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ABSTRACT Multi-Key Full Homomorphic Encryption (MKFHE) can perform arbitrary operations on encrypted data 

under different public keys (users), and the final ciphertext can be jointly decrypted by all involved users. Therefore, 

MKFHE has natural advantages and application value in security multi-party computation (MPC). The MKFHE scheme 

based on Brakerski-Gentry-Vaikuntanathan (BGV) inherits the advantages of BGV FHE scheme in aspects of encrypting a 

ring element, the ciphertext/plaintext ratio, and supporting the Chinese Remainder Theorem (CRT)-based ciphertexts 

packing technique. However some weaknesses also exist such as large ciphertexts and keys, and complicated process of 

generating evaluation keys. In this paper, we present an efficient BGV-type MKFHE scheme. Firstly, we construct a nested 

ciphertext extension for BGV and separable ciphertext extension for Gentry-Sahai-Waters (GSW), which can reduce the size 

of the extended ciphertexts about a half. Secondly, we apply the hybrid homomorphic multiplication between RBGV 

ciphertext and RGSW ciphertext to the generation process of evaluation keys, which can significantly reduce the amount of 

input/output ciphertexts and improve the efficiency. Finally, we construct a directed decryption protocol which allows the 

evaluated ciphertext to be decrypted by any target user, thereby enhancing the ability of data owner to control their own 

plaintext, and abolish the limitation in current MKFHE schemes that the evaluated ciphertext can only be decrypted by users 

involved in homomorphic evaluation. 
INDEX TERMS Multi-key Full Homomorphic Encryption, ciphertext extension, evaluation key, hybrid homomorphic 

multiplication, directed decryption 

I. INTRODUCTION 

Full-homomorphic encryption (FHE), which can perform 

arbitrary operations on encrypted data without knowing the 

secret key, has the exchangeable property for encryption 

and computation. It has high research value in the current 

cloud computing environment, and can be widely used in 

ciphertext retrieval [1], secure multi-party computing (MPC) 

[2-4], cloud data analysis, etc. 

Since the first ideal-based FHE scheme Gen09 was 

proposed in 2009 [5], many FHE schemes [6-21] was 

proposed following Gentry’s blueprint. Multi-key FHE 

(MKFHE) [22-31] allows computations on ciphertexts under 

different secret keys, which is an extension of FHE in secure 

MPC. L ópez-Alt et al. [22] first proposed a MKFHE scheme 

LTV12 based on the NTRU cryptosystem [32]. However, its 

security is based on a somewhat non-standard assumption on 

polynomial rings. 

Clear and McGoldrick [23] proposed the first GSW-type 

MKFHE scheme CM15 based on the learning with error 

(LWE) problem whose security can be reduced to the worst-

case hardness of problems on ideal lattices. Mukherjee and 

Wichs [24] simplified CM15 and gave a construction of 

MKFHE scheme MW16 based on LWE. MW16 can be used 

to construct a simple 1-round threshold decryption protocol 

and a two-round MPC protocol.  

Both CM15 and MW16 need to determine the parties 

involved in homomorphic computation in advance and any 

new party cannot be allowed to join in during the 

homomorphic computation. This type of MKFHE is called 

single-hop in [25], comparing to multi-hop MKFHE whose 

result ciphertext can be employed to further evaluation with 

new parties, i.e. any new party can dynamically join the 

homomorphic evaluation at any time. Another similar 

concept named fully dynamic MKFHE was proposed in [26], 

which means that the bound of number of users does not 

need to be input during the setup procedure.  

In TCC2017, Chen et al. [28] proposed a BGV-type multi-

hop MKFHE scheme CZW17, which supports the Chinese 

Remainder Theorem (CRT)-based ciphertexts packing 
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technique, and simplifies the ciphertext extension process in 

MKFHE. What’s more, CZW17 admits a threshold 

decryption protocol and two-round MPC protocol.  

Our Contributions. At present, the BGV-type MKFHE 

scheme supporting batched multi-hop operations is 

represented by CZW17. This type of MKFHE scheme has 

the weaknesses of large ciphertexts and public parameters, 

and complicated process for the generation of evaluation 

keys. In this paper, we make the following improvements to 

these weaknesses: 

(1) We construct a nested ciphertext extension for BGV 

and separable ciphertext extension for GSW, which can 

reduce the size of the extended ciphertexts about a half. 

(2) We optimize the generation process of evaluation keys. 

The hybrid homomorphic multiplication between RBGV 

ciphertexts and RGSW ciphertexts are adopted in our scheme 

instead of homomorphic multiplication between two RBGV 

ciphertexts, thus reduce the size of public parameters. 

(3) We construct a directed decryption protocol in which 

the users involved in homomorphic evaluation can appoint 

the target user who can get the final decrypting result, 

thereby enhancing the ability of data owner to control their 

own plaintext.  

These improvements can efficiently reduce the size of 

ciphertexts and public parameters during homomorphic 

evaluation, and further reduce the computational complexity 

of homomorphic operations. 

 
II.  PRELIMINARIES 

Throughout this paper, we let  denote the security 

parameter and (negl  denote a negligible function of . 

We use bold lowercase symbol to denote vectors and bold 

uppercase symbol to denote matrixes. The i-th component of 

vector a  is represented as [ ]ia , and the element located in 

the i-th row and the j-th column of matrix A  is represented 

as [ , ]i jA . In general, vectors can be regarded as a row 

matrix. 

Let ( )mΦ X  denote the m-th cyclotomic polynomial with 

the degree ( )n m , where ( )   is the Euler’s function. We 

work over rings [ ] / mX ΦR  and /q qR R R  for a prime 

integer ( )q q . Addition and multiplication in these rings 

is done component-wise in their coefficients, and [ ]qx  

denotes that the coefficients of x  are reduced in 

[ / 2, / 2)q q (except for 2q  ). Let ( )  be a B-bound 

error distribution over R  whose coefficients are in the range 

[ , ]B B . For a probability distribution D , xD  denotes 

that x  is sampled from D , and 
$xD  denotes that x  is 

sampled uniformly from D . 

For aR , we use 0 1max i n ia a  
  to denote the 

standard l -norm and use 
1

1 0

n

ji
a a




  to denote the 

standard 1l -norm. 

A. THE GENERAL LEARNING WITH ERRORS (GLWE) 
PROBLEM 

The learning with errors (LWE) problem and the ring 

learning with errors (RLWE) problem are syntactically 

identical, aside from different rings, and these two problems 

are summarized as GLWE problem in [BGV12]. 

Definition 1 (GLWE problem). Let  be a security 

parameter. For the polynomial ring [ ] / 1dX x R  and 

/q qR R R , and an error distribution ( )  over R , 

the GLWE problem is to distinguish the following two 

distributions: In the first distribution, one samples 
1( , ) n

i i qb a R  uniformly from 
1n

q

R . For the second 

distribution, one first draws 
n

i qa R  uniformly, and 

samples 
1( , ) n

i i qb R a  by choosing 
n

qs R  and ie   

uniformly, and set ,i i ib e  a s . The GLWE assumption 

is that the GLWE problem is infeasible.  

LWE problem. The LWE problem is simply GLWE 

problem instantiated with 1d  . 

RLWE problem. The RLWE problem is GLWE problem 

instantiated with 1n  . 

B. LEVELED MULTI-KEY FHE 

We now introduce the cryptographic definition of a leveled 

multi-key FHE, which is similar to the one defined in 

CZW17 with some modifications from LTV12. 

Definition 2 (Multi-key FHE). Let  be a class of 

circuits. A leveled multi-key FHE scheme 

(Setup, KeyGen, Enc, Eval, Dec)  is described as 

follows: 

 .Setup(1 ,1 ,1 )K L ：Given the security parameter , 

the circuit depth L , and the number of distinct users K  

that can be tolerated in an evaluation, outputs the public 

parameters pp . 

 . Key Gen( )pp ：Given the public parameters pp ，
derives and outputs a public key ipk , a secret key isk , 

and the evaluation keys 
ievk  of party i ( 1,...,i K ).  

 . Enc( , )ipk m ：Given a public key ipk  and message 

 ，outputs a ciphertext ict .  

 
1 2

. Dec(( , ,..., ), )
ki i i Ssk sk sk ct ：Given a ciphertext Sct  

corresponding to a set of users 1 2{ , ,..., } [ ]kS i i i K  ，
and their secret keys 

1 2
{ , ,..., }

kS i i isk sk sk sk , outputs 

the message  。 

 
1 1 1

.Eval( , ( , , ),..., ( , , ))
t t tS S S S S Sct pk evk ct pk evk ： On 

input a Boolean circuit  along with t  tuples 

1,...,( , )
i i iS S S i tct pk evk ， ， each tuple comprises of a 

ciphertext 
iSct  corresponding to a user set 

iS , a set of 

public keys { , }
iS j ipk pk j S   , and the evaluation 

keys 
iSevk , outputs a ciphertext Sct  corresponding to a 

set of secret keys indexed by 
1 [ ]t

i iS S K  。 

Definition 3 (Correctness of MKFHE). On input any 

circuit  of depth at most L  and a set of 

tuples
{1,..., }{( , )}

i iS S i tct pk 
, let Dec( , )

i ii S Ssk ct  , where 

{ , }
iS j isk sk j S   , a leveled MKFHE scheme  is 

correct if it holds that 

[ ] 1Pr[Dec( , ( ,( , , ) )) ( ,..., )]

( )

i i iS S S S i t tsk Eval ct pk evk

negl
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Definition 4 (Compactness of MKFHE). A leveled 

MKFHE scheme is compact if there exists a polynomial 

( , , )poly     such that ( , , )ct poly K L , which means that 

the length of ct  is independent of the circuit , but depend 

on the security parameter , the number of users K  and the 

circuit depth L . 

C.  TWO SUBROUTINES 

Here we introduce two subroutines ( BitDecomp( )  and 

Powersof 2( ) ) which are widely used in FHE schemes. Let 
n

qx R  be a polynomial of dimension n  over qR , and let 

log 1q     . 

BitDecomp( , )n

q qx R : On input 1( ,..., ) n

n qx x x R  and 

the modulus q ， outputs 1,0 1, 1 ,0 , 1( ,..., ,..., ,..., )n nx x x x     

{0,1}n   where ,i jx  is the j-th bit in ix ’s binary 

representation (ordered from least significant to most 

significant), namely 
1 1

1, ,0 0
( 2 ,..., 2 )j j

j n jj j
x x

  

 
  x . 

Powersof 2( , )n

q qy R : On input 1( ,..., ) n

n qy y y R  and 

the modulus q , outputs 1

1 1 1( ,2 ,..., 2 ,..., , 2 ,...,n ny y y y y   
12 ) n

n qy  R .  

It’s straightforward to verify that for arbitrary , n

qx y R , it 

holds that 

BitDecomp( , ), Powersof 2( , ) , modq q qx y x y  

D.  TWO TECHNIQUES 

In this section, we introduced two powerful techniques (key-

switching and modulus-switching) from [BGV12], which are 

applied to control the dimension and noise of ciphertext 

during homomorphic evaluation. 

Key-switching : The key switching technique can be used 

to reduce the dimension of an expanded ciphertext to a 

normal level, but more generally can be used to transform a 

ciphertext 1

1

n

qc R  (under the secret key 1s ) to another 

ciphertext 2

2

n

qc R  (under the secret key 2s ) with the 

corresponding message unchanged. For a FHE scheme , 

let log 1q     , the key switching process mainly consists 

of two procedures: 

 1 2

1 2.SwitchKeyGen( , )
n n

q q s sR R : Compute s  

1

1Powersof 2( )
n

q


s R , and output 

2

1 2 2 11,...,: { Enc ( [ ]) }
n

i q i ni    
s s s

s R  

 
1 2 1.SwitchKey( , , )qs s

c ： Compute 1 c  

1

1BitDecomp( )
n

q


c R , and output 

1 2

2 11
[ ]

n n

i qi
i




  c c R  

Lemma 1 (BGV12). Let 1c  be a ciphertext under the key 

1s  for modulus q  such that 11 1,[ ]qe   c s  has length at 

most B and 1 2[ ]m e ( 2p  ). Let 

1 22 1.SwitchKey( , , )c q
s s

c , and let 22 2,[ ]qe   c s . 

Then 2e  (the new noise) has length at most 

2 logRB B q n       , and (assuming this noise length 

is less than / 2q ) we have 2 2[ ]m e . 

Modulus-switching : Since the noise involved in the 

ciphertext grows with homomorphic operations, modulus 

switching which can change the inner modulus 1lq   of 

ciphertext 1c  to a smaller number lq  is used to reduce the 

noise term roughly by the ratio 1 /l lq q ， while preserving 

the correctness of decryption under the same secret key.  

 1 1.ModulusSwitch( , , )l lq qc : On input 1

11 l

n

q 
c R  and 

another smaller modulus lq , output 1

2 l

n

qc R  which is 

the closest element to 1 1( / )l lq q  c . 

Lemma 2 (BGV12). Let 1c  be a ciphertext under the key 

1s  for modulus 1lq   such that 
11 11 ,[ ]

ll qe
   c s  has 

length at most B and 1 2[ ]m e . Let 

2 1 1. ModulusSwitch( , , )l lc q q c , and let 

2 1,[ ]
ll qe   c s . Then le  (the new noise) has length at 

most 1( / )l l Rq q B n B     , and (assuming this noise 

length is less than / 2lq ) we have 2[ ]lm e . 

We just give a brief introduction of the two techniques 

above, and more details can be seen in BGV12. 

III. EFFICIENT COMPONENTS IN OUR MKFHE 

In this section, we present the details of some efficient 

techniques for homomorphic operations in our scheme, 

including: two optimized algorithms for ciphertext extension 

(nested ciphertext extension for BGV and separable 

ciphertext extension for GSW), generation of evaluation keys, 

and directed decryption process. 

The aim of the system is to perform homomorphic 

operations on ciphertexts of different users in the cloud. In 

the initialization phase, the users upload the RBGV 

ciphertexts corresponding to their messages to the cloud, 

along with some materials used in the generation process of 

evaluation keys. 

Step 1 (Ciphertext extension): The users respectively 

extend their RBGV ciphertexts to ones corresponding to the 

user set S before homomorphic evaluation. 

Step 2 (Homomorphic evaluation): Do homomorphic 

computations on the user’s extended ciphertexts and get a 

high-dimensional RBGV ciphertext.  

Step 3 (Evaluation keys): Do ciphertext extension on 

materials in the initialization phase and perform hybrid 

homomorphic multiplication on RBGV and RGSW 

ciphertexts to obtain the evaluation keys. 

Step 4 (Key switching): Perform key-switching operation 

on the high-dimensional RBGV ciphertext in step2 using the 

evaluation keys. 

Step 5 (Modulus switching): Perform modulus-switching 

operation on the result ciphertext of step 4 and output the 

final ciphertext. 

Note that the step 1, 2, 3 in our system can be performed 

simultaneously, and the flowchart of homomorphic operation 

in MKFHE scheme is shown in Figure 1.  
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(1)ciphertext
 extension

(2)  homomorphric
     operation 

(4) key switching

BGV ciphertext
for S={red}

BGV ciphertext
for S={red,green}

BGV ciphertext
for S={green}

 secret key s_1

 secret key s_2

BGV ciphertext
for S={red,green}

(1)ciphertext
 extension

High-dimensional 
BGV ciphertext

for S={red,green}

BGV ciphertext
of  s_1[i]

BGV ciphertext
of  s_2[i]

  hybrid homomorphric
     multiplication

Evaluation keys

BGV ciphertext
for S={red,green}

GSW ciphertext
of  s_1[i]

GSW ciphertext
of  s_2[i]

(3) Generation of 
Evaluation keys

(5) modulus 
switching 

ciphertext
 extension

ciphertext
 extension

BGV ciphertext
of  s_1[i]

BGV ciphertext
of  s_2[i]

GSW ciphertext
of  s_1[i]

GSW ciphertext
of  s_2[i]

 

FIGURE 1.  The process of homomorphic operation in MKFHE scheme 

A. CIPHERTEXT EXTENSION 

1)  NESTED CIPHERTEXT EXTENSION FOR BGV 

Here we present the basic ring-LWE based BGV scheme 

with some modifications to the original scheme in [BGV12]. 

 RBGV.Setup(1 ,1 )L : For the security parameter , given 

a bound K  on the number of keys, a bound L  on the 

circuit depth with L  decreasing modulus 

1 0L Lq q q  for each level and a small integer p 

coprime with all lq , let log 1l lq     . We work over 

rings [ ] / mX ΦR  and /
lq lqR R R  defined above. Let 

( )  be a B-bound error distribution over R  whose 

coefficients are in the range [ , ]B B . 

 RBGV.KeyGen(1 ,1 )n L ： Generate keys of circuit depth l 

for the j-th party ( 0,...,l L ).  

1. Sample , 3l jz R  and set secret key 
2

, , , 3: (1, )l j l j l jsk z   s R  

2. Generate 
$

,l j qa R  and 
$

,l je   randomly, and 

compute the public key for the j-th user 
2

, , , , , , , ,: ( mod , ) ( , )
ll j l j l j l j l j l l j l j l j qpk a z pe q a b a    p R  

 ,RBGV.Enc( , )l jpk  : On input a message p R  and 

the public key ,L jpk , sample random elements 

r , e , e , compute level-L ciphertext 
(0) (1) 2

, ,( , ) ( , )
LL j L j qc c rb pe ra pe      c R  

Let S be an ordered set containing all indexes of users that 

the ciphertext corresponding to, and we assume that the 

indexes are arranged from small to large and S has no 

duplicate elements, thus we can describe a ciphertext as a 

tuple { , , }ct S l c . Here we set { }S j , l L , and output 

{ ,{ }, }ct j L c .
 

 RBGV.Dec( , ( , , ))S ct S l csk : On input a level-l 

ciphertext ( , , )ct S l c  where 1{ ,..., }kS j j ， and its 

corresponding secret keys 
1

2

, , 3{ ,..., }
k

k

j l j l s s R . Let 

1

1

, , , 3(1, ,..., )
k

k

S l j l j lz z    s R , output the message 

,, mod modS l lq p  c s  

 RBGV.CTExt( , )l S c ： On input a ciphertext tuple 
1

1{ , { ,..., }, }
l

k

q kct S i i l  c R  corresponding to k parties 

and another user set 1{ ,..., }kS j j 
   for S S  , output an 

extended tuple 1

1{ , { ,..., }, }
l

k

q kct S j j l



   c R . The 

extending algorithm is as follows: 

(a) Divide the ciphertext c  into 1k   sequential sub-

vectors indexed by 1{ ,..., }kS i i  (except for the first sub-

vector), i.e., 

1

(0) (1) (1) 1( )
lkS

k

qi ic c c  c R   

where the corresponding secret key is 
1, , ,=(1, ,..., )

kS l i l i lz z s . 
(b) The extended ciphertext c  consists of 1k    

sequential sub-vectors, which can be indexed by 

1{ ,..., }kS j j 
  , i.e., 

1

(0) (1 1) (1)( )
lkS j j

k

qc c c




    c R  

Set (0) (0)

S Sc c
  . If index j in S   is also included in S , we 

set 
(1) (1)

j jc c  ,otherwise we set 
(1) =0jc . The corresponding 

secret key for decryption is 
1

1

, , , 3=(1, ,..., )
k

k

S l l j l jz z




   s R . 

It’s easy to verify that , ,, , modS l S l lqc s c s . 

2)  NESTED CIPHERTEXT EXTENSION FOR GSW 

In this section, we describe a variant of Ring-LWE based 

GSW scheme. 

 RGSW.Setup(1 )：For the security parameter , given a 

bound K  on the number of keys, a bound L  on the 

circuit depth with L  decreasing modulus 

1 0L Lq q q  for each level and a small integer p 

coprime with all lq , let log 1l lq     . We work over 

rings [ ] / mX ΦR  and /
lq lqR R R  defined above. Let 

( )  be a B-bound error distribution over R  whose 

coefficients are in the range [ , ]B B . 

 RGSW.KeyGen(1 )n ： Sample 3z R ，  choose a 

random vector 
2

l

l

q


a R and 

2 le
 
uniformly，output 

the secret key 
2

3(1, )Tz  s R  and public key 
2 2

[ , ] [ , ] l

lqz p
 

   P a e a b a R . 

 RGSW.EncRand( , )r P ：This procedure is to generate 

the encryption of randomness which is used in the 

ciphertext extension. On input 
lqr R , sample 
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ir  ( 1,..., )li 
 
and two vectors 

1 2, l  e e  

randomly, output the encryption of the randomness: 
2

1 2RGSW.EncRand ( ) [ , ]
l

l

qr
 

  
s

F f f R  

where 1 1[ ] [ ] [ ] Powersof 2( )[ ]
lqii i r p i r i   f b e R   

2 2[ ] [ ] [ ]
lqii i r p i  f a e R . 

Notice that [ Powersof 2( )] l

lqp r


  Fs e R  for some 

small 1 2[ ] [ ] [ ]ii r i i z   e e e e . 

 RGSW. Enc( , ) P ：Given a message qR  and the 

public key 2 2
[ , ] l

q

 
 P b a R ，sample a random element 

r 
 
and an error matrix 2 2

1 2[ , ] l 
 E e e ，output 

the ciphertext 

1 2

RGSW.Enc( , )

[ , ]

[ , ]

[ ( ), ]

r p

r p

r z p p

r z p r r p

 







   

  

   

    

P C P E G

b a E G

a e a E G

a e e a e G

 

where 1 2 2

2 2 2( ,2 ,...,2 )l lT

q

  
 G I I I R  and 2I  is a 2 2  

identity matrix. Notice that 2 l

qp
    C s e G s R . 

 RGSW.CTExt( , ,{ , 1,..., })i i j j kC F P : On input the i-th 

user’s ciphertext 2 2

,0 ,1[ , ] l

i i i q

 
 C C C R ，an encryption 

iF  of randomness 
li qr R , and the public keys of all 

involved users [ , ]j j jP b a ， 1,..., 1, 1,...j i i k   . 

Output the extended ciphertext： 

1,0 ,0 ,1 1,1

2,0 ,0

2 ( 1)

,1

1,0 ,0

,0 ,0 ,1 ,1

0 0

0 0

0

l

i i

i

k k

i qi

k i

k i k i

  



 
 

 
  
 

 
  

X C C X

X C

C C

X C

X C X C

R  

where 
2 2

,0 ,1[ , ] [BitDecomp( [ ]) ] l

j j j j i qu
 

  X X X b F R , 

[ ] [ ] [ ]j j iu u u b b b ， 1,...,2 lu  , and the 

corresponding secret key 1

1 3(1, , ) k

kz z    s R . 

Correctness of Ciphertext Extension ： In order to 

ensure the correctness of the extending algorithm of GSW 

ciphertext, it is necessary to verify that the j-th row in 
iC  

satisfies: 
2

,0 ,0 ,1 ,1( ) l

j i i j j i i j j i i j qz z p
       X C C X C s X s e Gs R

where 
2 le R  is a small noise vector. The analysis 

process is as follows: 
[ ]

[ ]

( )

i j i i i j j i j

i i i j j j i j i j

i j i j j i j

j i j i j i j

r z p z p

r z p z p p r p

r p r p

p r p r









    

      

    

   

C s a e a Es Gs

a e a e Es Gs e

b Gs Es e

Es e Gs b

 

BitDecomp( )

BitDecomp( )[ Powersof 2( )]

BitDecomp( )

j i j i i

j i

j i j

p r

p r

 

 

 

X s b F s

b e

b e b

 

Then we have: 

2

BitDecomp( ) ( )i j j i i j j j i j

i j q

p p r p

p 





    

  

C s X s Gs b e Es e

Gs e R
 

Finally we can get 

=i j j i j ip   C s X s C s e Gs  

where 
2 21

2 2 2( ,2 ,...,2 ) lk kT

k k k q

  G I I I R . 

B. GENERATION OF EVALUATION KEY 

In this paper, we optimize the generation of evaluation keys 

during the key-switching process in [CZW17]. We apply the 

hybrid homomorphic multiplication in [19] between RBGV 

ciphertexts and RGSW ciphertexts instead of homomorphic 

multiplication between two RBGV ciphertexts, thus decrease 

the noise involved in the evaluation keys. What’s more, we 

limit the coefficient of user’s secret key to { 1,0,1}  so that 

BitDecomp( )  and Powersof 2( )  techniques are no longer 

required in key-switching, thus reduce the number of 

ciphertexts during key-switching process. For convenience, 

we use RGSW. Enc ( )
s (or RBGV.Enc ( )

s ) to denote a 

GSW/BGV ciphertext that can be decrypted to   with the 

secret key s . 

 MKFHE.EVKGen( , )S Sem pk ：Given a level-l extended 

secret key 
2( 1)

3
ˆ = k

l l l

 s s s R  for 
1, ,=(1, ,..., )

kl l j l jz z s , 

and corresponding
 

public keys 
11, 1, { ,..., }[ , ]

kl j l j j j j  b a
 
for 

the user set 1{ ,..., }kS j j . For {1,..., }j k , 

{0,..., 1}lm   , compute 

1,, ,RGSW.Enc ( )
l jl j l jz
s  

, , 1,RGSW.EncRand( , )l j l j l jr pk F  

1,, , ,RBGV.Enc (2 )
l j

m

l j m l jz



s  

Output the evaluation keys 
2

,{ }
lm qevk  R , 

2{1,..., ( 1) }k   , and the process is shown in 

Algorithm1. 

 

Algorithm1：the generation of ,{ }mevk   

Input: ,l j ， ,l jF ， , ,l j m  

1. for {0,..., }k   

1

1 , , ,

RGSW.Enc (1)                       0
[ ]

RGSW.CTExt ( , , )    else

l

l

l

l l j l j


 





 

 
 



s

s
F P  

2. for {0,..., }k   

for {0,..., 1}lm    

1

1

,

, ,

RBGV.Enc (2 )              0
[ ]

RBGV.CTExt ( , )    else

l

l

m

l m

l m S


 







 



s

s

 

3. for [0,..., ]k    

for [0,..., ]k   

for [0,..., 1]lm    

        
( 1), , , ,[ ] [ ]m l j l mk j       



 

4. output 
2, {0,..., 1}; {1,...,( 1) }

{ }
l

m m k
evk      


 

where “ ” denotes the hybrid homomorphic 

multiplication between RBGV ciphertexts and RGSW 

ciphertexts. 
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Definition 5 (Hybrid homomorphic multiplication). We 

define the product  as 

: RGSW RBGV RBGV   

 2 1 2 1 1 2, BD( ) C c C c c C  

The definition of hybrid homomorphic multiplication 

based on RLWE is a variant of the external product based on 

TLWE in [19], and it can be used in evaluating process to 

reduce the amount of ciphertexts and noise, thereby 

improving the efficiency of homomorphic evaluation. 

Corollary 1. Let 2C  be a valid RGSW sample of message 

2  and let 1c  be a valid RBGV sample of message 1 .Then 

2 1C c  is a RBGV sample of message 2 1   and 

2 1 2 2 1( ) (2 ) 2 || ( )|| || ( )||Err n Err Err    
 C c C c , 

2 1 1( ( )) 2 (2 1) ( ) ( )Var Err p n Var pnVar  C c e e , where n  

is the degree of the cyclotomic polynomial, p  is an integer, 

 is the bound of the noise coefficients,  is the standard 

deviation of the error distribution , 1pe  is the noise of 

1c , e  is the noise involved in 2C . 

C. DIRECTED DECRYPTION PROTOCOL 

MKFHE can be applied to realize secure computation among 

multi-parties, and the evaluated ciphertext can be jointly 

decrypted by all involved users. However, sometimes we do 

not prefer the final decrypting result to be known by all 

involved users, and only want the designated and recognized 

legitimate user(s) to get the decrypting result, even the user(s) 

does not participate in the computing process. For this 

scenario in Figure 2, a directed decryption protocol is 

essential to enhance the ability of data owner to control their 

own plaintext. 

Evaluated 
ciphertext c

User 1

User 2

User k
...

ρ1
Semi-decrypting

ρ2
Semi-decrypting

ρk
Semi-decrypting

User P

Final-decrypting

Evaluated 
message μ

 

FIGURE 2.  The process of directed decryption in our MKFHE scheme 

 

In this paper, we construct a directed decryption protocol 

in which the users involved in homomorphic evaluation can 

appoint the target user who can get the final decrypting result, 

thereby enhancing the ability of data owner to control their 

own plaintext. The directed decryption protocol is realized 

by adding the encryption of 0 (under the public key of target 

user) to the intermediate decryption result of the users 

involved in homomorphic evaluation, and the process is as 

follows:  

Assume that the level-l ciphertext needs to be finally 

decrypted is denoted by 
1 2

1

, , ,( , , ,..., )
k l

k

l l j l j l j qb a a a  c R , the 

corresponding user set 1( ,..., )kS j j  and the plaintext 

1( ,..., )k    where  is the Boolean circuit. Assume 

that the target user who needs to get the ultimate decrypted 

result is i, and he can get the ciphertext c , the process of our 

directed decryption protocol is implemented as follows: 

1. Semi-decrypting: The users in S  respectively do 

decrypting operations on ciphertext c  with their special 

extended keys. For user 1j  with secret key 
1 1, ,(1, )l j l jz s , 

get the semi-decrypting result 
1 1

( ,0)j j
  cc  by the extended 

key 
1 1, ,(1, ,0,...,0)l j l jz  s : 

1 1 11 1, , ,( ,( ,0 ,0) ( ,0))j l j l l j l jj b a z     c c sc  

Other users in S  do similar operations as user 1j . 

2. Adding target user’s encryption of 0: The users in S  

respectively compute the encryption of 0 using the public 

key of user i : 

1 1

2

, , ,RBGV.Enc( ,0) ( , )
li l i l i l i qpk b a  c R  

For user 1j , compute the sum of ic  and the semi-

decrypting result 
1j
c : 

1 1 1 1 1, , , ,( , )j l l j l j l i l ib a z b a    c  

Following the same method, other users can get 

1 2
{ , ,..., }

kj j j
  c c c  and send them to user i. 

3. Final decryption: When user i receives 
1 2

{ , ,..., }
kj j j

  c c c , 

he compute 
1 2

...
ksum j j j

     c c c c , and compute the final 

decrypting result as  

1

1 1

, ,

, , , , ,

1 1

, , , , ,

1 1

1

1

( ( 1) ) ( ... ( 1) ) (1, )

( 1) ( )

( )

( ,..., ) ... ...

( ,...

k

m m m m

m m m m

k k

sum l l i j j l l i

k k

l l j l j l l i l i l i

m m

k k

l l j l j l i l i l i

m m

k j j i i

k b k b z

kb a z k b b a z

b a z b a z

e e e e



 



 

 

           

       

     

     



 

 

c s c c

, )  mod modk lq p
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Lemma 3: Let B  denotes the bound of noise in a fresh 

RBGV ciphertext, and lB  denotes the bound of noise in a 

level-l RBGV ciphertext, then the directed decryption 

process is correct if 

1 1 1
| ... ... | | ... |+ + < / 4

k k kj j i i j j le e e e e e kB kB kB q         

Note that in current MKFHE schemes, the result of 

homomorphic evaluations can only be finally decrypted by 

users involved in the evaluation process, and the directed 

decryption protocol designed in this paper allow the result 

ciphertext to be decrypted by any legitimate user. Moreover, 

as no homomorphic multiplication is involved in our 

protocol, there is no need of some techniques to control the 

noise. 

IV. NEW CONSTRUCTION OF BGV-TYPE MKFHE 
SCHEME 

In this section, we present the details of our BGV-type 

MKFHE scheme. For convenience, in the following we use 

RGSW. Enc ( )
s  (presented in Section 3.1) to denote a 

GSW ciphertext (or RBGV.Enc ( )
s ) that can be decrypted 

to   with the secret key s . Also we adopt the techniques of 

key-switching and modulus-switching introduced in section 

2.4. 

A. BASIC SCHEME 

 MKFHE.Setup(1 ,1 ,1 )K L
: For the security parameter , 

given a bound K  on the number of keys, a bound L  on 

the circuit depth with L decreasing modulus 

1 0L Lq q q  for each level and a small integer p 

coprime with all lq . We work over rings [ ] / mX ΦR  

and /
lq lqR R R  defined above. Let ( )  be a B-

bound error distribution over R  whose coefficients are in 

the range [ , ]B B . Let log 1l lq     , log 1B B     , 

and choose 1L  random public vectors 
2 l

ll q


a R  for 

{0, , }l L . All the following algorithms implicitly take 

the public parameter {0, , }( , , ,{ , } , )l l l Lpp B q p aR  as 

input.  

Let S be an ordered set containing all indexes of users 

that the ciphertext corresponding to, and we assume that 

the indexes are arranged from small to large and S has no 

duplicate elements, thus we can describe a ciphertext as a 

tuple { , , }ct S l c .
 

 MKFHE.KeyGen( )pp : Given the public parameters pp , 

generate keys of circuit depth l for the j-th party 

( 0,...,l L ). 

1. Sample ,l jz   and set secret key 

2

, , , 3: (1, )l j l j l jsk z   s R . 

2. Choose 
2$

,
l

l j


e  randomly, and compute the 

public key for the j-th user 
2 2

, , , , , , , ,: [ , ] [ , ] l

l j l j l j l j l j l j l j l j qpk z p R
 

    p a e a b a  

3. Compute the materials used in the generation of 

evaluation keys： 
2 2 22

, , , , { ,...,0}{( ), ( , )}l lB

l l lj l j m q l j q l j q l Lem R R R
    

   F  

where 

1,, , ,

2

, , 1, , , , , ,, , ,

RBGV.Enc (2 )

{ [1] 2 , ]2  [1 2 }

l j

l

m

l j m l j

m

l j m l j l j m l j l j m l j m ql jr e r

z

z e




  



  

s

b a R

1, ,

2 2

, 1 1 , ,

RGSW.Enc ( )

{ [ , ] }

l

l

l

l j l j

l j l l l j l j q

z

r p z R







 
    

s

b a E G
 

2

, , 1,RGSW.EncRand( , ) l

ll j l j l j qr pk
 

 F R  

 ,MKFHE.Enc( , )L j jpk  : On input a message j p R  

and the public key ,L jpk , sample random elements r , e , 

e , compute level-L ciphertext 

,

2

,0 ,1 [1] , [) )1, ( ](
LL jj j qj Lr pe r pc c e    c b a R  

and output the tuple { ,{ }, }ct j L c . 
 MKFHE. Dec( , ( , , ))S ct S l csk : On input a level-l 

ciphertext ( , , )ct S l c  where 1{ ,..., }kS j j ， and its 

corresponding secret keys 
1

2

, , 3{ ,..., }
k

k

j l j l s s R . Let 

1

1

, , , 3(1, ,..., )
k

k

S l j l j lz z    s R , output the message 

,, mod modS l lq p  c s
 

 
1, , 1MKFHE. (( , , ), , , ( , ))

kl j l j S tEval pk pk em ct ct : 

Assume that the sequence of ciphertexts 

{1, , }{ , , }i i ti ict S l  c
 
are at the same level-l (If needed, use 

key-switching and modulus-switching to make it so). Let 

1 1( , , )t

i i kS S j j  . Then the outline of evaluation on 

Boolean circuit  is as follows. 

1. For {1, , }i t , compute RBGV.CTExt( , )i Sc  to get 

an extended ciphertext ic  under extended secret key 

1, ,: (1, , )
kl l j l jz z  s . 

2.Generate the evaluation keys by compute 

1ˆ ,=MKFHE.EVKGen( , )
l lS S l Sevk em pk


s s  

3. Evaluate the circuit  by using the two basic 

homomorphic operations 
1 2

MKFHE.EvalAdd( , , )S i ievk c c  and 

1 2
MKFHE.EvalMult( , , )S i ievk c c .  

B. HOMOMORPHIC OPERATIONS 

In the following subsections, we will detail how to perform 

the two basic homomorphic operations MKFHE.EvalAdd( )
 

and MKFHE.EvalMult( )  on two (extended) ciphertext 

1c , 1

2 l

k

q

c R  corresponding to the user set 1{ ,..., }kS j j . 

The evaluation key is defined as : 

2
1ˆ , 1,..., , 1,...,( 1)

{ }
l l l

S m m k
evk   


   

 
s s  

where ˆ
l l l s s s , 

1

1

, , 3=(1, ,..., )
k

k

l l j l jz z   s R , 1=(1,ls  

1

1

1, 1, 3,..., )
k

k

l j l jz z 

   R
 ,
, and it holds that 

1

1 1

, 1 , 1, 1, 3
ˆ, 2 [ ] ,..., )

k

m k

m l m l l j l jpe z z   

       s s R  

where the canonical form of ,me   is small. 

 1 2MKFHE.EvalAdd( , , )Sevk c c : On input two (extended) 

ciphertext 1c , 1

2 l

k

q

c R  at the same level-l under the same 

secret key 
1

3

k

l

s R  (If needed, use key-switching and 

modulus-switching to make it so) .  

1. Compute 3 1 2 mod lqc c c  under the secret key 
1

3

k

l

s R . 
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2. Compute 
1ˆ3 3SwitchKey( , )

l l





s s
c c  under the secret 

key 1

1 3

k

l



 s R . 

3. Compute 3 3 1ModulusSwitch( , )lq 
 c c . 

 1 2MKFHE.EvalMult( , , )Sevk c c : On input two (extended) 

ciphertext 1c , 1

2 l

k

q

c R  at the same level-l under the same 

secret key 1

3

k

l

s R  (If needed, use key-switching and 

modulus-switching to make it so).  

1. Compute
 3 1 2 mod lqc c c

 
under the secret key 

2( 1)

3
ˆ = k

l l l

 s s s R . 

2. Compute
 1ˆ3 3SwitchKey( , )

l l





s s
c c  under the secret 

key 1

1 3

k

l



 s R . 

3. Compute
 3 3 1ModulusSwitch( , )lq 

 c c . 

C. ANALYSIS 

1)  SECURITY ANALYSIS 

The basic BGV and GSW encryption scheme in our scheme 

are same as CZW17, and the main differences between us 

lies in: (1) we construct the nested ciphertext extension for 

BGV and separable ciphertext extension for GSW (2) we 

apply the hybrid homomorphic multiplication between 

RBGV ciphertext and RGSW ciphertext. The input and 

output of these three functions are ciphertext, and the 

homomorphic operations are all performed on ciphertext, so 

the security of our scheme is same as CZW17. 

2)  EFFICIENCY ANALYSIS 

TABLE 1. Comparison of storage overhead between our 

scheme and CZW17 

 

 CZW17 Our scheme 

Ciphertext size 

( k users) 
2 lk n  ( 1) lk n  

Materials size 
3

0
24

L

ll
n

  
0
(4 4 )

L

B l ll
n  


  

Evaluation key 

size 
2 24 lk n  

2( 1) B lk n   

As the range of secret key is limited to {-1,0,1} , the 

ciphertext size of the secret key is reduced to B  and the 

efficiency of our scheme is improved, which can make up for 

the increase of computational complexity caused by the 

increase of polynomial dimension n. 

V. CONCLUSION 

In this paper, we propose an efficient multi-key FHE scheme 

by constructing some efficient techniques such as nested 

ciphertext extension for BGV and separable ciphertext 

extension for GSW, and we apply the hybrid homomorphic 

multiplication between RBGV ciphertext and RGSW 

ciphertext, which can reduce the size of public parameters 

and evaluation keys, thus improve the efficiency of BGV-

type MKFHE scheme. We also construct a directed 

decryption protocol which allows the evaluated ciphertext to 

be decrypted by any target user, thereby enhancing the 

ability of data owner to control their own plaintext. 
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