
1

E3: A Framework for Compiling C++ Programs with Encrypted Operands

Eduardo Chielle, Oleg Mazonka, Homer Gamil, Nektarios Georgios Tsoutsos

and Michail Maniatakos

Abstract

In this technical report we describe E3 (Encrypt-Everything-Everywhere), a framework which enables

execution of standard C++ code with homomorphically encrypted variables. The framework automatically

generates protected types so the programmer can remain oblivious to the underlying encryption scheme.

C++ protected classes redefine operators according to the encryption scheme effectively making the

introduction of a new API unnecessary. At its current version, E3 supports a variety of homomorphic

encryption libraries, batching, mixing different encryption schemes in the same program, as well as the

ability to combine modular computation and bit-level computation.

I. INTRODUCTION

In this document, we describe the E3 (Encrypt-Everything-Everywhere) framework for deploying private

computation in C++ programs. Our framework combines the properties of both bit-level arithmetic and

modular arithmetic within the same algorithm. The framework provides novel protected types using

standard C++ without introducing a new library API. E3 is developed in C++, is open source [2], and

works in Windows and Linux OSes.

Unique features of E3:

1) Enables secure general-purpose computation using protected types equivalent to standard C++ integral

types. The protected types, and consequently the code using them, do not depend on the underlying

encryption scheme, which makes the data encryption independent of the program.

2) Allows using different FHE schemes in the same program as well as the same FHE scheme with

different keys.

E. Chielle, O. Mazonka, H. Gamil, and M. Maniatakos are with the Center for Cyber Security, New York University Abu

Dhabi, UAE.

E-mail: {eduardo.chielle, om22, homer.g, michail.maniatakos}@nyu.edu

N. G. Tsoutsos is with the Department of Electrical and Computer Engineering, University of Delaware, Newark, DE.

E-mail: tsoutsos@udel.edu

2

3) Supports bridging, a technique mixing different arithmetic abstractions, in some instances enabling

orders of magnitude performance improvement.

In E3, the specifications of the encryption scheme and parameters are detached from the program. The

program developer can use predefined encryption configurations or construct new, assuming corresponding

expertise. E3 does not introduce yet another library API. Instead, it uses standard C++ syntax for operations

on protected variables whose types are automatically generated. This provides portability between different

FHE schemes; hence the same code can work using different encryption schemes and/or parameters.

II. FHE SCHEMES AND LIBRARIES

Since the appearance of Fully Homomorphic Encryption, various FHE schemes have been released, each

focusing on improving different features and functionalities. The BGV (Brakerski-Gentry-Vaikuntanathan)

scheme provides a method of generating leveled fully homomorphic encryption schemes with the capability

to evaluate arbitrary polynomial-size circuits [3]. This method is based on the Learning with Errors (LWE)

problem, and its variant, Ring Learning With Errors (RLWE). The next major scheme that followed after

BGV was BFV (Brakerski/Fan-Vercauteren), which introduces two versions of relinearization that generate

a smaller relinearization key with faster performance [9]. GSW (Gentry-Sahai-Waters) is yet another FHE

scheme based on LWE [10]. This scheme proposes the approximate eigenvector method, making the

computational cost of operations much cheaper, as addition and multiplication become simple matrix

addition and multiplication, respectively. CKKS provides several new features to fully homomorphic

encryption. This scheme utilizes a new rescaling procedure that allows the management of the plaintext’s

magnitude. Additionally, this technique proposes a batching method for RLWE-based development [6].

Libraries have been developed to support the aforementioned schemes, with the most prominent ones

being TFHE [7], FHEW [8], HELib [11], Microsoft SEAL [15], and PALISADE [1]. While TFHE and

FHEW are developed to support GSW, HElib supports BGV, and SEAL supports both BFV and CKKS.

PALISADE supports BGV, BFV, CKKS, FHEW, and TFHE. As anticipated, the programmer has to learn

a different API for each library or encryption scheme, thus making the use of different FHE schemes

difficult. While a standardization effort is ongoing [4], [5], it still builds on the concept of adding a new

API.

III. OUR APPROACH

A. Philosophy

Any non-standard API is an extension to the language syntax bringing extra burden to the programmer.

The basic idea of E3 is to keep the application code as close to standard C++ as possible. To achieve

3

this, E3 retains the syntax of the original code by defining new types and operators for protected data.

Using C++ rich machinery for operator redefinition, E3 allows us to hide the FHE library API from the

programmer’s consideration. In other words, the code remains the same for different underlying libraries,

and does not require a unified common API. With regards to the framework design, we outline the

following requirements:

1) Following the imperative programming paradigm, the framework needs to maintain an accurate state

after the execution of each statement. In other words, if the program stops at any time and its encrypted

variables are to be decrypted, the decryption needs to exactly match the value of the unencrypted

version.

2) Everything should compile using a standard conforming C++ compiler, and should be loaded and

executed in the exact same way as standard executables.

3) As long as the program compiles, it should work as expected. Encrypted processing caveats (such as

branching on encrypted data) should be caught during compilation.

4) Neither plaintext nor ciphertext data is required before the program compiles into binaries, as they can

be input during runtime.

5) Ciphertext encryption is independent of the program. An input ciphertext is not required to be adjusted

or re-encrypted for arbitrary program modifications.

Items 4 and 5 are consequences of the focus on general purpose computation. In the presented example

in Listing 1, variables are declared and initialized inside the code. They could also be provided as an

input during runtime. For example, max_iter may not be known during compilation and could be

given by std::cin or read from a file. In the latter scenario, a combinational logic circuit cannot be

generated during compile time, as the depth of the circuit is not known. Thus, requirement 5 expands the

applicability of E3 to programs written to process data encrypted in advance; for example, queries to an

encrypted database stored at an untrusted server.

E3 allows the programmer to focus on the algorithm and not on the FHE intricacies. This is achieved

by separating encryption specifications into a configuration file read by the framework during compilation.

Therefore, the programmer identifies and annotates variables in the program that are to be protected, by

replacing unencrypted int with an E3 secure type in the source code.

B. E3 building blocks

1) Modular and Bit-level arithmetic: E3 supports two distinct types of computation: 1) Modular

arithmetic, which supports arithmetic operations on numeric rings; and 2) Bit-level arithmetic, where

Boolean operations are performed on encrypted bits. In Modular arithmetic, it is possible to perform

4

1 # i n c l u d e <iostream>

2 # i n c l u d e <utility>

3 # i n c l u d e "framework.h"

4

5 i n t main()

6 {

7 SecureInt <8> i(0_e), input(7_e);

8 SecureInt <8> a(0_e), b(1_e), r(0_e);

9

10 i n t max_iter = 10;

11 whi le(max_iter--)

12 {

13 r += (i++ == input) * a;

14 std::swap(a,b);

15 a += b;

16 }

17 std::cout << r << ’\n’ ;

18 }

Listing 1. User type SecureInt behaves as native int.

1 t empla te < i n t Size> c l a s s SecureInt{ ... };

2 cons texpr std::string operator""_e

3 (unsigned long long i n t x){ ... }

Listing 2. An outline example of SecureInt definition.

additions, subtractions, and multiplications, but not other operations, since these are the one natively

supported by most of the FHE schemes. Meanwhile, Bit-level arithmetic can represent any Boolean

circuit; thus, it supports all C++ operations. Bit-level arithmetic is natively supported by GSW, but other

encryption schemes can emulate Boolean operations. For example, the NAND gate can be expressed as

NAND(x,y)=1−xy, where x and y are two ciphertexts encryption either zero or one, and 1 represents the

encryption of one.

Modular arithmetic is faster than Bit-level arithmetic since the latter is usually emulated using the

former. However, its set of operators is very limited and cannot support any application. For that, Bit-level

arithmetic must be utilized. Listing 1 shows an example of a program that requires comparison; therefore,

it must employ the Bit-level arithmetic. Listing 2 outlines the elements of the generated type SecureInt

and the function providing encrypted values used in variable initialization. Note the postfix _e after each

constant.

2) Abstraction layers: Normally, programming operations are expressed in one or more assembly

instructions that are computed by the processor. In our framework, however, we generate classes and their

5

TABLE I

ABSTRACTION LAYERS OF MODULAR ARITHMETIC.

L Element Source Example

1 C++ operator User code SecureInt a,b; a*b;

2
Class function

implementation
Framework

SecureInt operator*

(SecureInt)

{return mult();}

3
Arithmetic

operation
FHE API mult(){...}

operations. As mentioned earlier, Modular and Bit-level arithmetic use FHE schemes in different ways.

Modular operations are direct definitions of C++ operators in the program. Table I shows the abstraction

layers: C++ operator is defined by E3 and its body uses the API provided by FHE scheme.

In Bit-level arithmetic, each variable is represented as a sequence of encrypted bits. E3 generates

circuits with a Verilog compiler for standard programming operations. For example, the C++ multiplication

operator * is generated as a circuit by a Verilog compiler using the Verilog expression *. These circuits

are translated into C++ functions and use FHE functions operating on encrypted bits instead of ordinary

logic gates.1

Table II lists these four layers explicitly. Level 1 is the user code and does not reveal any encryption

concept. It solely represents the computational logic of the program. In other words, if protected variables

are declared with the corresponding plain integral types, then the program remains valid without any

dependencies introduced by the encryption scheme. Level 2 is the implementation of the operators

provided by the framework. Its code is written once and can be reused for any homomorphic encryption.

Level 3 consists of basic functions of computation, such as addition, division, comparison, and others.

These functions are pre-generated by a circuit design compiler from Verilog expressions. The functions

are expressed in terms of logic gates to be used in integrated circuit. Instead, we supply software

implementations of these logic gates at Level 4.

3) Specialized circuits: Listing 1 shows the complete program operating on protected variables using

Bit-level arithmetic for all variables involved in the computation. As mentioned previously, all computation

boils down to the logic gate operations operating on encrypted bits. It is possible in E3 however, to

improve performance of the program by utilizing optimization algorithms applied onto combinational

1The translation to C++ is automated in E3 (see Section IV-B).

6

TABLE II

ABSTRACTION LAYERS OF COMBINATIONAL ARITHMETIC.

L Element Source Example

1 C++ operator User code SecureInt a,b; a*b;

2
Class function

implementation
Framework

SecureInt operator*

(SecureInt)

{... mult(); ...}

3 Verilog primitive
Verilog

generated

mult()

{... NAND(); ...}

4 Logic gate FHE API NAND(){...}

TABLE III

STANDARD C++ OPERATORS AND THEIR USE WITH ENCRYPTED DATA.

Non-applicable Unchanged

Overloaded

Using circuits
Implemented in C++

Direct Indirect

:: a() .

-> .* ->*

*a

&a sizeof new

delete new[]

delete[]

throw a,b

alignof

typeid

a++ a-- ++a --a

-a !a ˜a a*b a/b

a%b a+b a-b a>>b

a<<b a>b a<b a>=b

a<=b a==b a!=b a|b

aˆb a&b a&&b a||b

a?b:c1

a*=b a/=b

a%=b a+=b

a-=b a>>=b

a<<=b

a|=b aˆ=b

a&=b

(type)2 +a

a=b "a"_b

a<<i3 a>>i

a<<=i a>>=i

a[]4

1 The ternary operator cannot be overloaded in C++, therefore we implement it as a function (MUX).
2 Explicit conversion between SecureInt and SecureBool, and between SecureInt of different sizes.
3 Shift by unencrypted number.
4 Access to individually encrypted bits.

circuits, by porting parts of the program to Verilog and compiling the code into gate-level netlist. This

feature is simliar to assembly insertions in C/C++. Then, E3 converts the compiled netlist into C++

functions that can be called directly from the program. In our example, the iteration body (lines 13-15),

instead of atomic programming operations, could be compiled into a combinational circuit processing five

variables: a, b, i, input, and r.

7

4) Bridging: E3 also supports Bridging, which is the ability to combine the comprehensive but slow

Bit-level arithmetic (SecureInt) with the fast but limited Modular arithmetic (SecureMod) in the

same application. Non-native homomorphic operations, such as comparisons, require the use of the

SecureInt type, while additions, subtractions, and multiplications can be done using SecureMod.

Bridging defines a conversion from SecureInt to SecureMod, providing significant performance

improvements since only the non-native operations need to use SecureInt, while native operations can

use the type.

5) Batching: Batching is the ability to pack several plaintexts into a single ciphertext. This feature

is supported by some FHE schemes. In practice, it enables parallel processing of plaintexts, since they

are all part of the same ciphertext, in a Single Instruction Multiple Data (SIMD) style. This can provide

significant performance improvements for algorithms with parallel computation properties.

Each ciphertext variable is effectively a vector of values and any unary or binary operation has the

effect of array operations on all elements of the vectors. Integral types in case of batching naturally have

arrays of bit values inside each bit of the variable, and gate operations on each separate bit have the

effect of the gate operation on all bit values. E3 supports two ways to specify variables with packing: 1)

Direct encryption with packing to use as input to the program, and 2) Specific syntax for constants to use

inside the program.

IV. E3 FRAMEWORK DESIGN

In this section we describe the technical details of the framework, focusing on the implementation

challenges faced while trying to adhere to the requirements outlined in Section III-A.

A. Mechanics of protected types

1) Naming convention: In this work we use protected class names: SecureInt, SecureMod,

SecureBool. As mentioned earlier, these names serve only as placeholders and not the names used in

E3. Users can define their own names as well as mix different protected classes in the same program.

2) C++ operators: E3 enables the use of all standard C++ operators with encrypted variables. Table

III summarizes C++ operators, classified into the following groups:

Non-applicable: This groups consists of member and structure reference/dereference operators, as well

as function call and scope resolution. These operators are not intended to be defined for SecureInt.

Unchanged: These operators retain their default semantics, since SecureInt is a regular C++ class

object.

8

Overloaded: These operators are overloaded for SecureInt. The class defines these operators, which

in turn call the appropriate functions corresponding to the semantics of unencrypted data, e.g. logical AND

(a&&b) would first convert SecureInt into SecureBool, then make the logic operation, and return

SecureBool. Some class operations do not require manipulation on encrypted data; for example, copy,

or expanding/shrinking the number of bits. These operators are implemented purely at high-level without

calling circuit functions, and appear in the ‘Implemented in C++’ category. All the other overloaded

operators (e.g., a+b) require calls to functions implementing Boolean circuits using homomorphic gates.

These operators can be further classified into two categories: ‘Direct’, which actually call circuit functions,

and ‘Indirect’, which do not call such functions directly but are expressed using Direct operators. Usually

in C++, compound assignment operators (such as a+=b) serve as building blocks for their counterpart

operators. For example, the operator a+b is expressed as t=a;t+=b. In other words, the semantics

of a binary operator (not bitwise) are defined by the corresponding compound assignment operator.

Nevertheless, when processing encrypted variables, we have the opposite case: the compound assignment

operators have to be defined via their binary counterparts, since each circuit function defines a referentially

transparent function with its output being distinct from any of its inputs.

3) The SecureInt class: Our SecureInt class is built on top of an internal uniform API of E3 for

each encryption scheme. This API consists of the following components: 1) A class (Bit) representing

one encrypted bit. The class defines constructors, assignment operators (copy and move) along with export

and import to and from a string in encrypted form. 2) Secret and evaluation keys generation with loading

and saving capabilities. 3) Functions to encrypt and decrypt one bit. 4) List of logic gates - referentially

transparent functions taking one or more Bits as arguments and returning one Bit. 5) A Bit instance

for encrypted bit zero and a Bit instance for encrypted bit one.

The motivation is to abstract the different APIs of existing FHE libraries, so that the C++ source code

becomes oblivious to the underlying FHE library. The advantage of this approach is that a new FHE

library can be plugged-in without any change to the implementation of the SecureInt class, so the

programmers simply need to link their compiled binary with the corresponding FHE library and the C++

file generated by E3 with class definitions and functions.

The data representation of SecureInt is an array of Bits sized to the template parameter of the class.

For different N, each template specialization SecureInt<N> realizes an independent class. Therefore,

binary operators, including multiplication, between SecureInt<N1> and SecureInt<N2> of different

sizes are not defined.

However, SecureInt can be promoted or downcast using the explicit cast operator to enable

incompatible binary operations. For example, in order to convert an unsigned SecureInt<8> to

9

SecureInt<16>, the cast operator pads the 8 most significant bits with Bit instances of encrypted

zero provided by the API. For a signed SecureInt, the cast operator sign-extends the number using its

most significant bit. Downcasting is done by discarding Bits from the array. Every overloaded operator

in SecureInt is a method of the class that is templated by the size N (i.e., the number of bits). If the

operator is from the “Direct” group (Table III), the corresponding circuit function is called; these circuit

functions are static noexcept private members of SecureInt, but are still templates of the

parameter N.

In C++, logical operators on int result in bool type. In case of SecureInt, a logical operator

must produce an encrypted 0 or 1, so it cannot be of the bool type. Therefore, another SecureInt

should hold the encrypted result. Nevertheless, this approach is suboptimal as SecureInt is defined

to hold multiple bits. Hence, similar to how C++ produces bool type out of logical expressions,

we introduce a new class SecureBool, which is derived from SecureInt<1> and inherits its

functionality. Additionally, SecureBool defines multiplication and conditional operators between

SecureBool and SecureInt<N>, so even though the multiplication between SecureInt<1>

and SecureInt<N> is forbidden, the latter is allowed between SecureBool and SecureInt<N>,

resulting in SecureInt<N> type.

Using the SecureBool class provides substantial performance improvements to the selector operation,

without any burden to the programmer. Consider the following expression: (a<b)*c. If only the

SecureInt class was available, this expression would invoke a circuit function for comparisons,

followed by a circuit function for multiplication. The latter is a complex operation, and in case of multi-bit

inputs, it is quite expensive. On the other hand, if (a<b) results in SecureBool, the multiplication is

defined as an operator between SecureBool and SecureInt, invoking only a Boolean multiplexer

circuit function which is significantly simpler and faster to evaluate. In both cases, the expression evaluates

to the same result and has the same SecureInt type. We remark that this happens obliviously, without

the user being aware that SecureBool exists. Still, the programmer can use the SecureBool class

explicitly in the program. In summary, our SecureInt class has the following properties:

• Exposes an internal type Bit and provides access to individual Bits by overloading the [] operator.

• Exports/imports its encrypted representation into a string.

• Offers functions for encryption and decryption.2

• Defines all “Overloaded” C++ operators of Table III.

2Decryption only works when a secret key is defined, which is true during pre-processing the user’s program, post-processing

the results, or during debugging.

10

• Defines an explicit cast operator between SecureInt of different sizes.

• Defines an explicit cast operator to SecureBool which is different from a SecureInt<1> cast,

as it entails reducing all encrypted bits using an OR circuit (called OR-reduction), following the C++

convention that any non-zero value is Boolean true.

4) The SecureMod class: SecureMod is a class representing ciphertext with native operations. If

the encryption scheme supports modular addition, subtraction, and multiplication, then this class defines

corresponding operators. Others remain undefined and preclude compilation of the program, had the

programmer used them. A significant difference compared to C++ standard types is modular arithmetic

on bases that can be different from a power of two. If this is the case, the results of operations with

overflow can be confusing to a programmer without knowledge of modular arithmetic.

For an encryption scheme supporting modular arithmetic, the internal API described above in Sec-

tion IV-A3 extends to encryption and decryption of integers, and the underlying arithmetic operation

functions. SecureMod type has limited number of operations but these operations are faster comparing

to operations on SecureInt class variables. An important feature of E3 is the ability to mix these

classes taking advantage of both worlds: Speed and universality. When both classes are present in the

program, variables of SecureInt can be casted to SecureMod.

B. Compilation

1) User’s Perspective: Our framework works with a C++ program, possibly spanning across separate

files. The encryption parameters are specified in the configuration file of the framework. Our framework

generates classes for protected variables in the form of C++ functions which are automatically embedded

in the compiled binary. In this scenario, the user (programmer):

1) generates the protected version of the program along with the secret key;

2) provides the program, either as source code3 or binary, and the evaluation key, to run at an untrusted

party;

3) obtains the output result from the program; and finally

4) decrypts the result using the secret key.

Only the user can decrypt the output, which differs from applications that require multiple parties to be

able to compute different functions on the encrypted data, where Functional Encryption schemes [14] can

be used. Our framework can be naturally applied anywhere Fully Homomorphic Encryption can be applied,

3In that case, source code must be pre-processed so user-defined protected constants are replaced with encrypted ones.

11

Fig. 1. Process diagram presenting the components required to compile and execute a C++ program operating on FHE encrypted

data. The shaded parts can be outsourced to a third party.

such as using the cloud for faster processing or permanent data storage. From the user (programmer)

perspective, the program has the same functional structure in both encrypted and unencrypted forms.

2) Structure: As discussed in Section IV-A, the programmer is oblivious to the mechanics of instantiating

FHE schemes. The process diagram for the behind the scenes compilation and execution of a C++ program

using our framework appears in Fig. 1. The ‘User’s code’ (for example, the source code in Listing 1) needs

to include the header of our framework, in order to have access to the new secure data types. Furthermore,

encrypted constants have to be appropriately annotated (e.g., 7_e). Our developed ‘Build tool’ generates

the appropriate ‘Secret key’ and ‘Evaluation key’, for a given ‘Configuration file’ delineating the FHE

scheme to be instantiated, and generates the implementation file of the protected classes. The latter,

besides the instantiation of the overloaded operators, also contains encryptions of program constants. In

our framework, we use the suffix (e.g. _e) to: allow the building tool to extract the list of constants used

in the program; encrypt these constants into string literals; and update the string literal operator defined

in the secure type classes implementation file. Without this automated process, the programmer would

have to manually instantiate the FHE cryptosystem, generate keys, and encrypt each constant, replacing

the user-defined literal with the corresponding encrypted value.

3) Catching errors during compilation: One of the requirements outlined above is that if the program

compiles, it works as expected. A critical compiler error is the implicit conversion of SecureInt or

12

SecureBool to bool. Typically, C++ implicitly converts any data type to bool, with the common

convention that zero values convert to false and non-zero values convert to true. Without decryption

this is impossible, therefore the compiler must stop the compilation highlighting the error. In this case,

the SecureBool class defines the cast-to-bool operator, which uses templates – along with the

static_assert C++ mechanisms – to produce a meaningful error message to the user.

4) Bit-level arithmetic circuits: The last part of the building process is to instantiate the group of

‘Direct’ operators which are directly mapped to Bit-level arithmetic circuits. The other groups of the

overloaded operators (namely, “Indirect” and “Implemented in C++”) are implemented as non-specialized

template members without calls to FHE circuit functions.

The ‘Circuit instantiations’ database (input in Fig. 1) is a collection of explicit template specializations

of all possible combinations of circuit functions and possible numbers of bits, where the bit size is

the template argument. In our work, this collection is generated separately for each FHE library using

parametrizable RTL (Register Transfer Level) designs. The RTL designs are compiled for different bit

sizes using the design compiler, and a customized standard cell library which is optimized for each FHE

library according to the speed of each gate – the evaluation of the gates has different performance; hence,

the optimal function for evaluating each circuit is different as well. The design compiler generates a

gate-level netlist which E3 converts into C++ template functions.

The libraries exposing homomorphic gates can directly be linked to E3 circuits. When a particular

gate is not available in a specific library, we construct it on top of native gates. For modular arithmetic

based schemes, we build gates on top of native arithmetic operations. In such schemes, additions and

subtractions are much faster than multiplication. Therefore, gates should be implemented minimizing

the number of multiplications. In addition, when the plaintext modulus is 2, the gate equations (as in

Section III-B1) can be simplified: All subtractions are replaced with additions and the XOR gate does not

require multiplication.

V. E3 FEATURES

In this section we present the features provided by E3. In general terms, the provided features can be

divided into three categories; Programming, Technical, and Accessibility.

A. Programming Features

E3 uses the C++ programming language. It supports all the C++ operators (addition, subtraction,

multiplication, division, comparison, bitwise operations), including division, a feature many frameworks

currently do not support. E3 also provides flexibility and allows code reusability, as it enables users to

13

TABLE IV

LIBRARIES, SCHEMES, AND MODES SUPPORTED BY E3

Library
BFV BGV CKKS GSW Paillier

mod bit bat brid boot mod bit bat brid boot mod bit bat brid boot bit boot mod

FHEW 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 l l 5

HELib 5 5 5 5 5 m l l m l 5 5 5 5 5 5 5 5

Palisade l m l m 5 m m m m 5 l m m m 5 m m 5

SEAL l l l l 5 5 5 5 5 5 l m m m 5 5 5 5

TFHE 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 l l 5

Native* l

mod: modular arithmetic, bit: bit-level arithmetic, bat: batching, brid: bridging, boot: bootstrapping

* Natively implemented in E3

TABLE V

SCHEMES AND OPERATORS SUPPORTED BY E3

Scheme
Modular Arithmetic Bit-level Arithmetic

add mul rot sub add bit cmp div log mul rot sub

BFV l l l l l l l l l l l l

BGV m m m m l l l l l l m l

CKKS l l l l m m m m m m m m

GSW 5 5 5 5 l l l l l l 5 l

Paillier l 5 5 l 5 5 5 5 5 5 5 5

5 Not supported by underlying library or scheme

m Implementation is possible, but not currently implemented in E3 version #9fb718f

l Supported by E3

operate with the same code on different FHE libraries or encryption schemes. In addition, E3 allows the

integration with other root-of-trusts that emulate homomorphism [12], [13].

B. Technical Features

E3 supports a big variety of Homomorphic Encryption libraries. This includes FHEW, HELib, SEAL,

TFHE, as well as Paillier. Consequently, the framework also supports a number of schemes including

BFV, BGV, CKKS, and GSW. A unique feature of E3 is bridging. This novel technique mixes different

arithmetic abstractions, or, in other words mixes both Modular and Bit-level arithmetic in one program.

This provides the ability to convert variables from integral type to modular, which eventually results

in performance improvements of several orders of magnitude in certain cases. E3 also fully supports

14

batching capabilities as it allows for the parallel processing of plaintexts in a Single Instruction Multiple

Data fashion, along with rotation operations. Regarding parameter selection methods, the user is required

to manually select the parameters that will be used according to the application at hand. In addition, E3

automatically handles ciphertext relinearization and rescaling. Lastly, regarding the plaintext space, E3 is

capable of operating on both modular arithmetic and binary circuits.

C. Accessibility Features

We define accessibility features as any feature that improves the ease of use of the proposed framework

and allows better interaction between E3 and its users. This category includes the availability of the

implementation code, examples facilitating the familiarization with the framework, and documentation that

provides instructions regarding its operation. E3 makes available all these resources. The code, examples

and documentation for the proposed framework are open sourced, and can be accessed at the GitHub

repository of E3 [2].

ACKNOWLEDGEMENT

We would like to thank Sanja Kastratovic, Yeojin Jung, Reem Hazim, and Maya Fayed for their

contributions along the work on E3.

REFERENCES

[1] Palisade. Online: https://gitlab.com/palisade/palisade-development, October 2019. palisade.

[2] E3. Online: https://github.com/momalab/e3, February 2020.

[3] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption without bootstrapping.

Electronic Colloquium on Computational Complexity (ECCC), 18:111, 01 2011.

[4] Michael Brenner, Wei Dai, Shai Halevi, Kyoohyung Han, Amir Jalali, Miran Kim, Kim Laine, Alex Malozemoff, Pascal

Paillier, Yuriy Polyakov, Kurt Rohloff, Erkay Savaş, and Berk Sunar. A standard api for rlwe-based homomorphic encryption.

Technical report, HomomorphicEncryption.org, Redmond WA, USA, July 2017.

[5] Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov, Jeffrey Hoffstein, Kristin Lauter, Satya Lokam,

Dustin Moody, Travis Morrison, Amit Sahai, and Vinod Vaikuntanathan. Security of homomorphic encryption. Technical

report, HomomorphicEncryption.org, Redmond WA, USA, July 2017.

[6] Jung Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arithmetic of approximate numbers,

11 2017.

[7] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. Faster fully homomorphic encryption: Bootstrapping

in less than 0.1 seconds. In International Conference on the Theory and Application of Cryptology and Information Security,

pages 3–33. Springer, 2016.

[8] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic encryption in less than a second. In Annual

International Conference on the Theory and Applications of Cryptographic Techniques, pages 617–640. Springer, 2015.

15

[9] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive,

Report 2012/144, 2012.

[10] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors: Conceptually-simpler,

asymptotically-faster, attribute-based. Proceedings of Advances in Cryptology-Crypto, 8042, 08 2013.

[11] Shai Halevi and Victor Shoup. Bootstrapping for HElib. In Advances in Cryptology–EUROCRYPT 2015, pages 641–670.

Springer, 2015.

[12] Oleg Mazonka, Nektarios Georgios Tsoutsos, and Michail Maniatakos. Cryptoleq: A heterogeneous abstract machine for

encrypted and unencrypted computation. IEEE Transactions on Information Forensics and Security, 11(9):2123–2138, 2016.

[13] Mohammed Nabeel, Mohammed Ashraf, Eduardo Chielle, Nektarios G Tsoutsos, and Michail Maniatakos. Cophee:

Co-processor for partially homomorphic encrypted execution. In 2019 IEEE International Symposium on Hardware Oriented

Security and Trust (HOST), pages 131–140. IEEE, 2019.

[14] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Proceedings of the 24th Annual International Conference

on Theory and Applications of Cryptographic Techniques, EUROCRYPT’05, pages 457–473, Berlin, Heidelberg, 2005.

Springer-Verlag.

[15] Microsoft SEAL (release 3.3.2). https://github.com/Microsoft/SEAL, 2019. Microsoft Research, Redmond, WA.

