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Abstract. We construct efficient non-malleable codes (NMC) that are (computationally) secure
against tampering by functions computable in any fixed polynomial time. Our construction is in
the plain (no-CRS) model and requires the assumptions that (1) E is hard for NP circuits of some
exponential 2βn (β > 0) size (widely used in the derandomization literature), (2) sub-exponential
trapdoor permutations exist, and (3) P-certificates with sub-exponential soundness exist.
While it is impossible to construct NMC secure against arbitrary polynomial-time tampering
(Dziembowski, Pietrzak, Wichs, ICS ’10), the existence of NMC secure against O(nc)-time tampering
functions (for any fixed c), was shown (Cheraghchi and Guruswami, ITCS ’14) via a probabilistic
construction. An explicit construction was given (Faust, Mukherjee, Venturi, Wichs, Eurocrypt ’14)
assuming an untamperable CRS with length longer than the runtime of the tampering function. In this
work, we show that under computational assumptions, we can bypass these limitations. Specifically,
under the assumptions listed above, we obtain non-malleable codes in the plain model against O(nc)-
time tampering functions (for any fixed c), with codeword length independent of the tampering time
bound.
Our new construction of NMC draws a connection with non-interactive non-malleable commitments.
In fact, we show that in the NMC setting, it suffices to have a much weaker notion called quasi non-
malleable commitments — these are non-interactive, non-malleable commitments in the plain model,
in which the adversary runs in O(nc)-time, whereas the honest parties may run in longer (polynomial)
time. We then construct a 4-tag quasi non-malleable commitment from any sub-exponential OWF
and the assumption that E is hard for some exponential size NP-circuits, and use tag amplification
techniques to support an exponential number of tags.

1 Introduction

Non-Malleable Codes (NMC) were introduced by Dziembowski, Pietrzak, and Wichs [DPW10] as a
modification of error correcting codes, with the goal of achieving security against adversarial tampering
functions, that may change every part of a codeword. Informally, a NMC against a class F guarantees that
if a codeword is tampered via the application of a function f ∈ F , then the decoding of the tampered
codeword will either be exactly the original message, or completely unrelated to the original message. As
noted in [DPW10], it is impossible to construct NMC against arbitrary tampering functions, since non-
malleability can always be broken by a tampering function which first decodes the codeword to learn the
underlying message, then re-encodes a related message. In particular, there can be no efficient NMC against
arbitrary polynomial time tampering. Thus, to achieve feasibility, we must restrict the class of tampering
functions.

A natural way to restrict tampering adversaries is via well-studied computational complexity measures.
Several recent works have followed this approach and have developed strong connections between NMC
and techniques from computational complexity. For example, Ball et al. [BDKM16] constructed NMC
against bounded depth circuits with constant fan-in (which includes NC0), several works [CL17, BDKM18,



BDSG+18] constructed NMC against AC0 relying on different complexity theoretic techniques, and some
works considered (restricted variants of) NMC against space-bounded tampering [FHMV17, BDKM18].
Specifically, the work of Faust et al. [FHMV17] considers space-bounded tampering adversaries in the
random oracle model and achieves the security notion of leaky continuous non-malleability. The work of
Ball et al. [BDKM18] is information-theoretic, considers streaming, space-bounded tampering adversaries
and achieves standard non-malleability. The current work continues this line of research.

In this paper, we focus on the task of constructing NMC against bounded polynomial time tampering,
namely tampering functions that are computable in an arbitary fixed polynomial time. This is a very natural
class to consider given the impossibility result for (unbounded) polynomial time, and indeed, some of the
first works in this line of research have already considered this class. We discuss these next, along with the
motivation and goals for our current work.

Cheraghchi and Guruswami [CG14] gave probabilistic constructions of efficient codes for circuits of
size O(nc) (where an efficient randomized procedure outputs a “good” code with high probability). Faust
et.al [FMVW14] gave an improved (in terms of the dependence on the error bound) construction against
the same class, which is explicit, but relies on a model including an untamparable CRS (common reference
string). The presence of CRS is undesirable, as not only must the CRS be generated by a trusted party,
the CRS is also a non-tamperable component of the scheme. Moreover, both of these works can be viewed
as using limited (t-wise) independence to partially derandomize probabilistic constructions. This approach
inherently leads to a CRS whose length is at least as long as the bound on the size of the tampering circuits
— meaning the tampering circuits cannot even read the entire CRS. We additionally note that if we allowed
other size parameters, in particular the codeword size, to be as large as the runtime of the tampering function,
then achieving non-malleability would become trivial. This motivates the following questions:

Can we construct efficient NMC against bounded polynomial time adversaries, in the plain model
(i.e. without CRS)? Ideally, with codeword length that is independent of the runtime of the adversarial
tampering function?

As we elaborate next, we achieve this by moving to computational security and restricting our attention to
uniform adversaries (while [CG14, FMVW14] gave statistical guarantees against non-uniform adversaries).
In addition, as explained shortly below, we allow uniform bounded polynomial time tampering adversaries
to have an inverse polynomial advantage (as in [CG14]) as opposed to having only negligible advantage (as
in [FMVW14]). We emphasize that to the best of our knowledge, there is no transformation that either
(a) eliminates the CRS in the NMC of [FMVW14] to achieve security against uniform (or non-uniform)
adversaries or (b) fully derandomizes the monte carlo construction of [CG14], even under derandomization
assumptions. Our techniques highlight interesting new connections to complexity theory.

1.1 Our Results

Our construction requires a complexity theoretic assumption that some language in the complexity class
E (the class of languages that can be decided by Turing machines running in time 2O(n)) is hard for NP
circuits of some exponential 2βn (for β > 0) size. As surveyed later, such assumptions are widely used
in the derandomization literature, often referred to as derandomization assumptions, and have connection
with cryptography. Our construction also relies on the following cryptographic assumptions: the existence of
subexponential trapdoor permutations and P-certificates (P-cert) with sub-exponential soundness. P-certs
(introduced by [CLP13]) are “succinct” non-interactive arguments for languages L ∈ P, with proof length
which is a fixed polynomial, independent of the time it takes to decide L (see Section 2.4 for a formal
definition). We provide more background on these assumptions in Section 1.2 below.

Theorem 1 (Informal). Assuming

– E is hard for NP circuits with some exponential size (namely 2βn for some constant β > 0)
– Existence of sub-exponential trapdoor permutation
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– Existence of P-cert with sub-exponential soundness

for every constant cA, there is an efficient construction of NMC in the plain (no-CRS) model against uniform,
bounded polynomial ncA-time tampering adversaries, with inverse polynomial indistinguishability (for any
polynomial time non-uniform distinguisher). Furthermore, the codeword size is a fixed polynomial independent
of ncA .

A few remarks are in order. First, to formalize that a tampered codeword, if not copied from the orginal
codeword, must decode to an independent value, the definition of non-malleability requires that the decoded
values, u1 and u2, obtained from tampering codewords of different values, v1 and v2 respectively, must be
indistinguishable (ub is replaced by same in the case of copying). Our NMC achieves inverse polynomial
distinguishing advantage against polynomial-time non-uniform distinguishers .

Second, as mentioned before, it is important that the length of the codeword is smaller than the time-
bound ncA of the tampering functions; otherwise, achieving non-malleability becomes trivial. Here, we achieve
the ideal case, where the length of the codeword is bounded by a fixed polynomial, independent of ncA . As the
adversarial time bound grows, the only parameter that grows is the run time of encode/decode. Moreover,
this dependence is necessary as discussed earlier, since non-malleability is trivially impossible when the class
of tampering functions includes the encode/decode functions.

Finally, we note that the assumption of the existence of sub-exponential trapdoor permutation in
Theorem 1, can be replaced with the assumption of the existence of ZAPs (public coin, two message witness
indistinguishable protocols) [DN00] with witness indistinguishability against sub-exponential adversaries and
the existence of sub-exponential one-way functions (OWF). Note that ZAPs can be constructed from bilinear
maps [GOS06], which are not known to imply trapdoor permutations.

Connection between NMC and Non-Malleable Commitments. Our construction of NMC draws a connection
with another important notion of non-malleability – non-malleable commitments [DDN03, LPV08]. The
only difference between NMC and non-interactive non-malleable commitments is that the former can be
decoded efficiently, whereas decommitment of the latter cannot be done efficiently. A few prior works leverage
this connection, showing that NMC can be used to obtain improved non-malleable commitments [GPR16,
CGM+16], and using techniques from the non-malleable commitment literature to obtain NMC [CGL16,
OPVV18]. However, the latter direction—tapping into the wealth of techniques from the non-malleable
commitment literature to construct NMC—has been largely unexplored, perhaps due to the fact that NMCs
are typically unconditionally secure.

In our NMC construction, we begin with the framework of Ball et al. [BDKM18], which provides a generic
way to construct NMC against tampering classes F for which sufficiently strong average-case hardness results
are known, but requires a CRS. We show how to remove the CRS for particular tampering classes, including
the class of bounded, poly-time adversaries. One modification is replacing the public key encryption scheme
in the framework of [BDKM18] (whose pubic keys are contained in the CRS) with a non-interactive, non-
malleable commitment scheme NMCom in the plain model.

At a very high (and overly simplified) level, our NMC, like [BDKM18], follows the Naor-Yung [NY90]
paradigm that achieves CCA security of encryption, by composing two instances Encrypt(pk, v),Encrypt(pk′, v)
of a public key encryption scheme, followed by a NIZK proof of the equality of encrypted values. In the context
of NMC, we replace one instance of encryption with an encoding E(v) that is decodable in some polynomial t
time, but has certain complexity theoretic hardness (specified shortly) against the class of circuits of smaller
t′ < t size. We further replace the other instance of encryption with a non-malleable commitment c to v.
Following [NY90, BDKM18], we provide a reduction that can turn any successful tampering adversary A
against NMC, into an adversary B able to “maul” an encoding E(v) of v into a non-malleable commitment c̃
to a related value ṽ. The challenge lies in ensuring that the reduction is “simple”, namely, can be implemented
by a circuit of size t′. Then the complexity theoretic hardness that we rely on is that it is impossible for such a
circuit to compress an encoding E(v) into a much shorter string c̃ correlated to v (despite that the correlation
may take exponential time to verify). Such an encoding, E, can be based on the incompressible functions
of Applebaum et al. [AASY16], which can be constructed based on assumptions that are widely used in
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the derandomization literature. (For more details on the NMC construction see the technical overview in
Section 1.3).

Connection between Complexity Theory and Non-Malleable Commitments. Another contribution of this work,
is to develop new connections between complexity theory and non-malleable cryptography. Specifically, we
show that derandomization assumptions can be employed to build a new primitive we call Quasi Non-
Malleable Commitments, which is weaker than standard non-malleable commitments, but nevertheless
suffices for constructing NMC. This allows us to avoid adding the assumptions needed for standard non-
interactive NMCom such as time-lock puzzles or hardness amplifiable injective one-way functions [LPS17,
BL18].

Recall that in the setting of non-malleable codes, encode/decode can be in a larger complexity class
than the adversary, and so standard non-interactive NMCom is an overkill. This motivates our definition
of Quasi Non-Malleable Commitments in which the adversary runs in O(nccom)-time, whereas the honest
parties may run in longer (polynomial) time. To construct Quasi-NMCom from assumptions that are widely
used in the derandomization literature, observe that these assumptions allow us to construct polynomial-
time computable functions ψ for which non-deterministic advice does not help speed up the computation.
This stands in stark contrast to the case of inversion of a one-way function ρ, which becomes easy with
non-deterministic advice (as the advice can contain a pre-image). Following the framework of [LPS17],
we construct two types of commitments that are harder than each other in different hardness “axes” —
namely “BP-time” (corresponding to probabilistic Turing machines) and “non-deterministic (ND)-size”
(corresponding to NP-circuits–see Sections 1.2 and 2.5). More specifically, one type of commitment com1

are the standard schemes based on one-way functions ρ, and the other com2 is based on the function ψ given
by derandomization assumptions. The com1 is much harder to break than com2 in the axis of “BP-time”,
as inverting one-way function ρ is much harder than computing ψ using probabilistic Turing machines. On
other hand, com2 is much harder to break than com1 in the axis of “ND-size”, where both inverting ρ and
computing ψ can be done in poly-size, but computing ψ is significantly harder.

From such mutually harder commitment schemes, we obtain a 4-tag Quasi-NMCom. Then, based on tag-
amplification techniques in the literature [KS17b, BL18], we increase the number of tags supported to an
exponential. It turns out that the quasi-setting makes amplification hard, which requires us to introduce a
notion of “Double-Agent” adversaries. Informally, double-agent adversaries are probabilistic uniform Turing
machines with “large” time complexity, that can also be represented as a distribution over circuits with
“small” size complexity (see Section 2.1 for additional details). Post-amplification, our final Quasi-NMCom
construction employs the same assumptions as Theorem 1. We believe these techniques may be useful for
other applications in similar quasi-settings.

1.2 Background on Assumptions

In this section we provide some background on the assumptions that we use.

On P-certificates. P-certificates were introduced by [CLP13] in pursuit of constant-round concurrent zero-
knowledge. Loosely, a P-certificate is a non-interactive proof system that allows a prover to convince an
efficient verifier of the validity of any statement in P via a short proof. In particular, both the proof length
and the run-time of the verifier are bounded by some fixed polynomial, but the system should work any
language in P (the prover’s efficiency should be comparable to the statement). CS-proofs [Mic00] imply
P-certificates, but unlike the former, the latter assumption is falsifiable.

On “E requires circuits of exponential size.” A fundamental family of questions in theoretical computer
science is when and where randomness helps (vs strictly deterministic procedures). While it is widely
believed that BPP = P (i.e., any efficient, randomized decision procedure can be efficiently simulated
by a deterministic procedure), whether the equality indeed holds is still an open problem. This particular
question (BPP = P?) and others in the domain of derandomization have deep connections to cryptography.
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In the 1980s, Yao [Yao82] showed that one-way permutations suffice to create pseudorandom generators
(PRG) for poly-time computation. PRGs expand a small sequence of uniform random bits to a long sequence
of pseudorandom bits that “fool” classes of procedures in the sense their behavior is essentially the same
as if they were given truly random bits. In this sense, PRGs give a canonical technique for derandomizing
decision procedures: running the procedure on multiple outputs of the PRG in parallel and taking majority
of the obtained result. Later, it was shown that essentially minimal cryptographic assumptions (one-way
functions) suffice for constructing PRGs [HILL99].

However, while most cryptography implies non-trivial derandomization, there seem to be inherent barriers
to statements of the converse form. In fact, the so-called “cryptographic” PRG’s yield, in two aspects, much
more than what is required for derandomization since (a) the output of such PRGs fool any polynomial
time procedure (including procedures that run in much more time than the PRG itself) and (b) such PRGs
guarantee that the behavior of poly-time procedures is only negligibly different from their behavior on true
randomness. On the other hand, one-way functions are not known to imply P = BPP because known
constructions only “stretch” random bits into polynomially many random bits (whereas exponential stretch
is required for canonical simulation).

Capitalizing on these observations, Nisan and Wigderson [NW94] gave a generic means of constructing
PRGs which “fool” a certain class of circuits C, from any function that is hard-on-average for a slightly
enlarged class of circuits. In particular, this in some sense reduces the problem of explicit derandomization
to proving strong circuit lower bounds on explicit functions. To this end, later work showed that, in fact,
simply assuming there is a language in E that does not have have circuits size 2βn for some β > 0 (for almost
all n), is sufficient to derandomize BPP [IW97, STV01]. Moreover, because E has complete problems, this
yields explicit pseudorandom generators. However, for reasons alluded to above, this assumption is, to best
of our knowledge, incomparable to standard cryptographic assumptions.

This latter (worst-case) conjecture and its generalization has appeared in a variety of contexts pertaining
to derandomization and other questions in computational complexity [Lip89, NW94, BFNW93, IW97,
STV01, HN10, KVM02, SU06, SU09, FL97, MV05, TV00, SU05, GW02, GSTS03, Dru13].

The conjectures we are concerned with in this work take the following form (following [AASY16]):

Assumption 1 (E is hard for exponential size X-circuit) There exists a problem L in E = DTIME(2O(n))
and a constant β > 0, such that for every sufficiently large n, X-circuits of size 2βn fail to compute the
characteristic of L on inputs of length n.

where X-circuits in Assumption 1 can be the circuits of type, {non-deterministic, co-non-deterministic, NP,
Σi}. See section 2.5, for definitions of these types of circuits.

While these types of assumptions are independently interesting, in this work we will utilize some surprising
implications outside of derandomization.

Recently, Applebaum et al. [AASY16] presented (explicit) constructions of poly-time computable
incompressible functions based on the assumption that E is hard for exponential size non-deterministic
circuits (based on the extractors for samplable distributions of Trevisan and Vadhan [TV00]). Loosely, a
function, ψ is incompressible for a class if no procedure in that class can “shrink” an input to the function,
x, such that ψ(x) can later be recovered. Note that, to our knowledge, it is not known how to construct
incompressible functions from standard cryptographic assumptions (unlike the case of derandomization).

Barak et al. [BOV07] observed that similar assumptions can be used to construct cryptographic primitives.
In particular, they showed that if E = DTIME(2O(n)) contains a function with co-non-deterministic circuit
complexity 2Ω(n), then there exists (explicit) non-interactive witness indistinguishable proof systems for
L ∈ NP (additionally assuming the existence of trapdoor permutations). They also showed that the same
assumption can be used to construct a non-interactive bit commitment scheme from a one-way function.

In this work, we use the above results and demonstrate new connections between these assumptions
and non-malleable cryptography. In particular we show that if Assumption 1 holds for NP-circuits and
(sub-exponential) one-way functions exist, then we can construct quasi-non-malleable commitment schemes.
We combine our construction of such commitment schemes along with NIZK proofs based on the NIWI
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of [BOV07], as well as the incompressible functions of [AASY16], to obtain our main result: a family of
efficient non-malleable codes secure against tampering by uniform algorithms running in time O(nc).

1.3 Technical Overview

We begin by recalling (a simplified version of) the template for constructing non-malleable codes against
complexity class F (based on the Naor-Yung double encryption paradigm [NY90]) introduced in the work
of Ball et al. [BDKM18]:

The CRS contains a public key pk for an encryption scheme E = (Gen,Encrypt,Decrypt), and a CRS crs
for a simulation-sound, non-interactive zero knowledge proof (NIZK). For b ∈ {0, 1}, let Db denote disjoint
distributions over x1 . . . xn ∈ {0, 1}n such that ψ(x1 . . . xn) = b, where ψ is poly-time computable, yet every
f ∈ F has low correlation with ψ.

To encode a bit b:

1. Randomly choose string x1 . . . xn from Db
2. Compute c← Encryptpk(b).
3. Compute a NIZK proof T of “consistency”: ∃b′ ∈ {0, 1} s.t. x1 . . . xn is in the support of Db′ and b′ is

the plaintext underlying c.
4. Output (x1 . . . xn, c, T ).

To decode (x1 . . . xn, c, T ):

1. Verify the NIZK proof T .
2. If it accepts, output ψ(x1 . . . xn).

The proof of [BDKM18] proceeds (loosely) as follows: In the first hybrid they switch to simulated proof
T ′. Then they switch c, in the “challenge” encoding to an encryption of garbage c′, and next switch to
an alternative decoding algorithm in F , which requires the trapdoor sk (corresponding to the public key
pk which is contained in the CRS). If, in the final hybrid, decodings of tampered encodings depend on b, a
circuit in F can be constructed, whose output is correlated with the hard function ψ, reaching a contradiction.
While [BDKM18] do in fact show that the CRS can be removed for constructions against certain classes F
of tampering, naively, their approach requires a CRS in two seemingly inherent ways: First, the CRS allows
the use of the secret key trapdoor sk in the alternate decoding algorithm and second, it allows the use of a
simulation-sound NIZK, which requires CRS.

In this work, we make two crucial observations that allow us to eliminate the CRS from the above
construction. First, we consider a stronger notion of hardness for ψ, known as incompressibility (in fact,
this hardness notion was already implicitly used in [BDKM18] for their multi-bit construction). Briefly,
if a function ψ is incompressible by circuit class C, it means that for t � n, for any (computationally
unbounded) Boolean function F : {0, 1}t → {0, 1} and any C : {0, 1}n → {0, 1}t ∈ C, the output of F ◦
C(x1, . . . , xn) is uncorrelated with ψ(x1, . . . , xn) (over uniform choice of x1, . . . , xn). Now, since F is allowed
to be computationally unbounded, we may consider an F that decrypts the ciphertext c = Encryptpk(b)
by brute force search. To elaborate, instead of using sk to efficiently decrypt c in complexity class C, the
alternate decoding algorithm D′ is split into two parts D′ = D′2 ◦D′1, where D′1 can be implemented in F , but
has short output length, whereas D′2 is computationally unbounded. Specifically, D′1 checks the proof T and
then outputs the entire ciphertext c (which is fine so long as the length of c is sufficiently smaller than n), and,
due to the incompressibility property of ψ, we must still have that the output of D′ = D′2 ◦D′1 is uncorrelated
with ψ(x1, . . . , xn). This eliminates the need of providing a trapdoor to the alternate decoding algorithm
and so instead of using a public key encryption scheme, we may use a non-interactive statistically binding
commitment scheme, which can be constructed from injective one-way function or from derandomization
assumptions and any one-way function [BOV07].4

4 As we will see, in our setting of non-malleable codes against polynomially-bounded adversaries, our construction
requires such derandomization assumptions in any case and so only standard one-way function is required in
addition. However, for simplicity we will assume injective one-way function in the remainder of the exposition in
this section.
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Next, we note that it is possible to construct a NIZK proof system in the plain (no-CRS) model (i.e. “One-
Message Zero Knowledge”), with soundness against uniform adversaries. To do so, one first constructs
a non-interactive witness indistinguishable proof system (NIWI) in the plain model (based on standard
cryptographic assumptions and derandomization assumptions [BOV07]) and then converts from witness
indistinguishability to full zero knowledge using the well-known FLS paradigm [FLS99]. Specifically, the
simulator will be given a trapdoor witness based on a problem that is computationally hard for uniform PPT
adversaries such as finding a collision in a keyless collision resistant hash function. The problem with this
approach is that in the proof sketch outlined above, we actually require simulation-sound NIZK, as opposed
to regular NIZK. In simulation-sound NIZK, the soundness properties must hold, even after the adversary sees
a simulated proof of a false statement. Whereas various constructions of (one-time) simulation-sound NIZK
rely on embedding a trapdoor within the CRS (cf. [Sah99, Lin03]), our approach to achieve the simulation-
soundness property without CRS is to replace the commitment c (which replaced the encryption Encryptpk(b)
as described above) with a non-interactive, non-malleable commitment scheme. Unfortunately, currently
known non-interactive, non-malleable commitment schemes require somewhat non-standard assumptions
such as time-lock puzzles or hardness amplifiable injective one-way functions [LPS17, BL18], whereas our
goal is to minimize assumptions. As we will see, the fact that our commitment scheme is only required
to be non-malleable against adversaries in a restricted circuit class F , allows us to obtain non-interactive,
non-malleable commitments, while reducing assumptions.

Instantiating the Paradigm In this work we construct non-malleable codes against the class F of uniform,
polynomial-bounded tampering functions. Crucially, we will do so (1) without relying on CRS (2) with
codeword length that is independent of the polynomial time bound (note that if the codeword length is
longer than the polynomial time bound then the adversary does not even get to read the entire input, also
it’s trivial to construct these ) and (3) while reducing computational assumptions, to the extent possible.

Specifically, in addition to standard cryptographic assumptions, we will assume standard
derandomization-type assumptions such as those discussed in the previous section. We also require the
notion of P-certificates, which seem to be necessary to implement the above high-level paradigm, as we
discuss next. To see why this is so, note that the statement proved in NIZK proof T , involves proving
that ψ(x1, . . . , xn) is equal to some value. Note that ψ is a polynomial-time computable function, but that
intrinsic in the approach is choosing ψ that is hard to compute in the specific polynomial time bound T (n)
corresponding to tampering class F . Moreover, we require that the size of the proof T be independent of the
polynomial time bound T (n), and so in particular the size of the proof T must be independent of the time
required to compute ψ. This is now exactly the notion of a P-certificate.

We also note that given the above paradigm for encoding of a single bit, it is straightforward to obtain
a scheme for the encoding of multiple bits (by individually encoding each bit and then using a single proof
T to “wrap” together the individual encodings). The only restriction will be that the number of bits, m,
that are encoded, multiplied by the length of a bit commitment, λ, should be sufficiently smaller than n, the
input length of the function ψ. See Section 3 for additional details.

Instantiation of ψ Recall that for the above approach to work, we must instantiate ψ with a function
that is incompressible against polynomially-bounded adversaries. Fortunately, such a construction was given
by [AASY16], based on a derandomization-type assumption. See Section 5 for additional details.

Instantiation of NMCom In fact, as discussed previously, we note that we do not need full-fledged NMCom,
but only Quasi NMCom, i.e. NMCom with the following two relaxations: (1) The commitment scheme is only
secure against bounded-poly (in fact “Double-Agent”) adversary and distinguisher (2) The complexity of the
honest sender/receiver may be greater than the complexity of the adversary. To construct Quasi-NMCom,
we adopt the approach of [LPS17] to initially construct a commitment scheme with small number of tags,
and use the fact that the derandomization assumptions that we employ in this work are believed to hold
even against non-deterministic adversaries. In particular, we employ the well-studied assumption that E is
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hard for adversaries represented as exponential size NP-circuits—or circuits with access to a SAT oracle
(See Sections 1.2 and 2.5 for further discussions on these assumptions). To construct our NMCom scheme,
we start off with two different types of commitments, Type 0 and Type 1 such that if we get a Type 0 on
left, we can extract from Type 1 on the right without breaking the security of Type 0 and vice versa. Each
commitment consists of an input x to a Boolean function ψ′ (with logarithmic input length) that is hard

for NP-circuits of size 2ε3·input length to compute as well as the output y of an injective OWF ρ, which is

hard for ppt adversaries running in time 2input lengthε
′
3
.5 Each of these can be considered as a commitment

to a bit (given x, the output of ψ′(x) is the committed value and given y, a hardcore bit of ρ) and the final
committed value is the xor of the two bits committed.

Type 0: input length c1 log(n) to ψ′, input length nε
′
1 to ρ.

Type 1: input length c2 log(n) to ψ′, input length nε
′
2 to ρ.

Set c2 > c1 > ε′1 > ε′2 so that

1. nc1 < nε3·c2

2. 2n
ε′2 < 2n

ε′3·ε
′
1

We now consider the two possible cases:

Type 0 on left, Type 1 on right. Extract by inverting the injective OWF ρ in deterministic time 2n
ε′2 and

computing ψ′ in deterministic time nc2 . Note that this does not allow breaking injective OWF ρ with

input length nε
′
1 , which is secure against time 2n

ε′3·ε
′
1 > 2n

ε′2 .
Type 1 on left, Type 0 on right. Extract by computing ψ′ in deterministic time nc1 and inverting the

injective OWF ρ with an NP-circuit of size nε
′
1 . Note that this does not allow breaking hardness of ψ′

with input length c2 log(n), which is secure against NP-circuits of size nε3·c2 > nc1 .

See Figure 1 for a summmary and Section 6 for additional details.

Input length to ψ′ Hardness of ψ′ Input length to ρ Hardness of ρ
D ND D ND

Type 0 c1 · log(n) nε3·c1 nε3·c1 nε
′
1 2n

ε′3·ε
′
1 nε

′
1

Type 1 c2 · log(n) nε3·c2 nε3·c2 nε
′
2 2n

ε′3·ε
′
2 nε

′
2

Fig. 1. ψ′ and ρ are the functions described in the paragraph above. D stands for deterministic and ND stands for
“non-deterministic” hardness. We set parameters so that c2 > c1 > ε′1 > ε′2.

The above 2-tag commitment scheme can then be straightforwardly extended to work for 4 tags, at
which point amplification techniques from [KS17b] can be applied to obtain NMCom with number of tags
exponential in the security parameter. The analysis of the amplified scheme is somewhat different than
in prior work, since our analysis must carefully take into account that some assumptions are inherently
uniform (One-Message Zero Knowledge) and some assumptions (hardness of ψ′) are inherently non-uniform
(the adversary in the proof is so limited that it does not have time to generate new commitments on its
own and therefore must receive them as non-uniform advice when reducing security to the hardness of
computing ψ′). To solve this problem, we introduce the notion of “Double Agent” adversaries (as discussed
in the introduction) and provide a proof of security of our amplified NMCom scheme against this class of
adversaries. See Section 7 for additional details.

5 For this exposition, we assume for simplicity that ψ′ can be computed in deterministic time 2input length and that
the injective OWF has linear circuit size. Recall that we do not require injective OWF and that any statistically
binding, non-interactive commitment scheme is sufficient, but that for simplicity we assuming injective OWF in
this exposition.
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1.4 Related Work

Non-Malleable Codes. Non-malleable codes (NMC) were introduced by Dziembowski, Pietrzak and Wichs
in their seminal work [DPW10]. While there has been a long line of important results for various tampering
classes, due to space limitations, we discuss here only the results most relevant to this work.

As discussed extensively in the introduction, Faust et.al [FMVW14] constructed efficient information-
theoretically secure NMC in the CRS model, resilient against tampering function classes F which can be
represented as circuits of size poly(n). Another important result by Cheraghchi and Guruswami [CG14]
showed the existence of information theoretically secure NMC against tampering families F of size |F| ≤ 22

αn

with optimal rate 1− α. They achieve error ε ∈ O(1/poly(n)) as the run-time of the encoding and decoding
algorithms is proportional to poly(1/ε) where ε is the error probability.

Ball et.al [BDKM16] constructed efficient information theoretic secure NMC against nδ-local tampering
functions, for any constant δ > 0. This class includes tampering functions, which can be represented as
constant depth circuits with bounded fan-in i.e NC0 circuits. Chattopadhyay and Li [CL17] constructed NMC
against AC0 tampering functions from seedless non-malleable extractors, although the codeword length of this
construction is super-polynomial in the message length n. Faust et.al [FHMV17] considered non-malleable
codes against space bounded tampering adversaries in the random oracle model. The construction achieves
a new notion of leaky continuous non-malleable codes (with self-destruct property), where the adversary is
allowed to learn some bounded log(|m|) bits of information about the underlying message m.

Recently, Ball et.al [BDKM18] presented a generic framework to construct NMC against tampering
function classes for which average-case hardness bounds are known. They also instantiated their framework
to construct the first efficient, computationally secure multi-bit NMC against tampering functions which
can be represented as constant-depth circuits with unbounded fan-in (AC0 tampering), as well as against
tampering functions which can be represented as bounded depth decision tree. Additionally, they showed
that the framework can be used to construct information-theoretic NMC against space-bounded streaming
tampering. Information-theoretic secure, efficient NMC against AC0 tampering were subsequently constructed
by [BDSG+18].

Derandomization and Cryptography The connection between derandomization techniques with cryptography
was first explored by Barak et.al. [BOV07], who constructed one-message witness indistingushable proof
systems (non-interactive commitment scheme) in the plain model based on trapdoor permutations (one-
way functions) in addition to the derandomization assumptions. Recently, Applebaum et.al. [AASY16]
constructed incompressible functions against the class of bounded polynomial time functions from similar
assumptions.

Non-Malleable Commitments Non-malleable commitments have been studied extensively since their
introduction by [DDN03] in their seminal paper. Great progress has been made in reducing the interaction
between the sender and the receiver, while minimizing computational assumptions. We list just some of
the results in this line of work [Bar02, PR05a, PR05b, LP09, PW10, Goy11, LP11, GRRV14, GPR16,
COSV16, COSV17, Khu17]. Recently, Lin, Pass, and Soni [LPS17] gave a construction of a non-interactive,
fully-concurrent, non-malleable commitment scheme secure against uniform adversaries based on sub-
exponential non-interactive commitment schemes, non-interactive witness indistingushable proof systems
(NIWI), uniform collision resistant hash functions, and time-lock puzzles [RSW96]. When replacing
the uniform collision resistant hash functions with a family of collision resistant hash functions, their
protocol becomes 2-round. Khurana and Sahai [KS17b] constructed 2-round non-malleable commitments
with bounded concurrency from standard sub-exponential assumptions. Bitansky, and Lin [BL18] gave a
construction of a non-interactive, fully-concurrent, non-malleable commitment scheme from multi-collision-
resistant keyless hash functions, sub-exponentially-secure time-lock puzzles, and other standard assumptions.
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2 Definitions

2.1 Notation

When comparing distribution ensembles D = {Dn}n∈N,D′ = {D′n}n∈N, we use the notation D
G,S
≈ D′, where

G, S are sets, to indicate that for sufficiently large n, every distinguisher D ∈ G distinguishes Dn from
D′n with probability at most p(n), for some p(·) ∈ S. When comparing functions p, p′, we use the notation

p(n)
S
≈ p′(n), where S is a set, to indicate that |p(n)− p′(n)| ∈ S.

We consider “Double-Agent” adversaries A in computational classes denoted by
BPtime(T (n))

⋂
SIZE(t(n)), for some functions T (·), t(·). Intuitively, this computational class contains

probabilistic uniform Turing machines A with “large” time complexity T (n), that can also be represented
as a distribution over circuits with “small” size complexity t(n). Informally, this is possible since A can
be split into subroutines in such a way that subroutines that require “large” time complexity can all be
replaced with non-uniform advice. Formally, A ∈ BPtime(T (n))

⋂
SIZE(t(n)) if the following hold:

– A = (A1, A2).
– A1 ∈ BPtime(T (n)), A2 ∈ BPtime(t(n)).
– A1 receives only security parameter 1n as input and produces output of length at most t(n).
– A2 receives the input of A as its input, along with the output of A1.

Note that, since A1 takes only security parameter as input, the output of A1, can be viewed as non-
uniform advice to A2. Thus, we can convert such a uniform adversary A = (A1, A2) into a distribution over
non-uniform circuits of size t(n) with identical behavior to A.

2.2 Non-Malleable Codes

Definition 1 (Coding Scheme). Let Σ, Σ̂ be sets of strings, and κ, κ̂ ∈ N be some parameters. A coding
scheme consists of two algorithms (E,D) with the following syntax:

– The encoding algorithm (perhaps randomized) takes input a message in Σ and outputs a codeword in Σ̂.
– The decoding algorithm takes input a codeword in Σ̂ and outputs a message in Σ.

We require that for any message msg ∈ Σ, Pr[D(E(msg)) = msg] = 1.

Definition 2 (O(1/p(n))-Non-malleability [DPW10]). Let n be the security parameter, F be some
family of functions. For each function f ∈ F , and msg ∈ Σ, define the tampering experiment:

Tamperfmsg
def
=

{
c← E(msg), c̃ := f(c), m̃sg := D(c̃).

Output : m̃sg.

}
,

where the randomness of the experiment comes from the encoding algorithm. We say a coding scheme (E,D)
is O(1/p(n))-non-malleable with respect to F if for each f ∈ F , there exists a PPT simulator Sim such that
for any message msg ∈ Σ, we have

Tamperfmsg

PPT,O(1/p(n))
≈ IdealSim,msg

def
=

 m̃sg ∪ {same∗} ← Simf(·).
Output :msg if output of Sim is same∗;

otherwise m̃sg.


Definition 3 (O(1/p(n))-Medium Non-malleability). Let n be the security parameter, F be some family
of functions. Fix msg ∈ Σ. Let c← E(msg) and let g(·, ·) be a predicate such that for every f ∈ F ,

Pr[g(c, f(c)) = 1] ∧ D(f(c)) 6= msg] ≤ negl(n).

For g as above, each function f ∈ F , and msg ∈ Σ, define the tampering experiment

10



MediumNMf
msg,g

def
=

{
c← E(msg), c̃ := f(c), m̃sg := D(c̃)

Output : same∗ if g(c, c̃) = 1, and m̃sg otherwise.

}
The randomness of this experiment comes from the randomness of the encoding algorithm. We say that a

coding scheme (E,D) is O(1/p(n))-medium non-malleable with respect to F if there exists a g as above and
for any msg,msg′ ∈ Σ and for each f ∈ F , we have:

{MediumNMf
msg,g}n∈N

PPT,O(1/p(n))
≈ {MediumNMf

msg′,g}n∈N

It is straightforward to check that medium non-malleability implies standard non-malleability.

2.3 Non-Interactive Commitment Scheme

Definition 4 (Commitment Scheme). A (non-interactive) commitment scheme for the message space
{0, 1}m, is a pair (Com,Open) such that:

– For all msg ∈ {0, 1}m, (c, d)← Com(m) is the commitment/opening pair for the message msg.
– Open(msg, c, d) → {0, 1}, where 1 indicates that d is a valid opening of c to msg and 0 is returned

otherwise.

The commitment scheme must satisfy the standard correctness requirement,

∀m ∈ N,∀msg ∈ {0, 1}m, Pr [Open(msg,Com(msg)) = 1] = 1

where the probability is taken over the randomness of Com.

We will consider statistically binding commitment schemes. A non-interactive commitment scheme C :=
(Com,Open) is statistically-binding if the following hold:

Hiding: It is computationally hard for any adversary A to generate two messages msg0,msg1 ∈ {0, 1}m
such that A can distinguish between their corresponding commitments. Formally, for any ppt adversary
A = (A1,A2) it should hold that:

Pr

[
b = b′

∣∣∣∣∣(msg0,msg1, α)← A1(1m), b←r {0, 1},
(c, d)← Com(msgb), b

′ ← A2(c, α)

]
≤ 1

2
+ negl(m)

Statistical Binding: Formally, for any (unbounded) adversary A it should hold that:

Pr

[
msg 6= msg′

∣∣∣∣∣ (c,msg, d,msg′, d′)← A(1m),

1← Open(msg, c, d), 1← Open(msg′, c, d′)

]
≤ negl(m)

Well-formed Commitments: Let val(·) be a function which takes an arbitrary commitment c as an input. val
outputs msg if ∃ unique msg such that Open(msg, c, ·) = 1, and outputs ⊥ otherwise.

Definition 5 (Tag-based Commitment Scheme [LPS17]). A commitment scheme (Com,Open) is a
tag-based commitment scheme with τ(m) number of tags if, in addition to the the message msg, the sender
(committer) and receiver also receive a “tag” of length poly(log(τ(m))) as common input.

If τ(m) is exponential in security parameter m, we omit the prefix τ(m) and refer to the commitment
scheme as simply a tag-based commitment scheme.
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Man In The Middle Execution (MIM): Let (Com,Open) be a tag-based commitment scheme, and A an
adversary. For security parameter m, consider the following interactions by A(1m):

– Left interaction: A(1m) interacts with the sender and receives commitment to a message msg of length
m using identity tag as c← Com(msg, tag).

– Right interaction: A(1m) interacts with the receiver and tries to commit to related message m̃sg using
identity ˜tag of its choice. Specifically, for the commitment c̃ sent to the receiver, let m̃sg = val(c̃).
Furthermore, if ˜tag = tag, then we set m̃sg = ⊥.

Let mimA
C (msg) denote the random variable that describes m̃sg that A commits to in the right interaction

along with its output in the MIM execution MIMA
C (msg) as described above.

Definition 6 (O(1/p(m))-Non-Malleability against G [LPS17]).

A tag-based commitment scheme C = (Com,Open) is said to be O(1/p(m))-non-malleable against G if ∀
A ∈ G, the following ensembles are indistinguishable,{

mimA
C (msg0)

}
m∈N,msg0∈{0,1}m

G,O(1/p(m))
≈

{
mimA

C (msg1)
}
m∈N,msg1∈{0,1}m

.

2.4 P-Certificates

We first define the notion of a P-certificate, introduced by [CLP13], and then discuss candidate instantiations
of the assumption. The following exposition is based heavily on that of [CLP13].

Roughly speaking, we say that (P,V) is a P-certificate system if (P,V) is a non-interactive proof system
(i.e., the prover sends a single message to the verifier, who either accepts or rejects) allowing an efficient
prover to convince the verifier of the validity of any deterministic polynomial-time computation M(x) = y
using a “certificate” of some fixed polynomial length (independent of the size and the run-time of M) whose
validity the verifier can check in some fixed polynomial time (independent of the run-time of M); that is, any
deterministic polynomial-time computation can be certified using a “short” certificate that can be “quickly”
verified.

Formally, we consider the following canonical languages for P: for every constant c ∈ N, let Lc =
{(M,x, y) : M(x) = y within |x|c steps }. Let TM (x) denote the run-time of M on input x.

Definition 7 (P-certificate). A pair of probabilistic interactive Turing machines, (Pcert, Vcert), is a P-
certificate system if there exist polynomials gP , gV , ` such that the following holds:

– Efficient Verification: On input c ≥ 1, 1n and a statement q = (M,x, y) ∈ Lc, and π ∈ {0, 1}∗, Vcert runs
in time at most gV (n+ |q|);

– Completeness by a Relatively Efficient Prover: For every c, d ∈ N, there exists a negligible function negl(·)
such that for every n ∈ N and every q = (M,x, y) ∈ Lc such that |q| ≤ nd,

Pr[π ← Pcert(c, 1
n, q) : Vcert(c, 1

n, q, π) = 1] ≥ 1−negl(n).

Furthermore, Pcert on input (c, 1n, q) outputs a certificate of length `(n) in time bounded by gP (n+ |M |+
TM (x)).

– Soundness: For every c ∈ N , and every PPT P∗, there exists a negligible function negl(·) such that for
every n ∈ N,

Pr[(q, π)← P∗(c, 1n) : Vcert(c, 1
n, q, π) = 1 ∧ q /∈ Lc] ≤ negl(n).

On the Existence of P-certificates. In the plain model, a candidate construction of uniformly computationally-
sound P-certificate systems come from Micali’s CS-proofs [Mic00]. These constructs provide short certificates
even for all of NEXP. However, since we here restrict to certificates only for P, the assumption that these
constructions are sound P-certificates is falsifiable [Nao03]: Roughly speaking, we can efficiently test if an
attacker outputs a valid proof of an incorrect statement, since whether a statement is correct or not can be
checked in deterministic polynomial time.
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2.5 Incomputable and Incompressible Functions

Definition 8 (Incomputable Function [AASY16]). A function ψ : {0, 1}n → {0, 1}m is incomputable
by a function class C if ψ is not contained in C. We say that f is ε-incomputable by C if for every function
C : {0, 1}n → {0, 1}m in C, Pr [C(x) = f(x)] ≤ 1

2m + ε for uniform random x← {0, 1}n.

Definition 9 (Incompressible Function [DI06]). A function f : {0, 1}n → {0, 1}m is incompressible
by a function C : {0, 1}n → {0, 1}` if for every function D : {0, 1}` → {0, 1}m, there exists x ∈ {0, 1}n
such that D(C(x)) 6= f(x). We say that f is ε-incompressible by C if for every function D : {0, 1}` →
{0, 1}m, Pr [D(C(x)) = f(x)] ≤ 1

2m + ε for uniform random x← {0, 1}n. We say that f is `-incompressible
(resp. (`, ε)-incompressible) by a class C if for every C : {0, 1}n → {0, 1}` in C, f is incompressible (resp. ε-
incompressible) by C.

Definition 10 (Non-deterministic Circuits and NP Circuits [AASY16]). A non-deterministic
circuit C has additional “non-deterministic input wires.” We say that the circuit C evaluates to 1 on x if
and only if there exists an assignment to the non-deterministic wires that makes C output 1 on x. An oracle
circuit C(·) is a circuit which in addition to the standard gates uses an additional gate (potentially with large
fan-in). When instantiated with specific boolean function A, CA is the circuit in which the additional gate is
A. Given boolean function A(x), an A-circuit is a circuit that is allowed to use A gates in addition to the
standard gates. An NP-circuit is a SAT -circuit (where SAT is the satisfiability function).

The size of all circuits is the total number of wires and gates.

We now present commonly used assumptions in the derandomization literature to explicitly construct
pseudorandom generators. [BFNW93, NW94, STV01, KVM02, SU06, SU09, FL97, MV05, TV00, SU05,
GW02, GSTS03, BOV07, Dru13]:

Assumption 2 (E is hard for exponential size X-circuits) There exists a problem L in E =
DTIME(2O(n)) and a constant β > 0, such that for every sufficiently large n, X-circuits of
size 2βn fail to compute the characteristic function of L on inputs of length n, where X ∈
{non-deterministic, co-non-deterministic, NP}.

Theorem 2 (Theorem 1.3, 1.10 [AASY16]). If E is hard for exponential size X-circuits, where X ∈
{non-deterministic, co-non-deterministic, NP} (Assumption 2), then for every constant c > 1 there exists
a constant a > 1 such that for every sufficiently large n, and every r such that a log n ≤ r ≤ n there is a
function ψ : {0, 1}r → {0, 1} that is n−c-incomputable for size nc X-circuits, Furthermore, ψ is computable
in time poly(nc) (or poly(n)).

2.6 NIZK without CRS Against Uniform Adversaries

We next define NIZK without CRS against uniform adversaries and NIWI.

Definition 11 (Non-Interactive Zero Knowledge [Sah99]). Π = (P,V,Sim) is an efficient single-
theorem non-interactive zero knowledge proof system with soundness against uniform Tsound(n)-time
adversaries and zero-knowledge against non-uniform TZK(n)-time adversaries for language L ∈ NP with
witness relation W , if the following are true:

– Completeness: For all x ∈ L, and all w such that W (x,w) = 1, we have V(x,P(x,w))) = 1
– Soundness against Tsound(n): For all uniform adversaries A running in time Tsound(n), Pr[V(x, π) = 1] ≤

negl(n). Where, (x, π)← A(1n) and x /∈ L.
– Single-Theorem Zero Knowledge against TZK(n): For all non-uniform
TZK(n)-time adversaries A = (A1, A2) we have that

|Pr[ExptA(n) = 1]− Pr[ExptSim
A (n) = 1]| ≤ negl(n)

for following experiments ExptA(n) and ExptSim
A (n), where Sim is PPT and receives td as non-uniform

advice.
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ExptA(n):

(x,w, κ)← A1(1n)
π ← P(x,w)
returnA2(π, κ)

ExptSim
A (n):

(x,w, κ)← A1(1n)
π ← Sim(x, td)
returnA2(π, κ)

We now also define witness indistinguishablity as additional property of a proof system Π.

Definition 12 (Witness Indistinguishability against TWI(n)-time adversaries). Let Π be a non-
interactive proof system with prover P and verifier V for language L ∈ NP and witness relation W : {0, 1}∗ →
{0, 1}∗. We say Π is witness indistinguishable if ∀ non-uniform TWI(n)-time verifier V∗ and ∀x ∈ L, and
∀w,w′ such that W (x,w) = W (x,w′) = 1, the view of V∗ when interacting with P(x,w) is computationally
indistinguishable from its view when interacting with P(x,w′).

In the remainder of this section, we focus on instantiations of the above primitives.

Theorem 3 ([BOV07]). Assume that E is hard for exponential size co-non-deterministic circuits and that
(subexponentially secure) trapdoor permutations (resp. one-way functions) exist. Then every language in NP
has a (sub-exponentially indistinguishable) NIWI proof system (resp. non-interactive commitment scheme).

Moreover, by correctly setting the output length of the commitment scheme in terms of the security
parameter n, we obtain a non-interactive perfectly binding and computationally hiding commitment scheme,
such that given a commitment c, the committed message (i.e., val(c)) can be computed by a 2n

ε

-time
algorithm, where n is the security parameter and ε is some constant.

To go from NIWI to NIZK, one can apply the well-known FLS technique [FLS99]. The simulator is
provided with a trapdoor via non-uniform advice, which is not known to the uniform adversary in the real
world. Note that we choose the trapdoor such that it can be obtained by a uniform adversary running
in super-polynomial (sub-exponential) time. Formally, [BP04] show how to construct NIZK without CRS
against uniform adversaries under the following assumptions:

Assumption A: There exists a NIWI proof system for every language L ∈ NP with WI against
sub-exponential adversaries.

Assumption B: There exists a non-interactive perfectly binding and computationally hiding commitment
scheme, such that given a commitment, the message can be computed by a 2n

ε

-time algorithm, where
n is the security parameter and ε is some constant.

Assumption C: There exists a language ∆ ∈ P and constants ε1 < ε2 < 1 such that:
∆ is hard to sample in time 2n

ε1
: For every probabilistic 2n

ε1
-time algorithm A, the probability that

A(1n) ∈ ∆ ∩ {0, 1}n is negligible.
∆ is easy to sample in time 2n

ε2
: There exists a 2n

ε2
algorithm S∆ such that for every n ∈ N ,

Pr[S∆(1n) ∈ ∆ ∩ {0, 1}n] = 1.

Theorem 4 ([BP04]). Under Assumptions A, B and C, there exists a NIZK argument system without
CRS for NP with soundness against sub-exponential uniform adversaries and zero-knowledge against sub-
exponential adversaries.

Lemma 1. If E is hard for exponential size non-deterministc circuits and P-cert with soundness against
sub-exponential adversaries exists, then Assumption C is true.

Proof (Sketch.). The assumption that E is hard for exponential size nondeterministc circuits implies the
existence of a function ψ′′ that has input length c1 · log(n), can be computed in time O(nc2) and no non-
deterministic circuit of size nc3 can compute ψ′′ with better than 1/2 + 1/nc3 -probability.
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Let ∆ be the following language: x = (x′, π) ∈ ∆ if ψ′′(x′) = 1 and π is a valid P-cert proving that
ψ′′(x′) = 0.

We first show that ∆ 6= ∅.
Assume ∆ = ∅, then to compute ψ′′(x′), it would be sufficient to non-deterministically check whether

there exists a valid P-certificate for x′. But since x′ has length O(log n), P-cert has fixed polynomial length

nc
4

, the verifier of the P-cert runs in fixed polynomial time nc5 . By appropriately setting parameters so that
c5 ≤ c3, we obtain a non-deterministic circuit of size at most nc3 that computes ψ′′, leading to contradiction.

Finally, ∆ is hard to sample in sub-exponential time 2n
ε1

, due to the soundness of the P-cert. Moreover,
padding the statements in the language appropriately (i.e. statements are now of the form (x′, π)||0`, for
appropriate choice of ` ∈ poly(n), allows us to do a brute force search over the length of the input (x′, π) to
find (x′, π)||0` ∈ ∆ in time 2n

ε2
.

Corollary 1. Assuming that E is hard for exponential size (co-)non-deterministic circuits, the existence of
sub-exponential trapdoor permutations, and the existence of P-cert with soundness against sub-exponential
adversaries, there exists a NIZK argument system without CRS for NP with soundness against sub-
exponential uniform adversaries and zero knowledge against sub-exponential adversaries.

3 Construction for Multi-Bit Messages

Let C = (Com,Open) be a tag-based, non-interactive commitment scheme that is perfectly binding
(see Definition 2.3). Let ΠNI = (PNI,VNI,SimNI) be a non-interactive simulatable proof system. Let
S = (Gen,Sign,Ver) be a one-time signature scheme. Let D0, D1 be disjoint distributions over {0, 1}n. For
b := b1, . . . , bm ∈ {0, 1}m, Db denotes a draw from the product distribution (Db1 , . . . , Dbm). We define the
following language:

Language L: s := ([xi]i∈[m], c, tag) ∈ L iff ∃b := b1, . . . , bm ∈ {0, 1}m such that for i ∈ [m], xi = (xi1, . . . , x
i
n)

is in the support of Dbi and c is a commitment to b under tag.

The construction is presented in Figure 2:

E(b := b1, . . . , bm):

1. Choose (vk, sk)← Gen(1n
′
), where n′ � n. We assume WLOG |vk| = n′.

2. Sample x := x1, . . . ,xm ← Db, where for i ∈ [m], xi = xi1, . . . , x
i
n.

3. Compute (c,d)← Com(b, tag := vk).
4. Compute a non-interactive, simulatable proof T proving ([xi]i∈[m], c, vk) ∈ L.
5. Compute σ ← Sign(sk, ([xi]i∈[m], c, T )).
6. Output CW := (vk, [xi]i∈[m], c, T, σ).

D(CW):

1. Parse CW := (vk, [xi]i∈[m], c, T, σ)
2. Check that Ver(vk, σ, ([xi]i∈[m], c, T )) = 1.
3. Check that VNI outputs 1 on proof T .
4. If yes, output [bi]i∈[m] such that for all i ∈ [m], xi1, . . . , x

i
n is in the support of Dbi . If not, output 0.

Fig. 2. Non-malleable code (E,D), secure against F tampering.
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E1(td, b := b1, . . . , bm):

1. Choose (vk, sk)← Gen(1n
′
)

2. Sample x := x1, . . . ,xm ← Db, where for i ∈ [m], xi = xi1, . . . , x
i
n.

3. Compute (c,d)← Com(b, tag := vk).
4. Simulate, using td, a non-interactive proof T ′ proving s := ([xi]i∈[m], c, vk) ∈ L.
5. Compute σ ← Sign(sk, ([xi]i∈[m], c, T

′)).
6. Output CW := (vk, [xi]i∈[m], c, T

′, σ).

Fig. 3. Encoding algorithm with simulated proof.

E2(td, b := b1, . . . , bm):

1. Choose (vk, sk)← Gen(1n
′
)

2. Sample x := x1, . . . ,xm ← Db, where for i ∈ [m], xi = xi1, . . . , x
i
n.

3. Compute (c′,d′)← Com(0, tag := vk).
4. Simulate, using td, a non-interactive proof T ′ proving s := ([xi]i∈[m], c

′, vk) ∈ L.
5. Compute σ ← Sign(sk, ([xi]i∈[m], c

′, T ′)).
6. Output CW := (vk, [xi]i∈[m], c

′, T ′, σ).

Fig. 4. Encoding algorithm with simulated proof and commitments.

D′(CW) := D′2(D′1(CW)):

D′1(CW):

1. Parse CW := (vk, [xi]i∈[m], c, T, σ)
2. Check that Ver(vk, σ, ([xi]i∈[m], c, T )) = 1.
3. Check that VNI outputs 1 on proof T
4. If not, output ⊥, where ⊥ is a special symbol.
5. If yes, output (c, tag := vk).

D′2(c, tag := vk):

1. If c = ⊥, output [0]i∈[m] and terminate.

2. Otherwise, check if there exists a string d and a string b̃ such that Open(d, c, vk, b̃) = 1. If yes, output b̃.
Otherwise, output [0]i∈[m].

Fig. 5. Alternate decoding procedure D′.

g(CW,CW∗):

1. Parse CW = (vk, [xi]i∈[m], c, T, σ), CW∗ = (vk∗, [x∗i]i∈[m], c
∗, T ∗, σ∗).

2. If vk = vk∗ and Ver(vk∗, σ∗, ([x∗i]i∈[m], c
∗, T ∗)) = 1 then output 1. Otherwise output 0.

Fig. 6. The predicate g(CW,CW∗).
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Let Ψ(p, x, y, z) be defined as a function that takes as input a predicate p, and variables x, y, z. If p(x, y) =
1, then Ψ outputs the m-bit string 0. Otherwise, Ψ outputs z.

Theorem 5. Let (E,D), E1, E2, D′ and g be as defined in Figures 2, 3, 4, 5 and 6. Let F be a computational
class. If, for every pair of m-bit messages b0, b1 and for every tampering function f ∈ F , all of the following
hold:

– Simulation of proofs.

1. Pr[g(CW0, f(CW0)) = 1]
negl(n)
≈ Pr[g(CW1, f(CW1)) = 1],

2. Ψ(g,CW0, f(CW0),D(f(CW0)))
PPT,negl(n)
≈ Ψ(g,CW1, f(CW1),D(f(CW1))),

where f ∈ F , CW0 ← E(b0) and CW1 ← E1(td, b0).
– Simulation of Commitments.

1. Pr[g(CW1, f(CW1)) = 1]
negl(n)
≈ Pr[g(CW2, f(CW2)) = 1],

2. Ψ(g,CW1, f(CW1),D(f(CW1)))
PPT,negl(n)
≈ Ψ(g,CW2, f(CW2),D(f(CW2))),

where f ∈ F , CW1 ← E1(td, b0) and CW2 ← E2(td, b0).
– Simulation Soundness.

Pr[D(f(CW2)) 6= D′(f(CW2)) ∧ g(CW2, f(CW2)) = 0] ∈ O(1/nc),

where f ∈ F , CW2 ← E2(td, b0).
– Hardness of Db relative to Alternate Decoding.

1. Pr[g(CW2, f(CW2)) = 1]
PPT,O(1/nc)

≈ Pr[g(CW3, f(CW3)) = 1],
2. For every Boolean function, represented by a circuit F over m variables,

F ◦ D′(f(CW2))
stat,O(1/nc)
≈ F ◦ D′(f(CW3)),

where CW2 ← E2(td, b0), and CW3 ← E2(td, b1).

Then the construction presented in Figure 2 is a O(1/nc)-non-malleable code for class F .

We present the proof of Theorem 5 in Section 4.

4 Generic Analysis

In this section, we prove Theorem 5.

Fix b ∈ {0, 1}m. We take g to be the predicate that is used in the MediumNMf
b,g(n) tampering

experiment. Let CW← E(b). We must show that for every f ∈ F ⊂ P,

Pr[g(CW, f(CW)) = 1] ∧ D(f(CW)) 6= b] ≤ negl(n).

Let CW := (vk, [xi]i∈[m], c, T, σ) and let f(CW) := (vk∗, [x∗i]i∈[m], c
∗, T ∗, σ∗). If g(CW, f(CW) = 1, it

means that vk = vk∗ and Ver(vk∗, σ∗, ([x∗i]i∈[m], c
∗, T ∗)) = 1 On the other hand, if D(f(CW)) 6= b, it must

mean that ([xi]i∈[m], c, T ) 6= ([x∗i]i∈[m], c
∗, T ∗) But in this case we obtain a PPT adversary A that sees

a single signature (σ) on message message ([xi]i∈[m], c, T ) under verification key vk and produces a valid
signature σ∗ on message ([x∗i]i∈[m], c

∗, T ∗) 6= ([xi]i∈[m], c, T ) under challenge verification key vk, thus leading
to a contradiction to the security of the one-time signature scheme S.

Next, we must show that for any b0, b1 and any tampering function f ∈ F ,

{MediumNMf
b0,g
}n∈N

PPT,O(1/nc)
≈ {MediumNMf

b1,g
}n∈N

To do so we consider the following hybrid argument:

17



Hybrid 0: The real game, MediumNMf
b0,g

, where the real encoding CW0 ← E(b0) and the real decoding
oracle D are used.

Hybrid 1: Replace the encoding from the previous game with CW1 ← E1(td, b0).

Hybrid 2: Replace the encoding from the previous game with CW2 ← E2(td, b0).

Hybrid 3: Replace the decoding from the previous game, with D′(f(CW2)).

Hybrid 4: Same as Hybrid 3, but replace the encoding with CW3 ← E2(td, b1).

The proofs of indistinguishability of consecutive hybrids follow identically to [BDKM18].

5 Multi-Bit NMC Against Bounded Poly Adversaries

We describe the underlying components required to instantiate the generic construction. The tampering class
F corresponds to (uniform) tampering functions that run in time O(ncA), where n is security parameter.
The length of the encoding is L := O(nc`), for some fixed constant c`. Therefore, the tampering function is
allowed to run in time LcA/c` with respect to the input length L.

Let n be the input length for the hard distribution described in Section 5.1. We fix polynomials tψ(n) =
ncψ , tcom(n) = nccom where cψ, ccom are constants (both greater than cA) and superpolynomial time bounds
Tcom(n), T ′NIZK(n), TZK(n). such that

– cψ � ccom,
– T ′NIZK(n)� Tcom(n),
– TZK(n) is subexponential.

The distribution described in Section 5.1 is hard for tψ(n)-time adversaries. m · λ � n is the length of
the m-bit commitment using the commitment scheme described in Section 5.2, n is set such that m ·λ+n′ ≤
(m + 1) · λ ∈ o(n) (so n is asymptotically larger than the length of the commitment–m · λ–plus the length
of the tag–n′.). These commitments are hiding for polynomial-time adversaries and quasi-non-malleable
for adversaries in BPtime(Tcom(n))

⋂
SIZE(tcom(n)). The the non-interactive simulatable proof system in

Section 5.3 has soundness against uniform, poly-time adversaries and zero knowledge against TZK(n) time
adversaries.

5.1 The Hard Distribution Db (instance length n, hard against tψ(n)-time adversaries)

The following theorem is from [AASY16]:

Theorem 6. If E is hard for exponential size nondeterministic circuits, then for every constant cψ > 1,
there exists a constant d > 1 such that for every sufficiently large n, there is a function ψ : {0, 1}n → {0, 1}
that is (`, n−cψ )-incompressible for size ncψ circuits, where ` = n − d · log n. Furthermore, ψ is computable
in time poly(ncψ ) ∈ O(nccom).

Setting parameters n, cψ, d as above, we let Db be the uniform distribution over x← {0, 1}n, conditioned
on ψ(x) = b. The theorem above immediately implies the following:

Claim. Let n, cψ, d, ψ be as above, let F̃ be any Boolean function over (m+ 1) · λ ≤ n− d · log n < (1− α)n
variables, and let C be a size ncψ circuit with input length n and output length m. Then, over random choice
of x← {0, 1}n, F̃ ◦ C(x) has correlation at most 1/n−cψ with ψ(x).
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5.2 Commitment scheme C = (Com,Open) (length λ� n, hiding for poly-time adversaries,
and quasi non-malleable against adversaries in BPtime(Tcom(n))

⋂
SIZE(tcom(n)))

We instantiate the commitment scheme C = (Com,Open) with the scheme presented in Section 7. Recall
that the scheme has the following properties:

– Non-interactive with no-CRS.
– Perfectly binding,
– Quasi-non-malleable against in BPtime(Tcom(n))

⋂
SIZE(tcom(n)).

5.3 Non-Interactive Simulatable Proof System (Sound against uniform ppt adversaries, ZK
against adversaries running in time TZK(n))

Let Π = (P,V,Sim) be a NIZK proof system for NP with no CRS (Construction given in Section 2.6) with
soundness against uniform adversaries running in time TNIZK(n). We additionally require that the trapdoor
can be extracted by uniform adversaries running in time T ′NIZK(n).

Let C′ = (Com′,Open′) be a non-interactive, perfectly binding, commitment scheme with no CRS that
can be extracted in time TNIZK(n) and is hiding against adversaries running in time TZK(n).

We also assume the existence of P-certificates with soundness against adversaries running in time
TNIZK(n).

We define the proof system ΠNI = (PNI,VNI,SimNI) for language L defined in Section 3 as follows:

PNI: Recall that a witness w for statement s := ([xi]i∈[m], c, tag) ∈ L consists of a string b = b1, . . . , bm and
an opening d such that (1) Open(c, b, tag) = 1 and (2) for all i ∈ [m], ψ(xi) = bi. Given a statement s
and witness w, let P be a P-certificate that (1) and (2) hold.
Invoke P from proof system Π with the statement s′ = (s, com) ∈ L′ using proof system Π, where
L′ is the language consisting of strings (s, com) such that com is a commitment to (w,P ) and P is a
P-certificate that (1) and (2) hold for (s, w). P outputs a proof π′. PNI outputs proof π = com||π′.

VNI: On input statement s, proof π and language L: Parse π := com||π′. Run the underlying verifier V on
π′ for statement (s, com) and language L′ and output whatever it does.

SimNI: On input (td, x), and language L: Set com to a commitment to 0 and invoke the underlying Sim for
Π with input (td, (s, com)) and language L′.

Note that given the P-certificate P , computing the NIZK proof using ΠNI can be done in fixed polynomial
time in the length of the statement (s, com). Moreover, given the trapdoor td, a simulated proof can also be
computed in fixed polynomial time. The following claim is straightforward.

Claim. Given the above assumptions, ΠNI = (PNI,VNI,SimNI) is a NIZK argument system for language L
with zero knowledge against adversaries running in time TZK(n) and trapdoor that can be extracted in time
T ′NIZK(n).

5.4 Main Theorem

Theorem 7. For any constant cA > 1, Π = (E,D) (presented in Figure 2) is a multi-bit, non-malleable code
against (uniform) tampering functions that run in time O(ncA), if parameters cψ, ccom, Tcom(n), T ′NIZK(n),
TZK(n) are chosen as described above and the underlying components are instantiated in the following way:

– For b ∈ {0, 1}, Db is the distribution from Section 5.1.
– C := (Com,Open) is the commitment scheme from Section 5.2.
– ΠNI := (PNI,VNI,SimNI) the simulatable proof system from Section 5.3.
– S := (Gen,Sign,Ver) is any one-time signature scheme secure against PPT adversaries.
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Proof. To prove the theorem, we need to show that the necessary properties from Theorem 5 hold. We next
go through these one by one.

Simulation of proofs.

1. Pr[g(CW0, f(CW0)) = 1]
negl(n)
≈ Pr[g(CW1, f(CW1)) = 1],

2. Ψ(g,CW0, f(CW0),D(f(CW0)))
PPT,negl(n)
≈ Ψ(g,CW1, f(CW1),D(f(CW1))),

where f ∈ F , CW0 ← E(b0) and CW1 ← E1(td, b0).

This follows by ZK property of ΠNI.

Simulation of Commitment.

1. Pr[g(CW1, f(CW1)) = 1]
negl(n)
≈ Pr[g(CW2, f(CW2)) = 1],

2. Ψ(g,CW1, f(CW1),D(f(CW1)))
PPT,negl(n)
≈ Ψ(g,CW2, f(CW2),D(f(CW2))),

where f ∈ F , CW1 ← E1(td, b0) and CW2 ← E2(td, b0).

This follows from hiding property of the commitment scheme C.

Simulation Soundness.

Pr
r

[D(f(CW2)) 6= D′(f(CW2)) ∧ g(CW2, f(CW2)) = 0] ∈ O(1/nccom),

where f ∈ F , CW2 ← E2(td, b0).

We begin by defining the following:

P0(n) := Pr[D(f(CW0)) 6= D′(f(CW0)) ∧ g(CW0, f(CW0)) = 0],

where f ∈ F , CW0 ← E(b0)

P1(n) := Pr
r

[D(f(CW1)) 6= D′(f(CW1)) ∧ g(CW1, f(CW1)) = 0],

where f ∈ F , CW1 ← E1(td, b0)

P2(n) := Pr
r

[D(f(CW2)) 6= D′(f(CW2)) ∧ g(CW2, f(CW2)) = 0],

where f ∈ F , CW2 ← E2(td, b0).

We prove the following sequence of claims, which immediately imply the simulation soundness property.

Claim. P0(n) ∈ negl(n).

Since D(f(CW1)) 6= D′(f(CW1)) can only occur if the NIZK proof verifies, but the statement being proved
is false, this follows from the soundness of the NIZK proof system ΠNI.

Claim. |P1(n)− P0(n)| ∈ negl(n).

This holds due to complexity leveraging–i.e. by appropriately setting parameters, one can check whether
the statement being proved is true or false (by deciding whether x is in the support of D0 or D1 and by
extracting from the commitment scheme) without distinguishing a real from simulated proof since TZK(n)
is subexponential.
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Claim. |P2(n)− P1(n)| ∈ O(1/nccom).

Proof. Assume |P2(n) − P1(n)| /∈ O(1/nccom), we will construct an adversary/distinguisher (A,D) in
BPtime(Tcom(n))

⋂
SIZE(tcom(n)) that breaks the O(1/nccom)-non-malleability of commitment scheme C.

Specifically, we must show an adversary A, distinguisher D in BPtime(Tcom(n))
⋂

SIZE(tcom(n)) such that
D distinguishes the output of mimA

C (b0) from mimA
C (0) with advantage a(n) /∈ O(1/nccom).

A = (A1, A2) is specified as follows:

On input security parameter 1n, A1 does as follows:

– A1 generates keys (vk, sk)← Gen(1n)
– A1 runs in uniform time T ′NIZK(n) ≤ Tcom(n) to recover the trapdoor td of the NIZK.
– A1 outputs tag := vk to its challenger as the desired tag and outputs td, sk to A2.

On input td, sk, vk, c, A2 does as follows:

– For i ∈ [m], sample xi ∼ Dbi (in time m · poly(ncψ ) ∈ O(nccom), where poly is a fixed polynomial.
– Use td to generate a simulated proof T in fixed polynomial time and compute σ ←

Sign(sk, ([xi]i∈[m], c, T )) in fixed polynomial time.

– Compute f(vk, [xi]i∈[m], c, T, σ) = [vk′,x
′i]i∈[m], c

′, T ′, σ′).
– If the predicate g evaluates to 1, the signature σ′ or proof T does not verify, output ⊥ (this computation

takes fixed polynomial time).
– Otherwise, output (c′, out := [x

′i]i∈[m]). Note that in this case, vk′ 6= vk (corresponding to the tag of the
commitment) since g evaluates to 0 and σ verifies.

Distinguisher D receives the committed value v′ = v′1, . . . , v
′
m underlying c′ (or receives ⊥) as well as out

(the additional output of adversary A). D outputs 0 if for all i ∈ [m], v′i = ψ(xi) (or if its input is ⊥) and
outputs 1 otherwise (computed in time m · poly(ncψ ) ∈ O(nccom)).

Clearly,
Pr

c←Com(b0,vk)
[D(v′, out) = 1] = P2(n)

and
Pr

c←Com(0,vk)
[D(v′, out) = 1] = P1(n)

Thus, we have that∣∣∣∣ Pr
c←Com(b0,vk)

[D(v′, out) = 1]− Pr
c←Com(0,vk)

[D(v′, out) = 1]

∣∣∣∣ /∈ O(1/nccom).

Moreover, A,D are in BPtime(Tcom(n))
⋂

SIZE(tcom(n)). Thus, we obtain a contradiction to the O(1/nccom)
non-malleability of the commitment scheme against adversaries, distinguishers in BPtime(Tcom(n))

⋂
SIZE(tcom(n)).

Hardness of Db relative to Alternate Decoding.

1. Pr[g(CW2, f(CW2)) = 1]
O(1/ncψ )
≈ Pr[g(CW3, f(CW3)) = 1],

2. For every Boolean function, represented by a circuit F over m variables,

F ◦ D′(f(CW2))
stat,O(1/ncψ )

≈ F ◦ D′(f(CW3)),
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where f ∈ F , CW2 ← E2(td, b0) and CW3 ← E2(td, b1).

We consider a sequence of distributions where we switch the internal random variables of E2 from from
xi ← Dbi0

, for all i ∈ [m] to xi ← Dbi1
, for all i ∈ [m]. Namely, for each i ∈ {0, . . . ,m} we consider a

distribution where for j ≤ i, xj ← Dbi1
and for j > i, xj ← Dbi0

.

We must show that (1) and (2) hold for each consecutive pair of distributions. When considering the i-th
consecutive pair, fix all random variables except the i-th variable Xi to values x1, . . . ,xi−1,xi+1, . . . ,xm.
Let Xi be a random variable such that with probability 1/2, Xi ← Dbi0

and with probability 1/2, Xi ← Dbi1
.

Xi = Xi,γ where γ ← {0, 1}, and let random variable CWi denote the output of E2 when using random
variables x1, . . . ,xi−1,Xi,xi+1, . . . ,xm.

To show (1), assume Pr[g(CW2, f(CW2)) = 1] and Pr[g(CW3, f(CW3)) = 1] differ by a(n) /∈ O(1/ncψ ).
This implies that, for some i ∈ [m], there is a circuit that takes as input Xi, hardwires all other random
variables, and outputs 1 in the case that g(CWi, f(CWi)) = 1 and 0 otherwise, implying that it has a(n) /∈
O(1/ncψ ) correlation to ψ(Xi). We will show that the above can be computed by a circuit C of size ncψ

with input Xi, thus contradicting Claim 5.1, which (as a special case) says that a circuit of size ncψ has at
most O(1/(ncψ )) correlation with ψ(Xi). Details follow.

Given non-uniform advice td, f , we construct the distribution of circuits C1f,td. A draw C ∼ C1f,td is done
as follows:

1. Sample signature keys (vk, sk)← Gen(1n),
2. Sample random commitment to 0m: (c′,d′)← Com(0m, tag := vk),
3. Sample x1, . . . ,xi−1 from Dbi0

, and xi+1, . . . ,xm from Dbi1
.

4. Output the following circuit C that has the following structure:

– hardcoded variables: f , x1, . . . ,xi−1, c′, [T
′β,i
j ]β∈{0,1},i∈[m],j∈[n], x

1, . . . ,xi−1,xi+1, . . . ,xm.

– input: Xi.
– computes and outputs:

g(CW, f(CWi)).

Note that given all the hardwired variables, computing CWi can be done in ncψ time since it only
requires computing the simulated proof T and signature σ, which can both be done in fixed polynomial
time less than ncψ . Additionally, f can be computed in time ncA < ncψ . Finally, it can be seen that g
can be computed in fixed polynomial time less than ncψ (since it only involves comparison of strings and
signature verification, both of which take fixed polynomial time in the length of the input). Thus, the
entire circuit has size O(ncψ ).

To show (2), assume D′(f(CW2)) and D′(f(CW3)) have greater than 1/ncψ statistical distance. This
implies that there exists a distinguisher F (represented by an m-bit Boolean function) such that F ◦
D′(f(CW2)) is more than 1/ncψ -far from F ◦ D′(f(CW3)). This implies that, for some i ∈ [m], the output
of F ◦ D′(f(CWi)) is a(n) /∈ O(1/ncψ )-correlated with ψ(Xi). Note that, by definition, F ◦ D′(f(CWi)) =
F ◦D′2◦D′1(f(CWi)), where D′1 has output length (m+1)·λ (m·λ for the size of the non-malleable commitment
and λ for the length of the tag of the non-malleable commitment). We will show that D′1(f(CWi)) can be
computed by a circuit C of size O(ncψ ) (drawn from some distribution C over circuits) with input Xi. We
then use Claim 5.1, which says that if C is a size O(ncψ ) circuit taking inputs of length n bits and producing

outputs of length (m + 1) · λ < (1 − α)n-bits and and F̃ is any (m + 1) · λ < (1 − α)n-bit input Boolean

function then the output of F̃ (C(Xi)) is at most O(1/ncψ )-correlated with ψ(Xi), instantiating F̃ := F ◦D′2.
This yields a contradiction. Details follow.

Given non-uniform advice td, f , we construct the distribution of circuits C2f,td. A draw C ∼ C2f,td as follows:

1. Sample signature keys (vk, sk)← Gen(1n),
2. Sample random commitment to 0m: (c′,d′)← Com(0m, tag := vk),
3. Sample x1, . . . ,xi−1 from Dbi0

, and xi+1, . . . ,xm from Dbi1
.
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4. Output the following circuit C that has the following structure:

– hardcoded variables: f , x1, . . . ,xi−1, c′, [T
′β,i
j ]β∈{0,1},i∈[m],j∈[n], x

1, . . . ,xi−1,xi+1, . . . ,xm.

– input: Xi.
– computes and outputs:

D′1(f(CWi)).

Given all the hardwired variables, computing CWi can be done in time O(ncψ ) since it only requires
computing the simulated proof T and signature σ, which can both be done in fixed polynomial time
less than ncψ . Additionally, f can be computed in time ncA < ncψ , and D′1 can be computed in fixed
polynomial time less than ncψ , since it only involves verifying the signature σ and proof T , which both
take fixed polynomial time.

6 4-Tag Non-Malleable Commitment

Let C′′ := (Com′′,Open′′) be a non-interactive, statistically binding commitment scheme for m-bit messages.
Given security parameter t � m, Com′′ has circuit size t and is hiding against adversaries running in time

2t
ε′5 . Let ψ′ be a function, which on input length ` can be computed in time 2`, but is (1/2 + 1/`ε5)-hard for

NP circuits of size 2ε5·`.

Let c4, c3, c2, c1 be constants greater than 1 and let ε′1, ε
′
2, ε
′
3, ε
′
4 be constants less than 1 such that:

ε5 · c4 > c3, ε5 · c3 > c2, ε5 · c2 > c1 > ccom.

ε′5 · ε′1 > ε′2, ε
′
5ε
′
2 > ε′3, ε

′
5ε
′
3 > ε′4.

Com′(msg ∈ {0, 1}m, tag ∈ [4]):

1. Choose msg1,msg2 at random, conditioned on msg1 ⊕msg2 = msg.
2. Set t := nε

′
tag , ` := ctag · logn.

3. For i ∈ [m], sample xi ∈ {0, 1}`, at random such that ψ′(xi) = msg1i .
4. Compute (c, d)← Com′′(msg2, t).
5. Output commitment (c, [xi]i∈[m]) and decommitment (msg2, d).

Open′(msg, (c, [xi]i∈[m]), (msg2, d)):

1. Check that Open′′(msg2, c, d) = 1
2. For i ∈ [m], let msg1i := ψ′(xi).
3. If msg = msg1 ⊕msg2, output 1.
4. Otherwise, output 0.

Fig. 7. 4-tag Non-Malleable Commitment C′ = (Com′,Open′).

Theorem 8. Given C′′ and ψ′ as above, C′ is a O(1/nccom), 4-tag quasi-non-malleable commitment scheme
against non-uniform adversaries of size nccom with commitment length that is a fixed polynomial. Moreover,
ψ′ and C′′ as above can be instantiated under the assumptions that E is hard for exponential size NP-circuits
(via Theorem 2) and that sub-exponential one-way functions exist (via Theorem 3).

We show that C′ has the required properties:

Hiding. Hiding of C′ follows immediately from the hiding of the underlying commitment scheme C′′.
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Statistically Binding. The binding property follows from the fact that ψ′ is a function and the binding
property of the underlying commitment scheme C′′.
Non-Malleability. One-to-one non-malleability against adversaries running in time nε5·c1 . Assume tag = i
on the left and tag = j on the right, where i, j ∈ [4] and i 6= j. The left commitment has parameters t = nε

′
i

and ` = ci · log n and the right commitment has paramters t = nεj and ` = cj · log n.

Case 1: i < j. In this case, ε′5ε
′
i > ε′j . This means that we can extract the committed value from (c, [xi]i∈[m])

on the right in time 2n
ε′j

(using brute-force search and by evaluating ψ′ in polynomial time), while the

commitment c on the left is hiding against 2n
ε′j
< 2n

ε′5·ε
′
i -time adversaries.

Case 2: i > j. In this case, ε5ci > cj . This means that we can extract the committed value from (c, [xi]i∈[m])
with NP-circuits of size ncj (by evaluating ψ′ on x1, . . . , xm and extracting the committed value from

c with NP-circuit of size m · nε
′
j ), while the value committed by [xi]i∈[m] on the left is hiding against

ncj < nε5·ci-size NP circuits.

7 Tag Amplification

Let Ci−1 := (Comi−1,Openi−1) be a non-interactive, statistically binding commitment scheme for τi−1-tags.
Let Π = (P,V, Sim) be a NIZK argument system for language Li with no CRS, soundness against uniform
adversaries running in time TNIZK,i−1(n), with trapdoor that can be extracted in uniform time T ′NIZK,i−1(n),
and zero knowledge against subexponential adversaries. We construct commitment scheme C with τi :=

(
τi−1
2

)
number of tags. For convenience, we represent tags tag of the new commitment scheme as subsets of [τi−1] of
size τi−1/2. Note that there is an efficiently computable bijection between such tags and the set [

(
τi−1
2

)
].

Li: c′ = (c, com) ∈ Li using proof system Π, where Li is the language consisting of strings (c, com) such that
com is a commitment to P and P is a P-certificate that c = (c1, . . . , cτi−1/2) are all well-formed commitments
under Comi−1 to the same message..
Comi(msg ∈ {0, 1}m, tag ⊆ [τi−1], |tag| = τi−1/2):

1. Let tag1, . . . , tagτi−1/2
be a lexicographical ordering of the set tag.

2. For j ∈ [τi−1/2], compute (cj , dj)← Comi−1(msg, tagj).
3. Compute a proof π using proof system Π proving that all commitments commit to the same value.
4. Output commitment (c1, . . . , cτi−1/2, π) and decommitment information (d1, . . . , dτi−1/2).

Openi(msg, (c1, . . . , cτi−1/2, π), (d1, . . . , dτi−1/2):

1. Verify the proof π. If the proof does not verify, output 0 and terminate.
2. For all j ∈ [τi−1/2], check that Openi−1(msg, cj , dj) = 1.
3. If all check hold, output 1.
4. Otherwise, output 0.

Fig. 8. Amplification from τi−1-tag 1-1 NM Com to τi :=
(
τi−1
2

)
-tag 1-1 NM Com.

Theorem 9. Let N be subexponential in n. Assume the existence of primitives as described in Figure 8
such that for i ∈ [log∗N ], TNIZK,i−1(n) ≥ T ′NIZK,i(n) � TNIZK,i(n). Let C0 be instantiated with C′ from
Section 6. Then Clog∗N is a quasi-non-malleable commitment scheme with the following properties:

– The number of tags, τlog∗N = N .
– It is hiding against non-uniform ppt adversaries.
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– It is O(1/nccom)-non-malleable against adversaries, distinguishers in
BPtime(TNIZK,log∗ n(n))

⋂
SIZE(tlog∗ n(n)) (See Section 2.1 for the definition of this computational

class), where TNIZK,log∗N (n) = Tcom(n) and tlog∗N (n) = tcom(n).
– It has commitments of fixed polynomial length. By appropriately setting the security parameter, we may

assume the length is λ� n.

In order to satisfy that for all i ∈ [log∗N ], TNIZK,i−1(n) ≥ T ′NIZK,i(n) � TNIZK,i(n), we must obtain
a “tower” of uniform languages ∆1, . . . ,∆log∗N where for i ∈ [log∗N ], ∆i is hard to sample in time
TNIZK,i(n) and easy to sample in time T ′NIZK,in. Such a tower of (uniform) languages exists assuming
that Assumption C holds (see Section 2.6), since existence of a single ∆ with sub-exponential hardness
is sufficient for constructing a tower of languages ∆1, . . . ,∆log∗N of depth log∗N . Moroever, P-cert with
soundness against sub-exponential adversaries implies Assumption C (See the proof of Lemma 1 for more
details). Thus, P-cert with soundness against sub-exponential adversaries implies a “tower” of languages as
required above. Similar constructions of “towers” of assumptions in the non-uniform setting were established
in [KS17b].

Proof. It is clear that Clog∗N is a commitment scheme with N tags which is hiding against non-uniform ppt
adversaries and has commitments of fixed polynomial length. We therefore proceed to prove that Clog∗N is
non-malleable.

First, we note that C0 with C′ from Section 6, is non-malleable against adversaries, distinguishers in
SIZE(t0(n)), where t0(n) = nccom .

Next, we show that if Ci−1 is a commitment scheme that is non-malleable against adversaries,
distinguishers in BPtime(TNIZK,i−1(n))

⋂
SIZE(ti−1(n)) then Ci is a commitment scheme that is non-

malleable against adversaries, distinguishers in BPtime(TNIZK,i(n))
⋂

SIZE(ti(n)) (where ti−1(n)−ti(n) ∈
poly(n), for some fixed polynomial poly).

For compactness, we let DAi denote the computational class BPtime(TNIZK,i(n))
⋂

SIZE(ti(n)), for
i ∈ [log∗N ] and denote SIZE(t0(n)) for i = 0, in the remainder of the proof.

Recall that to prove non-malleability, we must show that for every pair of messages msg0,msg1 ∈ {0, 1}m

and any A ∈ DAi, mimA
Ci(msg0)

DAi,O(1/nccom )
≈ mimA

Ci(msg1).

Towards proving this, we specify below a sequence of hybrid distributions
H0, H1, H2, H2,0, . . . ,H2,τi−1/2, H3. Recall that in each hybrid distribution, the adversary receives an input
commitment of the form (tag, c1, . . . , cτi−1/2, π) and produces an output of the form (tag′, c′1, . . . , c

′
τi−1/2

, π′),
along with an output string out.

Random variables. We next introduce random variables that will be used in the analysis. For χ ∈
{H0, H1, H2,0, . . . ,H2,τi−1/2, H2, H3}, define random variable outχ to be the string out outputted by the
adversary in the corresponding hybrid.

For χ ∈ {H0, H1, H2,0, . . . ,H2,τi−1/2, H2, H3}, define random variable vχ` to be ⊥ if outputted proof π′

does not verify in hybrid χ, and otherwise, to denote the value committed in the `-th sub-commitment c′`,
output by the adversary in hybrid χ.

For χ ∈ {H0, H1, H2,0, . . . ,H2,τi−1/2, H2, H3}, define random variable vχdiff to be ⊥ if outputted proof π′

does not verify in hybrid χ, and otherwise, to denote the value committed in the `∗-th sub-commitment c′`∗ ,
output by the adversary in hybrid χ, where `∗ is the lexicographically first index such that tag′`∗ /∈ tag.

For χ ∈ {H0, H3}, define random variable vχcom to be the value committed to in (tag′, c′1, . . . , c
′
τi−1/2

, π′)

output in Hybrid χ. Note that if π′ does not verify, then vχcom must be set to ⊥.

Hybrid H0: This is the real world game, where the adversary receives commitments under Comi to msg0
with tag tag of its choice.

Hybrid H1: This Hybrid is the same as Hybrid H0, except the NIZK is replaced with a simulated proof,
using the NIZK trapdoor.
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Hybrids H2,0, H2,1, . . . ,H2,τi−1/2−1, H2,τi−1/2: In these Hybrid we start switching commitments
c1, . . . , cτi−1/2 from commitments to msg0 to commitments to msg1. Specifically, in Hybrid H2,j , for
j ∈ {0, . . . , τi−1/2}, commitments c`, for ` ≤ j are commitments to msg1 and commitments c`, for ` > j
are commitments to msg0. Note that H2,0 ≡ H1 and we define H2 := H2,τi−1/2.

Hybrid 3: This Hybrid is the same as Hybrid H2, except the simulated NIZK is switched back to a real
NIZK. Note that this Hybrid now corresponds to the real world game, where the adversary receives
commitments under Comi to msg1.

Claim. With all but negligible probability, vH0
com = vH0

1 = vH0
2 = · · · = vH0

τi−1/2
.

The claim holds due to the soundness of the i-th level NIZK against adversaries in DAi.

Claim.

(vH0

diff , out
H0)

PPT,negl(n)
≈ (vH1

diff , out
H1)

The claim holds due to complexity leveraging. Specifically, the zero knowledge property of the NIZK
holds against sub-exponential adversaries, who are strong enough to recover the committed values vH0

diff and

vH1

diff , given the output c′1, . . . , c
′
τi−1/2

.

Claim. For j ∈ [τi−1/2]:

(v
H2,j−1

diff , outH2,j−1)
DAi,O(1/nccom )

≈ (v
H2,jl

diff , outH2,j )

Proof. Assume there is an adversary/distinguisher (A = (A1, A2), D) in DAi for which the above is not true.
We will construct an adversary/distinguisher (A′ = (A′1, A

′
2), D′) in DAi−1, breaking the non-malleability

property of the (i− 1)-st level commitment.

A′1(1n) is specified as follows:

– A′1 runs A1(1n) and obtains output (tag, y) in time Ti(n) < Ti−1(n) (where tag is A1’s choice of tag and
y is additional output).

– A′1 runs in uniform time T ′i (n) ≤ Ti−1(n) to recover the trapdoor tdi for the i-th level (outer) NIZK.
– A′1 generates c1, . . . , cj−1 by calling

Comi−1(msg1, tag1), . . . ,Comi−1(msg1, tagj−1) and generates cj+1, . . . , cτi−1/2 by calling Comi−1(msg0, tagj+1), . . . ,Comi−1(msg1, tagτi−1/2).
– A′1 outputs tagj to its challenger, and outputs

(tdi, y, tag, c1, . . . , cj−1, cj+1, . . . , cτi−1/2) to A′2.

On input commitment cj , generated by a call to Comi−1 with tag tagj , and inputs either msg0, tagj or
msg1, tagj , and values (tdi, y, c1, . . . , cj−1, cj+1, . . . , cτi−1/2), generated by A′1, A′2(tdi, y, tag, c1, . . . , cτi−1/2) is
specified as follows:

– A′2 uses tdi to generate a simulated proof π in fixed polynomial time.
– Run A2 on input (y, tag, c1, . . . , cτi−1/2, π).
– Wait for A2 to output (c′1, . . . , c

′
τi−1/2

, π′, out).

– Output (⊥, out) if outputted proof π′ does not verify.
– Otherwise, output (c′`∗ , out), where `∗ is the lexicographically first index such that tag′`∗ /∈ tag. If none

exist, then output (⊥, out).

D′ is receives as input (v′j , out) outputted by the above experiment, where v′j is the committed value v′j
underlying c′`∗ (or ⊥ if the output of A′ is ⊥) and out is the output of A′. Clearly,

Pr
cj←Comi−1(msg0,tagj)

[D′(v′j , out) = 1] = Pr[D(v
H2,j−1

diff , outH2,j−1) = 1]

26



and
Pr

cj←Comi−1(msg1,tagj)
[D′(v′j , out) = 1] = Pr[D(v

H2,j

diff , outH2,j ) = 1].

Thus, we have that∣∣∣Prcj←Comi−1(msg0,tagj)
[D′(v′j , out) = 1]− Prcj←Comi−1(msg1,tagj)

[D′(v′j , out) = 1]
∣∣∣

/∈ O(1/nccom).
Moreover, A′, D′ are clearly in DAi−1. Thus, we obtain a contradiction to the O(1/nccom) non-malleability
of Comi−1 against adversaries in DAi−1.

Claim.

(vH2

diff , out
H2)

PPT,negl(n)
≈ (vH3

diff , out
H3).

The claim again holds due to complexity leveraging, as in the proof of indistinguishability for Hybrids
H0 and H1.

Claim.
vH3

com = vH3
1 = vH3

2 = · · · = vH3

τi−1/2
.

Again, the claim holds due to the soundness of the i-th level NIZK against BPtime(TNIZK,i(n))
adversaries.

Putting it all together, we get that for any adversary/distinguisher A,D ∈ BPtime(Ti(n))
⋂

SIZE(ti),
|Pr[D(vH0

com, out
H0) = 1]− Pr[D(vH3

com, out
H3) = 1]| ∈ O(1/nccom). This completes the proof of Theorem 9.
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