced by Boneh and Zhandry [BZ14], are a special type of
signature that supports constrained verification keys. Constrained verification keys re-
ject all signatures on messages not matching some constraint C. Informally, constrained
verification keys should be indistinguishable from real verification keys as long as no
messages not matching the constraint have been signed.

We give a more formal definition of constrained signatures below.

32 Leonid Reyzin, Adam Smith, Sophia Yakoubov

Chal(λ, l, b) A(λ, l)

C s.t. |C| ≤ l←−−−−−−−−−−−−−−−−−−−−−−
(pkR, skR)← KeyGen(1λ, l)

(pkL, skL)← ConstrainedKeyGen(1λ, l, C)
pkb−−−−−−−−−−−−−−−−−−−−−−→

Repeat next two lines poly times:
m s.t. C(m) = 1←−−−−−−−−−−−−−−−−−−−−−−

σ ← Sign(skb,m)
σ−−−−−−−−−−−−−−−−−−−−−−→
b′←−−−−−−−−−−−−−−−−−−−−−−

A wins if b′ = b

Fig. 6: Security Game for Constrained Signatures

Definition 9 (Definition 4.5 of Boneh and Zhandry [BZ14]). A constrained sig-
nature scheme SIG consists of four algorithms: KeyGen, Sign, Verify and ConstrainedKeyGen.

KeyGen(1λ, l)→ (pk, sk) takes in the security parameter λ and an upper bound l on
the constraint circuit. It outputs a valid verification/signing key pair (pk, sk). (We
will often omit the parameter l.)

Sign(sk,m)→ σ signs the message m with the signing key sk.

Verify(pk,m, σ)→ b verifies the signature σ on the message m with the verification key
pk. It returns 1 if the signature verifies, and 0 otherwise.

ConstrainedKeyGen(1λ, l, C)→ (pk, sk) takes in the security parameter λ, an upper
bound l on the constraint circuit, and a constraint circuit C such that |C| ≤ l.
It outputs a verification/signing key pair (pkC , skC) such that Sign(skC ,m) pro-
duces a valid signature relative to pkC for all m such that C(m) = 1, but for any
m where C(m) = 0, no valid signatures exist — that is, Verify(pkC ,m, σ) rejects
all σ.

Furthermore, the algorithms must satisfy the following two conditions.

– (KeyGen, Sign,Verify) must be a secure signature scheme (in the usual sense, e.g.
existentially unforgeable [GMR88]).

– For b ∈ {R,L}, let EXP(A, λ, l, b) denote the game described in Figure 6 played with
the adversary A, security parameter λ, constraint size upper bound l and fixed b. Let
WinProb(A, λ, l, b) denote the probability that the adversary A wins EXP(A, λ, l, b).
Then there exists a negligible function negl such that for all l polynomial in λ and
efficient adversaries A,

|WinProb(A, λ, l, R)−WinProb(A, λ, l, L)| ≤ 1

2
+ negl(λ).

B Threshold Encryption Scheme: Threshold ElGamal

One simple example of a (non ad hoc) threshold encryption scheme is the threshold
ElGamal scheme TEG due to Desmedt and Frankel [DF90], described in Figure 7. TEG
is defined over a group G of prime order p with generator g in which the decisional
Diffie-Hellman problem is assumed to be hard.

Compact Ad Hoc Threshold Encryption 33

Setup(1λ, t):
– Pick a secret key sk ←$ [p], and a random polynomial f of degree t with
sk as its y-intercept.

– Return pk = gsk,msk = f .
KeyGen(msk):

– Pick a random i←$ [1, . . . , p− 1].
– Return ski = f(i).

Enc(pk,m ∈ G):
– Pick a random y ∈ [p].
– u = gy.
– v = (pk)ym.
– Return c = (u, v).

PartDec(skj , c = (u, v)):
– Return dj = uskj .

FinalDec({di}i∈R′⊆R, c = (u, v)):
– Interpolate the partial decryptions in the exponent to get usk: y =∏

i∈R′⊆R d
λi
j , where λi is the appropriate Lagrange coefficient. (The La-

grange coefficients used depend on the identities i of the parties who partic-
ipate. However, given that a certain threshold of parties do, the Lagrange
coefficients do not affect the output.)

– Return m = v
y

.
Eval(pk, c1 = (u1, v1), c2 = (u2, c2),×):

– u = u1u2

– v = v1v2
– Return c = (u, v).

Fig. 7: Threshold ElGamal Multiplicatively Homomorphic Encryption Scheme
(TEG)

34 Leonid Reyzin, Adam Smith, Sophia Yakoubov

Lemma 1. Threshold ElGamal is (n, t)-statically secure (Definition 4, modified to be
static instead of super-static, and to use pk instead of {pki}i∈U) for any polynomial
n, t as long as the Decisional Diffie-Hellman (DDH) assumption holds in G.

Informally, this lemma follows by a standard reduction from the DDH assumption.

Lemma 2. Threshold ElGamal is (n, t)-partial decryption simulatable (Definition 3,
modified to be static instead of super-static, and to use pk instead of {pki}i∈U) as long
as the Decisional Diffie-Hellman assumption holds in G.

Informally, this lemma follows since partial decryptions can easily be simulated by
interpolation in the exponent.

C Security of the Obfuscation-Based Ad Hoc Threshold
Encryption Construction

Theorem 10 (Restated from Theorem 1). The obfuscation-based ATE (Construc-
tion 1) is (n, t)-super-statically secure (Definition 4) for any polynomial n, t, as long as
iO is a secure indistinguishability obfuscator, PPRF is a secure puncturable PRF with
range Zp, SS is a secure secret sharing scheme scheme, SIG is a constrained signature
scheme, and PRG is a secure pseudorandom generator with domain {0, 1}λ and range
in {0, 1}2λ.

In order to prove Theorem 1, we must show the obfuscation-based Homomorphic
Ad Hoc Threshold Encryption construction is super-statically semantically secure and
super-statically partial decryption simulatable. We prove super-static semantic security
in Appendix C.1; we prove partial decryption simulatability in Appendix C.2.

C.1 Proof that Obfuscation-Based Homomorphic Ad Hoc
Threshold Encryption Share-and-Encrypt is Super-Statically
Semantically Secure

Notation. In our sequence of games, we use c∗ = (nonce∗, e∗, σ∗) to denote the chal-
lenge ciphertext. In particular, nonce∗ denotes the value to which the PPRF is applied
in order to generate the mask w∗, and e∗ denotes the “one time pad” encryption of
the challenge message with the generated mask (e∗ = m∗ + w∗ in the group G).

We use −→pv to denote a vector of public values. −→pv is always assumed to be ordered
lexicographically (that is, all programs implicitly reject vectors of public values which
are out of order).

Proof. We show a sequence of indistinguishable games between a super-static semantic
security challenger Chal and an adversaryA. The sequence starts with EXP(A, λ, n, t, R)
from Definition 2 (that is, a challenger who always uses b = R), and ends with
EXP(A, λ, n, t, L) (that is, a challenger who always uses b = L). We summarize this
sequence of games in Figure 8. Instead of showing all of the games, we show that the
first game is indistinguishable from a game where the challenge ciphertext encrypts 0;
to get to the last game, the shown sequence of games is reversed with mL instead of
mR.

For the sake of simplicity, we assume that the number of corrupt challenge cipher-
text recipients |R∗ ∩ C| is always t; security in this case trivially implies security for
smaller R∗ ∩ C.

Compact Ad Hoc Threshold Encryption 35

Game 1 This is EXP(A, λ, n, t, R) as described in Definition 2 and Figure 1.

Game 2 In this game, when creating the sender’s public key (specifically, the sender’s
signature verification key SIG.pk), the challenger Chal generates a constrained ver-
ification key instead of a regular one. The constraint is designed to ensure that the
challenge nonce nonce∗ on which the PPRFs are called can only ever be associated
with the challenge recipient set. That is, the challenger picks nonce∗ at random
when generating the sender public key, and sets the signature constraint to be

C(−→pv, nonce) =

{
0, if nonce = nonce∗ and −→pv 6= {pvi}i∈R∗
1, otherwise

When computing the challenge ciphertext c∗, Chal uses the nonce nonce∗.

Game 2 is indistinguishable from Game 1 by the security of constrained signatures.
Since the challenger chooses each new nonce at random, and with overwhelming
probability will never sign anything not satisfying the constraint (since no nonce
other than the challenge nonce will be equal to nonce∗), then if the adversary can
distinguish Game 2 from Game 1, then the challenger can use that adversary to
distinguish between a constrained and unconstrained public verification key.

Game 3.k for k ∈ [1, . . . , n− t]
In this game, when choosing the kth honest party’s public value pv, the challenger
chooses it at random from {0, 1}2λ, so that with overwhelming probability it has
no preimages relative to the pseudorandom generator PRG.

Game 3.1 is indistinguishable from Game 2, and Game 3.k is indistinguishable from
Game 3.(k− 1) for k ∈ [2, . . . , n− t], by the security of pseudorandom generators.

We let Game 3 denote Game 3.(n− t).
Game 4 In this game, when creating the sender’s public key (specifically, the obfus-

cation of Algorithm 1 it contains), the challenger punctures the PPRF keys kDec

and kShare. To preserve the input-output behavior of the program, Chal hardwires
w∗ = PPRFkDec(nonce

∗) and r∗ = PPRFkShare(nonce
∗) into the program, in order to

set w = w∗ and r = r∗ when nonce = nonce∗, as shown in Algorithm 2.

Algorithm 2 fGame 4
kDec{nonce∗},kShare{nonce∗},SIG.pk,nonce∗,w∗,r∗(

−→pv, idx, sv, nonce, σ)

if (−→pv[idx] = PRG(sv)) and (SIG.Verify(SIG.pk, (−→pv, nonce), σ)) then
if nonce = nonce∗ then
w = w∗

r = r∗

else
w ← PPRFkDec(nonce)
r ← PPRFkShare(nonce)

[w]idx ← SS.Share(w; r)[idx] {This gives the idxth secret share of w}
return [w]idx

Game 4 is indistinguishable from Game 3 by the security of indistinguishability
obfuscation; the programs have identical input-output behavior.

Game 5 In this game, the challenger Chal chooses r∗ truly at random.

Game 5 is indistinguishable from Game 4 by the security of puncturable PRFs.

36 Leonid Reyzin, Adam Smith, Sophia Yakoubov

Game 6 In this game, the challenger Chal chooses w∗ truly at random.

Chal also computes the one time pad component of the challenge ciphertext e∗ as
e∗ = (mR + w∗).

Game 6 is indistinguishable from Game 5 by the security of puncturable PRFs.

Game 7 In this game, the challenger Chal modifies the obfuscated program to hard-
code the secret shares [w∗]idx for indices idx corresponding to corrupt parties, as
described in Algorithm 3. (Let IC ⊆ [n] denote the set of indices idx ∈ [n] cor-
responding to corrupt party indices in the lexicographic ordering of {pvi}i∈R∗ .)
To preserve the input-output behavior of the program, Chal computes the shares
{[w∗]idx}idx∈IC as [w∗]idx ← SS.Share(w∗; r∗)[idx], exactly as they would have been
computed in Algorithm 2.

Algorithm 3 fGame 7
kDec{nonce∗},kShare{nonce∗},SIG.pk,nonce∗,{[w∗]idx}idx∈IC

(−→pv, idx, sv, nonce, σ)

if (−→pv[idx] = PRG(sv)) and (SIG.Verify(SIG.pk, (−→pv, nonce), σ)) then
if nonce = nonce∗ then

[w]idx = [w∗]idx
else
w ← PPRFkDec(nonce)
r ← PPRFkShare(nonce)
[w]idx ← SS.Share(w; r)[idx] {This gives the idxth secret share of w}

return [m]idx

Game 7 is indistinguishable from Game 6 by the security of indistinguishability
obfuscation. The programs have identical input-output behavior for the following
reasons:

– On nonce nonce 6= nonce∗, the program behavior is unchanged.

– We guarantee that the program returns nothing in both games for nonce∗ and
−→pv 6= {pvi}i∈R∗ since no signatures exist on (−→pv, nonce∗) for −→pv 6= {pvi}i∈R∗ .

– We guarantee that the program returns nothing in both games on nonce∗ and
indices idx corresponding to honest pvi, i ∈ R∗\C since no values sv exist such
that pvi = PRG(sv) for honest parties i.

Game 8 In this game, the challenger Chal replaces the hardcoded secret shares of w∗

with hardcoded secret shares of 0. Game 8 is indistinguishable from Game 7 by
the security of the secret sharing scheme SS. The hardcoded shares of w∗ must be
indistinguishable from the hardcoded shares of 0.

Game 9 In this game, the challenger switches to using m∗ = 0. Game 9 is indis-
tinguishable from Game 8 because the distributions do not change at all; e∗ is
still uniformly random, and the obfuscated program, which no longer contains any
information about w∗, is unaffected.

The rest of the games undo what we did up until this point, replacing
mR with mL.

Compact Ad Hoc Threshold Encryption 37

Game Justification SIG.pk Honest
pvi

Obfuscated Program c∗ m∗

1 real real real real mR
2 Constrained

Signatures
constrained

to only
verify on

(
−→
pk, nonce∗)

when
−→
pk =

{pvj}j∈R∗
3 PRG no

match-
ing

secrets
4 iO puncture kDec and kShare at nonce∗;

hardcode correct values w∗ and r∗

5 PPRF hardcode random r∗

6 PPRF hardcode random mask w∗ compute
e∗

using
the

random
mask

7 iO hardcode shares of w∗ instead of w∗ and
r∗

8 SS hardcode shares of 0 instead of shares of
w∗

9 identical
distribu-

tions

0

Fig. 8: Summary of Hybrids in Proof of Theorem 1

C.2 Proof that Obfuscation-Based Ad Hoc Threshold Encryption
Share-and-Encrypt is Super-Partial Decryption Simulatable

SimPartDec is simply the secret sharing SimShares algorithm. An adversary who dis-
tinguishes such simulated shares from real shares can be used to break the super-static
semantic security of the scheme.

D HATE from Homomorphic Encryption and Secret
Sharing

In this section, we detail our share-and-encrypt homomorphic ad hoc threshold encryp-
tion scheme which, despite its Θ(n)-size ciphertexts, is efficient enough to be used in
practice in some scenarios.

D.1 Background

We leverage homomorphic public key encryption schemes and secret sharing. We as-
sume familiarity with public key encryption schemes. We briefly review secret sharing
below. In particular, we use one non-standard property of secret sharing, which is
share simulatability. Informally, a share simulatable t-out-of-n threshold secret sharing
scheme (SS.Share,SS.Reconstruct) has a third algorithm SS.SimShares which takes in a
message mR and t or fewer honestly generated shares for a different message mL, and

38 Leonid Reyzin, Adam Smith, Sophia Yakoubov

Chal(n, t, SimShares, b) A(n, t)

C,mR,mL←−−−−−−−−−−−−−−−−−−−−−−
{[mR]i}i∈[n] ← SS.Share(n, t,mR)
{[mL]i}i∈[n] ← SS.Share(n, t,mL)

{[m′L]i}i∈[n]\C ← SimShares(n, t, {[mR]i}i∈C,mL)
If b = 0: set x = {[mL]i}i∈[n]

If b = 1: set x = {[mR]i}i∈C ∪ {[m′L]i}i∈[n]\C
x−−−−−−−−−−−−−−−−−−−−−−→
b′←−−−−−−−−−−−−−−−−−−−−−−

A wins if b′ = b, |mR| = |mL| and |C| ≤ t

Fig. 9: Share Simulatability Game for Secret Sharing

generates the remaining shares such that all of the shares together are indistinguishable
from an honestly generated sharing of mR. SS.SimShares is only used in the proofs, not
in the construction.

Secret sharing was introduced by Shamir [Sha79]. Informally, a t-out-of-n threshold
secret sharing of a secret m is an encoding of the secret into n pieces, or shares, such
that any t+ 1 shares together can be used to reconstruct the secret m, but t or fewer
shares give no information at all about m. A secret sharing scheme SS consists of two
algorithms: SS.Share and SS.Reconstruct.

– SS.Share(n, t,m)→ ([m]1, . . . , [m]n) takes in a secret m and produces the n secret
shares.

– SS.Reconstruct([m]i1 , . . . , [m]it+1)→ m̃ takes in t+ 1 secret shares and returns the
reconstructed secret m̃.

Informally, correctness requires that m̃ = m, and privacy requires that given t or
fewer shares of either mR or mL, no efficient adversary can guess which message was
shared.

D.1.1 Share Simulatability We additionally use a property which we call share
simulatability, which requires that given t or fewer honestly generated shares of mR

and given mL, there exists an efficient algorithm SS.SimShares which generates the rest
of the shares in such a way that the resulding sharing is indistinguishable from a fresh
sharing of mL.

Definition 10 (Secret Sharing: Share Simulatability).

For b ∈ {0, 1}, let EXP(A, n, t,SimShares, b) denote the game described in Figure 9
played with the adversary A, number of shares n, threshold t, simulation algorithm
SimShares and fixed b. Let WinProb(A, n, t,SimShares, b) denote the probability that the
adversary A wins EXP(A, n, t,SimShares, b).

A secret sharing scheme scheme (SS.Share, SS.Reconstruct) is (n, t)-share simulat-
able if there exists an efficient simulation algorithm SS.SimShares such that for all
efficient adversaries A, there exists a negligible function negl such that

|WinProb(A, n, t,SS.SimShares, 0)−WinProb(A, n, t,SS.SimShares, 1)| ≤ 1

2
+ negl(λ).

Compact Ad Hoc Threshold Encryption 39

Setup(1λ):

paramsPKE ← PKE.Setup(1λ).
paramsSS ← SS.Setup(1λ).
return params = (paramsPKE, paramsSS).

KeyGen(params):

return (pk, sk)← PKE.KeyGen(paramsPKE).

Enc(params, {pki}i∈R, t,m):

{[m]i}i∈R ← SS.Share(|R|, t,m).
return c← {PKE.Enc(pki, [m]i)}i∈R.

PartDec(params, ski, ci):

return di ← PKE.Dec(ski, ci).

FinalDec(params = 1λ, {di}i∈R′⊆R,|R′|>t):
return m← SS.Reconstruct({di}i∈R′⊆R,|R′|>t).

Construction 3: Share-and-Encrypt Ad Hoc Threshold Encryption

D.1.2 Shamir Secret Sharing [Sha79] Shamir t-out-of-n secret sharing (Shamir)
uses degree-(t) polynomials over some field. Shamir.Share(n, t,m) generates a random
degree-(t) polynomial f with m as its y-intercept; each share [m]i is a point (xi, f(xi))
on the polynomial (with xi 6= 0). Any t + 1 shares can be used to interpolate the
polynomial, reconstructing m. Any t or fewer shares give no information about m.

Shamir secret sharing is share simulatable; any t or fewer points can be interpolated
with (0,mL) (and optionally with some additional random points) to obtain a degree-t
polynomial.

Additionally, Shamir secret sharing is linearly homomorphic: a shared value m
can be multiplied by a constant, or added to another shared value m′, by separately
operating on the individual shares.

D.2 Building ATE from Homomorphic Encryption and Secret
Sharing

Let (PKE.KeyGen,PKE.Enc,PKE.Dec) be our public-key encryption scheme, and let
(SS.Share, SS.Reconstruct) be our share simulatable threshold secret sharing scheme.
We also allow algorithms PKE.Setup and SS.Setup, which handle global setup for the
encryption and secret sharing scheme, respectively. The share-and-encrypt ATE scheme
is formally defined in Construction 3.

In Appendix D.3, we prove the security of the share-and-encrypt ATE. In Appendix
D.4, we describe two homomorphic instantiations of the share-and-encrypt ATE:

1. Shamir-and-ElGamal uses exponential Shamir secret sharing and the ElGamal
public key encryption scheme, and

2. CRT-and-Paillier uses Chinese Remainder Theorem secret sharing and a variant
of Paillier encryption.

D.3 Proofs of Properties of the Share-and-Encrypt Ad Hoc
Threshold Encryption Construction

In this section, we prove Theorem 4.

40 Leonid Reyzin, Adam Smith, Sophia Yakoubov

Theorem 11 (Restated from Theorem 4). The share-and-encrypt ATE (Con-
struction 3) is (n, t)-statically secure (Definition 4, modified to be static instead of
super-static), as long as SS is a secure share simulatable t-out-of-n secret sharing
scheme, and PKE is a CPA-secure public key encryption scheme.

In order to prove Theorem 4, in Appendix D.3.1 we show that the share-and-encrypt
ATE is (n, t)-statically semantically secure, and in Appendix D.3.2 we show that it is
(n, t)-partial decryption simulatable.

D.3.1 Proof that Share-and-Encrypt is Statically Semantically Se-
cure

Proof. We show a sequence of indistinguishable games between a static security chal-
lenger Chal and an adversary A. The sequence starts with EXP(A, λ, n, t, R) from Defi-
nition 2 (that is, a challenger who always uses b = R), and ends with EXP(A, λ, n, t, L)
(that is, a challenger who always uses b = L).

Game 1 This is the game as described in Figure 1 with b = R (that is, this is
EXP(A, λ, n, t, R)).

Game 2 This game is the same as the previous game, but when computing the chal-
lenge ciphertext c∗, Chal does the following:

– {[mL]i}i∈R ← SS.Share(n, t,mL)

– {[mR]i}i∈R∩C ← SS.SimShares(n, t, {[mL]i}i∈R\C ,mL)

– c∗ ← {PKE.Enc(pki, [mL]i)}i∈R\C ∪ {PKE.Enc(pki, [mR]i)}i∈R∩C
If A can tell the difference between this game and the previous game, then we can
design another adversary B that uses A to break the share simulatability property
of the secret sharing scheme SS (Definition 10). B forwards (mR,mL,R ∩ C) to
the share simulatability challenger (Figure 9). Upon receiving shares from the
share simulatability challenger, B encrypts them and sends them to A. If the share
simulatability challenger flips b = 0, A’s view will be as in the previous game; if
the share simulatability challenger flips b = 1, A’s view will be as in this game. B
sends the share simulatability challenger b′′ = 0 if A submits b′ = R, and b′′ = 1
if B submits b′ = L.

Game 3.idx for idx ∈ [1, . . . , n− t]
This game is the same as the previous game, but for the idxth honest party (without
loss of generality, let that be Pi with public key pki), the challenger encrypts [mL]i.

Game 3.1 is indistinguishable from Game 2, and Game 3.idx is indistinguishable
from Game 3.(idx − 1) for idx ∈ [2, . . . , n − t], by the CPA security of the public
key encryption scheme PKE. If A can tell the difference between these games, then
we can design another adversary B that uses A to break the CPA security of PKE.

B honestly generates all of the PKE keys except for the idxth honest key pair. B
talks to a CPA PKE challenger to get pki. It then does everything as before, except
it sends m0 = [mR]i and m1 = [mL]i to the CPA challenger, and uses the challenge
ciphertext it gets as part of c∗. Note that when the CPA challenger uses b = 0 we
are in the previous game, and when the CPA challenger uses b = 1 we are in this
game. B passes on the guess made by A to the CPA challenger.

Note that Game 3.(n− t) is EXP(A, λ, n, t, L).

Compact Ad Hoc Threshold Encryption 41

D.3.2 Proof that Share-and-Encrypt is Partial Decryption Simulat-
able

Proof. SimPartDec can simulate partial decryptions in the share-and-encrypt ad hoc
threshold encryption scheme in Construction 3 simply by running {di}i∈R\C ← SS.SimShares({di}i∈R∩C ,mR),
and returning {di}i∈R\C .

Any adversary A who can win the static partial decryption simulatability game
described in Figure 2 when played with SimPartDec with non-negligible probability
can be used to break the share simulatability of SS and win the share simulatability
game described in Figure 9.

D.4 Share-and-Encrypt HATE Instantiations

In this appendix, we instantiate the share-and-encrypt HATE (Construction 3) in two
ways.

D.4.1 Shamir-and-ElGamal We use ElGamal multiplicatively homomorphic
encryption together with a variant of Shamir secret sharing to instantiate Shamir-and-
ElGamal. As we explain in Section 5.1, because ElGamal is multiplicatively homomor-
phic, we need to use a secret sharing scheme in which the additive homomorphism
is applied via multiplication. Additive homomorphism in the Shamir secret sharing
scheme is applied via addition; therefore, we use a modified version of Shamir secret
sharing, which we call exponential Shamir. Exponential Shamir secret sharing is the
same as Shamir secret sharing, but with the Shamir shares in the exponent. The re-
sulting scheme is additively homomorphic, where the homomorphism is applied via
multiplication, like we wanted. The downside is that reconstruction now involves tak-
ing a discrete logartihm, which we only know how to do using brute force, so we are
limited to polynomial-size message spaces.

ElGamal Multiplicatively Homomorphic Encryption. Figure 10 describes the El-
Gamal multiplicatively homomorphic encryption scheme (EG). Note that we split the
key generation algorithm into two algorithms: Setup and KeyGen. This is because when
we use ElGamal as part of our HATE scheme, it is important that all parties share the
same modulus and generator, so we factor out part of KeyGen into Setup, which will
only be run once globally.

Exponential Shamir Secret Sharing. Figure 11 describes the exponential Shamir
secret sharing scheme (EShamir).

Notice that the reconstruction uses brute force search; this means that this secret
sharing scheme can only be used for very small (polynomial-size in λ) message spaces.
However, HATE is interesting even in this setting. For instance, if all we want to do is
take a poll by summing encryptions of 0s and 1s, this HATE scheme enables us to do
it. It is reasonable to assume that the server can manage to do brute force search over
a polynomial space, since it is already doing quadratic work in this computation.

Lemma 3. The exponential Shamir secret sharing scheme (EShamir) described in Fig-
ure 11 is share simulatable.

Proof. Informally, given a message m and t or fewer shares, we obtain correctly dis-
tributed remaining shares by interpolating the given with (0, gm) (and possibly with
random values, if fewer than t shares are provided) in the exponent. This is done in a
manner similar to the first step of reconstruction.

42 Leonid Reyzin, Adam Smith, Sophia Yakoubov

Setup(1λ):
– Pick a prime-order group G with generator g in which the decisional Diffie-

Hellman problem is assumed to be hard. Let p be the order of that group.
– Publish params = (G, p, g).

KeyGen(params):
– Pick a random sk ∈ [p].
– Publish pk = gsk.

Enc(params, pk,m ∈ G):
– Pick a random y ∈ [p].
– u = gy.
– v = (pk)ym.
– Return c = (u, v).

Dec(params, sk, c = (u, v)):
– Return m = v

usk
.

Eval(params, c1 = (u1, v1), c2 = (u2, c2),×):
– u = u1u2.
– v = v1v2.
– Return c = (u, v).

Fig. 10: ElGamal Multiplicatively Homomorphic Public Key Encryption Scheme
(EG) [ElG84]

Setup(1λ): same as EG.Setup.
Share(n, t ≤ n,m ∈ Zp):

– Pick a random degree-t polynomial f in Zp which has m as its y-intercept.
This can be done by picking t random coefficients coef1, . . . , coeft−1 ∈ G,
and setting f(x) = m+

∑t−1
j=1 coefjx

j .

– Return {Sharei}i∈[1,...n] where Sharei = (i, gf(i)).
Reconstruct({Sharei = (i, yi)}i∈R′⊆[n]):

– Perform polynomial interpolation over the shares in the exponent to re-
cover gm̃. As long as |R′| > t, this can be done by throwing out values in
R′ until |R′| = t+ 1, and doing the following:

gm̃ =
∏
i∈R′

y
∏
j∈R′,j 6=i

j
j−i

i

– Recover m̃ by brute force search.
Eval(Sharei = (i, yi), Share

′
i = (i, y′i),+): Share+i = (i, yiy

′
i)

Fig. 11: Exponential Shamir Secret Sharing Scheme (EShamir)

Compact Ad Hoc Threshold Encryption 43

D.4.2 CRT-and-Paillier We also build share-and-encrypt HATE out of Camenisch-
Shoup encryption and Chinese Remainder Theorem based secret sharing. Unlike Shamir-
and-ElGamal (Section D.4.1), this HATE allows us to use large message spaces.

CS Additively Homomorphic Encryption. We use a slightly modified version of the
Paillier-style verifiable encryption scheme described by Camenisch and Shoup [CS03].5

Figure 12 describes the this scheme. Our modifications consist solely of removing ele-
ments from the ciphertext, so the modified scheme naturally inherits the CPA security
of the original (but not its CCA security).6.

KeyGen(1λ):
– Let N = pq where p = 2p′ + 1 and q = 2q′ + 1, and p′ and q′ are λ-bit

primes.
– Let h = 1 +N .
– Choose a random g′ ∈ Z∗N2 , and set g = (g′)2N mod N2. (g is a generator

of a size-p′q′ subgroup with high probability.)
– Choose a random secret key sk ∈ {1, . . . , b(N2)/4c}.
– Return pk = gsk mod N2.

Enc(pk,m):
– Choose a random r ∈ [N/4].
– Return c = (gr mod N2, pkrhm mod N2).

Dec(sk, c = (u, v)):
– z = v

usk
mod N2. (Note that z = hm if c is an encryption of m.)

– Return m′ = z−1
N

with division over integers. (Note that m′ is the discrete
log of z w.r.t. h.)

Fig. 12: Camenisch-Shoup Additively Homomorphic Encryption Scheme (CS).
We omit Setup, since this scheme does not require setup.

CRT Secret Sharing. We use a classic secret sharing scheme based on the Chinese
Remainder Theorem, which allows each party to operate homorphically on shares in a
different group. This version is due to Asmuth and Bloom [AB06]. We describe it in
Figure 13.

The scheme is perfectly correct. Furthermore, it supports a limited number (cur-
rently set to n) of homomorphic additions. The setting of parameters in the setup phase
in Figure 13 ensures that n · A ≤ N+, where each individual sharing corresponds to
a vector of modular reductions of an integer less than A. This means that n sharings,
added coordinate-wise, will lead to the reconstruction of an integer less than n · A.
Every set of more than t shares contains enough information for that reconstruction.

The scheme’s statistical security relies on the requirement that each unauthorized
set of shares can reconstruct the secret integer â only modulo some integer that is
(a) relatively prime to N0 and (b) at most N−, which itself is at most A

N02k
. By the

5 Their scheme is designed to be secure against chosen ciphertext attacks, which is
unnecessary for our purposes.

6 A similarly modified version of this scheme was used by Cunningham et al. [CFY17]

44 Leonid Reyzin, Adam Smith, Sophia Yakoubov

following lemma, those conditions ensure that the view of any unauthorized set is
within statistical difference 2−k of uniform.

Lemma 4. Let a, n, t be positive integers, and let A be uniformly random in {a′ ∈ [a] :
a′ mod n = t}. Then for all positive integers m < a that are relatively prime to n, the
distribution of the random variable B = A mod m is within statistical difference nm

a
of

uniform.

Proof. Consider the number of a′ ∈ [a] that solve both the equations a′ mod n = t
and a′ mod m = u (for some u). Since m and n are relatively prime, this system is
equivalent to a′ mod mn = v for some particular v. The number of solutions to this is
b a
mn
c or d a

mn
e. Thus, the probability that B = u is always with 1 ± mn

a
of a uniform

element of Zm. The total variation distance from uniform is thus at most mn
a

.

Lemma 5. The CRT secret sharing scheme (CRTss) described in Figure 13 is share
simulatable.

Proof. Recall the share simulatability game from Figure 9. On input a set of unautho-
rized shares {Sharei}i∈C which were created as a sharing of mL, and a target message
mR, first find a nonegative integer a < N0

∏
i∈C Ni such that a mod N0 = mR and

a mod Ni = Sharei for i ∈ C. Such an integer exists since the moduli are all relatively
prime. Next, select a random âR ∈ [A] such that âR mod (N0

∏
i∈C Ni) = a. The cor-

rectness condition of the secret sharing scheme implies that A > N0

∏
i∈C Ni, so this

step is always possible. Finally, we produce the new shares as Share′i = â mod Ni for
i ∈ R \ C.

By Lemma 4 above, the distribution of t or fewer shares of mL are statistically
indistinguishable from the corresponding distibution for mR. The share simulation
algorithm above selects a uniformly random sharing of mR that is consistent with the
unauthorized shares of mL. The joint distribution is therefore statistically close to that
of a fresh sharing of mL.

Share(n,N1, ..., Nn, N0, t ≤ n,m ∈ ZN0 , 1
λ):

– Let

N+

def
= minJ⊆[n]:|J|=t+1

∏
i∈J Ni

A
def
= bN+/nc

N−
def
= maxJ⊆[n]:|J|=t

∏
i∈J Ni

.

– If N0 · 2λ ·N− > A then stop and return “Error: message space too large
for λ bits of security.”

– Select a ∈R {a′ ∈ [A] : a′ mod N0 = m}
– Return (Share1, . . . , Sharen) where Sharei = (i, a mod Ni).

Reconstruct(Sharei1 = (i1, yi1), . . . , Shareit = (it, yit)):
– Find the unique â ∈ Z∏

j Nj
such that â ≡ yi mod Ni for all i ∈ {i1, ..., it}.

– Return m̂ = â mod N0.
Eval(+,Sharei = (i, y), Share′i = (i, y′)): Share+i = (i, y + y′ mod Ni)

Fig. 13: Chinese Remainder Secret Sharing Scheme (CRTss). We omit Setup,
since this scheme does not require setup.

Compact Ad Hoc Threshold Encryption 45

E Homomorphic Recipient-Compact Obfuscation-Based
HATE

In this section, we describe our homomorphic obfuscation-based HATE scheme. The
program each sender must obfuscate and include in their public key is described in
Algorithm 4. The obfuscation-based HATE is described in Construction 4.

Algorithm 4 fkw,kShare,kEnc,SIG.pk(
−→
pk = {PKE.pkj}j∈R, idx, nonce, σ)

The following values are hardcoded:
params = (λ, n, t), where

λ is the security parameter,
n is the number of recipients, and
t is the threshold.

kw, a secret PPRF key used to recover the mask w from nonce nonce
kShare, a secret PPRF key used to secret share the mask w
kEnc = (kEnc,1, . . . , kEnc,n), secret PPRF keys used to encrypt shares
SIG.pk, a signature verification key

The following values are expected as input:
−→pv = {pvi ∈ {0, 1}2λ}i∈R, lexicographically ordered public values
idx, an index
nonce
σ, a signature

if SIG.Verify(SIG.pkSndr, (
−→
pk, nonce), σ) then

w ← PPRFkw (nonce)
r ← PPRFkShare(nonce)
[w]idx ← SS.Share(w, n, t; r)[idx] {This gives the idxth secret share of w}
rEnc,idx ← PPRFkEnc,idx(nonce)

c← PKE.Enc(
−→
pkidx, [w]idx; rEnc,idx)

{This gives an encryption of the idxth secret share of w. Encryption uses random-
ness rEnc,idx.}
return c

Theorem 12 (Restated from Theorem 7). The modified obfuscation-based ATE
(Construction 4) is (n, t)-super-statically secure (Definition 4) for any polynomial n, t,
as long as iO is a secure indistinguishability obfuscator, PPRF is a secure puncturable
PRF, SS is a secure secret sharing scheme, SIG is a constrained signature scheme,
and PKE is a secure public-key encryption scheme. Moreover, it is F-homomorphic if
SS is F homomorphic (where F includes subtraction from a constant), and if PKE is
F ′-homomorphic (where F ′ includes the evaluation of F on SS secret shares).

Proof. In order to prove Theorem 7, we must show the modified obfuscation-based
ATE construction is super-statically semantically secure and super-statically partial
decryption simulatable. We prove super-static semantic security below, by showing
a sequence of indistinguishable games starting at EXP(A, λ, n, t, R) and ending at a
message-independent game. The proof of partial decryption simulatability is the same
as for Theorem 1. The homomorphism follows directly from the homomorphisms of the

46 Leonid Reyzin, Adam Smith, Sophia Yakoubov

Let the public parameters params = (1λ, n, t) consist of the security parameter λ,
the number of recipients n, and the threshold t.

KeyGen(params):

(pk, sk)← PKE.KeyGen(params)
return (pk, sk)

KeyGenSndr(params): This is exactly as in Construction 1, except that
the sender generates n additional PPRF keys kEnc,1, . . . , kEnc,n, and instead of
obfuscating f from Algorithm 1 to get ObfFunc, the sender obfuscates f from
Algorithm 4

Enc(params, skSndr = (SIG.sk, kw),
−→
pk = {PKE.pkj}j∈R,|R|≥t,m):

This is exactly as in Construction 1
PartDec(params, pkSndr = ObfFunc, {PKE.pkj}j∈R,PKE.ski, c = (nonce, e, σ)):

if the ciphertext c is an output of a homomorphic evaluation then
cm ← c

else
ce ← PKE.Enc(paramsPKE,PKE.pki, e)
Let idx be the index of the public key corresponding to the secret key

PKE.sk in a lexicographic ordering of
−→
pk = {PKE.pkj}j∈R

cw ← ObfFunc({PKE.pkj}j∈R, idx, nonce, σ)
Let f ′− be the function which homomorphically evaluates subtraction over
G on two SS secret shares.
cm ← PKE.Eval(paramsPKE,PKE.pki, (ce, cw), f ′−)

[m]idx ← PKE.Dec(paramsPKE,PKE.ski, c
′)

di = [m]idx
return di

FinalDec({di}i∈R′⊂R):
Perform exponential Shamir reconstruction EShamir.Reconstruct({di}i∈R′) as
described in Figure 11 to recover m

Eval({pkSndr}Sndr∈S ,
−→
pk = {pki}i∈R, [c1, . . . , c`], f):

{Note that this algorithm receives the public keys for all senders Sndr (and
thus their obfuscated programs). Without loss of generality, let ciphertext
cq = (nonceq, eq, σq) be from sender Pq (and therefore requiring the use of
ObfFuncq).}
for ciphertext indices q ∈ [1, . . . , `] do

for receivers i ∈ R do
Let idx be the index of PKE.pki in a lexicographic ordering of

−→
pk

ci,q ← ObfFuncq(
−→
pk, idx, nonceq, σq))

Let f ′f be the function which homomorphically evaluates f on ` SS secret
shares.
c∗i = PKE.Eval(paramsPKE,PKE.pki, [ci,1, . . . , ci,`], f

′
f)

return c∗ = {c∗i }i∈R

Construction 4: Obfuscation-Based HATE

Compact Ad Hoc Threshold Encryption 47

underlying secret sharing scheme SS and the underlying public key encryption scheme
PKE.

Game 1 This is the same as Game 1 in the proof of Theorem 1. That is, this is
EXP(A, λ, n, t, R) as described in Definition 2 and Figure 1.

Game 2 This is the same as Game 2 in the proof of Theorem 1. That is, in this
game, when creating the sender’s public key (specifically, the sender’s signature
verification key SIG.pk), the challenger Chal generates a constrained verification
key instead of a regular one. The constraint is designed to ensure that the challenge
nonce nonce∗ on which the PPRFs are called can only ever be associated with the
challenge recipient set.

Game 2 is indistinguishable from Game 1 by the security of constrained signatures.

Game 3 This is the same as Game 4 in the proof of Theorem 1, except that in addition
to puncturing the PPRF keys kw and kShare, the challenger Chal also punctures
kEnc,idx for all idx ∈ [n]. To preserve the input-output behavior of the program,
Chal computes r∗Enc,idx = PPRFkEnc,idx(nonce

∗), and modifies the program to set
rEnc,idx = r∗Enc,idx when nonce = nonce∗, as shown in Algorithm 5.

Algorithm 5 fGame 3
kw{nonce∗},kShare{nonce∗},kEnc{nonce∗},SIG.pk,nonce∗,w∗,r∗,r∗Enc,1,...,r

∗
Enc,n

(
−→
pk, idx, nonce, σ)

if SIG.Verify(SIG.pkSndr, (
−→
pk, nonce), σ) then

if nonce = nonce∗ then
w ← w∗

r ← r∗

rEnc,idx ← r∗Enc,idx
else
w ← PPRFkw (nonce)
r ← PPRFkShare(nonce)
rEnc,idx ← PPRFkEnc,idx(nonce)

[w]idx ← SS.Share(w, n, t; r)[idx] {This gives the idxth secret share of w}
c← PKE.Enc(

−→
pkidx, [w]idx; rEnc,idx)

{This gives an encryption of the idxth secret share of w. Encryption uses random-
ness rEnc,idx.}
return c

Game 3 is indistinguishable from Game 2 by the security of indistinguishability
obfuscation; the programs have identical input-output behavior.

Game 4 This game is the same as Game 5 in the proof of Theorem 1. That is, in this
game, the challenger Chal chooses r∗ truly at random.

Game 4 is indistinguishable from Game 3 by the security of puncturable PRFs.

Game 5 This game is the same as Game 6 in the proof of Theorem 1. That is, in this
game, the challenger Chal chooses w∗ truly at random.

Game 5 is indistinguishable from Game 4 by the security of puncturable PRFs.

Game 6.idx for idx ∈ [1, . . . , n]
In this game, the challenger Chal chooses the encryption randomness rEnc,idx uni-
formly at random (instead of setting it to kEnc,idx(nonce

∗)).

48 Leonid Reyzin, Adam Smith, Sophia Yakoubov

Game 6.1 is indistinguishable from Game 5, and Game 6.idx is indistinguishable
from Game 6.(idx− 1) for idx ∈ [2, . . . , n− t], by the security of puncturable PRFs.
We let Game 6 denote Game 6.n.

Game 7 In this game, the challenger Chal modifies the obfuscated program to hard-
code the ciphertexts (c∗1, . . . , c

∗
n) instead of hardcoding w∗, r∗ and r∗Enc,1, . . . , r

∗
Enc,n,

as described in Algorithm 6. To preserve the input-output behavior of the program,
Chal computes c∗idx exactly as it would have been computed in Algorithm 5.

Algorithm 6 fGame 7
kw{nonce∗},kShare{nonce∗},kEnc{nonce∗},SIG.pk,nonce∗,c∗1 ,...,c∗n

(
−→
pk, idx, nonce, σ)

if SIG.Verify(SIG.pkSndr, (
−→
pk, nonce), σ) then

if nonce = nonce∗ then
c← c∗idx

else
w ← PPRFkw (nonce)
r ← PPRFkShare(nonce)
rEnc,idx ← PPRFkEnc,idx(nonce)
[w]idx ← SS.Share(w, n, t; r)[idx] {This gives the idxth secret share of w}
c← PKE.Enc(

−→
pkidx, [w]idx; rEnc,idx)

{This gives an encryption of the idxth secret share of w. Encryption uses ran-
domness rEnc,idx.}

return c

Game 7 is indistinguishable from Game 6 by the security of indistinguishability
obfuscation; the programs have identical input-output behavior.

Game 8.i for i ∈ [1, . . . , n− t]
In this game, the challenger Chal modifies the obfuscated program to hardcode
encryptions of zero for honest parties. Let idxi be the index of the ith honest public

key in a lexicographic ordering of
−→
pk∗. Chal sets c∗idxi ← PKE.Enc(

−→
pk∗idxi , 0; r∗idx).

Game 8.1 is indistinguishable from Game 7, and Game 8.i is indistinguishable from
Game 8.(i− 1) for i ∈ [2, . . . , n− t], by the semantic security of PKE.
We let Game 8 denote Game 8.(n− t).

Game 9 This game is the same as Game 8 in the proof of Theorem 1. That is, in this
game, the challenger Chal encrypts shares of 0 for corrupt parties. Let idxi be the

index of the ith corrupt public key in a lexicographic ordering of
−→
pk∗. Instead of

[w∗]idxi ← SS.Share(w∗, n, t; r∗)[idxi], Chal sets [w∗]idxi ← SS.Share(0, n, t; r∗)[idxi].
Game 9 is indistinguishable from Game 8 by the privacy property of SS.

Game 10 In this game, the challenger switches to using a random message m∗.
Game 10 is indistinguishable from Game 9 because the distributions do not change
at all; e∗ is still uniformly random, and the obfuscated program, which no longer
contains any information about w∗, is unaffected.

The rest of the games are what we did before, but in reverse, with mL

instead of mR.

Compact Ad Hoc Threshold Encryption 49

Game Justification SIG.pk Obfuscated Program c∗ m∗

1 real real real mR
2 Constrained

Signatures
constrained

to only
verify on

nonce∗ when
{pvj}j∈R =
{pvj}j∈R∗

3 iO puncture kw, kShare and kEnc at nonce∗;
hardcode correct values w∗, r∗ and

{r∗Enc,idx}idx∈[1,...,n]

4 PPRF hardcode random r∗

5 PPRF hardcode random mask w∗ compute
e∗

using
the

random
mask

6 PPRF hardcode random {r∗Enc,idx}idx∈[1,...,n]

7 iO hardcode {c∗idx}idx∈[1,...,n] instead of w∗,
r∗ and {r∗Enc,idx}idx∈[1,...,n]

8 PKE hardcode encryptions of 0 instead of
encryptions of shares of w∗ for honest

parties
9 SS hardcode encryptions of shares of 0

instead of encryptions of shares of w∗

for corrupt parties
10 identical

distribu-
tions

0

Fig. 14: Summary of Hybrids in Proof of Theorem 7

	Introduction
	Our Contributions
	Application: One-server, Fault-tolerant MPC
	Related Work

	Threshold Encryption (TE) Definitions
	Threshold Encryption Syntax
	Threshold Encryption Flexibility
	Threshold Encryption Security
	Threshold Encryption with Homomorphism
	Threshold Encryption Compactness

	Sender-Compact Ad Hoc Threshold Encryption
	t-Flexibility
	Reducing the Public Key Size

	Lower Bounds on Ciphertext Size for Recipient-Set-Oblivious Ad Hoc Threshold Encryption Schemes
	Recipient-Compact Homomorphic Ad Hoc Threshold Encryption
	Building HATE from Homomorphic Encryption and Secret Sharing
	Building HATE from Obfuscation

	Large-scale One-server Vanishing-participants Efficient MPC (LOVE MPC)
	Lower Bounds
	Definitions
	Three-Message LOVE MPC from HATE

	Background for Indistinguishability Obfuscation-Based Constructions
	Indistinguishability Obfuscation
	Puncturable Pseudorandom Functions
	Secret Sharing
	Constrained Signatures

	Threshold Encryption Scheme: Threshold ElGamal
	Security of the Obfuscation-Based Ad Hoc Threshold Encryption Construction
	Proof that Obfuscation-Based Homomorphic Ad Hoc Threshold Encryption Share-and-Encrypt is Super-Statically Semantically Secure
	Proof that Obfuscation-Based Ad Hoc Threshold Encryption Share-and-Encrypt is Super-Partial Decryption Simulatable

	HATE from Homomorphic Encryption and Secret Sharing
	Background
	Building ATE from Homomorphic Encryption and Secret Sharing
	Proofs of Properties of the Share-and-Encrypt Ad Hoc Threshold Encryption Construction
	Share-and-Encrypt HATE Instantiations

	Homomorphic Recipient-Compact Obfuscation-Based HATE

