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Abstract. Since Cheon et al. introduced a homomorphic encryption
scheme for approximate arithmetic (Asiacrypt ’17), it has been recog-
nized as suitable for important real-life usecases of homomorphic en-
cryption, including training of machine learning models over encrypted
data. A follow up work by Cheon et al. (Eurocrypt ’18) described an
approximate bootstrapping procedure for the scheme. In this work, we
improve upon the previous bootstrapping result. We improve the amor-
tized bootstrapping time per plaintext slot by two orders of magnitude,
from ∼ 1 second to ∼ 0.01 second. To achieve this result, we adopt
a smart level-collapsing technique for evaluating DFT-like linear trans-
forms on a ciphertext. Also, we replace the Taylor approximation of the
sine function with a more accurate and numerically stable Chebyshev ap-
proximation, and design a modified version of the Paterson-Stockmeyer
algorithm for fast evaluation of Chebyshev polynomials over encrypted
data.
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1 Introduction

Homomorphic Encryption (HE) refers to a specific class of encryption schemes
which allows computing directly on encrypted data without having to decrypt.
Due to this special property, it has numerous potential applications in data-heavy
industries, where one challenge is to gain meaningful insights from data while
keeping the data itself private. Since the first construction of HE by Gentry [23],
the field has witnessed a lot of growth: more efficient schemes (e.g. [8, 9, 7,
22, 20, 17, 18]) have been proposed, and there has been various design and
implementations (e.g. [25, 4, 12, 10, 19, 6]) of confidential computing applications
using HE.

However, the HE-based solutions have two issues when we apply them to ap-
plications which requires arithmetic on real numbers. The first issue is plaintext
growth: the native plaintext in the HE schemes belong to a certain finite space.
In order to encrypt a real number, one needs to first scale it up to an integer, so
that the fractional part becomes the less significant digits. The size of this scaled
integer will grow as we perform homomorphic multiplications on the ciphertext.



Since the plaintext space is finite, after a certain number of multiplications, it is
impossible to recover the actual number. So, we need to perform “scale down and
truncate” operation on encrypted data. However, it is an expensive operation
since the available HE schemes only support addition and multiplication.

The second issue is ciphertext growth. Following Gentry’s blueprint, a fresh
encryption contains a small amount of “noise”, and the noise level grows as
operations are done on the ciphertext. It is necessary that the noise does not
overwhelm the actual data within a ciphertext. To achieve this, one could use
the Somewhat Homomorphic Encryption (SHE) approach, where the parameters
are scaled up with the level of the circuit to be evaluated so that noise overflow
is unlikely. Using SHE, both the ciphertext size and the performance overhead
of HE will grow at least linearly with the circuit level, hence this approach has
scaling issues. The other option is the Fully Homomorphic Encryption (FHE)
approach, which uses Gentry’s bootstrapping technique to refresh the noise in a
ciphertext, so that circuit of arbitrary level can be evaluated on a fixed set of
parameters. The FHE approach solves the ciphertext growth problem, with the
caveat being that bootstrapping is expensive in practice despite the continuous
effort in optimizations.

In 2017, Cheon et al. [16] proposed a HE scheme (denoted by CKKS scheme
from now) which performs approximate arithmetic on encrypted data, by intro-
ducing a novel encoding technique and a fast “scaling down” operation, which
effectively controls the growth of plaintext. Due to the nice properties, the CKKS
scheme performs well at tasks such as training a logistic regression over encrypted
data on a medium-sized data set with around 1000 samples [30]. Recently, a
bootstrapping algorithm for the CKKS scheme was proposed in [14]. Using the
bootstrapping procedure, one could train a logistic regression model over data
sets with more than 4× 105 samples in around 17 hours [29].

1.1 Previous Bootstrapping Method for CKKS

In the CKKS scheme, the cipehrtext modulus q decreases after each homomor-
phic multiplication, and decryption is correct if and only if the norm of the
message is smaller than q. Hence, one can only perform a certain number of se-
quential multiplications before q gets too low for the next multiplication. Hence,
bootstrapping amounts to the following function: giving a ciphertext ct with
modulus q encrypted under the secret sk such that

[〈ct, sk〉]q = m,

bootstrapping outputs a ciphertext ct′ in a larger modulus Q > q such that

[〈ct′, sk〉]Q ≈ m,

Note that we do not hope to have exact equality, due to the approximate nature
of CKKS.

Given this goal, the bootstrapping method in previous work [14] starts by the
following observation: if ct is a ciphertext with modulus q and message m(X),
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then for a larger modulus Q � q, the same ciphertext decrypts to t(X) =
m(X) + q · I(X) for a polynomial I(X) with small coefficients. The next step
approximately evaluates the modulo q function on coefficients to recover the
coefficients mi = [ti]q of the input plaintext. It is done by first taking the d-th
Taylor polynomial of the scaled exponential function exp(2πit/(2r · q)), raising
the polynomial to power 2r through repeated squaring, and finally take the
imaginary part and scale by q/(2π). In other words, we have an approximation
polynomial indexed by d and r:

Kd,r(t) =
q

2π

[
d∑
k=0

1

k!

(
2πit

2r · q

)k]2r
,

whose imaginary part approximates values of (q/2π) · sin(2πt/q) ≈ [t]q, as de-
sired. One issue remaining is that homomorphic operations are not performed
on coefficients but on plaintext slots. Before and after the evaluation of an ex-
ponential function, we have to shift the coefficients into the plaintext slots, and
vice versa. It can be done by evaluating the encoding and decoding algorithms
which are linear transformations on plaintext vectors.

Why the previous method does not scale well. There have remained some
efficiency issues in the previous work. First, the parameters of Kd,r(t) were cho-
sen by d = O(1) and r = O(log q) to guarantee the accuracy of approximation.
It requires only O(log q) homomorphic operations to evaluate the exponential
function, but the depth O(log q) is somewhat large. Meanwhile, the linear trans-
formations require only one level, but their complexity grows linearly with the
number of plaintext slots. As a result, the previous solution was not scalable
when a ciphertext is densely-packed, and it was not optimal with respect to the
level consumption.

1.2 Our Contributions

In this paper, we suggest two improvements upon the bootstrapping algorithm
in [14].

Linear Transforms To improve the linear transform step, we first observed
that the linear transforms involved in the bootstrapping process admit FFT-like
algorithms, which requires more levels but less operations. Then, in order to
fully explore the trade-off between level consumption and number of operations,
we adopted an idea from Halevi and Shoup in [27], which uses a dynamic pro-
gramming approach to decide the optimal level collapsing strategy for a generic
multi-leveled linear transforms. As a result, our linear transforms are faster while
being able to operate on 2-128x more slots, resulting in a large increase on the
bootstrapping throughput.
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Sine approximation Then, we used a Chebyshev interpolant to approximate
the scaled sine function, which not only consumes less levels but also is more
accurate than the original method. Our results indicate that in order to achieve
the same level of approximation error, our method only requires max{logK +
2, log log q} levels, whereas the previous solution requires O(log(Kq)) levels. Here
q is closely related to the plaintext size before bootstrapping, and K = O(λ) is
a small constant related to the security parameter.

In order to evaluate a Chebyshev interpolant of form
∑n
k=0 ckTk(x) efficiently

on encrypted inputs, we proposed a modified Paterson-Stockmeyer algorithm
which works for polynomials represented in Chebyshev base. As a result, our
approach requires O(

√
max{4K, log q}) ciphertext multiplications to evaluate

the sine approximation, which is asymptotically better compared to O(log(Kq))
in the previous work.

1.3 Related Works

There has been a few works which focus on improving the performance of boot-
strapping. In terms of throughput, the works [24, 28, 11] designed optimized
bootstrapping algorithms for BGV/BFV schemes. In terms of latency, the line
of work [20, 17, 18] designed a specific RLWE-based HE scheme suitable for
bootstrapping, and through extensive optimizations brought the bootstrapping
time down to 13 ms. However, the scheme encrypts every bit separately, and
bootstrapping needs to be performed after every single binary gate. Hence the
overhead is still quite large for it to be practical in large scale applications.

Our major point of comparison is [14], bootstrapping for the CKKS approx-
imate homomorphic encryption scheme. It is based on a novel idea of using a
scaled sine function 1

2π sin(2πt/q) to approximate the modulus reduction func-
tion [t]q.

1.4 Road map

In Section 2, we recall the constructions and properties of the CKKS scheme and
its bootstrapping algorithm. In Section 3, we describe our optimization of the
linear transforms. In Section 4, we discuss our optimization of the sine evalua-
tion step in CKKS bootstrapping using Chebyshev interpolants. We analyze our
improved bootstrapping algorithm and present performance results in Section 5.
Finally, we conclude in Section 6 with future research directions.

2 Background

2.1 The CKKS Scheme

We restate the CKKS scheme [16] below. For a power-of-two integer N , we
denote R = Z[X]/(XN + 1) be the ring of integers of the (2N)-th cyclotomic
field. A single CKKS ciphertext can encrypt a complex vector with ` ≤ (N/2)
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entries. To be precise, let ζ = exp(πi/2`) be a (4`)-th primitive root of unity
for a power-of-two integer 1 ≤ ` ≤ N/2. The decoding algorithm takes as the
input an element m(Y ) of the cyclotomic ring R[Y ]/(Y 2` + 1) and returns a
vector Decode(m) = (m(ζ),m(ζ5), . . . ,m(ζ4`−3)). Note that Decode is a ring
isomorphism between R[Y ]/(Y 2` + 1) and C`/2. If we identify m(Y ) with the
vector m = (m0, . . . ,m2`−1) of its coefficients, then the decoding algorithm can
be viewed a linear transformation whose matrix representation is given by

M` =


1 ζ ζ2 . . . ζ2`−1

1 ζ5 ζ5·2 . . . ζ5(2`−1)

...
...

...
. . .

...
1 ζ4`−3 ζ(4`−3)·5 . . . ζ(4`−3)(2`−1)

 ,
i.e., Decode(m) = M` ·m. The encoding algorithm is defined by its inverse.
When we implement the decoding function, we first define the special Fourier
transformation matrix

SF` =


1 ζ . . . ζ`−1

1 ζ5 · · · ζ5(`−1)

...
...

. . .
...

1 ζ4`−3 . . . ζ(4`−3)(`−1)

 ,
which is an `× ` square matrix satisfying M` = [SF`|i · SF`]. Then, the decoding
and encoding algorithms can be represented using the multiplication with SF`,
its inverse and some conjugations.

We embed plaintext polynomials in R[Y ]/(Y 2` + 1) into R[X]/(XN + 1) by
Y 7→ XN/2`. We say that a plaintext is fully packed (full-slot) when ` = N/2.
An encoded polynomial should be rounded to the closest integral polynomial in
R to be encrypted.

• Setup(1λ). Given the security parameter λ, choose a power-of-two integer N .
Set the distributions χkey, χerr, χenc on R for the secret, error, and encryption,
respectively. For a base integer p and the number of levels L, set the chain of
ciphertext moduli q` = p` for 1 ≤ ` ≤ L. Choose an integer P .

• Keygen(). Sample s ← χkey and set the secret key as sk ← (1, s). Sample
a ← U(RqL) and e ← χerr, and set the public key as pk ← (b, a) ∈ R2

qL for
b = −as + e (mod qL). Sample a′ ← RP ·qL , e

′ ← χerr and set evaluation key as
evk← (b′, a′) ∈ R2

P ·qL for b′ = −a′s+ e′ + Ps2 (mod P · qL).

• Encpk(m). Sample r ← χenc and e0, e1 ← χerr. Output the ciphertext ct =
r · pk + (m + e0, e1) (mod qL). Note that 〈ct, sk〉 (mod qL) is approximately
equal to m.

• Decsk(ct). For an input ciphertext of level `, compute and output m = 〈ct, sk〉
(mod q`).
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We remark that the encryption procedure of CKKS introduces an error so its
decrypted value is not exactly same as the input value. We describe homomor-
phic operations (addition, multiplication, scalar multiplication, and rescaling) as
follows.

• Add(ct, ct′). For ciphertexts ct, ct′ in the same level `, output ctadd = ct + ct′

(mod q`).

• CMultevk(a, ct). For a constant a ∈ R and a ciphertext ct of level `, output
ctcmult = (d0, d1) + bP−1 · d2 · evke (mod q`).

•Multevk(ct, ct′). For ct = (c0, c1), ct′ = (c′0, c
′
1) ∈ R2

q`
, let (d0, d1, d2) = (c0c

′
0, c0c

′
1+

c′0c1, c1c
′
1) (mod q`). Output ctmult = (d0, d1) + bP−1 · d2 · evke (mod q`).

• Rescale`→`′(ct). For an input ciphertext of level `, output ct′ = bp`′−` · cte ∈
(mod q`′).

We note that {1, 5, . . . , 2` − 3} is a cyclic subgroup of the multiplicative
group Z×2` generated by the integer 5. One can rotate or take the conjugate of
an encrypted plaintext by evaluating the maps Y 7→ Y 5 or Y 7→ Y −1 based on
the key-switching technique. The rotation key rk and conjugation key ck should
be published to perform these algorithms (see [14] for details).

• Rotaterk(ct; k). For an input encryption of m(Y ), return an encryption of

m(Y 5k) in the same level. The encrypted plaintext vector is shifted by k slots.

• Conjugateck(ct). For an input encryption of m(Y ), return an encryption of
m(Y −1) in the same level. It takes the conjugation of the encrypted plaintext.

In applications of CKKS, we usually multiply a scaling factor to plaintexts
to maintain the precision of computations. The rescaling algorithm can divide
an encrypted plaintext by a power of p and preserve the size of scaling factors
during homomorphic arithmetic.

2.2 Previous Bootstrapping for CKKS

Cheon et al. [14] showed how to refresh a ciphertext of the CKKS scheme. In
this section, we briefly explain the previous solution.

Suppose that we have a low-level ciphertext ct ∈ R2
q encrypting m(Y ) ∈

Z[Y ]/(Y 2`+1) ⊆ R, i.e., 〈ct, sk〉 (mod q) ≈ m(Y ). Recall that m(Y ) can be iden-
tified with an `-dimensional complex vector z = Decode(m). The goal of boost-
rapping is to generate a high-level ciphertext ct′ satisfying 〈ct′, sk〉 (mod Q) ≈
m(Y ) by evaluating the decryption circuit homomorphically.

The first step raises up the modulus of an input ciphertext. We have that
[〈ct, sk〉]Q0

≈ q · I(X) + m(Y ) for some Q0 > q and I(X) ∈ R. The coefficients
of I(X) is bounded by a constant K which depends on the secret distribution
χkey. Then, we perform the subsum procedure which generates a ciphertext ct′

such that 〈ct′, sk〉 ≈ (N/2`) · t(Y ) (mod Q0) for J(Y ) = I0 + IN/2` · Y + · · · +
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I(2`−1)N/2` · Y N−1 and t(Y ) = q · J(Y ) + m(Y ).3 The constant (N/2`) can be
canceled by the rescaling process.

The coefficients to slots step, denoted by coeffToSlot, is to generate an en-
cryption of the coefficients of t(Y ) = q ·J(Y )+m(Y ), i.e., a ciphertext ct′′ which
satisfies that

[〈ct′′, sk〉]Q1
≈ Encode(t)

for some Q1. This step can be done by homomorphically evaluating the en-
coding algorithm which is a variance of complex Fourier transformation. We
point out that the resulting ciphertext should encrypt an (2`)-dimensional vec-
tor (t0, . . . , t2`−1) compared to the input ciphertext with ` plaintext slots, so
we need to generate two ciphertexts encrypting halves of coefficients when the
full-slot case ` = N/2.

Now we have one or two ciphertexts which encrypt ti = q ·Ji+mi for 0 ≤ i <
2` in their plaintext slots. The goal of next step (evalExp) is to homomorphically
evaluate the reduction modulo q function and return ciphertexts encryptingmi =
[ti]q in plaintext slots. Since the modulo reduction is not a polynomial function,
the previous work used the following approximation by a trigonometric function
which has a good accuracy under the condition that |m| � q:

[t]q = m ≈ q

2π
sin

(
2πt

q

)
.

For the evaluation of this sine function, we first evaluate the polynomial

P−r(t) =

d∑
k=0

1

k!

(
2πt

2r · q

)k
≈ exp

(
2πit

2r · q

)
for some integers r and d, which is the d-th Taylor polynomial of complex
exponential function. Then, we can recursively perform the squaring r times
Pi+1(x) = Pi(x)2 to get an encryption of

P0(t) = [P−r(t)]
2r ≈ exp(2πit/q)

whose imaginary part is sin(2πit/q) as desired. The output of evalExp is one or
two ciphertexts which contains approximate values of [ti]q = mi in their plaintext
slots.

During the evalExp step, one needs to multiply a scaling factor δ · q to en-
crypted values for an appropriate constant δ to keep the precision of compu-
tation. A larger scaling factor will consume more ciphertext modulus while a
small scaling factor makes the result less accurate. Table 1 summarizes the con-
sumption of modulus bits and relative error from approximation based on the
parameter Set-I which uses the initial polynomial of degree d = 7 and r = 6
iterations.

3 The subsum algorithm can be understood as the evaluation of trace with respect to
the field extension Q[X]/(XN +1) ≥ Q[Y ]/(Y 2`+1). It does nothing when ` = N/2.
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Params log δ Mod bit consumption Relative error

Set-I

4 337 0.00083

3 327 0.002

2 317 0.003
Table 1. Comparison of different log T and log I values

Finally, the slots to coefficients (slotToCoeff) stage is exactly the inverse of
coeffToSlot. It homomorphically evaluates the decoding algorithm to get a ci-
phertext such that [〈ct′′′, sk〉]Q2

≈ m(Y ) for some Q2. We stress again that ct′′′

has ` plaintext slots, the same as the input ciphertext ct. The slotToCoeff step
merges two output ciphertexts of evalExp and returns a fully packed ciphertext
in the full-slot case. Otherwise, the number of plaintext slots is reduced from 2`
to ` during the evaluation.

3 Improved Linear Transforms from Level-Collapsing

In this section, we present a method to improve the performance of linear trans-
formations coeffToSlot and slotToCoeff.

3.1 FFT-like Algorithms for coeffToSlot and slotToCoeff

The coeffToSlot and slotToCoeff steps in the original bootstrapping algorithm
amounts to two linear transforms that are mutually inverses to each other. More
precisely, slotToCoeff includes the computation z 7→ SF` · z where SF` is the
special Fourier transformation matrix defined in the previous section. Meanwhile,
coeffToSlot is equivalent to computing the map SF−1` on the plaintext vector. In
order to evaluate these transforms on a ciphertext encrypting the vector z, the
previous work [14] adopted the diagonal method combined with a babystep-
giantstep trick.

We begin by noting that similar to the Cooley-Tukey butterfly algorithm for
DFT, the linear transform SF` can be expressed as a sequence of “butterfly”
operations. The following algorithm is taken from the HEAANBOOT library [13].

In the beginning of Algorithm 1, a bit-reversal is performed, which effec-
tively permutes the input vector. Then, the algorithm performs log ` layers of
transforms. Similarly, we can invert the above algorithm to obtain an FFT-like
algorithm to compute SF−1` , which starts with ` levels of transforms, followed
by a bit-reversal.

3.2 Our Solution

First, we observe that for the purpose of bootstrapping, the bit-reversal opera-
tions are not necessary in the linear transforms. This is because bit-reversal is
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Algorithm 1: FFT-like algorithm for evaluating SF`

Input: ` > 1 a power of 2 integer; z ∈ C`, and a precomputed table Ψ of
complex 4`-roots of unities Ψ [j] = exp(πij/2`), 0 ≤ j < 4`.

Output: w = SF` · z
1 w = z
2 bitReverse(w, `)
3 for ( m = 2; m ≤ `; m = 2m ) {
4 for ( i = 0; i < `; i = i+m ) {
5 for ( j = 0; j < m/2; j = j + 1 ) {
6 k = (5j mod 4m) · `/m
7 U = w[i+ j]
8 V = w[i+ j +m/2]
9 V = V · Ψ [k]

10 w[i+ j] = U + V
11 w[i+ j +m/2] = U − V
12 }
13 }
14 }
15 return w

a permutation of order 2, and the sine evaluation is a SIMD (single instruction
multiple data) operation, i.e., the same operation is performed independently on
each slot. Hence, bit-reversals right before and after the sine evaluation will can-
cel themselves out. Therefore, we only need to perform the butterfly transforms
homomorphically. For ease of notations, we still use SF` to denote the linear
transform in lines 3-15 of Algorithm 1.

Next, we note that each layer of Algorithm 1 can be implemented using two
slot rotations and three SIMD plaintext multiplications. More precisely, the i-th
iteration in Algorithm 1 can be represented as

w := a[i]�w + b[i]� (w� 2i−1) + c[i]� (w� 2i−1),

where w � j (resp. w � j) denotes rotating the vector w to the left (resp.
right) by j slots, and � denotes the component-wise multiplication between
vectors. The vectors a[i],b[i], c[i] ∈ C` can be precomputed. This gives us a direct
algorithm to evaluate linear transform SF` on an encrypted vector in CKKS
scheme using log ` levels and O(log `) operations. In contrast, the approach in
[14] requires one level and O(`) operations to evaluate SF`.

In practice, a hybrid approach might work better than the above two ex-
tremes. For example, we can trade operations for levels by “collapsing” some
levels in the above algorithm. We will elaborate on this method below.
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3.3 Optimal Level-Collapsing from Dynamical Programming

First we recall the idea of Halevi and Shoup [27]. The task is to apply a sequence
of linear transforms L1 ◦ · · · ◦ L` on some input, and each evaluation consumes
one “level”. One is allowed to collapse some levels by merging some adjacent
transforms into one. For example, for n = 4 we could merge into two levels
by letting M1 = L1 ◦ L2 and M2 = L3 ◦ L4. Assuming there is a cost function
associated to every linear transform, it is an optimization problem to find the best
level collapsing strategy that minimizes the cost. More precisely, let Cost(a, b)
denote the cost of evaluating La ◦ · · · ◦ Lb−1 and let `′ ≤ ` be an upper bound
on the level. Then we wish to solve the following optimization problem:

min
a0=1<a1<...<ak<ak+1=`+1,

k+1≤`′

k∑
i=0

Cost(ai−1, ai).

To solve for an optimal solution, we recall the idea outlined in [27] as follows.
Let Opt(d, `′) be the optimal cost to evaluate the first d linear transforms using
`′ levels. Then

Opt(d, `′) = min
1≤d′≤d

Cost(d− d′, d+ 1) + Opt(d− d′, `′ − 1).

We can then use a dynamic programming algorithm to compute the optimal
strategy as a list of splitting points (a1, . . . , ak). Given this optimal level col-
lapsing strategy, we can generate the collapsed levels by merging the individual
layers.

Applying level-collapsing to our case First, we give an example of how
levels can be merged. Recall that the i-th level of Algorithm 1

w := a[i]�w + b[i]� (w� 2i−1) + c[i]� (w� 2i−1).

Suppose we merge the layers i and i+ 1. Then the new linear transform is

w := a[i+ 1]�
(
a[i]�w + b[i]� (w� 2i−1) + c[i]� (w� 2i−1)

)
+ b[i+ 1]�

(
a[i]�w + b[i]� (w� 2i−1) + c[i]� (w� 2i−1))

)
� 2i

+ c[i+ 1]�
(
a[i]�w + b[i]� (w� 2i−1) + c[i]� (w� 2i−1)

)
� 2i

= A�w +B � (w� 2i−1) + C � (w� 2i−1) +D � (w� 2i)

+ E � (w� 2i) + F � (w� 3 · 2i−1) +G� (w� 3 · 2i−1)

for some vectors A,B, . . . , G. Overall, this merged layer requires 6 rotations and
7 plaintext multiplications. In general, if we merge some layers together, then
we end up with a merged layer which looks like

w :=

k∑
i=1

p[i]� (w� ti)
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Fig. 1. Optimal complexity (number of rotations) of FFT-like algorithm with respect
to the depth and number of slots

for some precomputable vectors p[i] and integers ti, and requires (k−1) rotations
and k plaintext multiplications to evaluate. To further reduce the complexity,
we can utilize a babystep-giantstep method to reduce the number of rotations
to about 2

√
k. Note that in a new version of the implementation of the CKKS

scheme [1], plaintext multiplication takes much more time than rotation. There-
fore, we define the cost of the merged layer as 2

√
k. In the following Figure 1,

we present the optimal costs for different ` and level upper bounds.

4 Improved Sine Evaluation from Chebyshev
Approximations

4.1 Background: Chebyshev Polynomials and Chebyshev
Interpolants

Recall that the Chebyshev polynomials is a family of polynomials {Tn(x)}n≥0
defined by the recurrence relation:

T0(x) = 1

T1(x) = x

T2n(x) = 2Tn(x)2 − 1

T2n+1(x) = 2Tn(x) · Tn+1(x)− x.

(1)
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Given a Lipschitz continuous function f defined on the interval [−1, 1], the
n-th Chebyshev interpolant of f is defined as

pchebn (x) =

n∑
k=0

ckTk(x)

where the coefficients ck are uniquely determined such that pchebn (xj) = f(xj)
for

xj = cos(jπ/n), for 0 ≤ j ≤ n.

Let p∗n denote the minimax polynomial of degree ≤ n which minimizes the
infinity norm ‖f − p∗n‖∞. It would be optimal to use p∗n as a polynomial approx-
imation to f . However, computing such polynomials is not trivial in practice.
On the other hand, Chebyshev interpolants are not only easy to compute, but
also almost as good as the minimax approximation. More precisely, we have the
following formula from [21]:

‖f − pchebn ‖∞ ≤
(

2

π
log n+ 2

)
· ‖f − p∗n‖∞. (2)

4.2 Chebyshev Interpolants of Sine Function

Recall that in the bootstrapping procedure, we need to homomorphically evalu-
ate

q

2π
sin

(
2πt

q

)
.

with t ∈ [−Kq,Kq]. After a change of variables, we see that it suffices to evaluate

g(x) :=
1

2π
sin(2πKx)

with x ∈ [−1, 1]. Our goal is to find a polynomial p(x) with small degree such
that ‖g − p‖∞ is small. How good can the approximation be? For the scaled
sine function g, it has been shown (see e.g. [26]) that the minimax error εn =
‖g − p∗n‖∞ satisfies

lim sup
n→∞

nε1/nn =
eK

2
. (3)

Therefore, εn decreases like
(
eK
2n

)n
as n → ∞, i.e., the approximation error

decreases super-exponentially as a function of the degree n. So, the log n loss
factor from replacing the minimax approximation with Chebyshev interpolant is
almost negligible compared to the decreasing speed of εn. Hence, Chebyshev in-
terpolants provide a decent approximation the sine function in our bootstrapping
algorithm.

We compare the Chebyshev interpolant approach with the approach in [14].
Recall that [14] first uses a Taylor polynomial of exp(2πiKx/2r) of degree d
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to approximate it. Then, it performs r repeated squaring operations to obtain
an approximation of exp(2πiKx). Finally, g(x) is equal to 1/(2π) times the
imaginary part of exp(2πiKx). In Figure 2 below, we present the log-log plot of
approximation error versus polynomial degree for different values of d.

From the plot, we see that the Chebyshev interpolant achieves small error
quickly for degree less than 128. On the other hand, the [14] apporoach requires
a much larger degree to reach the same error when d = 7. For a larger d = 55, the
difference between the approaches becomes smaller. However, since the Taylor
coefficients of exp(2πKix/2r) decrease super-exponentially, evaluating such a
large degree Taylor approximation is likely to result in large numerical errors.
Therefore, we decided to use Chebyshev interpolants for approximating the sine
function.

5 6 7 8 9 10 11 12
−60

−40

−20

0

20
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d = 7
d = 25
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Chebyshev

Fig. 2. Polynomial approximation errors to 1
2π

sin(2πKx) (K = 12).

4.3 Computing Chebyshev Polynomials in FHE

The Chebyshev coefficients ck of the scaled sine function g can be precomputed
and stored. Next, our task is to evaluate

∑n
k=0 ckTk(x) homomorphically. There

are several choices:
Since each Tk(x) is a polynomial in x, we could rewrite pchebn (x) as

∑n
k=0 c

′
kx

k,
and use any existing method for homomorphic evaluation of polynomials in one
variable in the literature. However, the transition matrix between the ck and
c′k coefficients is ill-conditioned (actually, its conditional number grows expo-
nentially as a function of n (see e.g. [3]), and the coefficients c′k differ by many

13



orders of magnitude. Therefore, the evaluation is likely to generate large numer-
ical errors, even over unencrypted input.

A better method is to use the recurrence relation (1) to evaluate Tk(x) for 0 ≤
k ≤ n, and then compute

∑
ckTk(x) using scalar multiplications and additions.

This method yields smaller numerical errors in practice. However, the efficiency is
sub-optimal: we still need O(n) homomorphic multiplications in order to evaluate
a degree-n Chebyshev interpolant.

Paterson-Stockmeyer for Chebyshev Our next idea is to use the Paterson-
Stockmeyer algorithm [31], which requires only O(

√
n) non-scalar multiplications

to evaluate a polynomial of degree n in x. However, we could not directly apply
this algorithm since it requires the polynomial to be presented in the power base
1, x, . . . , xn. Of course, one could rewrite the Chebyshev interpolant in power
base first, and then execute the Paterson-Stockmeyer algorithm. But as we dis-
cussed above, such method is subject to large numerical errors, hence it is not a
desirable solution.

Instead, we propose a new approach by modifying the Paterson-Stockmeyer
algorithm to directly evaluate Chebyshev interpolants. As a result, we can eval-
uate a Chebyshev interpolant of degree n with

√
2n+ O(log n) non-scalar mul-

tiplications. In order to describe our algorithm, we first recall the Paterson-
Stockmeyer algorithm in [31]:

Algorithm 2: The original Paterson-Stockmeyer algorithm

Input: (a0, a1, . . . , an), u
Output: f(u) =

∑
i aiu

i

1 Find positive integers k,m such that k ≈
√
n/2 and k(2m − 1) > n

2 f̃(x) = f(x) + xk(2
m−1)

3 Compute powers bs = (u, u2, uk), gs = (uk, u2k, u4k, . . . , u2
m−1k)

4 Using long division, write f̃(x) = xk2
m−1

q(x) + r(x)

5 Set r̃(x) = r(x)− xk(2m−1−1)

6 Using long division, write r̃(x) = c(x)q(x) + s(x)
7 Evaluate c(x) at u using the precomputed powers

8 Set s̃(x) = s(x) + xk(2
m−1−1)

9 Recursively evaluate q(x) and s̃(x) at u (with lines 1-3 skipped)

10 Compute f̃(u) = (uk(2
m−1) + c(u))q(u) + s̃(u).

11 Compute uk(2
m−1) by multiplying all values in gs

12 return f(u) = f̃(u)− uk(2m−1)

Now suppose we wish to use the Chebyshev basis {Tk(x)}k instead of the
power base in Algorithm 2. We can start by replacing every occurrence of xi

in the algorithm with Ti(x). Line 3 requires computing certain Ti(x) values,
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which can be done in k + m operations using the recurrence formula (1). Thus
we only need an algorithm for long division of polynomials in Chebyshev base.
That is, given Chebyshev coefficients of polynomials f and g, output Chebyshev
coefficients of the quotient and remainder polynomials q and r such that deg q =
deg f − deg g, deg r < deg g and f = qg + r. A first attempt is to convert f and
g to the power base, perform long division as usual, and convert the resulting q
and r back to Chebyshev base. Again, this approach is likely to generate a lot
of numerical errors since the transform matrices are ill-conditioned. To resolve
this issue, we present a direct algorithm.

Long Division for polynomials in Chebyshev base

Lemma 1 (Long Division). Given two polynomials f and g with positive de-
grees n and k given by their Chebyshev coefficients, there exists an algorithm with
O(k(n−k)) operations to compute the Chebyshev coefficients of polynomials q(x)
and r(x), such that deg q = deg f − deg g, deg r < deg g, and

f(x) = g(x)q(x) + r(x).

Proof. For simplicity, we assume both f and g are monic, meaning their highest
Chebyshev coefficient is 1. We do it with induction on n = deg f . If n ≤ deg g
then we are done. Now suppose n > k = deg g and k ≥ 1. Let

r0(x) = Tn(x)− 2g(x)Tn−k(x).

Using the formula

Tm(x) = 2Ti(x)Tm−i(x)− T|m−2i|(x),

we see that deg(r0) < n, and we may compute the Chebyshev coefficients of
r0(x). Now we could recursively perform the division r0 by g to finish the algo-
rithm. The correctness is easy to verify, and since computing r0 requires O(k)
operations, the algorithm requires O(k(n−k)) operations. This finishes the proof.

Given the above lemma, we can modify Algorithm 2 to directly perform long
division of polynomials in Chebyshev base. We omit the detailed description of
the modified algorithm since it is straightforward. As a result, we have

Theorem 1. There exists an algorithm to evaluate a polynomial of degree n
given in Chebyshev base with

√
2n + O(log n) non-scalar multiplications and

O(n) scalar multiplications.

5 Putting it together

5.1 Asymptotic analysis

Combining the optimizations in Section 3 and 4, we come up with a new boot-
strapping algorithm for the CKKS scheme, whose complexity improves upon the
algorithm in [14]. We make a detailed comparison below:
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Linear Transforms The subSum step remains unchanged from [14], which
requires O(N/2`) rotations. For the two transforms coeffToSlot and slotToCoeff,
recall that [14] takes O(

√
`) rotations and ` plaintext multiplications, whereas

our algorithm provides a spectrum of trade-offs between level consumption and
operation counts. For example, if we fix the level budget to be `′ = 2, then both
the coeffToSlot and slotToCoeff requires O(`1/4) rotations and O(

√
`) plaintext

multiplications.

Sine evaluation The approach of [14] to evaluate the sine approximation re-
quires a polynomial of degree d ·2r and O(d+r) ciphertext multiplications. They
took d = O(1) and r = O(log(Kq)) in order to achieve an approximation error
of O(1) for the function (q/2π) sin(2πt/q). Thus, both the required level and the
number of operations are O(log(Kq)).

In our case, we used a Chebyshev interpolant to approximate the sine func-
tion. From the results in Section 4, we see that it suffices to take degree n ≤
max{4K, log q} to achieve 1/q approximation error from (2) and (3). Therefore,
our approach consumes only log n ≤ max{logK + 2, log log q} levels. In terms of
the number of operations, by using the modified Paterson-Stockmeyer algorithm,
we can evaluate the Chebyshev interpolant in O(

√
n) ciphertext multiplications.

5.2 Implementation and performance

Recently, the authors of [16] published a improved version [1] of the implemen-
tation of the CKKS scheme with faster operations. We implemented our boot-
strapping algorithm on top of the new version. In order to separate the causes of
speedups, we also experimented with the original bootstrapping algorithm with
the new library. We summarize our findings in Table 4.

Parameter Choices To benchmark the original bootstrapping algorithm, we
used the same parameter sets (Table 2) from [14]. We modified these parameters
slightly for our new bootstrapping algorithm. The modified parameters are pre-
sented in Table 3. We note that these modifications do not involve logN, logQ
or the initial noise in the ciphertexts, hence the security level remains the same
as previous work.

Parameter logN logQ0 log p log q r

Set-I
15 620

23 29 6

Set-II 27 37 7

Set-III
16 1240

31 41 7

Set-IV 39 54 9
Table 2. Parameter sets
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Parameter log p log q lctos lstoc

Set-I∗ 25 29 2 2

Set-II∗ 25 34 2 2

Set-II∗∗ 27 37 2 1

Set-III∗ 33 41 2 2

Set-III∗∗ 35 41 3 3

Set-IV∗ 43 54 3 3

Set-IV∗∗ 43 54 4 4

Table 3. New Parameter sets

In Table 3, the columns labeled lctos and lstoc denote the level consumption
for coeffToSlot and slotToCoeff, respectively. Note that larger levels result in less
operations. For the sine evaluation, we fixedK = 12 and a Chebyshev interpolant
of degree n = 119 based on experimental results. All experiments are performed
on a laptop with 2.8GHz Intel Core i7 Processor and 16GB memory, running on
a single thread.

5.3 Comparison

In order to make a meaningful comparison of the efficiency of the different boot-
strapping methods/implementations, we need to provide a common measure, and
one such measure is the number of slots times the number of levels allowed after
bootstrapping, divided by the bootstrapping time. We argue that this definition
makes sense, since in the process of evaluating a typical circuit homomorphically,
the frequency of bootstrapping should be inverse proportional to the after level.
Also, since the complexity of bootstrapping depends on the bit precision of the
output, we plot the utility versus precision in the following Figure 3.

From Figure 3, we see that our new algorithms can improve the utility of
bootstrapping by two orders of magnitude. For example, [14] could bootstrap
numbers with around 20 bits of precision with a utility of 2.94 (Level × Slot /
Second). With a slightly larger precision, we achieved a utility of 150, yielding
a 50x improvement.

6 Conclusion and Future Work

In this work, we showed that algorithmic improvements to the linear transforms
and sine evaluation steps could boost the efficiency of bootstrapping for the
CKKS approximate homomorphic encryption scheme by two orders of magni-
tude.

Our results suggest that using Chebyshev interpolant together with the
Paterson-Stockmeyer algorithm is a promising solution for approximately eval-
uating non-polynomial functions in FHE. For example, we could apply this idea
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Params logSlots Method LT
Sine Total Amortized Average After

Eval Time (s) Time (s) Precision Level

Set-I
7 [13] 139.2 12.3 151.5 1.2 7.64 8

7 [13] + [1] 36.1 5.26 41.36 0.32 7.64 8

Set-I* 10 This work 28.78 9.55 38.33 0.04 6.92 5

Set-II
7 [13] 127.3 12.5 139.8 1.1 9.9 1

7 [13] + [1] 43.9 8.73 52.63 0.41 9.9 1

Set-II∗ 8 This work 16.87 9.18 26.05 0.04 10.03 2

Set-II∗∗ 10 This work 37.11 9.18 85.83 0.08 9.1 1

Set-III
7 [13] 528 63 591 4.6 13.2 19

7 [13] + [1] 158.2 29.3 187.5 1.46 13.2 19

Set-III∗ 10 This work 154.28 47.7 201.98 0.2 13.7 17

Set-III∗∗ 12 This work 134.35 43.7 178.05 0.04 11.75 13

Set-IV
7 [13] 456 68 524 4.1 20.1 7

7 [13] + [1] 224.2 80.7 304.9 2.38 20.1 7

Set-IV∗ 12 This work 127.49 40.38 167.87 0.04 20.86 6

Set-IV∗∗ 14 This work 119.76 38.56 158.32 0.01 18.63 3

Table 4. Performance comparisons for bootstrapping: LT (linear transformations) tim-
ing is the sum of the timings for subSum, coeffToSlot and slotToCoeff. Precision is
averaged among all slots.

to evaluate the sigmoid function or the RELU function, which is interesting from
the point of view of doing machine learning over encrypted data. Also, this idea
can be applied to the absolute value function, which may expedite evaluation of
a sorting network over encrypted data.

The improved linear transform technique for the CKKS scheme can be used
to provide a fast evaluation of discrete Fourier transform (DFT) over encrypted
data, which might be of independent interest. Also, we could utilize our algo-
rithm to provide an efficient implementation of the conversion between CKKS
ciphertexts and ciphertexts from TFHE or BFV/BGV schemes, outlined in a
recent work [5].

Recently, there is another variant of the CKKS scheme [15] based on the
Residue Number System (RNS), following an idea of Bajard et al. [2]. The re-
ported performance numbers of this new variant are up to 10x better than the
original implementation. Thus, it would be interesting to implement our boot-
strapping algorithm on this RNS variant to obtain even better performance.
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